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Abstract

We consider the diffusive limit of a typical pure-jump Markovian control problem as the
intensity of the driving Poisson process tends to infinity. We show that the convergence speed is
provided by the Hölder exponent of the Hessian of the limit problem, and explain how correction
terms can be constructed. This provides an alternative efficient method for the numerical
approximation of the optimal control of a pure-jump problem in situations with very high
intensity of jumps. We illustrate this approach in the context of a display advertising auction
problem.
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1 Introduction

Let N be a random point process with predictable compensator λν(de)dt, for some probability
measure ν on R, λ > 0, and let X t,x,α be the solution of

X t,x,α = x+

∫ ·
t

∫
b(X t,x,α

s− , αs, e)N(de, ds) ,
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in which α belongs to the set A of predictable controls with values in some given set A. Then, under
mild assumptions, the value of the control problem

V (t, x) := sup
α∈A

E
[∫ T

t

r(X t,x,α
s− , αs)dNs

]
,

with Nt := N(R, [0, t]), t ≥ 0, solves the integro-differential equation

∂tV + λ sup
a∈A

(∫
V (·, ·+ b(·, a, e))ν(de)− V + r(·, a)

)
= 0 on [0, T )× R (1.1)

with boundary condition V (T, ·) = 0, possibly in the sense of viscosity solutions. From this
characterization, standard numerical schemes follow that allow one to approximate both the value
function V and the associated optimal control.

However, (1.1) is non-local and obtaining a precise approximation of the solution is highly time
consuming as soon as the intensity λ of N is large. This is the case, for instance, for ad-auctions
on the web, see e.g. [17], that are posted almost in continuous time, and on which one would
typically like to apply reinforcement learning technics based on the resolution of (1.1) for the current
estimation of the parameters, leading to a possibly large number of resolutions for different sets of
parameters. On the other hand, when λ is very large, it is tempting to approximate the original
jump diffusion control problem by its asymptotic as λ→∞. In this paper, we consider the diffusive
limit approximation. Namely, if one takes λ of the form λ = 1/ε, with ε small, and b = εb1 +

√
εb2

with
∫
b2(·, e)ν(de) = 0, then a second order Taylor expansion on (1.1) implies that εV converges as

ε→ 0 to the solution V̄ of

∂tV̄ + sup
ā∈A

(∫
b1(·, ā, e)ν(de)∂xV̄ +

1

2

∫
|b2|2 (·, ā, e)ν(de)∂2

xxV̄ + r(·, ā)

)
= 0, V̄ (T, ·) = 0. (1.2)

The advantage of the above is that it is now a local equation which can be solved in a much more
efficient way. Note that another possibility is to consider a first order expansion as in [17], which
corresponds to considering a fluid limit, but this is less precise.

For such a specification of the coefficients (λ, b), the existence of a diffusive limit is expected,
see e.g. [19] for general results on the convergence of stochastic processes. For control problems,
the convergence of the value function can be proved by using the stability of viscosity solutions
as in [18, Section 3], which considers the limit of discrete time zero-sum games, or by applying
weak-convergence results. In particular an important literature on this subject exists within the
insurance and queueing network literatures, see e.g. [3, 13, 14]. However, it seems that there is no
general result on the speed of convergence in the case of a (generic) optimal control problem as
defined in Section 2 below.

In Section 3, we verify that the above intuition is correct. Unlike [18], we do not simply rely on the
stability of viscosity solutions. Nor do we rely on the weak convergence of the underlying process.
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The reason is that weak convergence does not give access to the convergence speed in optimal control
problems. Instead, we directly study the regularity of the solution to (1.2). Thanks to its vanishing
terminal condition (otherwise it should be assumed smooth enough), we show that ∂2

xxV̄ is uniformly
β-Hölder in space, for some β ∈ (0, 1], whenever the coefficients of (1.2) are uniformly Lipschitz in
space and under a uniform ellipticity condition. By a second order Taylor expansion, this allows
us to pass from (1.2) to (1.1) up to an error term of order ε

β
2 , and therefore provides the required

convergence rate. In general this rate cannot be improved. As a by-product, we obtain an easy way
to construct an ε

β
2 -optimal control for the original pure-jump control problem. We then study the

limit ε−
β
2 (V − V̄ ) as ε→ 0. Under mild assumptions, we show that it solves a (possibly non-linear)

PDE. This provides a first error correction term. To achieve higher orders of convergence, this
approach can be generalised to a system of non-linear PDEs, upon its existence.

As an example of application, we consider in Section 4 a simplified repeated online auction bidding
problem, where a buyer seeks to maximise its profit when facing both competition and a seller who
adapts the price to incoming bids. Our numerical experiments show that our approximation permits
a considerable gain in computation time.

For ease of exposition, we shall restrict to situations where the controlled process is of dimension
one. This fact will be used explicitly only to derive our regularity results in Section 3.2. Similar
results can be obtained in higher dimension, by using standard regularity results for parabolic partial
differential equations, see e.g. [20, 21].

2 The pure-jump optimal control problem

In this section, we begin by providing the definition of our pure-jump control problem, and state the
well-known link with its associated Hamilton-Jacobi-Bellman equation. The properties stated below
are elementary but will be useful for the derivation of our main approximation result of Section 3.

2.1 Definition

Let Ω = D denote the space of one dimensional càdlàg functions on R+ andM(R× R+) denote the
collection of positive finite measures on R×R+. Consider a measure-valued map N : D 7→ M(R×R+)

and a probability measure P on D such that N is a continuous real-valued R-marked point process
with compensator λν(de)dt, in which λ > 0 and ν is a probability measure on R. See e.g. [9]. For
ease of notations, we set Nt := N(R, [0, t]) for t ≥ 0.
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Let Ft = (F ts)s≥t be the P-augmentation of the raw filtration generated by the random measure N
restricted to [t,∞), i.e. by e.g. the process

∫ ·
t

∫
exp(e)N(de, ds). Given a compact subset A of R, we

let At be the collection of Ft-predictable processes with values in A. For ease of notations, we also
define A := ∪t≥0At. Throughout this paper, unless otherwise stated we will work on the filtered
probability space (Ω,F ,F,P), where F = F0

T for T > 0 given and F = F0.

We now consider a bounded measurable map (x, a, e) ∈ R×A×R 7→ b(x, a, e). Given (t, x) ∈ R+×R
and α ∈ A, we define the càdlàg process X t,x,α as the solution of

X t,x,α = x+

∫ ·
t

∫
b(X t,x,α

s− , αs, e)N(de, ds). (2.1)

Given a bounded measurable map (x, a) ∈ R × A 7→ r(x, a) ∈ R, we consider the expected gain
function

(t, x, α) ∈ [0, T ]× R×A 7→ J(t, x;α) := E
[∫ T

t

r(X t,x,α
s− , αs)dNs

]
, (2.2)

together with the value function

V (t, x) := sup
α∈At

J(t, x;α), (t, x) ∈ [0, T ]× R. (2.3)

All throughout this paper, we make the following standard assumption, which will in particular
ensure that V is the unique (bounded) viscosity solution of the associated Hamilton-Jacobi-Bellman
equation, see Proposition 2.2 below.

Assumption 1. For each e ∈ R, (x, a) ∈ R × A 7→ (b(x, a, e), r(x, a)) is continuous. Moreover,
(b, r) is bounded.

Remark 2.1. Note that boundedness of the coefficients b and r is not essential in the following
arguments. One could assume only linear growth in space, uniformly in the control. We make the
above (strong) assumptions to avoid unnecessary complexities.

2.2 Dynamic programming equation and optimal Markovian control

Let us now state the well-known characterization of V in terms of the theory of viscosity solutions.

As usual, we say that a lower-semicontinuous (resp. upper-semicontinuous) locally bounded map
U : [0, T ]× R 7→ R is a viscosity supersolution (resp. subsolution) of

∂tϕ+ sup
a∈A

(∫
ϕ(·, ·+ b(·, a, e))ν(de)− ϕ+ r(·, a)

)
λ = 0, on [0, T )× R, (2.4)
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if for all (t, x) ∈ [0, T )×R and all C1 functions ϕ : [0, T ]×R 7→ R such that (t, x) attains a minimum
(resp. maximum) of U − ϕ on [0, T )× R we have

κ

{
∂tϕ(t, x) + sup

a∈A

(∫
U(t, x+ b(x, a, e))ν(de)− U(t, x) + r(x, a)

)
λ

}
≤ 0

with κ = 1 (resp. κ = −1).

Proposition 2.2. V is a continuous and bounded viscosity solution of (2.4) such that

lim
t′↑T,x′→x

V (t′, x′) = 0, x ∈ R. (2.5)

Moreover, comparison holds for (2.4) in the class of bounded functions.

Proof. The argument being standard, we only sketch it. First note that the continuity at T follows
immediately from the fact that r is bounded, namely |V (t, ·)| ≤ λ(T − t) ‖r‖∞ for t ≤ T . Fix
h ∈ (0, T − t], t ≤ T and x ∈ R. Let τ t1 be the first jump of N after time t. Denote by V∗ and V ∗

the lower- and upper-semicontinuous envelopes of V , i.e.

V∗(t
′, x′) := lim inf

(s,y)→(t′,x′)
V (s, y) , V ∗(t′, x′) := lim sup

(s,y)→(t′,x′)

V (s, y) .

It follows from the same arguments as in [8] that V satisfies the (weak) dynamic programming
principle

sup
α∈At

E
[
V∗(τ

t
1 ∧ h,X t,x,α

τ t1∧h
) + r(X t,x,α

τ t1−
, ατ t1)1{τ t1≤h}

]
≤ V (t, x) (2.6)

≤ sup
α∈At

E
[
V ∗(τ t1 ∧ h,X t,x,α

τ t1∧h
) + r(X t,x,α

τ t1−
, ατ t1)1{τ t1≤h}

]
.

Following [8] again and using [6, Lemma 22], this implies that V∗ and V ∗ are, respectively, a super-
and a subsolution in the viscosity sense of (2.4). Since b is bounded, the map (t, x) 7→ (1 + x2)e−Ct

is also a viscosity supersolution of the above with r ≡ 0, as soon as C > 0 is large enough. Standard
arguments then imply that comparison holds for the above Hamilton-Jacobi-Bellman equation in
the class of bounded functions (or even with linear growth), and therefore that V∗ = V ∗, meaning
that V is continuous.

We next prove the existence of an optimal Markovian control. In the following, we denote by A the
collection of A-valued Borel maps on [0, T )× R.
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Proposition 2.3. For all (t, x) ∈ R+×R, there exists α̂[t, x] ∈ At such that V (t, x) = J(t, x; α̂[t, x]).
It takes the form

α̂[t, x] =
∑
i≥0

1(τ ti ,τ
t
i+1]â(·, X t,x,α̂[t,x]

τ ti
)

in which τ ti is the i-th jump of N after time t, for i ≥ 1, with τ t0 := t, and â ∈ A satisfies

â(t′, x′) ∈ argmax
a∈A

{∫
V (t′, x′ + b(x′, a, e))ν(de) + r(x′, a)

}
, (t′, x′) ∈ [0, t)× R .

Proof. Since V, b and r are continuous, by Proposition 2.2 and Assumption 1, and since A is compact,
we can find a Borel measurable map (t, x) 7→ â(t, x) such that â(t, x) belongs to argmax{

∫
V (t, x+

b(x, a, e))ν(de) + r(x, a), a ∈ A} for all (t, x), see e.g. [4, Proposition 7.33, p.153]. Let us fix
(t0, x0) ∈ [0, T ]× R. By the dynamic programming principle in (2.6), the continuity of V , and the
definition of â above,

V (t0, x0) = sup
α∈At0

E
[
V (τ t01 ∧ T,X t0,x0,α

τ
t0
1 ∧T

) + r(X t0,x0,α

τ
t0
1 −

, α
τ
t0
1

)1{τ t01 ≤T}

]
= sup

α∈At0
E
[(∫

V (τ t01 ∧ T, x0 + b(x0, ατ t01 ∧T
, e))ν(de) + r(x0, ατ t01

)

)
1{τ t01 ≤T}

]
= E

[(∫
V (τ t01 ∧ T, x0 + b(x0, α̂τ t01 ∧T

, e))ν(de) + r(x0, α̂τ t01
)

)
1{τ t01 ≤T}

]
= E

[
V (τ t01 ∧ T,X t0,x0,α̂

τ
t0
1 ∧T

) + r(X t0,x0,α̂

τ
t0
1 −

, α̂
τ
t0
1

)1{τ t01 ≤T}

]
in which α̂ := â(·, x0)1

(t0,τ
t0
1 ]
.

For ease of notations, we now set ϑ1 := τ t01 ∧ T and X1 := X t0,x0,α̂

τ
t0
1 ∧T

. By the same reasoning as above,
we have, for a fixed ω ∈ Ω,

V (ϑ1(ω), X1(ω)) = E
[
V (τ

ϑ1(ω)
1 ∧ T,Xϑ1(ω),X1(ω),α̂(ω)

τ
ϑ1(ω)
1 ∧T

) + r(X
ϑ1(ω),X1(ω),α̂(ω)

τ
ϑ1(ω)
1 −

, α̂
τ
ϑ1(ω)
1

(ω))1{τϑ1(ω)
1 ≤T}

]
in which

α̂(ω) := â(·, x0)1
(t0,τ

t0
1 (ω)]

+ â(·, X1(ω))1
(τ
t0
1 (ω),τ

ϑ1(ω)
1 ]

.

The right-hand side of the above coincides P-a.e. with

E
[
V (τϑ1

1 ∧ T,Xϑ1,X1,α̂

τ
ϑ1
1 ∧T

) + r(Xϑ1,X1,α̂

τ
ϑ1
1 −

, α̂
τ
ϑ1
1

)1{τϑ1
1 ≤T}

∣∣∣∣Fϑ1

]
= E

[
V (τ t02 ∧ T,X t0,x0,α̂

τ
t0
2 ∧T

) + r(X t0,x0,α̂

τ
t0
2 −

, α̂
τ
t0
2

)1{τ t02 ≤T}

∣∣∣∣Fτ t01 ∧T

]
.
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Let us complete the definition of α̂ by now letting it be defined by

α̂ =
∑
i≥0

1
(τ
t0
i ,τ

t0
i+1]

â(·, X t0,x0,α̂

τ
t0
i

).

By iterating the above procedure, we have

V (t0, x0) = E

[
V (τ t0n ∧ T,X t0,x0,α̂

τ
t0
n ∧T

) +

∫ τ
t0
n ∧T

t0

r(X t0,x0,α̂
s− , α̂s)dNs

]
, n ≥ 1.

Since τ t0n →∞ P-a.s. as n→∞, it now follows from the dominated convergence theorem and (2.5)
that

V (t0, x0) = E
[∫ T

t0

r(X t0,x0,α̂
s− , α̂s)dNs

]
.

3 Diffusive approximation

As already mentioned, the characterization of Propositions 2.2 and 2.3 allows one to estimate
numerically the value function and the associated optimal control. However, the integro-differential
equation (2.4) is non-local and the computational cost of its numerical resolution increases as λ
grows. On the other hand, we can expect that our pure-jump problem admits a diffusive limit as
λ→∞ which is, by its local nature, much easier to solve numerically, and can serve as a good proxy
of the original problem as soon as λ is large enough.

In this section, we begin by defining the diffusion control problem that is the candidate for the
diffusive limit of our pure-jump problem. We then study the regularity of the corresponding value
function, from which we will be able to derive our main approximation result, see Theorem 3.3
below, and construct approximate optimal controls, see Proposition 3.4. Finally, we identify a first
order correction term in Subsection 3.5, which is extended to higher orders in Subsection 3.6.

3.1 The candidate diffusive limit

Given ε ∈ (0, 1), we now take as λ the intensity

λε := ε−1
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so that it is large for ε > 0 small. To ensure the existence of a diffusive limit, we need to assume
that the jump coefficient b introduced in Section 2 is of the form

bε = εb1 +
√
εb2

for two bounded measurable maps b1, b2 : R× A× R 7→ R, each satisfying Assumption 1 (with bi in
place of b, i = 1, 2), and with b2 satisfying the additional Assumption 2.

Assumption 2. The function b2 satisfies:∫
b2(x, a, e)ν(de) = 0 for all (x, a) ∈ R× A, and inf

(x,a)∈R×A

∫
|b2(x, a, e)|2 ν(de) =: η > 0. (3.1)

In the above, the coefficient b1 should be interpreted as a drift term while b2 is a volatility. The
respective scaling in ε and

√
ε together with Assumption 2 are required to ensure that our pure-jump

problem actually admits a diffusive limit of the form (3.3) below. Problems where this scaling of
coefficient is appropriate involve many jumps of small relative size, with a variance of the same order
as their drift over time.

Likewise, we consider the value function

Vε(t, x) := sup
α∈At

Jε(t, x;α) with Jε(t, x;α) :=
1

λε
E
[∫ T

t

r(X t,x,α
s− , αs)dNs

]
, (t, x) ∈ [0, T ]× R.

(3.2)

Note that the scaling by 1/λε means that (up to a constant factor T − t) we consider the gain by
average unit of actions on the system. Indeed E[NT −Nt] = λε(T − t) and the control applies only
at jump times of N . Note that we omit the dependence of N on ε, for ease of notations.

We shall see that Vε, together with the associated optimal policy, can be approximated by considering
its diffusive limit as ε→ 0. The coefficients of the associated Brownian diffusion SDE are given by:

µ(x, a) :=

∫
b1(x, a, e)ν(de), σ(x, a) :=

(∫
|b2(x, a, e)|2 ν(de)

) 1
2

, (x, a) ∈ R× A.

From now on, we assume that they satisfy the following.

Assumption 3. The maps x ∈ R 7→ µ(x, a), x ∈ R 7→ σ(x, a) and x ∈ R 7→ r(x, a) are Lipschitz,
uniformly in a ∈ A, with respective Lipschitz constants ‖µ‖Lip, ‖σ‖Lip and ‖r‖Lip.

More precisely, let P̄ be a probability measure on D and let W be a stochastic process such that
W is a P̄-Brownian motion, let F̄t = (F̄ ts)s≥0 be the P̄-augmentation of the filtration generated by
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(W·∨t −Wt), and let Āt be the collection of F̄t-predictable processes. Given ᾱ ∈ Āt, we can then
define X̄ t,x,ᾱ as the unique strong solution of

X̄ t,x,ᾱ = x+

∫ ·
t

µ(X̄ t,x,ᾱ
s , ᾱs)ds+

∫ ·
t

σ(X̄ t,x,ᾱ
s , ᾱs)dWs. (3.3)

The candidate diffusive limit problem is then defined as

V̄ (t, x) := sup
ᾱ∈Āt

Ē
[∫ T

t

r(X̄ t,x,ᾱ
s , ᾱs)ds

]
, (t, x) ∈ [0, T ]× R

where Ē is the expectation operator under P̄.

3.2 Regularity properties

We first prove that V̄ is a smooth solution of its associated Hamilton-Jacobi-Bellman equation. Most
importantly, its second order space derivative is β-Hölder continuous, for some β ∈ (0, 1]. This will
allow us, in Section 3.3 below, to prove that it actually coincides with the diffusive limit of Vε as ε
vanishes. The precise value of the Hölder exponent β will be further discussed in Remark 3.2 below.

Proposition 3.1. V̄ belongs to C1,2
b ([0, T )×R) ∩C0([0, T ]×R) and is the unique bounded solution

of

∂tV̄ + sup
ā∈A

(
µ(·, ā)∂xV̄ +

1

2
σ2(·, ā)∂2

xxV̄ + r(·, ā)

)
= 0, on [0, T )× R, (3.4)

V̄ (T, ·) = 0, on R. (3.5)

Moreover, there exists β ∈ (0, 1], such that ∂2
xxV̄ is (uniformly) β-Hölder continuous in space on

[0, T )× R.

Proof. a) We first show that V̄ ∈ C1,2
b ([0, T )× R) ∩ C0([0, T ]× R). Note that the continuity at

T follows again from the fact that r is bounded: |V̄ (t, ·)| ≤ (T − t)‖r‖∞ for t ≤ T . Let us set

F (x, p, q) := sup
ā∈A

(
µ(x, ā)p+

1

2
σ2(x, ā)q + r(x, ā)

)
, (x, p, q) ∈ R3 ,

and observe that, by Assumptions 2 and 3,
1

2
η |q − q′| ≤ |F (x, p, q)− F (x, p, q′)| ≤ 1

2
‖σ‖2

∞ |q − q′| (3.6)

vF (x, 0, 0) ≤‖r‖∞ (1 + |v|2) (3.7)

|F (x, p, q)− F (x′, p′, q′)| ≤(|p| ‖µ‖Lip + |q| ‖σ‖∞ ‖σ‖Lip + ‖r‖Lip) |x− x′|

+ ‖µ‖∞ |p− p′|+
1

2
‖σ‖2

∞ |q − q′| (3.8)

9



for all (x, x′, p, p′, q, q′, v) ∈ R7.

Assume for the moment that q 7→ F (x, p, q) is differentiable for all (x, p) ∈ R2. For n ≥ 1,
existence of a C1,2([0, T )×R) solution V̄n to (3.4) on [0, T )× (−n, n) with boundary condition
V̄n = 0 on ([0, T )× {−n, n}) ∪ ({T} × [−n, n]) follows from [21, Theorem 14.24], (3.6), (3.7)
and (3.8). It turns out that, using the notations of [21, Theorem 14.24], V̄n is even in H2+θB(B)

for some θB ∈ (0, 1), on each compact subset B of [0, T )× (−n, n). These H2+θB -norms depend
only on the upper and lower bounds on the derivative of q 7→ F (·, q) and not on the fact
that this map is differentiable. If it is not, one can thus first regularize F with respect to
its last argument, by using a sequence of smooth kernels, and then pass to the limit. The
corresponding sequence will be uniformly bounded in H2+θB(B) on each compact subset B of
[0, T ) × (−n, n), so that the limit will keep these bounds. By stability, the limit solves the
required equation with the appropriate boundary conditions. See also the discussion in the
paragraph preceding [21, Theorem 14.24].

b) We now provide uniform estimates on the gradients. Note that, by the Feynman-Kac formula
and a comparison argument,

V̄n(t, x) = sup
ᾱ∈Āt

Ē

[∫ T∧τ t,x,ᾱn

t

r(X̄ t,x,ᾱ
s , ᾱs)ds

]
(3.9)

where
τ t,x,ᾱn := inf{s ≥ t : X̄ t,x,ᾱ

s /∈ (−n, n)} .
It follows that, for h ∈ (0, T − t],

V̄n(t+ h, x) = sup
ᾱ∈Āt

Ē

[∫ (T−h)∧τ t,x,ᾱn

t

r(X̄ t,x,ᾱ
s , ᾱs)ds

]

which readily implies that
∣∣V̄n(t+ h, x)− V̄n(t, x)

∣∣ ≤ h‖r‖∞, and therefore

1

T

∥∥V̄n∥∥∞ ∨ ∥∥∂tV̄n∥∥∞ ≤ ‖r‖∞ . (3.10)

Similarly, for h ∈ (−1, 1) such that x+ h ∈ [−n, n],

∣∣V̄n(t, x+ h)− V̄n(t, x)
∣∣ ≤ sup

ᾱ∈Āt
Ē
[
‖r‖Lip

∫ T

t

∣∣X̄ t,x+h,ᾱ
s − X̄ t,x,ᾱ

s

∣∣ ds+ ‖r‖∞
∣∣τ t,x+h,ᾱ
n − τ t,x,ᾱn

∣∣] .
The first term is handled by using the uniform Lipschitz continuity in space of (µ, σ):

Ē
[∫ T

t

∣∣X̄ t,x+h,ᾱ
s − X̄ t,x,ᾱ

s

∣∣ ds] ≤ C1 |h| (3.11)
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in which C1 > 0 does not depend on n. As for the second term, Assumption 3, (3.1) and our
boundedness assumptions on (b1, b2), and therefore on (µ, σ), allow us to apply [7, Theorem 2.3]1

with π = 0, r = 1 and for P of the form ϕ(X̄ t,x+h,ᾱ) or ϕ(X̄ t,x,ᾱ) for a smooth bounded function
ϕ, with bounded first and second derivatives, such that ϕ(y) = y + n for y ∈ [−n,−n+ 1] and
ϕ(y) = n− y for y ∈ [n− 1, n]. It implies that

Ē
[∣∣τ t,x+h,ᾱ

n − τ t,x,ᾱn

∣∣] ≤ C2Ē
[∣∣∣X̄ t,x+h,ᾱ

τ t,x+h,ᾱ
n ∧τ t,x,ᾱn

− X̄ t,x,ᾱ

τ t,x+h,ᾱ
n ∧τ t,x,ᾱn

∣∣∣] ≤ C ′2 |h|

for some positive constants C2 and C ′2 independent of n. Combined with (3.11), this leads to∥∥∂xV̄n∥∥∞ ≤ ‖r‖LipC1 + ‖r‖∞C ′2 . (3.12)

The fact that V̄n solves (3.4) combined with (3.6), (3.10) and (3.12) then proves that∥∥∂2
xxV̄n

∥∥
∞ ≤ C3 (3.13)

for some C3 > 0 that does not depend on n.

c) We now prove the uniform Hölder continuity of the gradients and second derivatives. As in a)
above, let us first assume that F is C1. Given a neighbourhood O ⊂ [0, T ]× [−n, n] of a point
(t, x), we derive as in [1, Section 3.1] that there exists C > 0 and β ∈ (0, 1], that depend only
on the ellipticity constant η and the Lipschitz constants of F with respect to its second and
third arguments, such that∣∣∂tV̄n(t′, x′)− ∂tV̄n(t, x)

∣∣ ≤ C
(
|t′ − t|

β
2 + |x′ − x|β

)
sup
O
|∂tV̄n|, for (t′, x′) ∈ O .

If F is not C1, one can first regularize it by using a sequence of kernels and then pass to the
limit to obtain that the above still holds for the original F . In view of (3.10), this implies that∣∣∂tV̄n(t′, x′)− ∂tV̄n(t, x)

∣∣ ≤ C
(
|t′ − t|

β
2 + |x′ − x|β

)
‖r‖∞ , for (t′, x′) ∈ [0, T ]× R. (3.14)

Up to changing β ∈ (0, 1], one can prove similarly that∣∣∂xV̄n(t′, x′)− ∂xV̄n(t, x)
∣∣ ≤ C

(
|t′ − t|

β
2 + |x′ − x|β

)
, for (t′, x′) ∈ [0, T ]× R, (3.15)

for some C > 0 that does not depend on n. We now set ∆hV̄n := h−β
(
V̄n(·, ·+ h)− V̄n

)
,

h ∈ R. Again, up to mollifying F with a smooth bounded kernel with derivatives bounded by
1, we can assume that F is C1. Then, for t < T and x ∈ (−n+ h, n− h),

h−β
{
F (x+ h, ∂xV̄n(t, x+ h), ∂2

xxV̄n(t, x+ h))− F (x, ∂xV̄n(t, x), ∂2
xxV̄n(t, x))

}
= h−β

{
∂xF (x1

h, p
1
h, q

1
h)h+ ∂pF (x2

h, p
2
h, q

2
h)[∂xV̄n(t, x+ h)− ∂xV̄n(t, x)]

+ ∂qF (x3
h, p

3
h, q

3
h)[∂

2
xxV̄n(t, x+ h)− ∂2

xxV̄n(t, x)]
}

1Note that their Assumption (L) is not required since we are considering a finite time interval [0, T ], this can be
easily seen from the proof of this theorem.
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for some xih ∈ [x, x + h], pih ∈ [∂xV̄n(t, x + h) ∧ ∂xV̄n(t, x), ∂xV̄n(t, x + h) ∨ ∂xV̄n(t, x)] and
qih ∈ [∂2

xxV̄n(t, x+ h) ∧ ∂2
xxV̄n(t, x), ∂2

xxV̄n(t, x+ h) ∨ ∂2
xxV̄n(t, x)], for i = 1, 2, 3. It follows that

∆hV̄n satisfies a linearized equation of the form

0 = ∂t∆hV̄n + Ah∂x(∆hV̄n) +Bh∂
2
xx(∆hV̄n) + Chh

1−β

at every point (t, x) ∈ [0, T )×R such that x+h ∈ (−n, n), in which, by Assumption 3, (3.1) and
the estimates in b) above, (Ah, Ch)h>0 is uniformly bounded and infh>0 inf [0,T ]×RBh ≥ η/2 > 0.
Hence, ∣∣∂2

xx∆hV̄n
∣∣ ≤ 2η−1

(∣∣∂t∆hV̄n
∣∣+ |Ah|

∣∣∂x∆hV̄n
∣∣+ |Ch|h1−β)

We conclude from (3.14)-(3.15) that∣∣∂2
xxV̄n(t, x′)− ∂2

xxV̄n(t, x)
∣∣ ≤ C |x′ − x|β , x, x′ ∈ (−n, n), t < T , (3.16)

for some C > 0 independent on n. If we now set ∆hV̄n = h−
β
2 (V̄n(·+ h, ·)− V̄n), then the same

type of arguments leads to∣∣∂2
xxV̄n(t′, x)− ∂2

xxV̄n(t, x)
∣∣ ≤ C |t′ − t|

β
2 , x ∈ (−n, n), t, t′ < T, (3.17)

for some C > 0 independent on n.

d) It follows from steps b) and c) that (V̄n)n≥1 is uniformly bounded in H2+β([0, T )×R), as defined
in [21, Section IV.1]. By the Arzelà-Ascoli theorem, it admits a subsequence that converges
in H2+β(B), for any compact set B ⊂ [0, T )× R, to a limit V̄∞. This limit shares the same
upper-bound in H2+β([0, T )×R) as (V̄n)n≥1. Since each V̄n solves (3.4) on [0, T )× (−n, n) and
satisfies the boundary condition (3.5) on [−n, n], it follows that V̄∞ solves (3.4) on [0, T )× R
and (3.5) on R. As V̄ is also a bounded solution of the same equation, comparison implies
that V̄∞ = V̄ .

Remark 3.2. (a) Let ā : [0, T )× R 7→ A be a measurable map satisfying

ā ∈ argmax
a∈A

(
µ(·, a)∂xV̄ +

1

2
σ2(·, a)∂2

xxV̄ + r(·, a)

)
on [0, T )× R, (3.18)

see e.g. [4, Proposition 7.33, p.153]. Assume that there exists β◦ ∈ (0, 1) such that (µ, σ, r)(·, ā)

belongs to Hβ◦([0, T ) × R), then we can take β = β◦. This follows from [20, Section IV.14,
p.390].

(b) If (µ(·, ā), σ(·, ā), r(·, ā)) has more regularity, one can obviously obtain more regularity on V̄
by, for instance, differentiating the associated partial differential equation.

(c) In the case where σ does not depend on its a-argument, then one can appeal to [21, Theorem
12.16] to deduce that we can take β = 1. This follows from the Lipschitz continuity of F .
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3.3 Convergence speed toward the diffusive limit

We now exploit the Hölder regularity stated above to prove that Vε converges to V̄ at a rate ε
β
2 as ε

vanishes. We shall see in Section 3.4 below that it provides an ε
β
2 -optimal control for the pure-jump

problem. In general, it can not be improved, see Example 3.8 in Section 3.5 below.

Theorem 3.3. For all (t, x) ∈ [0, T ]× R and ε > 0,∣∣Vε − V̄ ∣∣ (t, x) ≤ sup
α∈At

E
[∫ T

t

|δrε|(s,X t,x,α
s , αs)ds

]
in which

δrε := ε−1

∫ (
V̄ (·, ·+ bε)− V̄

)
ν(de)− µ∂xV̄ −

1

2
σ2∂2

xxV̄ (3.19)

satisfies

‖δrε‖∞ ≤ Cε
Kε

β
2 (3.20)

with

Cε
K :=

1

2

∥∥∂2
xxV̄

∥∥
∞ (ε1−

β
2 ‖b1‖2

∞ + 2ε
1−β

2 ‖b1‖∞‖b2‖∞) +
K

2
(ε

1
2‖b1‖∞ + ‖b2‖∞)2+β,

where K > 0 is the Hölder constant of ∂2
xxV̄ with respect to its space variable.

In particular,

lim sup
ε↓0

ε−
β
2

∥∥Vε(t, ·)− V̄ (t, ·)
∥∥
∞ ≤

1

2
(T − t)K(‖b2‖∞)2+β , t ≤ T.

Proof. Since V̄ ∈ C1,2
b ([0, T )× R),

V̄ (t, x+ bε(x, a, e))− V̄ (t, x)

= ∂xV̄ (t, x)bε(x, a, e) +
1

2
∂2
xxV̄ (t, x)|bε(x, a, e)|2 +

1

2
(∂2
xxV̄ (t, xε)− ∂2

xxV̄ (t, x))|bε(x, a, e)|2

for some xε that lies in the interval formed by x and x+ bε(x, a, e). By the left-hand side of (3.1),
the definition of (µ, σ), and since ∂2

xxV̄ is β-Hölder continuous in space with constant K,∣∣∣∣1ε
∫ (

V̄ (t, x+ bε(x, a, e))− V̄ (t, x)
)
ν(de)− µ(x, a)∂xV̄ (t, x)− 1

2
σ2(x, a)∂2

xxV̄ (t, x)

∣∣∣∣
≤ 1

2

∥∥∂2
xxV̄

∥∥
∞ (ε‖b1‖2

∞ + 2ε
1
2‖b1‖∞‖b2‖∞) + ε

β
2
K

2
(ε

1
2‖b1‖∞ + ‖b2‖∞)2+β

13



Hence,

µ∂xV̄ +
1

2
σ2∂2

xxV̄ + r =
1

ε

∫ (
V̄ (·, ·+ bε(·, e))− V̄ (t, x) + ε(r − δrε)

)
ν(de) (3.21)

where δrε is the continuous function, defined in (3.19), and satisfies

‖δrε‖∞ ≤
1

2

∥∥∂2
xxV̄

∥∥
∞ (ε‖b1‖2

∞ + 2ε
1
2‖b1‖∞‖b2‖∞) + ε

β
2
K

2
(ε

1
2‖b1‖∞ + ‖b2‖∞)2+β.

Combined with Proposition 3.1, this shows that V̄ is a smooth solution of∂tV̄ + sup
a∈A

1

ε

∫ (
V̄ (·, ·+ bε(·, a, e))− V̄ + ε(r(·, a)− δrε(·, a))

)
ν(de) = 0, on [0, T )× R,

V̄ (T, ·) = 0, on R.
(3.22)

Applying Proposition 2.2 (with the appropriate coefficients), this implies that

V̄ (t, x) = sup
α∈At

E
[∫ T

t

ε(r − δrε(s, ·))(X t,x,α
s− , αs)dNs

]
,

so that, by the definition of Vε,∣∣Vε − V̄ ∣∣ (t, x) ≤ sup
α∈At

E
[∫ T

t

ε |δrε| (s,X t,x,α
s− , αs)dNs

]
= sup

α∈At
E
[∫ T

t

|δrε| (s,X t,x,α
s , αs)ds

]
.

3.4 Construction of an ε
β
2 -optimal control for the pure-jump problem

We now show that an ε
β
2 -optimal control for (3.2) can be constructed by considering a measurable

map ā : [0, T )× R 7→ A satisfying

ā ∈ argmax
ā∈A

(
µ(·, ā)∂xV̄ +

1

2
σ2(·, ā)∂2

xxV̄ + r(·, ā)

)
on [0, T )× R, (3.23)

see e.g. [4, Proposition 7.33, p.153], and define ᾱt,x ∈ At by

ᾱt,xs = ā(s,X t,x,ᾱt,x

s− ), s ∈ [t, T ),

recall (2.1). As it is driven by a compound Poisson process, the couple (X t,x,ᾱt,x , ᾱt,x) is well-defined.
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Proposition 3.4. For all (t, x) ∈ [0, T )× R and ε > 0, ᾱt,x is ε
β
2 -optimal for Vε. Namely,

1

λε
E
[∫ T

t

r(X t,x,ᾱt,x

s− , ᾱt,xs )dNs

]
≥ Vε(t, x)− 2(T − t)Cε

Kε
β
2 .

Proof. It follows from Proposition 3.1, (3.23) and (3.21) that

∂tV̄ +
1

ε

∫ (
V̄ (·, ·+ bε(·, ā, e))− V̄ + εr(·, ā)

)
ν(de) ≥ −‖δrε‖∞ ,

∂tV̄ + sup
a∈A

1

ε

∫ (
V̄ (·, ·+ bε(·, a, e))− V̄ + εr(·, a)

)
ν(de) ≤ ‖δrε‖∞ ,

so that applying Itô’s Lemma and using (3.5) leads to

V̄ (t, x)− (T − t) ‖δrε‖∞ ≤
1

λε
E
[∫ T

t

r(X t,x,ᾱt,x

s− , ᾱt,xs )dNs

]
V̄ (t, x) + (T − t) ‖δrε‖∞ ≥ sup

α∈At

1

λε
E
[∫ T

t

r(X t,x,α
s− , αs)dNs

]
= Vε(t, x).

We conclude by appealing to (3.20).

3.5 First order correction term

Under additional conditions, one can exhibit a first order correction term to improve the convergence
speed in Theorem 3.3 and Proposition 3.4. From now on, we assume the following.

Assumption 4.

a. The map (t, x, a) ∈ [0, T )× R× A 7→ ε−
β
2 δrε(t, x, a) is continuous, uniformly in ε ∈ (0, 1).

b. The pointwise limit

r1 := lim
ε→0

ε−
β
2 δrε, (3.24)

is well-defined on [0, T )× R×A.

c. Given
A0 := argmax

ā∈A

(
µ(·, ā)∂xV̄ +

1

2
σ2(·, ā)∂2

xxV̄ + r(·, ā)

)
,

comparison holds in the sense of bounded discontinuous viscosity super- and subsolutions for∂tϕ+ max
ā∈A0

(
µ(·, ā)∂xϕ+

1

2
σ(·, ā)2∂2

xxϕ+ r1(·, ā)

)
= 0, on [0, T )× R

ϕ(T, ·) = 0 on R.
(3.25)
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d. For all (t◦, x◦) ∈ [0, T )× R, ā◦ ∈ A0(t◦, x◦) and (tn, xn)n≥1 ⊂ [0, T )× R such that (tn, xn)→
(t◦, x◦) as n→∞, we can find (ān)n≥1 such that ān ∈ A0(tn, xn) for all n ≥ 1 and ān → ā◦ as
n→∞.

Remark 3.5. Let us comment the above:

a) Note that r1 is bounded, see (3.20) in Theorem 3.3. The right-hand side term in (3.24)
therefore admits a limsup and a liminf. The condition (3.24) implies that the limit is actually
well-defined. This point will be further discussed in Remark 3.7 below.

b) If V̄ admits a continuous bounded third-order space derivative ∂3
xxxV̄ , then one easily checks

that β = 1 and r1 = 1
2

∫
[1
3
b2(·, e)3∂3

xxxV̄+(b1b2)(·, e)∂2
xxV̄ ]ν(de), by a simple Taylor expansion.

c) Assume that one can find a continuous map ā : [0, T )× R 7→ A such that A0(t, x) = {ā(t, x)}
for all (t, x) ∈ [0, T )× R, and x ∈ R 7→ (µ, σ)(x, ā(t, x)) is Lipschitz uniformly in t ≤ T , then
comparison holds, see e.g. [15, Section 8]. In general, this can be checked on a case-by-case
basis.

Under the above conditions, (3.25) admits a (unique) bounded viscosity solution, denoted by δV̄ (1),
see below, and it is the first order term in the difference Vε − V̄ , i.e. (3.27) below holds with

V̄ (1)
ε := V̄ + ε

β
2 δV̄ (1). (3.26)

Theorem 3.6. Let Assumption 4 hold. Then, (3.25) admits a (unique) bounded viscosity solution
δV̄ (1) and, for all (t, x) ∈ [0, T ]× R,

lim
ε↓0

ε−
β
2 (Vε − V̄ )(t, x) = δV̄ (1)(t, x)

and therefore

lim sup
ε↓0

ε−
β
2

∣∣Vε(t, x)− V̄ (1)
ε (t, x)

∣∣ = 0, (3.27)

in which V̄ (1)
ε is defined as in (3.26). If in addition δV̄ (1) is C1,2([0, T )×R) and ∂2

xxδV̄
(1) is δβ-Hölder

continuous in space, uniformly on [0, T )× R, for some constant δβ > 0 such that

lim sup
ε↓0

ε−
δβ
2

∥∥∥ε−β2 δrε − r1

∥∥∥
∞
<∞, (3.28)

then the control defined by

α̌t,xs = ǎ(s,X t,x,α̌t,x

s− ), s ∈ [t, T ) (3.29)
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with

ǎ ∈ argmax
ā∈A0

{
µ(·, ā)∂xδV̄

(1) +
1

2
σ(·, ā)2∂2

xxδV̄
(1) + r1(·, ā)

}
, on [0, T )× R, (3.30)

satisfies

1

λε
E
[∫ T

t

r(X t,x,α̌t,x

s− , α̌t,xs )dNs

]
≥ Vε(t, x)− o(εβ2 ), for all ε > 0,

where o: R+ → R is a continuous bounded function such that o(y)/y → 0 as y ↓ 0.

Proof. We split the proof in two steps.
a. Let us set Wε := ε−

β
2 (Vε − V̄ ) and consider its relaxed semi-limits

W ∗(t, x) := lim sup
(t′,x′)→(t,x)

ε↓0

Wε(t
′, x′), W∗(t, x) := lim inf

(t′,x′)→(t,x)
ε↓0

Wε(t
′, x′) .

Note that Theorem 3.3 ensures that the above are well-defined and bounded. We claim that W ∗ and
W∗ are respectively bounded sub- and supersolutions of (3.25). For brevity, we will only include the
details for the proof of the subsolution property, the supersolution property is proved similarly and
we only mention how to adapt the arguments. Fix ϕ ∈ C1,2

b and let (t◦, x◦) ∈ [0, T )× R achieve a
strict maximum of W ∗ − ϕ on a ball Bk := {(t, x) ∈ [0, T )× R : |t◦ − t′| ≤ (T − t◦)/2, |x◦ − x′| ≤
k} ⊂ [0, T ) × R, for some k > 0. Then, there exist a sequence (tεn , xεn)εn such that εn → 0,
Wεn(tεn , xεn)→ W ∗(t◦, x◦), (tεn , xεn)→ (t◦, x◦), and such that (tεn , xεn) is a maximum of Wεn − ϕ
in the interior of B2k, see e.g. [2, Lemma 6.1]. For k > ε

1
2
n (‖b1‖∞ + ‖b2‖∞), the viscosity subsolution

property of Vεn , applying Proposition 2.2 to the test function V̄ + ε
β
2
nϕ, implies that

0 ≤∂t(V̄ + ε
β
2
nϕ)(tεn , xεn)

+
1

εn

(∫ (
V̄ + ε

β
2
nϕ

)
(tεn , xεn + bεn(xεn , ān, e))ν(de)−

(
V̄ + ε

β
2
nϕ

)
(tεn , xεn) + εnr(xεn , ān)

)
for some ān ∈ A. Since ϕ ∈ C1,2

b , a second order Taylor expansion combined with Assumption 2
implies that

lim
n→∞

ε
β
2
n

[
∂tϕ(tεn , xεn) +

1

εn

(∫
ϕ(tεn , xεn + bεn(xεn , ān, e))ν(de)− ϕ(tεn , xεn)

)]
= 0.

Thus, if ā is a limit point of (ān)n≥1, we deduce from (3.19)-(3.20) and the above that

0 ≤ ∂tV̄ (t◦, x◦) + µ(x◦, ā)∂xV̄ (t◦, x◦) +
1

2
σ2(x◦, ā)∂2

xxV̄ (t◦, x◦) + r(x◦, ā).
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In view of Proposition 3.1, this shows that ān converges to some element of ā ∈ A0(t◦, x◦) as n goes
to infinity, after possibly passing to a subsequence. By (3.22) and the above,

0 ≤ ∂tϕ(tεn , xεn) +
1

εn

∫ (
ϕ(tεn , xεn + bεn(xεn , ān, e))− ϕ(tεn , xεn) + εnε

−β
2

n δrεn(tεn ,xεn , ān)

)
ν(de).

Sending n→∞ and using parts a. and b. of Assumption 4 together with Assumption 2, this leads to

0 ≤ ∂tϕ(t◦, x◦) + µ(x◦, ā)∂xϕ(t◦, x◦) +
1

2
σ(x◦, ā)∂2

xxϕ(t◦, x◦) + r1(t◦,x◦, ā),

so that the required subsolution property is proved on [0, T )×R. The fact that W ∗(T, ·) ≤ 0 follows
from the last assertion of Theorem 3.3.
To prove the supersolution property, it suffices to follow the same arguments but choose ān ∈
A0(tεn , xεn) that converges to some arbitrary ā◦ ∈ A(t◦, x◦), see d. of Assumption 4. For a test
function ϕ ∈ C1,2

b for W∗ at (t◦, x◦) ∈ [0, T )× R, keeping the same notations as above, this lead to

0 ≥∂t(V̄ + ε
β
2
nϕ)(tεn , xεn)

+
1

εn

{∫ (
V̄ + ε

β
2
nϕ

)
(tεn , xεn + bεn(xεn , ān, e))ν(de)−

(
V̄ + ε

β
2
nϕ

)
(tεn , xεn) + εnr(xεn , ān)

}
=ε

β
2
n

(
∂tϕ(tεn , xεn) +

1

εn

∫ (
ϕ(tεn , xεn + bεn(xεn , ān, e))− ϕ(tεn , xεn) + εnε

−β
2

n δrεn(tεn ,xεn , ān)

)
ν(de)

)
by Proposition 3.1 and (3.19).
By comparison, W := W ∗ = W∗ is the unique bounded viscosity solution of (3.25) and is therefore
equal to δV̄ (1).

b. We now assume that δV̄ (1) is C1,2([0, T ) × R) and that ∂2
xxδV̄

(1) is δβ-Hölder continuous in
space, uniformly on [0, T )× R, for some δβ > 0 such that (3.28) holds. Using (3.28) and the same
arguments as in the proof of Theorem 3.3 lead to

lim sup
ε↓0

ε−
δβ
2

∥∥δr(1)
ε

∥∥
∞ <∞, (3.31)

in which

δr(1)
ε :=

1

ε

∫ (
δV̄ (1)(·, ·+ bε)− δV̄ (1)

)
ν(de) + ε−

β
2 δrε − µ∂xδV̄ (1) − 1

2
σ2∂2

xxδV̄
(1) − r1.

Moreover, direct computations using the above and (3.22) show that V̄ (1)
ε defined in (3.26) solves

∂tV̄
(1)
ε +

1

ε

∫ (
V̄ (1)
ε (·, ·+ bε(·, ǎ, e))− V̄ (1)

ε (t, x)− εεβ2 δr(1)
ε (·, ǎ)

)
ν(de) + r(·, ǎ) = 0
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on [0, T )×R, where ǎ is defined as in (3.30). Together with (3.31), this implies that, for α̌t,x defined
as in (3.29), we have

1

λε
E
[∫ T

t

r(X t,x,α̌t,x

s− , α̌t,xs )dNs

]
≥ V̄ (1)

ε (t, x)− εβ2O(ε),

in which O: R+ → R is a continuous function with O(0) = 0. On the other hand, it follows from
Step a. that |Vε(t, x)− V̄ (1)

ε (t, x)| ≤ o(ε
β
2 ).

Remark 3.7. If the limit in (3.24) is not defined, one can still define its relaxed limsup and liminf
(recall that it is bounded). Let us denote them by r∗1 and r1∗ respectively. Then, W ∗ defined in the
above proof is simply a viscosity sub-solution of (3.25) with r∗1 in place of r1. Similarly, W∗ is a
viscosity super-solution of the same equation but with r1∗ in place of r1. This still provides asymptotic
upper- and lower-bounds for ε−

β
2 (Vε − V̄ ).

Example 3.8. To illustrate the above, we consider a toy model in which explicit solutions can
be derived. Although it does not satisfy our general assumptions, e.g. of boundedness and Hölder
regularity in space, we shall see that a similar approach can still be applied. We consider the dynamics

X t,x,α = x+

∫ ·
t

X t,x,α
s−

∫
(εb1(αs, e) +

√
εb2(αs, e))N(de, ds),

in which b1 and b2 are bounded and continuous with respect to their first argument, uniformly in the
second one. For γ ∈ (0, 1], the value function is defined as

Vε(t, x) = sup
α∈At

1

λε
E
[∫ T

t

∫
|X t,x,α

s− |γr(αs)dNs

]
,

for some continuous function r. Then, one easily checks that V̄ (t, x) = f̄(t)|x|γ in which f̄ solves

∂tf̄ + sup
ā∈A

(
f̄{γµ(ā) +

1

2
γ(γ − 1)σ2(ā)}+ r(ā)

)
= 0, on [0, T )× R,

with f̄(T ) = 0. Because |x|γ factorizes, the Hölder constant of ∂2
xxV̄ can be considered around x = 1.

Since the third-order space derivative of V̄ is bounded in a neighbourhood of 1, Theorem 3.3 applies
with β = 1. The convergence rate is therefore of order ε

1
2 . Moreover, by direct computations, the

first order correction term is of the form δV̄ (1)(t, x) = δf̄(t)|x|γ where δf̄ 6≡ 0 solves

∂tδf̄ + sup
ā∈A0

(
δf̄{γµ(ā) +

1

2
γ(γ − 1)σ2(ā)}+ r1(·, ā)

)
= 0

with δf̄(T ) = 0, in which

(t, ā) ∈ [0, T ]× A 7→ r1(t, ā) := γ(γ − 1)`

(∫
(b1b2)(ā, e)ν(de)

)
f̄(t)

for some (explicit) continuous map ` with linear growth. In particular, this shows that the convergence
rate in ε

1
2 proved in Theorem 3.3 is sharp.
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3.6 Higher order expansions

To conclude this section, note that higher order expansions can be obtained. As opposed to Section
3.5, we only provide here a verification argument, upon assuming existence of an associated system
of parabolic equations. Namely, let us assume the following.

Assumption 5. There exists (δβi)i=0,··· ,i◦ ⊂ (0, 1]i◦+1 together with C1,2([0, T )×R)∩C0([0, T ]×R)

functions (δV̄ (i))i=0,··· ,i◦ such that, for i = 0, · · · , i◦, ∂2
xxδV̄

(i) is δβi-Hölder in space, uniformly on
[0, T )× R, and δV̄ (i) solves

∂tδV̄
(i) + µ(·, ǎε)∂xδV̄ (i) +

1

2
σ(·, ǎε)2∂2

xxδV̄
(i) + ri(·, ǎε) = 0, on [0, T )× R,

δV̄ (i)(T, ·) = 0 on R,

in which ǎε is a Borel measurable map such that

ǎε ∈ argmax
ā∈A

(
µ(·, ā)∂xV̄

(i◦)
ε +

1

2
σ(·, ā)2∂2

xxV̄
(i◦)
ε + r(·, ā)

)
,

with

V̄ (i◦)
ε :=δV̄ (0) +

i◦∑
j=1

ε
βj−1

2 δV̄ (j), βi:=
i∑

j=0

δβj for i ≤ i◦,

and, using the conventions δβ−1 := 0 and δr(−1)
ε := r, for 0 ≤ i ≤ i◦,

δr(i)
ε :=

1

ε

∫ (
δV̄ (i)(·, ·+ bε)− δV̄ (i)

)
ν(de) + ε−

δβi−1
2 δr(i−1)

ε − µ∂xδV̄ (i) − 1

2
σ2∂2

xxδV̄
(i) − ri

ri := r1{i=0} + 1{i>0} lim
ε→0

ε−
δβi−1

2 δr(i−1)
ε for i ≤ i◦. (3.32)

The limits in (3.32) are well-defined on [0, T )× R×A, and

lim sup
ε↓0

ε−
δβi◦

2

∥∥∥ε− δβi◦−1
2 δr(i◦−1)

ε − ri◦
∥∥∥
∞
<∞. (3.33)

Proposition 3.9. Let Assumption 5 hold. Then, for all (t, x) ∈ [0, T ]× R,

lim sup
ε↓0

ε−
βi◦
2

∣∣Vε − V̄ (i◦)
ε

∣∣ (t, x) <∞.

Moreover, the control defined by

α̌t,xs = ǎε(s,X
t,x,α̌t,x

s− ), s ∈ [t, T ),

satisfies

1

λε
E
[∫ T

t

r(X t,x,α̌t,x

s− , α̌t,xs )dNs

]
≥ Vε(t, x)− Cε

βi◦
2 , for all ε > 0,

for some constant C > 0.
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Proof. With the above construction

∂tV̄
(i◦)
ε +

1

ε

∫ (
V̄ (i◦)
ε (·, ·+ bε(·, ǎε, e))− V̄ (i◦)

ε − εε
βi◦−1

2 δr(i◦)
ε (·, ǎε)

)
ν(de) + r(·, ǎε) = 0

on [0, T )× R, while

∂tV̄
(i◦)
ε +

1

ε

∫ (
V̄ (i◦)
ε (·, ·+ bε(·, a, e))− V̄ (i◦)

ε − εε
βi◦−1

2 δr(i◦)
ε (·, a)

)
ν(de) + r(·, a) ≤ 0

on [0, T )×R for all a : [0, T )×R→ A. By (3.33) and the same arguments as in the proof of Theorem
3.3,

lim sup
ε↓0

ε−
δβi◦

2

∥∥δr(i◦)
ε

∥∥
∞ <∞,

so that the required result follows by verification.

4 Application to an auction problem

Repeated online auction bidding are typical problems in which the real value of the parameters b, r
and ν are unknown, and on which reinforcement learning techniques are applied. The later requires
to estimate, very quickly, the optimal control for different sets of parameters. Being modeled as a
discrete time problem, with fixed auction times, or more realistically in the form of a pure-jump
problem as in Section 2, see also [17], we face in any case the fact that auctions are issued almost
continuously which corresponds to a very small time step in the discrete-time version or to a very
large intensity in the pure-jump modelling. The numerical cost of a precise estimation of the optimal
control is too important to combine it with a reinforcement learning approach.

4.1 Model and description of the optimal policy

We consider here a simple auction problem motivated by online advertising systems. A single
ad-campaign is provided several opportunities to buy ad-space to display its ad over the course of the
day. These ad spaces arrive at random, according to the point process N , since they are dependent
on users from specific targeted audiences loading a website. In real-world display advertising, the
kind encountered on the sides of web-pages, these opportunities take the form of an auction between
several bidders and an ad-exchange platform.

The format of the auction used is critical to the strategic behaviour of bidders and the revenue of
the seller. There is a large amount of literature in auction theory on the subject, see e.g. [22–24],
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and real-world auctions can take very complex formats. For simplicity, we consider an auctioneer
which has implemented a lazy second price auction [24, 25] with individualised reserve price. In this
format, our bidding agent wins the ad-slot if it submits a bid above its (henceforth the) reserve
price and the competition, and if it wins it pays the maximum between the reserve price and the
competition. For a given reserve price x, a bid a ∈ (0,+∞) and a random competition bid B ≥ 0

following a smooth probability distribution FB, the expected payoff r(x, a) for an auction is thus
expressible through a simple integration by parts as

r(x, a) = E[(v − x ∨B)1a≥x∨B] = 1a≥x

(
(v − a)FB(a) +

∫ a

x

FB(b)db

)
, (4.1)

in which v is the value of the ad-slot for the bidder. Note that r is not continuous as it is assumed
in the preceding sections. In practice, one can replace it by a smooth approximation. In the
following, we shall construct a numerical scheme directly on r, without smoothing. It turns out that
convergence still seems to be observed at the rate ε

1
2 . Intuitively, this is due to the fact that the

maximum values obtained in (2.4) and (3.4) are the same for r defined with 1a≥x and 1a>x whenever
x < supA, which is true at each time with probability one for the controlled processes defined below.

As the right hand side of (4.1) highlights, reserve prices are a mechanism put in place by sellers to
compensate for lack of competition, which would drive down the price and their profits. It is well
established that a reserve price is not as profitable as increasing the number of participants by one
[11]. Consequently, when there are many bidders a control will have little effect on the system. To
clearly demonstrate the use of controlling the reserve price, we study a strongly asymmetric setting,
where the agent has a value v = 0.5 much higher than the competition, which we take uniform
on (0, 0.3). In this setting, it is directly competing against the seller for its extra value above the
average competition. For the purpose of this example, we do not want to go to the limit of this
asymmetry, the posted price auction where there is no competition, as it could lead the control
problem to degeneracy, such as negative prices and difficult boundary conditions.

There is a large literature on revenue maximisation algorithms in online auctions, or how to set the
reserve price to maximise revenue, such as [5, 10, 12, 16]. For the sake of simplicity, in this example,
we will model the dynamics of the reserve price using a simple mean reverting process:

b1(x, a, e) = κa+ (1− κ)r0 − x and b2(x, a, e) = e with ν ∼ Unif(−0.1, 0.1),

with κ ∈ (0, 1) and r0 ∈ R+. The reserve price process X t,x,α is then defined from these coefficients
as in (2.1), with b := bε = εb1 +

√
εb2 and λ := λε = ε−1. This corresponds to setting a minimum

reserve price (1 − κ)r0, and tracking the agent’s bid with aggressiveness measured by κ. Setting
r0 = 0.15 as the monopoly price of the competition guarantees the seller a better revenue against the
competition, while κa allows him to pursue the agent’s extra value. We set κ = 1/2, for a balance
between prudence and aggression.
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The control problem consists in maximising the static auction revenue, while considering the impact
bids have on the system. In the static auction format, we can identify three domains the reserve
price can be in: “non-competitive”, “competitive”, and “unprofitable”. When the reserve price is
below the competition’s average2 there is essentially no prejudice to the agent, since the reserve price
barely affects his profits. Therefore there is no need to compete with and control the reserve price.
On the other hand, when the reserve price is in the range between 0.3 and v = 0.5, the reserve price
becomes the dominant term in r and the agent has to compete with the seller over the value margin
it has relative to other buyers. Finally, if the reserve price is above v, there is no possible profit so
no reason to take part in the auction by bidding a > 0. For the same reason, we take A := [0, 0.5].

When the reserve price is dynamic, a good control seeks to maximise profit while pushing the reserve
price to the non-competitive domain. One can see this in effect on figure 1. In the non-competitive
regime (left), starting at a reserve price of 0.15, this policy recovers 85% of the best possible income
of the static setting, where the reserve price is 0 for all t, and the average price is 0.5− E[B] = 0.35.
In the competitive regime (centre), the policy bids just above the reserve price to apply a downwards
pressure until it reaches the non-competitive domain again. Finally, in the unprofitable regime
(right), the agent boycotts the auction by bidding 0, bringing down the price. Notice how when the
agents stops boycotting there is an inflection point in the downwards trend of the price, schematically
represented by the dotted line.

4.2 Numerical implementation

Adapting (2.4) and (3.4), we normalise the horizon to 1, and allow the reserve price to vary in R.
This allows us to easily set boundary conditions for the equation. When an auction happens with a
negative price x, the price is set by the competition, which will be a.s. positive. Thus as x→ −∞,
the reserve price becomes irrelevant and the value converges to the value of a single auction without
reserve price. Conversely, for ε < 1, as x → +∞, the probability of X0,x,α

t descending below v

by time T and generating any revenue decreases due to the noise. Hence, a Neumann boundary
condition set to 0 is appropriate at [0, 1)×{−∞,+∞}. In numerical resolution, we will use Neumann
boundary conditions equal to 0 on [0, 1)× {−1, 3}. Given this domain for the reserve price, we can
set the controls on an even mesh in A = [0, 0.5], of fineness 0.01.

We solve both problems numerically with an explicit finite difference solver, and for simplicity a
Riemann sum using the same mesh for the numerical integration part. This formulation is equivalent
to a Markov Chain control problem. Let Mt = {k∆t ; k = 0, . . . , b1/∆tc}, Mx = {−1 + k∆x ; k =

2Recall that the competition here models the distribution of the maximum bid of all other participants, so this is
the average of the maximum of other participants’ bids.
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Figure 1: Selected sample realisations of the system for ε = 10−1.5, starting from x = 0.15 (left),
x = 0.35 (centre), and x = 0.7 (right).

0, . . . , b4/∆xc} be the time and space meshes, with finenesses ∆x = ε3/2/2, ∆t = ∆
2/3
x . Denote

Vn(xi) the output of the solver at time tn ∈Mt and position xi ∈Mx. For the pure jump problem,
we explicitly compute:

V ε
n (xi) = V ε

n+1(xi) +
∆t

ε
sup
a∈An

 ∑
xj∈Mx

V ε
n+1(xj)f

ν,ε
xi,a

(xj)∆x − V ε
n+1(xi) + r(xi, a)


where f ν,εx,a is the transition kernel induced by b1(x, a, ·), b2(x, a, ·), and ν. For the diffusion, we
consider meshes Mt = {kdt ; k = 0, . . . , b1/dtc}, Mx = {−1 + kdx ; k = 0, . . . , b4/dxc}, with
dx = 10−2, dt = d2

x and solve recursively

V̄n−1(xi) = V̄n(xi) + dt sup
a∈An

(
(κa+ (1− κ)r0 − x)δux V̄n(xi) +

1

2
σ2δxxV̄n(xi) + r(xi, a)

)
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Figure 2: Numerical cost for Vε (log scales).

where δux and δxx are the uplift first order and centred second order finite differences on Mx

respectively. We took An = {10−2k; k = 0, . . . , 50} in both cases.

To give some insight into the complexity trade-off, see that, when ε is large, there are relatively
few jumps so the time iteration won’t require many steps to get an accurate solution. This scaling
is indicated by the ∆t/ε term. At the same time, the jumps are large so even a coarse mesh in x
will be sufficient for the numerical integration to approach the integral. Unfortunately as ε → 0,
one must refine both the time mesh, linearly with 1/ε, and the integration mesh which is paid
quadratically due to the non-local nature of the equation. In practice, this makes computations grow
at a super-cubic rate with ε, which becomes prohibitively expensive quickly. In our example problem,
the noise is supported on a bounded interval of size

√
ε, and one thus saves some computation time,

but Figure 2 shows the computation cost (pictured with dots) still grows super-quadratically and
overcomes the cost of our accurate diffusion mesh (solid horizontal line) even for large ε. Even
though we computed the diffusive limit to a very high precision, and with an explicit scheme, for ε of
order of 10−3 the CPU time spent on resolution is already 6 times higher in the pure-jump problem.
Note that, in the pure-jump case, if the control were to intervene in a non-linear way we might need
to also refine the control mesh with ε, further increasing the computational burden.
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Beyond gains in computation, Figure 3 verifies that Proposition 3.3 holds with meaningful constants
in finite time on this problem. Figure 3 shows that the error is very low even for large values of ε,
and decreases at the correct rate of ε1/2. Likewise, Figure 4 shows the rate of Proposition 3.4 also
holds even for large ε.

10−210−1100

ε

10−2

10−1

||V̄
−
V
ε||
∞

Figure 3: Limit value function error relative
to Vε, at t = 0 (log scales).

10−210−1100

ε

10−1

||V
ε
−
J
ε(
·;ᾱ

)||
∞

Figure 4: Limit policy error relative to Vε, at
t = 0 (log scales).

5 Remark on the diffusive limit of discrete time problems

Instead of considering the diffusive limit of a continuous time pure-jump problem, one could similarly
consider a sequence of pure discrete time problems with actions at time tni := iT/n, i ≤ n:

Vn(t, x) := sup
α∈A

T

n
E

[
n∑
i=1

1{tni ≥t}r(X
t,x,α
tni −

, αtni )

]
,

with X t,x,α defined by

X t,x,α = x+
n∑
i=1

1{tni ∈(t,·]}b(X
t,x,α
tni −

, αtni , ξ
n
i )

and in which (ξni )i≥1 is i.i.d. following the distribution ν and A is the collection of A-valued processes
that are predictable with respect to the P-augmented filtration generated by

∑n
i=1 1{tni ∈[0,·]}ξ

n
i .

Upon taking b of the form

bn =
T

n
b1 +

√
T

n
b2, with E[b2(·, ξn1 )] = 0,
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one would obtain the same diffusive limit as in Section 3.3 when letting n→∞. Namely, the same
arguments as in [18, Section 3] combined with Proposition 3.1 and the fact that comparison holds
for (3.4) imply that limn→∞ Vn is well-defined and is equal to V̄ .

One can also check that the convergence holds at a speed n−
β
2 . Let us sketch the proof. First, the

same arguments as in the proof of Theorem 3.3 imply that

δrn :=
n

T
E
[
V̄ (·, ·+ bn(·, ξni ))− V̄

]
− µ∂xV̄ −

1

2
σ2∂xxV̄

satisfies

‖δrn‖∞ ≤ Cn−
β
2 (5.1)

for some C > 0 independent on n. Thus, by Proposition 3.1

0 = ∂tV̄ (t, x)
T

n
+ sup

a∈A
E
[
V̄ (t, x+ bn(x, a, ξn1 ))− V̄ (t, x) +

T

n
(r(x, a)− δrn(t,x, a))

]
so that

V̄ (tni , x) = sup
a∈A

E

[∫ tni+1

tni

∂tV̄ (tni , x)ds+ V̄ (tni , x+ bn(x, a, ξni+1)) +
T

n
(r(x, a)− δrn(tni ,x, a))

]

= sup
a∈A

(
E
[
V̄ (tni+1, x+ bn(x, a, ξni+1)) +

T

n
r(x, a)

]
+ E

[∫ tni+1

tni

(∂tV̄ (tni , x)− ∂tV̄ (s, x+ bn(x, a, ξni+1))− δrn(tni ,x, a)ds

])
.

We then use (3.14) and (5.1) to obtain that

V̄ (tni , x) = sup
a∈A

E

[
V̄ (tni+1, x+ bn(x, a, ξni+1)) +

T

n
r(x, a) +

∫ tni+1

tni

$n(s, x, a)ds

]

in which ‖$n‖∞ ≤ Cn−
β
2 , for some C > 0 independent of n. It follows that

V̄ (tni , x) = sup
α∈A

E

[
T

n

n∑
j=i

r(X t,x,α
tnj −

, αtni ) +

∫ T

tni

$n(s,X t,x,α
s , αs)ds

]
,

which provides the expected result since ∂tV̄ is bounded.

Likewise, the Markovian control defined through (3.23) can be shown to be n−
β
2 -optimal for Vn, see

the proof of Proposition 3.4.
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6 Conclusion

We studied the diffusion limit of a pure-jump control problem as the jump intensity goes to infinity,
upon assuming a correct scaling of the coefficients. Under appropriate conditions, we showed that
the second order derivative of the value function associated to the limiting diffusing problem is
Hölder continuous and that its Hölder exponent drives the convergence rate. Convergence can even
be improved by using a first (or even higher) order correction scheme. This approach is particularly
efficient for the numerical approximation of the optimal control associated to a pure jump process
with large intensity, as it is the case in auctions associated to online advertising systems.
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