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Preliminaries



Classical Framework

2 Only one reference measure P = {Po} which fixes the null sets.

2 No-Arbitrage NA(Po) : (H • S)T ≥ 0 Po-a.s. ⇒ (H • S)T = 0 Po-a.s.

2 NA(Po)⇔ Q(Po) := {Q ∼ Po : S is a Q-mart.} 6= ∅.

2 Super-hedging price of f is sup{EQ [f ], Q ∈ Q(Po)}.



The non-dominated case

2 {Po} is replaced by a family P made of (possibly) singular measures P
which fix the polar sets : A ⊂ A′ with P[A′] = 0 ∀ P ∈ P, i.e. A = ∅
P-q.s.

⇒ it stands for model uncertainty.

Example : all Dirac masses on Ω ⇒ Model free point of view.

2 Questions :
- What is the good notion of arbitrage ? (q.s. or pathwise)
- Which duality do we look for ? (a family of MM with the same polar
sets or just one)
- What minimal conditions can we afford ? (try to avoid continuity
assumptions)
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Discrete time frictionless markets
Joint with M. Nutz

Arbitrage and duality in nondominated discrete-time models
to appear in Annals of Applied Probability.



What is a good notion of no-arbitrage ?

2 Different possibilities :

• (H • S)T ≥ 0 P-q.s. and P[(H • S)T > 0] > 0 ∀ P ∈ P is impossible.
One has to be lucky whatever the true model is.

• (H • S)T ≥ 0 P-q.s. and P[(H • S)T > 0] > 0 for some P ∈ P is
impossible. One has to be lucky on the model as well. (e.g. Deparis and
Martini 04 for P generated by Dirac Mass, Riedel)

• (H • S)T (ω) > 0 for all ω is impossible (Acciaio, Beiglböck, Penkner
and Schachermayer 2013).

• (H • S)T (ω) ≥ 0 ∀ ω ∈ S and ∃ ω ∈ S s.t. (H • S)T (ω) > 0 (Burzoni,
Frittelli and Maggis 2014).
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No-Arbitrage, super-hedging and martingale
measures ?

2 P is already a set of martingale measures.

- Mass transport : Henry-Labordère, Juillet, Galichon,Touzi, Tan,
Dolynski, Soner, etc...
- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï,
Nutz, Neufeld, Kupper, Peng, etc..

2 If not assumed, there are different possibilities :
- ∃ Q on (Ω,F) (e.g. Acciaio et al. 2013 or Burzoni et al. 2014).
- ∃ a family Q with the same polar sets : Q ∼ P.

2 One can ask to be consistent with the prices of some options :
- All calls : Embedding point of view of Hobson, Obloj, Cox,..., and Mass
Transport approach.
- I infinite + a power option (or suitable calls) : Acciaio et al. 2013.
- I finite.
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FTAP and super-hedging duality
NA(P) : (H • S)T + h · g ≥ 0 P-q.s. ⇒ (H • S)T + h · g = 0 P-q.s.

Restriction to measures consistent with option prices :

Q =
{
Q ≪ P : Q is a mart. measure and EQ [g i ] = 0 for i = 1, . . . , |I|

}
.

Theorem : The following are equivalent :
(i) NA(P) holds.
(ii) For all P ∈ P there exists Q ∈ Q such that P � Q.
(ii’) P and Q have the same polar sets.

Theorem : Let f be upper semi-analytic. Then,

inf
{
x ∈ R : ∃ (H, h) ∈ H × R|I| s.t. x + (H • S)T + h · g ≥ f P-q.s.

}
= sup

Q∈Q
EQ [f ].

Assumption : Convexity, stability under pasting and measurability of P.
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2 One can not use the usual separation argument based on the
closedness of the set of super-hedgeable claims. Could show closedness in
L1(P) (generated by sup{EP [| · |],P ∈ P}) but would have to work with
(L1(P))∗ (e.g. Nutz 2013).

2 Our approach is close to Dalang, Morton and Willinger (90) and
Rasonyi (09).

Step 1 : Finite dimensional separation on Rd :
Assume d = 1 and that EP [∆S ] > 0.
NA(P) implies that ∃ P ′ � P s.t. EP′ [∆S ] < 0.
Do a convex combination to find P � Q � P + P ′ so that EQ [∆S ] = 0.

Step 2 : Measurable selection + pasting of the one-period results
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2 Existence of the cheapest super-hedging strategy holds by the
argument in Kabanov and Stricker’s Teacher’s Note (even with finitely
many options and T periods). One has the closure property for the
P-q.s.-convergence. Not true with infinitely many options in general.

2 Again, one can not use the usual separation argument based on the
closedness of the set of super-hedgeable claims. But can rely on finite
dimensional separation arguments on each period.
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Models with proportional transaction costs
Joint with M. Nutz

Consistent Price Systems under Model Uncertainty
arXiv :1408.5510



Model à la Kabanov

Solvency cones : Kt(ω) ⊂ Rd is the solvent positions at time t.

Example : If πij
t is the price of asset i labeled in asset j (exchange rate),

then

Kt(ω) :=

{
x : ∃ (aij)ij ∈ Rd×d

+ s.t. x i +
∑
j 6=i

aji − aijπij
t (ω) ≥ 0, i ≤ d

}
.

Trading : −Kt is the changes in the composition of the portfolio we can
perform under the self-financing condition.

Example : If πij
t is the price of asset i labeled in asset j (exchange rate),

then

−Kt(ω) :=

{
x : ∃ (aij)ij ∈ Rd×d

+ s.t.
∑
j 6=i

aji − aijπij
t (ω) ≥ x i , i ≤ d

}
.
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No-arbitrage criteria

Several notions : NAw and NAs by Kabanov, Stricker et al., NAr by
Schachermayer.

Duality : (Z ,Q) is a SCPS (strictly consistent price systems) if
• Zs ∈ intK∗s Q-a.s. for s ≤ T
• Z is a Q-martingale.

in which K∗ is the positive polar of K .

Interpretation : Martingale lying in the bid-ask spreads

1
πji <

Z j

Z i < πij

As in Jouni and Kallal, or Cvitanic and Karatzas, is a fictitious price
process, consistent with the bid-ask spreads, which is a martingale under
an equivalent measure.
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No-arbitrage criteria : problem

Time consistency issue : None of this notion allows one to reduce to one
period model. The frictionless approach can not be used.

Still Bayraktar and Zhang 2014 proves a version of the FTAP under
model uncertainty ! However, this requires a strong continuity assumption
with respect to ω.

See also Dolynksi and Soner 2014 : all paths possible and options are
traded (mass transportation approach) - stock price is continuous in ω.

We suggest an easier way to go (in a more general framework).
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Fundamental theorem of asset pricing under NA2

NA2(P) : ξt ∈ Kt+1 P-q.s. ⇒ ξt ∈ Kt P-q.s., for all ξt ∈ L0(Ft)

Notion first introduced by Rasonyi in the context of transaction costs
models (see also B. and Taflin 13, B. and Huu 13).

Theorem : NA2(P) holds if and only if
∀ t, P ∈ P and Y ∈ L0

P(Ft , intK∗t ) ∃ a SCPS (Q,Z ) s.t.
• P � Q ≪ P,
• P = Q on Ft and Y = Zt P-a.s.

Rem : It is the exact counterpart of the frictionless result.

Assumptions : Measurablity and stability conditions on P and
• Kt(ω) closed, convex cone, contains Rd

+

• intK∗t (ω) 6= ∅ and K∗t (ω) ∩ ∂Rd
+ = {0}

• x j/y j ≤ c(x i/y i ), 1 ≤ i , j ≤ d , x , y ∈ K∗t (ω) \ {0}
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Extension to continuous time (without friction)
Joint with S. Biagini, C. Kardaras and M. Nutz

Robust Fundamental Theorem for Continuous Processes
arXiv :1410.4962



Main difficulty

Can not rely anymore on one period models...



Robust no-arbitrage of the first kind

Super-hedging with simple strategies :

• No need of semi-martingale properties.
• Restrict to non-negative wealth processes.
• Denoted by πs(f ,T ) if f delivered at T .

NA1(P) : πs(f ,T ) = 0 ⇐⇒ f = 0 P-q.s.

Key property : Assume S is continuous P-q.s., then

NA1(P)⇐⇒ NA1({P}) ∀ P ∈ P.
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Fundamental theorem

Probability space with killing time : Ω is the set of path ω on a (Polish)
space E ∪ {∆} that are are càdlàg on [0, ζ(ω)) and constant after

ζ(ω) := inf{t ≥ 0 : ωt = 4}.

Prior-to-ζ equivalence : Q ∼ζ P, if Q ∼ P holds on Ft ∩{t < ζ} for all t.

Prior-to-ζ equivalent LMM : Q ∈ QP , if Q ∼ζ P and ∃ (τn)n s.t.
• τn < ζ ∀ n and limn τn = ζ Q-a.s.,
• (St∧τn )t is an (F+,Q)-martingale ∀ n.

Theorem : NA1(P)⇐⇒ QP 6= ∅ for all P ∈ P.

Remark : In particular, S is a P-semimartingale for each P ∈ P.

Remark : QP 6= ∅ for all P ∈ P seems stronger than Q ∼ P, but ∼ζ is
weaker than ∼.
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Super-hedging

Consistency on P : P has measurability properties, and is stable under
pasting.

Consistency on Q : it transfers to Q := {QP ,P ∈ P} under NA1(P).

Theorem Assume f upper semi-analitic, then

sup
Q∈Q

EQ [f 1ζ>T ] = min
{
x : ∃H with x + (H • S)T ≥ f P − q.s.

}
.

Moreover, ∃ a minimal super-hedging strategy (continuous trading).

Rem (Mass transportation + approximation approach) : Dolynski and
Soner 2012, 2014 for continuous and càdlàg processes. See also Cox, Hou
and Obloj 2014 (trading restrictions).
Rem : Ongoing by Cheridito, Kupper, and Tangpi, using a different
approach (more general but stronger no-arbitrage condition).
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Thank you for your attention

Related talks :
• J. Obloj, Friday 11am,
• Robust Hedging and Pricing under Model Uncertainty, Friday 3pm
and Saturday 8.30am


