
Quenched mass transport of particles

towards a target

Bruno Bouchard∗† Boualem Djehiche ‡ §

Idris Kharroubi ¶

October 22, 2018

Abstract

We consider the stochastic target problem of finding the collection

of initial laws of a mean-field stochastic differential equation such that

we can control its evolution to ensure that it reaches a prescribed set of

terminal probability distributions, at a fixed time horizon. Here, laws

are considered conditionally to the path of the Brownian motion that

drives the system. We establish a version of the geometric dynamic

programming principle for the associated reachability sets and prove

that the corresponding value function is a viscosity solution of a geo-

metric partial differential equation. This provides a characterization

of the initial masses that can be almost-surely transported towards a

given target, along the paths of a stochastic differential equation. Our

results extend [21] to our setting.
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1 Introduction

Stochastic target problems are optimization problems in which the controller

looks for the values x of a state process X t,x,ν at time t, so that it can reach

some given set K at a given terminal time T , by choosing an appropriate

control ν. Namely, the objective is to characterize the reachability sets

V (t) =
{
x ∈ Rd : X t,x,ν

T ∈ K for some admissible control ν
}

(1.1)

for t ∈ [0, T ]. Such optimization problems were first studied in [22] and [21] in

which the function v(t, x) = 1−1V (t)(x) is shown to solve a Hamilton-Jacobi-

Bellman equation, in the viscosity solution sense. The main motivation of

[21, 22] is the so-called super-replication problem, in financial mathematics:

the controller looks for possible initial endowments such that there exists an

investment strategy allowing the terminal wealth to satisfy a super-hedging

constraint, almost-surely (see e.g. [11]). But, the range of applications is

obviously much wider.

Another important type of stochastic target problems concerns the case

where the terminal constraint is imposed on the mean value of a function of

the controlled process. In this case the reachability sets take the following

form:

V`(t) =
{
x ∈ Rd : E[`(X t,x,ν

T )] ≥ 0 for some admissible control ν
}
, (1.2)

for t ∈ [0, T ]. This type of constraints is also common in financial applica-

tions. Indeed, the super-replication price is usually too high to be accepted

by buyers. This is a motivation for relaxing the a.s. super-hedging criteria

by only asking that X t,x,ν ∈ K holds, for instance, with a (high) probability

p < 1. In this case, the function ` takes the form `(x) = 1K(x) − p. For

p = 1, one retrieves (1.1). This approach was introduced in [13] and further
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developed in [4] where the authors take advantage of the martingale repre-

sentation theorem to transform the constraint given in terms of the mean

value into an almost-sure constraint.

One of the motivations of this paper is to study the stochastic target

problem (1.2) in the case of a mean-field (or McKean-Vlasov) controlled

diffusion:

X t,χ,ν
s = χ+

∫ s

t

bu(X
t,χ,ν
u ,PXt,χ,ν

u
, νu)du+

∫ s

t

σu(X
t,χ,ν
u ,PXt,χ,ν

u
, νu)dBu,

where PXt,χ,ν
u

is the marginal law of X t,χ,ν
u under P, B is a standard Brownian

motion and χ is an independent random variable whose distribution can be

interpreted as the initial probability distribution of a population. This type

of stochastic target problems can be embedded into a more general class of

problems involving the conditional laws given the Brownian path. Indeed,

using the martingale representation theorem as in [4], the constraint in (1.2)

can be rewritten as

EB[`(X t,χ,ν
T )]−

∫ T
t
αsdBs ≥ 0 for some controls ν and α ,

where EB denotes the conditional expectation given B. In particular, if

we define the control ν̄ = (ν, α) and the controlled process X̄ t,(χ,0),ν̄ =

(X t,χ,ν ,
∫ .
t
αdB), this reads

L
(
PB
X̄
t,(χ,0),ν̄
T

)
≥ 0 for some control ν̄,

in which PBζ denotes the conditional law of a random variable ζ given B, and

L(µ) =

∫
Rd×R

(`(x)− y)µ(dx, dy).

These considerations suggest to study a general constraint:

PB
Xt,χ,ν
T
∈ G for some admissible control ν,

in which X t,χ,ν is now defined by

X t,χ,ν
s = χ+

∫ s

t

bu(X
t,χ,ν
u ,PB

Xt,χ,ν
u

, νu)du+

∫ s

t

σu(X
t,χ,ν
u ,PB

Xt,χ,ν
u

, νu)dBu, (1.3)
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G is a Borel subset of probability measures and χ is the (random) initial

position.

This general formulation is of importance on its own right as it is re-

lated to the probabilistic analysis of large scale particle systems, e.g. poly-

mers in random media, in which one is interested in the behavior of par-

ticles conditionally on the environment. This is also known as ‘quenched’

behaviors/properties (quenched law of large numbers, quenched large devi-

ations etc.), which is in general different from the so-called ‘annealed’ be-

haviors obtained by averaging over the underlying random environment (see

e.g. [3, 14, 18] and the references therein). For diffusion processes, quenching

boils down to making the drift and diffusion coefficients dependent on the

conditional marginal law given the environment, while annealing corresponds

to the case where the coefficients depend on the unconditional marginal law

(see e.g. [18]). We therefore coin the term quenched diffusion instead of

conditional diffusion to refer to SDEs of the form (1.3). For our stochastic

target problem, the constraint PBXT ∈ G imposed on the conditional law of

the diffusion process is a quenched property for the underlying process.

One can also further identify the initial condition χ as a law µ. Then, our

problem can be interpreted as a transport problem. What is the collection

of initial distributions µ of a population of particles, that all have the same

dynamics, such that the terminal conditional law PB
Xt,χ,ν
T

, given the environ-

ment modeled by the Brownian path B, satisfies a certain constraint? This

amounts to asking what kind of masses can be transported along the SDE

so as to reach a certain set, almost-surely, at T :

V(t) =
{
µ : ∃(χ, ν) s.t. PBχ = µ and PB

Xt,χ,ν
T
∈ G

}
. (1.4)

This type of viability problems appears naturally in statistical physics.

It is also encountered in e.g. agricultural crop management, as highlighted

in Example 3.1 below.

The rest of the paper is organized as follows. In Section 2, we describe

in details the quenched controlled diffusion. We provide some (expected)

existence and stability results, together with a conditioning property. Section

3 is devoted to the detailed presentation of the quenched stochastic target

problem (1.4). We prove that it admits a geometric dynamic programming

4



principle. This is the main result of the paper. Then, one can combine the

technologies developped in [6, 8] and [21] to derive in Section 4 the associated

Hamilton-Jacobi-Bellman equation, which extends the main result of [21] to

our context. In Section 5, we provide an alternative formulation which is

more adapted to the case where the reachability set is a half space in one

direction (see [23]), we also comment on the choice of the class of controls,

and provide an interpretation in terms of control of the law of a population

of particles.

2 Quenched mean-field SDE

We first describe our probabilistic setting. The d-dimensional Brownian mo-

tion is constructed on the canonical space in a usual way. More precisely,

given a fixed time horizon T > 0, we let Ω◦ denote the space of continuous

Rd-valued functions on [0, T ], starting at 0, and let F◦ = (F◦t )t≤T denote

the filtration generated by the canonical process B(ω◦) := ω◦, ω◦ ∈ Ω◦. We

set F◦ = F◦T and endow (Ω◦,F◦) with the Wiener measure P◦. Later on,

F̄◦ = (F̄◦t )t≤T will denote the P◦-completion of F◦.
In order to model the initial probability distribution of the population,

we let Ω1 := [0, 1]d be endowed with its Borel σ-algebra F 1 := B([0, 1]d)

and the Lebegues measure P1. It supports the [0, 1]d-uniformly distributed

random variable ξ(ω1) = ω1, ω1 ∈ Ω1. We then define the product filtered

space (Ω,F ,F,P) by setting Ω := Ω◦ × Ω1, P = P◦ ⊗ P1, F = FT where

F = (Ft)t≤T is the augmentation of (F◦t ⊗F 1)t≤T . From now on, any identity

involving random variables has to be taken in P-a.s. sense. We canonically

extend the random variable ξ and the process B on Ω by setting ξ(ω) = ξ(ω1)

and B(ω) = B(ω◦) for any ω = (ω◦, ω1) ∈ Ω. We still denote by F◦ the

filtration generated by the extended process B on Ω. Note that it follows

from [16, Chapter 2, Theorem 6.15 and Proposition 7.7] applied to the process

(t, ω) ∈ [0, T ]× Ω 7→ (ξ(ω), Bt(ω)) that F is right continuous.

Given a random variable Y ∈ L0(Ω,F ,P;Rd) (resp. Y ∈ L1(Ω,F ,P;Rd)),

we let PBY (resp. EB[Y ]) denote a regular conditional law (resp. expectation)

under P of the random variable Y given (Bt)t≤T on Rd. In particular, we
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have the following identifications

PBY (A, ω) = P1

Y (ω◦,.)(A) (2.5)

EB
[
Y
]
(ω) = E1

[
Y (ω◦, .)

]
(2.6)

for any ω = (ω◦, ω1) ∈ Ω and any A ∈ B(Rd). Here, E1 denotes the expecta-

tion under P1 and P1

Y (ω◦,.) denotes the law under P1 of the random variable

defined on Ω1 by Y (ω◦, .)(ω1) = Y (ω◦, ω1). We let P(S) denote the space of

probability measures on a Borel space (S,B(S)), and define

P2 :=

{
µ ∈ P(Rd,B(Rd)) s.t.

∫
Rd
|x|2µ(dx) < +∞

}
,

where |x| is the Euclidean norm of x. This space is endowed with the 2-

Wasserstein distance defined by

W2(µ, µ′) :=
(

inf
{∫

Rd×Rd
|x− y|2π(dy, dy) : π ∈ P(Rd × Rd,B(Rd × Rd))

s.t. π(· × Rd) = µ and π(Rd × ·) = µ′
}) 1

2
,

for µ, µ′ ∈ P2. For later use, we also define the collection P F̄◦
2 of F̄◦-adapted

continuous P2-valued processes.

Let now U be a closed subset of Rq for some q ≥ 1 and denote by U
the collection of U-valued F-progressively measurable processes. This will

be the set of controls. Let T̄ ◦ denote the set of [0, T ]-valued F̄◦-stopping

times. Given θ ∈ T̄ ◦ and χ ∈ X2
θ := L2(Ω,Fθ,P;Rd), ν ∈ U , and (b, a) :

[0, T ]× Rd × P2 × U −→ Rd × Rd×d, we let Xθ,χ,ν denote the solution of

X· = E[χ|Fθ∧·] +

∫ θ∨·

θ

bs
(
Xs,PBXs , νs

)
ds+

∫ θ∨·

θ

as
(
Xs,PBXs , νs

)
dBs, (2.7)

in which (b, a) is assumed to be continuous, bounded and satisfies:

(H1) There exists a constant L such that

|bt(x, µ, ·)− bt(x′, µ′, ·)|+ |at(x, µ, ·)− at(x′, µ′, ·)| ≤ L
(
|x− x′|+W2(µ, µ′)

)
for all t ∈ [0, T ], x, x′ ∈ Rd and µ, µ′ ∈ P2.
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The term E[χ|Fθ∧·] in (2.7) allows to define X as a continuous adapted

process on [0, T ], which is done for convenience of notations. One could

obviously only consider the process on [[θ, T ]].

Remark 2.1. Note that the controls can depend on the initial value of χ.

One could also restrict to F̄◦-progressively measurable processes, see Section

5 for a discussion.

The above condition ensures as usual that a unique strong solution to

(2.7) can indeed be defined.

Proposition 2.1. For all θ ∈ T̄ ◦, ν ∈ U and χ ∈ X2
θ, (2.7) admits a unique

strong solution Xθ,χ,ν, and it satisfies

E
[

sup
s∈[0,T ]

|Xθ,χ,ν
s |2

]
< +∞ . (2.8)

Moreover, for all (t, χ, ν) ∈ [0, T ] ×X2
t × U , if tn → t, χn → χ in L2 with

χn ∈ X2
tn for all n, and (νn)n ⊂ U converges to ν dt× dP-a.e., then

lim
n→∞

E[W2(PB
Xtn,χn,νn

T

,PB
Xt,χ,ν
T

)2] = 0. (2.9)

Proof. 1. The estimate (2.8) is a consequence of the boundedness of (b, a).

2. Existence follows from a similar fixed point argument as in [15] (see

also [24] and [10, 25] for the martingale problem approach). Since we work

in a slightly different context, we provide the proof for completeness.

2.a. Let C denote the space of continuous Rd-valued maps on [0, T ] endowed

with the sup-norm topology and P2(C,B(C)) denote the set of probability

measures P̂ on (C,B(C)) such that
∫
C sups≤T |fs|2 P̂ (df) < ∞. For Q̂, P̂ ∈

P2(C,B(C)) and t ≤ T , we define the Wasserstein metric:

Dt(P̂ , Q̂) := inf
{∫

C2

sup
0≤s≤t

|fs − gs|2 R̂(df, dg) : R̂ ∈ P(C2,B(C2))

s.t. R̂(· × C) = P̂ and R̂(C× ·) = Q̂
} 1

2 .
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If Q̂ ∈ P2(C,B(C)) has time marginals (Q̂s)s≤T then

W2(Q̂t, Q̂s)
2 ≤

∫
C
|Yt − Ys|2Q̂(dY )

so thatW2(Q̂t, Q̂s)→ 0 as s→ t, by dominated convergence. Hence, (Q̂s)s≤T
is continuous.

2.b. Let S2 denote the set of continuous adapted Rd-valued processes Z

such that ‖Z‖S2 := E[sup[0,T ] |Z|2]
1
2 < ∞. Let L2(Ω◦;P2(C,B(C))) be the

collection of random variables defined on Ω◦ and with values in P2(C,B(C)),

with finite norm E[‖·‖2
P2(C,B(C))]

1
2 . Let Φ be the map that to Q̄ ∈ L2(Ω◦;P2(C,

B(C))) associates PB
XQ̄ ∈ L2(Ω◦;P2(C,B(C))) in which PB

XQ̄(ω◦) is a regular

conditional law of XQ̄ given ω◦ ∈ Ω◦ with XQ̄ defined as the solution of

XQ̄
· =E[χ|F̄◦θ∧·] +

∫ θ∨·

θ

bs
(
XQ̄
s , Q̄s, νs

)
ds+

∫ θ∨·

θ

as
(
XQ̄
s , Q̄s, νs

)
dBs,

and where Q̄s(ω
◦) is the s-marginal of Q̄(ω◦) for ω◦ ∈ Ω◦. It follows from

2.a. that PB
XQ̄(ω◦) has continuous path, for P◦-a.e. ω◦ ∈ Ω◦. By repeating

the arguments in [15, Proof of Proposition 2], see also 3. below, we obtain

that Φ is contracting. Since L2(Ω◦;P2(C,B(C))) is complete, it follows that

Φ admits a fix point Q̄.

3. It remains to prove our last estimate. The Lipschitz continuity and bound-

edness of (b, a) combined with Burkholder-Davis-Gundy inequality implies

that one can find C > 0, that only depends on (b, a), such that

E[ sup
u∈[0,s]

|X t,χ,ν
u −X tn,χn,νn

u |2]

≤C(|t− tn|+ E[|χ− χn|2])

+ CE

[∫ s

0

(
sup
u∈[0,r]

|X t,χ,ν
u −X tn,χn,νn

u |2 +W2
2 (PB

Xt,χ,ν
r

,PB
Xtn,xn,νn
r

)

)
dr

]

+ CE
[∫ s

0

|br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]

+ CE
[∫ s

0

|ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]
.

8



Since

E[W2
2 (PB

Xt,χ,ν
r

,PB
Xtn,xn,νn
r

)] ≤ E[D2
r(PBXt,χ,ν ,PBXtn,xn,νn )]

≤ E[ sup
u∈[0,r]

|X t,χ,ν
u −X tn,xn,νn

u |2],

by Gronwall’s Lemma we obtain (for a different constant C > 0)

E[W2
2 (PB

Xt,χ,ν
T

,PB
Xtn,xn,νn

T

)]

≤ E[ sup
u∈[0,T ]

|X t,χ,ν
u −X tn,xn,νn

u |2]

≤ C(|t− tn|+ E[|χ− χn|2])

+ CE
[∫ T

0

|br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− br(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]

+ CE
[∫ T

0

|ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νr)− ar(X t,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]
.

The function (b, a) being continuous and bounded, the required result fol-

lows. 2

Remark 2.2. We can construct a particle approximation for the SDE (2.7)

as follows. We first note that for t ∈ [0, T ], χ ∈ Xt and ν ∈ U there exist Borel

maps x and u such that χ = x((Bs)s≤t, ξ
1) P-a.s. and ν = u(·, (Bs)s≤·, ξ

1), up

to modification. We then consider a sequence (ξ`)`≥1 of i.i.d. random variable

with uniform law on [0, 1]d and independent of B and we set (χ`, ν`) :=

(x((Bs)s≤t, ξ
`), u(·, (Bs)s≤·, ξ

`)), for ` ≥ 1.

For n ≥ ` ≥ 1 we define X` and Xn,` as the respective solutions to the

SDEs:

X`
· = χ` +

∫ ·
t

bs
(
X`
s ,PBX`

s
, ν`s
)
ds+

∫ ·
t

as
(
X`
s ,PBX`

s
, ν`s
)
dBs,

and

Xn,`
· = χ` +

∫ ·
t

bs
(
Xn,`
s , µ̄ns , ν

`
s

)
ds+

∫ ·
t

as
(
Xn,`
s , µ̄ns , ν

`
s

)
dBs,
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where the measures µ̄n, n ≥ 1 are defined by

µ̄ns :=
1

n

n∑
`=1

δXn,`
s
, s ≥ 0 .

Then, following the same arguments as in [15, Theorem 3], we have

lim
n→+∞

sup
`≤n

E1
[

sup
u∈[0,T ]

∣∣Xn,`
u −X`

u

∣∣2] = 0 .

In particular, this induces the convergence of empirical measures µ̄n:

lim
n→+∞

W2(µ̄ns ,PBX1
s
) = 0 , s ∈ [0, T ] .

In the sequel, we denote by tω◦ the element (ω◦s∧t)s∈[0,T ] for ω◦ ∈ Ω◦ and

t ∈ [0, T ]. We note that the solution can also be defined ω1 by ω1. More

precisely, we have the following.

Proposition 2.2. Fix θ ∈ F̄◦, χ ∈ X2
θ and ν ∈ U . Let XQ be the solution of

(2.7) with Q = (Qs)s≤T ∈ P F̄◦
2 in place of (PBXs)s≤T . Then, there exists Borel

measurable maps x : Ω◦ × Ω1 → Rd and u : [0, T ] × Ω◦ × Ω1 → U such that

χ = x(θB, ξ) P-a.s. and ν· = u·(
·B, ξ) dt × P-a.e. on [0, T ] × Ω, such that,

for all stopping time τ , XQ,ω1

τ∨θ = XQ
τ∨θ(·, ω1) P◦-a.s. for P1-a.e. ω1 ∈ Ω1, in

which XQ,ω1
solves

XQ,ω1

· =E[x(B,ω1)|F·∧θ] +

∫ θ∨·

θ

bs
(
XQ,ω1

s , Qs, us(
sB,ω1)

)
ds

+

∫ θ∨·

θ

as
(
XQ,ω1

s , Qs, us(
sB,ω1)

)
dBs.

Moreover, the map ω1 ∈ Ω1 7→ XQ,ω1

τ∨θ ∈ L2(Ω1,F 1,P1; L2(Ω◦,F◦T ,P◦;Rd)) is

measurable.

Proof. The existence of the Borel maps x and u is standard, and it is not

difficult to prove that ω1 ∈ Ω1 7→ XQ,ω1

τ ∈ L2(Ω◦,F◦T ,P◦;Rd) is measurable

because a and b are continuous and bounded. Standard estimates then show

that E[|XQ,ξ
τ∨θ −X

Q
τ∨θ|2|ξ] = 0. 2

For later use, we now show that the law of (X t,χ,ν , B) actually only de-

pends on the joint law of (χ, ν,tB).
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Proposition 2.3. Let x : Ω◦×Ω1 → Rd and u : [0, T ]×Ω◦×Ω1 → U be Borel

maps such that χ := x(tB, ξ) ∈ X2
t and ν := u·(B, ξ) ∈ U . Let ξ̄ and ξ̄′ be

[0, 1]d-valued Ft-measurable and set χ̄ := x(tB, ξ̄) and ν̄ := u·(B, ξ̄
′). Assume

that (χ, ν·∨t,
tB) and (χ̄, ν̄·∨t,

tB) have the same law. Then, (X t,χ,ν , B) and

(X t,χ̄,ν̄ , B) have the same law.

Proof. One can follow [9, Theorem 3.3]. In their case, the conditioning is

made with respect to tB, in our case it has to be done with respect to (tB, ξ),

where ξ is independent of B, so that the equation can actually be solved

conditionally to ξ, see Proposition 2.2. Given the fixed point procedure used

in Step 2. of the proof of Proposition 2.1 above, one can then find a se-

quence (P̂ n)n≥1 ⊂ L2(Ω◦,P2(C,B(C))) such that both P̂ n → PBXt,χ,ν and

P̂ n → PBXt,χ̄,ν̄ as n→∞. 2

3 The stochastic target problem: alternative

formulations and geometric dynamic pro-

gramming principle

Our aim is to provide a characterization of the set of initial measures for the

conditional law of the initial condition χ given B such that the conditional

law of X t,χ,ν
T given B belongs to a fixed closed subset G of P2:

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and PB
Xt,χ,ν
T
∈ G

}
.

In the above, and all over this paper, identities involving random variables

must be taken in the a.s. sense. In particular, PB
Xt,χ,ν
T

∈ G means PB
Xt,χ,ν
T

∈
G P− a.s.

Before we go on, let us first give an example of application inspired from

agricultural crop management.

Example 3.1. Consider the problem of a farmer that controls his production

of wheat by spreading nitrogen fertilizer or water on his field. The field is

viewed as a collection of particles to which the farmer will bring additional
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fertilizer, water, etc. His aim is to maximize the dry mass level of the field,

the quality of the wheat, etc., whose initial state can be viewed as a random

variable χ (assigning d characteristics of the production to each particle)

over the two dimensional state space Ω1 := [0, 1]2 modeling the field surface.

The fertilizing effort is modeled by the control ν. Then, we let X t,χ,ν denote

the current distribution of these characteristics. Its dynamics is of the form

(2.7) in which the Brownian diffusion part is used to take into account several

contingencies, e.g. climatic ones. In particular, the dependency of the coeffi-

cients on PBXt,χ,ν can model local interactions between particles (representing

the points in the field), e.g. related to the local water ressource, access to sun

light, etc. The aim is to know what kind of initial state of the field allows to

reach some given production level (in terms of volume, quality, etc.) at the

end of the farming season. We shall come back to this example in Section

5.1 below.

We now show that χ in the definition of V(t) can be replaced by any

random variable χ′ ∈ X2
t such that PBχ′ = µ. Apart from showing that only

the distribution µ matters (which is a desirable property if we think in terms

of mass transportation), this will be of important use later on to provide a

geometric dynamic programming principle for V .

Proposition 3.4. A measure µ ∈ P2 belongs to V(t) if and only if for all

χ ∈ X2
t such that PBχ = µ there exists ν ∈ U for which PB

Xt,χ,ν
T

∈ G.

Proof. Let Ṽ(t) denote the collection of measures µ ∈ P2 such that for all

χ ∈ X2
t satisfying PBχ = µ there exists ν ∈ U for which PB

Xt,χ,ν
T

∈ G. Clearly,

Ṽ(t) ⊂ V(t). We now prove the reverse inclusion. Let µ ∈ V(t) and consider

(χ, ν) ∈ X2
t ×U such that PBχ = µ and PB

Xt,χ,ν
T

∈ G. We fix χ̄ ∈ X2
t such that

PBχ̄ = µ and we construct ν̄ ∈ U such that (χ̄, ν̄, B) and (χ, ν, B) have the

same law. Since PBχ is deterministic, one can find a Borel map x such that

χ = x(ξ) a.e.

We first argue as in [20, Proof of Proposition 3.1] and note that we can

suppose x : [0, 1]d → Rd to be surjective. Indeed, if this is not the case, it is

enough to modify x on the set K×Rd−1, where K stands for the Cantor set,

by the composition of a surjective map from [0, 1] to Rd and x ∈ Rd 7→ c(x1)

12



where c is the Cantor function from K to [0, 1]. By [1, Corollary 18.23], it

follows that x admits an analytically measurable right-inverse, denoted by

ζ : Rd → [0, 1]d, which satisfies

(i) x(ζ(x)) = x for all x ∈ Rd;

(ii) x−1(ζ−1(A)) = A, for any subset A of [0, 1]d;

(iii) ζ−1(A) is analytically measurable in Rd for each Borel subset A of [0, 1]d.

Recalling that every analytic subset of Rd is universally measurable (see e.g.

Theorem 12.41 in [1]), it follows that one can find a Borel measurable map

ζ̃ such that ζ = ζ̃ Lebesgue almost-everywhere.

We now define ξ̄ by ξ̄ = ζ̃(χ̄), so that ξ̄ = ζ(χ̄) a.e. Since F0 is P-

complete, ξ̄ is F0-measurable. Then using (ii) and since χ and χ̄ have the

same law, we obtain

P(ξ̄ ∈ A) = P(χ̄ ∈ ζ−1(A)) = P(χ ∈ ζ−1(A)) = P1(A) ,

for all Borel set A. This proves that ξ̄ has the same law as ξ. Moreover, we

have from (i)

x(ξ̄) = χ̄ P− a.s.

which shows that (ξ, χ,B) and (ξ̄, χ̄, B) have the same law:

P[ξ ∈ A1, χ ∈ A2, B ∈ A3] = P[ξ ∈ A1, x(ξ) ∈ A2]P[B ∈ A3]

= P[ξ̄ ∈ A1, x(ξ̄) ∈ A2]P[B ∈ A3]

= P[ξ̄ ∈ A1, χ̄ ∈ A2, B ∈ A3]

for all Borel sets A1, A2, A3.

Since ν is F-progressively measurable, it is, up to modification, of the

form

νs(ω
◦, ω1) = u(s, sB(ω◦), ξ(ω1)) , s ∈ [t, T ] ,

with u a Borel map. Set now ν̄ := u1[0,t) + 1[t,T ]u(·, ·B, ξ̄) ∈ U , for some

u ∈ U.

13



Then, (χ̄, ν̄t∨·, B) and (χ, νt∨·, B) have the same law, and Proposition 2.3

implies that PB
Xt,χ,ν
T

= PB
Xt,χ̄,ν̄
T

so that the latter belongs to G, thus proving

that V(t) ⊂ Ṽ(t), by arbitrariness of χ̄. 2

Before stating the dynamic programming principle, let us provide the

following measurable selection lemma. We define the subset G of [0, T ] ×
L2(Ω1,F 1,P1;Rd) by

G :=
{

(t, χ) ∈ [0, T ]× L2(Ω1,F 1,P1;Rd) : ∃ν ∈ U s.t. PB
Xt,χ,ν
T
∈ G

}
.

From now on, we consider U as a subset of L2([0, T ]×Ω, dt×dP; U) endowed

with its strong topology. We also introduce the subset Ut of U defined by

Ut =
{
ν ∈ U : ν is progressively measurable w.r.t F[t,T ]

}
where F[t,T ] is the completion of (σ((Br∨t−Bt)0≤r≤s, ξ))s∈[0,T ]. We first rewrite

the set G as follows.

Lemma 3.1. We have the following identification

G :=
{

(t, χ) ∈ [0, T ]× L2(Ω1,F 1,P1;Rd) : ∃ν ∈ Ut s.t. PB
Xt,χ,ν
T
∈ G

}
.

Proof. Let ν ∈ U be such that PB
Xt,χ,ν
T

∈ G. Then, there exists a progressively

measurable map u such that νs(ω) = us(ω
◦, ω1) for s ∈ [0, T ]. For s ∈ [0, T ],

w,w′ ∈ Ω◦, set w⊕sw′ := w·∧s+(w′·∨s−w′s). Define νω
◦

s (ω̃◦, ω1) := us(ω
◦⊕t

ω̃◦, ω1). Then, one can find ω◦ ∈ Ω◦ such that PB
Xt,χ,νω

◦
T

(ω̃◦) ∈ G for P◦-

a.e. ω̃◦ ∈ Ω◦, see [9, Theorem 5.4] and Proposition 2.2. The control νω
◦

is

progressively measurable w.r.t. F[t,T ]. 2

Lemma 3.2. For any probability measure P on [0, T ] × L2(Ω1,F 1,P1;Rd),

there exists a measurable map ϑ : G → U such that

PB
X
t,χ,ϑ(t,χ)
T

∈ G

for P-a.e. (t, χ) ∈ G. Moreover, for each (t, χ) ∈ G, ϑ(t, χ) can be chosen to

be in Ut.
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Proof. It follows from (2.9) of Proposition 2.1 that the set

J := {(t, χ, ν) ∈ [0, T ]× L2(Ω1,F 1,P1;Rd)× U : PB
Xt,χ,ν
T
∈ G and ν ∈ Ut}

is closed. Moreover, the set [0, T ]× L2(Ω1,F 1,P1;Rd)× U is a Polish space.

Then, the Jankov-von Neumann Theorem (see [2, Proposition 7.49]), ensures

the existence of an analytically measurable function

ϑ̃ : [0, T ]× L2(Ω1,F 1,P1;Rd) −→ U

such that

(t, χ, ϑ̃(t, χ)) ∈ J for all (t, χ) ∈ G .

Since any analytically measurable map is also universally measurable, the

existence of ϑ follows from [2, Lemma 7.27]. We conclude by appealing to

Lemma 3.1. 2

We can now state the dynamic programming principle. In the following,

PB
Xt,χ,ν
θ

∈ V(θ) means

P◦
({
ω◦ ∈ Ω◦ : PB

Xt,χ,ν
θ

(ω◦) ∈ V(θ(ω◦))
})

= 1 .

Theorem 3.1. Fix t ∈ [0, T ] and θ ∈ T̄ ◦ with values in [t, T ]. Then,

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and PB
Xt,χ,ν
θ
∈ V(θ)

}
.

Proof. Denote by V̂(t) the right hand side of the equality in Theorem 3.1.

1. We first prove the inclusion V(t) ⊂ V̂(t). Fix µ ∈ V(t). Then, there exists

(χ, ν) ∈ X2
t × U and Ω̃◦ ∈ F◦ such that P◦(Ω̃◦) = 1, PBχ = µ and PB

Xt,χ,ν
T

∈ G
on Ω̃◦. For ω̃◦ ∈ Ω̃◦, we define (χω̃

◦
, νω̃

◦
) by

χω̃
◦
(ω) = X t,χ,ν

θ(ω̃◦)(ω̃
◦, ω1) , νω̃

◦

s (ω) = νs(ω̃
◦ ⊕θ(ω̃◦) ω◦, ω1) , s ∈ [0, T ]

for all ω = (ω◦, ω1) ∈ Ω. Note that χω̃
◦ ∈ X2

θ(ω̃◦), PB
χω̃◦

= PB
Xt,χ,ν
θ

(ω̃◦) and

νω̃
◦ ∈ U for all ω̃◦ ∈ Ω̃◦. Moreover, it follows from [9, Theorem 5.4] and

Proposition 2.2 that X
θ(ω̃◦),χω̃

◦
,νω̃
◦

T has the same law as X t,χ,ν
T given B·∧θ =
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ω̃◦·∧θ(ω̃◦), for P◦-a.e. ω̃◦ ∈ Ω◦. Since PB
Xt,χ,ν
T

(ω◦) ∈ G for ω◦ ∈ Ω̃◦, it follows

that PB
Xt,χ,ν
θ

(ω̃◦) = PB
χω̃◦
∈ V(θ(ω̃◦)) for all ω̃◦ ∈ Ω̃◦. Therefore µ ∈ V̂(t).

2. We now prove the inclusion V̂(t) ⊂ V(t). Fix µ ∈ V̂(t) and (χ, ν) ∈ X2
t×U

such that PBχ = µ and PB
Xt,χ,ν
θ

∈ V(θ). It follows from Proposition 3.4 that(
θ(ω◦), X t,χ,ν

θ(ω◦)(ω
◦, .)
)
∈ G, for P◦-a.e. ω◦ ∈ Ω◦. Let P be the probability

measure induced by ω◦ 7→
(
θ(ω◦), X t,χ,ν

θ(ω◦)(ω
◦, .)
)

on [0, T ]×L2(Ω1,F1,P1;Rd).

By Lemma 3.2, there exists a measurable map ϑ such that PB
X
t′,χ′,ϑ(t′,χ′)
T

∈ G
P◦-a.s. for P-a.e. (t′, χ′) ∈ G. Since ϑ(t′, χ′) can be chosen in the filtration

F[t′,T ] to which t′B is independent, PB
X
t′,χ′,ϑ(t′,χ′)
T

is measurable with respect to

σ(B·∨t′ −Bt′). Hence, there exist null sets N and Ñ such that

PB
X
α(ω◦,·)
T

(ω̃◦) ∈ G for ω◦ /∈ N and ω̃◦ /∈ Ñ ,

where

α(ω◦, ·) := (θ(ω◦), X t,χ,ν
θ (ω◦, ·), ϑ(θ(ω◦), X t,χ,ν

θ (ω◦, ·)).

It remains to define the process ν̄ ∈ U by

ν̄(ω) = ν(ω)1[0,θ(ω◦)) + ϑ(θ(ω◦), X t,χ,ν
θ (ω◦, ·))(ω)1[θ(ω◦),T ] , (3.10)

and observe that Xα
T = X t,χ,ν̄

T , to conclude that µ ∈ V(t).

4 The dynamic programming partial differ-

ential equation

Let v : [0, T ]× P2 → R be the indicator function of the complement of the

reachability set V :

v(t, µ) = 1− 1V(t)(µ) , (t, µ) ∈ [0, T ]× P2. (4.11)

The aim of this section is to provide a characterization of v as a (discontin-

uous) viscosity solution of a fully non-linear second order parabolic partial

differential equation, in the spirit of [21]. Given Theorem 3.1, this follows

from combining the technologies developped in [6, 8] and [21]. We refer to

Section 5.1 for the specific case where the reachability set is an half-space in

one direction.
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4.1 Derivatives on the space of probability measures

and Itô’s lemma

We first recall here the notion of derivative with respect to a probability

measure that has been introduced by Lions, see the lecture notes [6], and

further developed in [8], to our context.

We let Ω̃1 be a polish space, F̃ 1 its Borel σ-algebra and P̃1 an atomless

probability measure on (Ω̃1, F̃ 1). We recall that we have P2 = {P̃1
Y :=

P̃1 ◦ Y −1 : Y ∈ L2(Ω̃1, F̃ 1, P̃1;Rd)}.
For a function w : P2 → R, we define its lifting as the function W from

L2(Ω̃1, F̃ 1, P̃1;Rd) to R such that

W (X) = w(P̃1

X) , for all X ∈ L2(Ω̃1, F̃ 1, P̃1;Rd) .

We then say that w is Fréchet differentiable (resp. C1) on P2 if its lift

W is (resp. continuously) Fréchet differentiable on L2(Ω̃1, F̃ 1, P̃1;Rd). If it

exists, the Fréchet derivative DW (X) of W at X ∈ L2(Ω̃1, F̃ 1, P̃1;Rd) can be

identified by Riez Theorem to an element of L2(Ω̃1, F̃ 1, P̃1;Rd) and admits a

representation of the form

DW (X) = ∂µw(P̃1

X)(X) (4.12)

for some measurable map ∂µw(P̃1
X) : Rd → Rd, that we call the derivative of

w at P̃1
X and we have ∂µw(µ) ∈ L2(Rd,B(Rd), µ;Rd) for µ ∈ P2. In the case

where x ∈ Rd 7→ ∂µw(µ)(x) is differentiable at x, given µ ∈ P2, we denote

by ∂x∂µw(µ)(x) the corresponding gradient.

Following [8, Section 3.1], we say that w is fully C2 if it is C1 on P2 and

• the map (µ, x) 7→ ∂µw(µ)(x) is continuous at any (µ, x) ∈ P2 × Rd,

• for any µ ∈ P2, the map x 7→ ∂µw(µ)(x) is continuously differentiable

and the map (µ, x) 7→ ∂x∂µw(µ)(x) is continuous at any (µ, x) ∈ P2 ×
Rd,

• for any x ∈ Rd, the map µ 7→ ∂µw(µ)(x) is differentiable in the lifted

sense and its derivative, regarded as the map (µ, x, x′) 7→ ∂2
µw(µ)(x, x′),

is continuous at any (µ, x, x′) ∈ P2 × Rd × Rd.
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From now on, we define C1,2([0, T ]×P2) as the set of continuous functions

w : [0, T ]×P2 → R such that w(t, ·) is fully C2 for all t ∈ [0, T ], ∂tw exists and

is continuous on [0, T ]×P2, ∂µw, ∂x∂µw and ∂2
µw are continuous respectively

on [0, T ]×P2×Rd, [0, T ]×P2×Rd and [0, T ]×P2×Rd×Rd. We also define

C1,2
b ([0, T ]× P2) as the set of functions w ∈ C1,2([0, T ]× P2) such that

sup
t∈[0,T ], µ∈K

{∣∣∂tw(t, µ)
∣∣+

∫
Rd

∣∣∂µw(t, µ)(x)
∣∣2dµ(x)

+

∫
Rd

∣∣∂x∂µw(t, µ)
∣∣2dµ(x)

+

∫
Rd×Rd

|∂2
µw(t, µ)(x, x′)

∣∣2d(µ⊗ µ)(x, x′)
}

< ∞ (4.13)

for any compact subset K of P2.

We are now in position to derive a chain rule for the flow of conditional

marginal laws of the controlled process. To this end, we introduce the prob-

ability space (Ω̃, F̃ , P̃) defined by

Ω̃ = Ω◦ × Ω̃1 , F̃ = F◦ ⊗ F̃ 1 and P̃ = P◦ ⊗ P̃1. (4.14)

As for the space (Ω,F ,P), we denote by ẼB the regular conditional expecta-

tion given B on (Ω̃, F̃ , P̃).

Proposition 4.5. Let w ∈ C1,2
b ([0, T ]×P2). Given (t, χ, ν) ∈ [0, T ]×Xt×U ,

set X = X t,χ,ν, a = a(X,PBX , ν) and b = b(X,PBX , ν). Then,

w(s,PBXs) = w(t,PBχ )

+

∫ s

t

EB
[
∂tw(r,PBXr) + ∂µw(r,PBXr)(Xr)br

]
dr

+
1

2

∫ s

t

EB
[
Tr
(
∂x∂µw(r,PBXr)(Xr)ara

>
r

)]
dr

+
1

2

∫ s

t

EB
[
ẼB
[
Tr
(
∂2
µw(r,PBXr)(Xr, X̃r)arã

>
r

)]]
dr

+

∫ s

t

EB
[
∂µw(r,PBXr)(Xr)ar(Xr,PBXr , νr))

]
dBr
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for all s ∈ [t, T ], where1 (X̃, ã) is a copy of (X, a) on (Ω̃, F̃ , P̃).

Proof. The proof follows from similar arguments as in [8] and we only mention

the main ideas.

We first define on Ω̃1 a sequence of i.i.d. random variables (ξ`)`≥2 following

the uniform law on [0, 1]d (such a sequence exists since Ω̃1 is polish and P̃1

is atomless). We then extend B, ξ and ξ`, ` ≥ 2 to (Ω̂ = Ω◦ × Ω1 × Ω̃1, F̂ =

F◦ ⊗F 1 ⊗ F̃ 1, P̂ = P◦ ⊗ P1 ⊗ P̃1) in a canonical way by setting

ξ1(ω̂) = ξ(ω̂) = ω1 , ξ`(ω̂) = ξ`(ω̃1) and B(ω̂) = ω◦,

for all ω̂ = (ω◦, ω1, ω̃1). Note that (ξ`)`≥1 is then an i.i.d. sequence, indepen-

dent of B.

Since χ ∈ Xt and ν ∈ U , we can find Borel maps x and u such that

χ = x(B, ξ1) P-a.s. and ν = u(·,·B, ξ1), up to modification. We then set

(χ`, ν`) := (x(ξ`), u(·,·B, ξ`)), for ` ≥ 1, and define X` as the solution on

[t, T ] of

X` =χ` +

∫ ·
t

b`sds+

∫ ·
t

a`sdBs,

in which (b`, a`) = (b, a)(X`,PBX1 , ν`). It follows from Proposition 2.2 that

(X`
r)`≥1 is a sequence of i.i.d. random variables given (Br′)r′≤T , for each

r ∈ [t, s]. Set µ̄Nr := 1
N

∑N
`=1 δX`

r
for t ≤ r ≤ s.

1. We first assume that w ∈ C1,2
b ([0, T ]× P2) is such that

(µ, x, x′) 7→ (∂µw(µ)(x), ∂x∂µw(µ)(x), ∂2
µw(µ)(x, x′))

is continuous, and that w, ∂µw, ∂x∂µw and ∂2
µw are bounded and uniformly

continuous. Then, it follows from [8, Proposition 3.1] combined with Itô’s

1This means that (X̃, ã)(ω◦, ·), defined on Ω̃1, has the same law as (X, a)(ω◦, ·), defined

on Ω1, for a.e. ω◦ ∈ Ω◦.
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Lemma that

w(s, µ̄Ns ) = w(t, µ̄Nt ) +

∫ s

t

∂tw(r, µ̄Nr )dr +
1

N

N∑
`=1

∫ s

t

∂µw(r, µ̄Nr )(X`
r)b

`
rdr

+
1

N

N∑
`=1

∫ s

t

∂µw(r, µ̄Nr )(X`
r)a

`
rdBr

+
1

2N

N∑
`=1

∫ s

t

Tr
[
∂x∂µw(r, µ̄Nr )(X`

r)a
`
r(a

`
r)
>] dr

+
1

2N2

N∑
`,n=1

∫ s

t

Tr
[
∂2
µw(r, µ̄Nr )(X`

r , X
n
r )a`r(a

n
r )>
]
dr.

We now take the expectation given (Br′)r′≤T on both sides and use [19,

Corollaries 2 and 3 of Theorem 5.13] and [17, Lemma 14.2] together with the

fact that the quadruplets (µ̄Nr , X
`
r , X

n
r , b

`
r, b

n
r , a

`
r, a

n
r ), `, n ≤ N , have all the

same law given (Br′)r′≤T , for t ≤ r ≤ s, to obtain

ÊB[w(s, µ̄Ns )] = ÊB[w(t, µ̄Nt )] +

∫ s

t

ÊB
[
∂tw(r, µ̄Nr ) + ∂µw(r, µ̄Nr )(X1

r )b1
r

]
dr

+

∫ s

t

ÊB
[
∂µw(r, µ̄Nr )(X1

r )a1
r)
]
dBr

+
1

2

∫ s

t

ÊB
[
Tr
(
∂x∂µw(r, µ̄Nr )(X1

r )a1
r(a

1
r)
>)] dr

+
1

2N

∫ s

t

ÊB
[
Tr
(
∂2
µw(r, µ̄Nr )(X1

r , X
1
r )a1

r(a
1
r)
>)] dr

+
N − 1

2N

∫ s

t

ÊB
[
Tr
(
∂2
µw(r, µ̄Nr )(X1

r , X
2
r )a1

r(a
2
r)
>)] dr,

where ÊB stands for the condition expectation given (Br′)r′≤T on Ω̂. We then

use the fact that W2(µ̄Nr ,PBX1
r
) → 0 a.s. as N → ∞ for all r ∈ [t, s]. This

is a consequence of [15, Lemma 4] and the fact that (X`
r)`≥1 is a sequence

of i.i.d. random variables given (Br′)r′≤T . Since all the involved maps are

assumed to be bounded and continuous, one can take the limit as N → ∞
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in the above to obtain

w(s,PBX1
s
) = w(t,PBχ1) +

∫ s

t

EB
[
∂tw(r,PBX1

r
) + ∂µw(r,PBX1

r
)(X1

r )b1
r

]
dr

+

∫ s

t

EB
[
∂µw(r,PBX1

r
)(X1

r )a1
r)
]
dBr (4.15)

+
1

2

∫ s

t

EB
[
Tr
(
∂x∂µw(r,PBX1

r
)(X1

r )a1
r(a

1
r)
>
)]
dr

+
1

2

∫ s

t

EB
[
ẼB
[
Tr
(
∂2
µw(r,PBX1

r
)(X1

r , X
2
r )a1

r(a
2
r)
>
)]]

dr.

2. The validity of (4.15) can be extended to the case where w is just in

C1,2
b ([0, T ] × P2) by following the molifying argument of [8, Proposition 3.4]

whenever the condition (4.13) holds, recall that (b, a) is bounded. 2

Later on, we shall need to use this Itô’s formula at the level of a map

W defined on L2(Ω̃1, F̃ 1, P̃1;Rd). When W is the lift of a C1,2
b function w,

and under the additional assumption that W is twice continuously Fréchet

differentiable2, D2W can be identified by Riez Theorem as a self-adjoint

operator on L2(Ω̃1, F̃ 1, P̃1;Rd) and we have the following identification by [7,

Remark 6.4]

Ẽ1
[
D2W (X)(Y )Y >

]
= Ẽ1

[
Tr
(
∂x∂µw(µ)(X)Y Y >

)]
(4.16)

+Ẽ1

[
Ẽ′1
[
Tr
(
∂2
µw(µ)(X,X ′)Y (Y ′)>

)]]
dr

for any random variables X ∈ L2(Ω̃1, F̃ 1, P̃1;Rd) with P̃1
X = µ and Y ∈

L2(Ω̃1, F̃ 1, P̃1;Rd), where (X ′, Y ′) is a copy of (X, Y ) on another Polish atom-

less probability space (Ω̃′1, F̃ ′1, P̃′1), and Ẽ′1 is the expectation operator under

P̃′1.
Let us say that W : [0, T ] × L2(Ω̃1, F̃ 1, P̃1;Rd) → R is C1,2

b if it is the

lifting function of a map w ∈ C1,2
b ([0, T ] × P2). Given a random variable

X ∈ L2(Ω̃, F̃ , P̃;Rd) (recall that (Ω̃, F̃ , P̃) is defined in (4.14)), we define

W (t,X) as the random variable ω◦ ∈ Ω◦ 7→ W (t,X(ω◦, ·)) where X(ω◦, ·) is

now a random variable on L2(Ω̃1, F̃ 1, P̃1;Rd). We use the same convention

2Being C1,2b for the function w is not a sufficient condition for the lift W to be twice

Fréchet differentiable as shown in [5, Example 2.3].
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for DW (t,X(ω◦, ·)) and D2W (t,X(ω◦, ·)). For (t, χ, ν) ∈ [0, T ]×Xt×U , we

introduce χ̃, ν̃ copies of χ, ν defined on Ω̃ and we define the process X̃ on Ω̃

solution to (2.7) with initial conditions (t, χ̃) and control ν̃. As an immediate

corollary of Proposition 4.5 and (4.16), we then have the following:

W (s, X̃s) = W (t, χ̃)

+

∫ s

t

ẼB
[
∂tW (r, X̃r) +DW (r, X̃r)br(X̃r, P̃BXr , ν̃r)

]
dr

+
1

2

∫ s

t

ẼB
[
D2W (r, X̃r)(Xr)ara

>
r (X̃r, P̃BX̃r , ν̃r)

]
dr

+

∫ s

t

ẼB
[
DW (r, X̃r)ar(X̃r, P̃BX̃r , ν̃r))

]
dBr, (4.17)

for all s ∈ [0, T ], whenever W is in C1,2
b ∩ C1,2([0, T ]× L2(Ω̃1, F̃ 1, P̃1;Rd)).

This result is in fact true even when W is not necessarily the lift of a

law-invariant map, but simply C1,2([0, T ]× L2(Ω̃1, F̃ 1, P̃1;Rd)).

Proposition 4.6. Fix W ∈ C1,2([0, T ] × L2(Ω̃1, F̃ 1, P̃1;Rd)), then (4.17)

holds.

Proof. This follows from the proof of [7, Proposition 6.3] up slight adapta-

tions similar too the ones made in the Proposition 4.5. 2

4.2 Verification argument

We recall that aim at characterizing the function v : (t, µ) ∈ [0, T ] × P2 7→
1− 1V(t)(µ). Following [5, 21], one can expect it to solve, in a certain sense,

the PDE

− ∂tw(t, µ) +H
(
t, µ, ∂µw(t, µ), ∂µ∂xw(t, µ), ∂2

µw(t, µ)
)

= 0 , (4.18)

in which

H
(
t, µ, ∂µw(t, µ), ∂µ∂xw(t, µ), ∂2

µw(t, µ)
)

:= sup
u∈N(t,µ,∂µw(t,µ))

(−Lut [w](µ))

with

N(t, µ, ∂µw(t, µ)) :=

{
u ∈ L0(Rd; U) :

∫
∂µw(t, µ)(x)at(x, µ, u(x))µ(dx) = 0

}
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where L0(Rd; U) stands for the collection of U-valued Borel maps on Rd, and

Lut [w](µ)

:=

∫ ∫ {
bt(x, µ, u(x))>∂µw(t, µ)(x) +

1

2
Tr
[
∂x∂µw(t, µ)(x)(ata

>
t )(x, µ, u(x))

]
+

1

2
Tr
[
∂2
µw(t, µ)(x, x̃)at(x, µ, u(x))a>t (x̃, µ, u(x̃))

]}
µ(dx)µ(dx̃).

There is however little chance that the above equation admits a smooth

solution, and, as usual, we shall appeal to the notion of viscosity solutions,

see Section 4.3 below. Still, one can check whether a measure µ belongs to

the set V(t) by using a verification argument.3

Proposition 4.7. Let w ∈ C1,2
b ([0, T ]× P2) and u be a U-valued Borel map

on [0, T ]×Ω◦×Rd which is F-progressive⊗B(Rd)-measurable. Fix t ≤ T and

µ ∈ P2 and assume that existence holds for (1.3) with ν := u(·, X t,χ,ν
· ), for

some χ ∈ Xt such that PBχ = µ. Assume further that

− ∂tw(·,PB
Xt,χ,ν
·

(ω◦))− Lu(·,ω◦,·)
· [w](PB

Xt,χ,ν
·

(ω◦)) ≥ 0 dt− a.e.

u(·, ω◦, ·) ∈ N(·,PB
Xt,χ,ν
·

(ω◦), ∂µw(·,PB
Xt,χ,ν
·

)(ω◦)) dt− a.e.

w(T, ·) ≥ 1− 1G on P2,

for P◦-almost all ω◦ ∈ Ω◦. Then, µ ∈ V(t) whenever w(t, µ) ≤ 0.

Proof. Our conditions ensure that ν ∈ U . Moreover, the chain rule of Propo-

sition 4.5 combined with the above imply that w(T,PB
Xt,χ,ν
T

) ≤ 0. Hence,

1− 1G(PB
Xt,χ,ν
T

) ≤ 0 so that PB
Xt,χ,ν
T

∈ G. 2

4.3 Viscosity solution characterization

As already mentioned, we shall in general rely on the notion of viscosity

solutions. For this, we need to work at the level of the lifting function V :

[0, T ] × L2(Ω̃1, F̃ 1, P̃1;Rd) → R of v. In view of (4.12)-(4.16), one expects

that it solves on [0, T )× L2(Ω̃1, F̃ 1, P̃1;Rd)

− ∂tW +H
(
·, DW,D2W

)
= 0 . (4.19)

3We leave the study of more precise examples to future research.
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where H is defined as H0 with, for ε ≥ 0,

Lut (χ, P,Q) := ẼB
[
b>t (χ,Pχ, u)P +

1

2
Q
(
at(χ,Pχ, u)Z

)
at(χ,Pχ, u)Z

]
Hε(t, χ, P,Q) := sup

u∈Nε(t,χ,P )

{
− Lut (χ, P,Q)

}
Nε(t, χ, P ) :=

{
u ∈ L0(Ω̃, F̃ , P̃; U) : |ẼB[at(χ,Pχ, u)P ]| ≤ ε

}
,

for t ∈ [0, T ], u ∈ L0(Ω̃, F̃ , P̃; U), χ, P ∈ L2(Ω̃, F̃ ,P;Rd) and Q ∈ S(L2(Ω̃,

F̃ , P̃;Rd)), the set of self-adjoint operators on L2(Ω̃, F̃ , P̃;Rd).

Let us recall that W : [0, T ] × L2(Ω̃1, F̃ 1, P̃1;Rd) is extended to [0, T ] ×
L2(Ω̃, F̃ , P̃;Rd) by defining W (t,X) as the random variable ω◦ ∈ Ω◦ 7→
W (t,X(ω◦, ·)).

Since neither V nor H· are a-priori continuous, we define V∗ and V ∗ as

the lower-semicontinous and upper-semicontinuous enveloppes of V , and let

H∗ and H∗ be defined as the relaxed upper- and lower-semilimits as ε→ 0.

We say that V∗ is a viscosity supersolution (resp. V ∗ is a subsolution)

of (4.19) if for any (t, χ) ∈ [0, T ] × L2(Ω̃1, F̃ 1, P̃1;Rd) and any function Φ ∈
C1,2

(
[0, T ]× L2(Ω̃1, F̃ 1, P̃1;Rd)

)
such that

(V∗ − Φ)(t, χ) = min
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V∗ − Φ)

( resp. (V ∗ − Φ)(t, χ) = max
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V ∗ − Φ) )

we have

−∂tΦ(t, χ) +H∗
(
t, χ,DΦ(t, χ), D2Φ(t, χ)

)
≥ 0

(resp. − ∂tΦ(t, χ) +H∗
(
t, χ,DΦ(t, χ), D2Φ(t, χ)

)
≤ 0 ) .

If V∗ is a supersolution and V ∗ is a subsolution, we say that V is a discon-

tinuous solution.

We are now ready to state the viscosity property of the function V . This

requires the following continuity assumption on the set N .

(H2): Let O be an open subset of [0, T ]× L2(Ω̃, F̃ , P̃;Rd)× L2(Ω̃, F̃ , P̃;Rd)

such that N0(t, χ, P ) 6= ∅ for all (t, χ, P ) ∈ O. Then, for every ε > 0,
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(t0, χ0, P0) ∈ O and u0 ∈ N0(t0, χ0, P0), there exists an open neighborhood

O′ of (t0, χ0, P0) and a measurable map û : [0, T ]× Rd × Rd × Ω̃1 → U such

that:

(i) ẼB[|ût0(χ0, P0, ξ)− u0|] ≤ ε.

(ii) There exists C > 0 for which

Ẽ[|ût(χ, P, ξ)− ût(χ′, P ′, ξ)|2] ≤ CẼ[|χ− χ′|2 + |P − P ′|2]

for all (t, χ, P ), (t, χ′, P ′) ∈ O′.
(iii) ût(χ, P, ξ) ∈ N0(t, χ, P ) P◦ − a.e., for all (t, χ, P ) ∈ O′.

We also strengthen (H1) by the following additional condition.

(H1’) There exist a constant C and a function m : R+ → R such that

m(t)→ 0 as t→ 0 and

|bt(x, µ, u)− bt′(x, µ, u′)|+ |at(x, µ, u)− at′(x, µ, u′)| ≤ m(t− t′) + C|u− u′|.

for all t, t′ ∈ [0, T ], x ∈ Rd, µ ∈ P2 and u, u′ ∈ U.

Theorem 4.2. Under (H1) and (H1’) the function V∗ is a viscosity super-

solution of (4.19). If in addition (H2) holds, then V ∗ is a viscosity subsolu-

tion of (4.19).

Proof. Part I. Supersolution property. Fix (t0, χ0) ∈ [0, T )×L2(Ω̃1, F̃ 1, P̃1;Rd)

and a test function Φ ∈ C1,2
(
[0, T )× L2(Ω̃1, F̃ 1, P̃1;Rd)

)
such that

(V∗ − Φ)(t0, χ0) = min
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V∗ − Φ) = 0 .

We prove that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 0 . (4.20)

1. Suppose that the function V is constant in a neighborhood of (t0, χ0).

Then Φ(t0, χ0) is a local maximum of Φ and therefore

∂tΦ(t0, χ0) ≤ 0 , DΦ(t0, χ0) = 0 and D2Φ(t0, χ0)≤0 . (4.21)

Hence, N0(t0, χ0, DΦ(t0, χ0)) = L0(Ω̃, F̃ , P̃; U) and

−∂tΦ(t0, χ0) +H0

(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 0 ,

25



so that (4.20) is satisfied.

2. We now consider the complementary case: V∗(t0, χ0) = 0. Let (tn, χn)n≥1

be a sequence of [0, T ) × L2(Ω̃1, F̃ 1, P̃1;Rd) converging to (t0, χ0) and such

that

V (tn, χn) = 0 , for all n ≥ 1. (4.22)

We argue by contradiction and suppose that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
=: −2η

for some η > 0. Define

Φ̃(t, χ) = Φ(t, χ)− ϕ
(
|t− t0|2 + E

[∣∣χ− χ0

∣∣2]2)
for (t, χ) ∈ [0, T ] × L2(Ω̃1, F̃ 1, P̃1;Rd), where ϕ ∈ C∞(R,R) is such that

ϕ(x) = x for x ∈ [0, 1] and ϕ(x) = 2 for x ≥ 2. Then,

(∂tΦ̃, DΦ̃, D2Φ̃)(t0, χ0) = (Φ, DΦ, D2Φ)(t0, χ0),

and we can find ε > 0 and an open ball Bε(t0, χ0) such that

−η ≥− ∂tΦ̃(t, χ)− Lut (χ,DΦ̃(t, χ), D2Φ̃(t, χ)) (4.23)

for any (t, χ) ∈ Bε(t0, χ0) and any u ∈ Nε(t, χ,DΦ(t, χ)). Let ∂pBε(t0, χ0) :=

{t0 + ε} × cl(Bε(χ0)) ∪ [t0, t0 + ε)× ∂Bε(χ0) denote the parabolic boundary

of Bε(t0, χ0) and observe that

ζ := inf
∂pBε(t0,χ0)

(V∗ − Φ̃) > 0 . (4.24)

In view of (4.22), we can find a control νn ∈ U such that

P̃BXn
t
∈ G ,

where Xn = X tn,χn,νn . We then define the stopping times

θn(ω◦) = inf
{
s ≥ tn :

(
s,Xn

s (ω◦, .)
)
/∈ Bε(t0, χ0)

}
, ω◦ ∈ Ω◦ .
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By Theorem 3.1, V (·, Xn
· ) = 0 on [tn, T ], so that −Φ̃(·, Xn) ≥ 0 on [tn, T ]

and −Φ̃(θn, X
n
θn

) ≥ ζ by (4.24). Let us set βn := −Φ̃(tn, χn) and define

αnt :=ẼB[∂tΦ̃(t,Xn
t ) + Lν

n
t
t (Xn

t , DΦ̃(t,Xn
t ), D2Φ̃(t,Xn

t ))],

ρn :=− αn1An , ψn := −ẼB
[
a(Xn, P̃BXn , νn)DΦ̃(·, Xn)

]
with

An :=
{
t ∈ [tn, θn] : −αnt > −η

}
.

Applying Proposition 4.6 to Φ̃(., Xn), we then get that Mn
θn
≥ 0 where

Mn := βn − ζ +

∫ ·
tn

ρnt dt+

∫ ·
tn

ψnt dBt ≥ βn − ζ ≥ −
1

2
ζ, (4.25)

for n large. By (4.23),∣∣ẼB[at(Xn
t ,PBXn

t
, νnt )DΦ̃(t,Xn

t )
]∣∣ > ε , for t ∈ An,

and we can define the positive F̄◦-local martingale Ln by

Lnt = 1−
∫ t

tn

Lnsρ
n
s |ψns |−2ψns dBs , t ≥ tn .

The coefficients a and b being bounded, Ln is a true martingale. In view of

(4.25), LnMn is a non-negative local martingale that is bounded from below

by a martingale. Therefore, it is a super-martingale and

0 ≤ E[LnθnM
n
θn ] ≤ LntnM

n
tn = Mn

tn = βn − ζ .

Sending n to ∞, we get a contradiction since βn → 0.

Part II. Subsolution property. Fix (t0, χ0) ∈ [0, T )× L2(Ω̃1, F̃ 1, P̃1;Rd) and

Φ ∈ C1,2
(
[0, T ]× L2(Ω̃1, F̃ 1, P̃1;Rd)

)
such that

(V ∗ − Φ)(t0, χ0) = max
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V ∗ − Φ). (4.26)

We have to prove that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≤ 0 .
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We distinguish two cases.

1. Suppose that V ∗(t0, χ0) = 0. Then, we deduce from (4.26) that

∂tΦ(t0, χ0) ≥ 0 , DΦ(t0, χ0) = 0 and D2Φ(t0, χ0) ≥ 0 . (4.27)

Let (εn, tn, χn, Pn, Qn)n≥1 ⊂ [0, 1]× [0, T ]×L2(Ω̃1, F̃ 1, P̃1;Rd)×L2(Ω̃1, F̃ 1, P̃1;

Rd)×S(L2(Ω̃1, F̃ 1, P̃1;Rd)) be a sequence converging to (0, t0, χ0, DΦ(t0, χ0),

D2Φ(t0, χ0)) such that

Hεn(tn, χn, Pn, Qn) → H∗(t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) . (4.28)

It follows from (4.27) that

lim
n→+∞

Hεn(tn, χn, Pn, Qn)

≤ lim
n→+∞

−1

2
inf

u∈L0(Ω̃1,F̃1,P̃1;U)
Ẽ
[
Qn(atn(χn, P̃χn , u)Z)atn(χn, P̃χn , u)Z

]
.

Since a is continuous and bounded, it follows from the convergence of Qn to

DΦ(t0, χ0) that

lim
n→+∞

inf
u∈L0(Ω̃1,F̃1,P̃1;U)

Ẽ
[
Qn(atn(χn, P̃χn , u)Z)atn(χn, P̃χn , u)Z

]
=

inf
u∈L0(Ω̃1,F̃1,P̃1;U)

Ẽ
[
D2Φ(t0, χ0)(at0(χ0, P̃χ0 , u)Z)at0(χ0, P̃χ0 , u)Z

]
.

Combining the above leads to

lim
n→+∞

Hεn(tn, χn, Pn, Qn)

≤ −1

2
inf

u∈L0(Ω̃1,F̃1,P̃1;U)
E
[
D2Φ(t0, χ0)(at0(χ0, P̃χ0 , u)Z)at0(χ0, P̃χ0 , u)Z

]
,

so that (4.27) and (4.28) lead to

−∂tΦ(t0, χ0) +H∗(t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) ≤ 0 .

2. Suppose now that V ∗(t0, χ0) = 1. We argue by contradiction and suppose

that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
=: 4η > 0 .
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Since the left hand-side is finite and N0 ⊂ Nε for ε ≥ 0, there exists an open

neighborhood O of (t0, χ0, DΦ(t0, χ0)) such that N0 6= ∅ on O and there

exists u0 ∈ N0(t0, χ0, DΦ(t0, χ0)) such that

−∂tΦ(t0, χ0)− Lu0
t0

(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 2η .

Then, (H2) implies that for any ε > 0 there exists an open neighborhood

O′ of (t0, χ0, DΦ(t0, χ0)) and a measurable map û : [0, T ]×Rd ×Rd × Ω̃1 →
U such that:

(i) ẼB[|ût0(χ0, P0, ξ)− u0|] ≤ ε

(ii) There exists C > 0 for which

Ẽ[|ût(χ, P, ξ)− ût(χ′, P ′, ξ)|2] ≤ CẼ[|χ− χ′|2 + |P − P ′|2]

for all (t, χ, P ), (t, χ′, P ′) ∈ O′.
(iii) ût(χ, P, ξ) ∈ N0(t, χ, P ) P◦ − a.e., for all (t, χ, P ) ∈ O′.

Define

Φ̃(t, χ) = Φ(t, χ) + |t− t0|2 + ẼB
[
|χ− χ0|2

]2
,

for (t, χ) ∈ [0, T ]× L2(Ω̃, F̃ , P̃;Rd). Then,

(∂tΦ̃, DΦ̃, D2Φ̃)(t0, χ0) = (∂tΦ, DΦ, D2Φ)(t0, χ0).

The above combined with (H1)-(H1’) shows that we can find some ε > 0

such that

−∂tΦ̃(t, χ)− Lût(χ,DΦ̃(t,χ),ξ)
t (χ,DΦ̃(t, χ), D2Φ̃(t, χ)) ≥ η (4.29)

for all (t, χ) ∈ Bε(t0, χ0).

Let now (tn, χn)n≥1 be a sequence of [0, T ]× L2(Ω̃1, F̃ 1, P̃1;Rd) such that(
tn, χn, V (tn, χn)

)
→

(
t0, χ0, V

∗(t0, χ0)
)
, (4.30)

and consider the solution Xn of (2.7) starting from χn at tn and associated

to the feedback control ν̂n := û·(X
n, DΦ̃(., Xn), ξ). The fact that Xn is

well-defined is guaranteed by (ii) above, this is obtained by a straightforward

extension of Proposition 2.1. We then define the stopping times θn by

θn(ω◦) = inf
{
s ≥ tn : (s,Xn

s (ω◦, .) /∈ Bε(tn, χn)
}
, ω◦ ∈ Ω◦ .
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Letting

−ζ := max
∂pBε(t0,χ0)

(V ∗ − Φ̃) < 0 ,

we have (V − Φ)(θn, X
n
θn

) ≤ −ζ.

We then apply Proposition 4.6, to deduce from (iii) and (4.29) that Φ̃(θn,

Xn
θn

) ≤ Φ̃(tn, χn) which implies V (θn, X
n
θn

) ≤ Φ̃(tn, χn)−ζ. Since Φ̃(tn, χn)→
1, we have V (θn, X

n
θn

) < 1 for n large enough, which contradicts Theorem

3.1. 2

We end this section with the derivation of the boundary condition at the

terminal time T . To this end, let us define the function g = 1− 1Ḡ where

Ḡ =
{
χ ∈ L2(Ω̃1, F̃ 1, P̃1;Rd) : P̃χ ∈ G

}
.

Note that Ḡ is a closed subset of L2(Ω̃1, F̃ 1, P̃1;Rd) since G is closed for W2.

Hence,

g∗ = 1− 1int(Ḡ) , g∗ = 1− 1Ḡ,

where g∗ and g∗ stand for the upper and lower semi-continuous envelopes of

g respectively.

Theorem 4.3. Under (H1), the function V satisfies

V ∗(T, .) = g∗ and V∗(T, .) = g∗

on L2(Ω̃1, F̃ 1, P̃1;Rd).

Proof. (i) We first prove that V ∗(T, .) = g∗. Since V (T, .) = g, we have

V ∗(T, .) ≥ g∗. For the reverse inequality, we argue by contradiction and

suppose that 1 = V ∗(T, χ) > g∗(χ) = 0 for some χ ∈ L2(Ω̃1, F̃ 1, P̃1;Rd).

Since g∗(χ) = 0, we know that χ ∈ int(Ḡ). Let (tn, χn)n be a sequence

such that (tn, χn, V (tn, χn)) → (T, χ, 1). Fix some u0 ∈ U and denote by

X tn,χn,u0 the solution to (2.7) starting from χn at tn and controlled by the

constant processes ν = u0. Then, X tn,χn,u0

T ∈ Ḡc, after possibly considering

a subsequence. Sending n to ∞, we obtain that χ belongs to the closure of

Ḡc, which is a contradiction.
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(ii) We now prove that V∗(T, .) = g∗. Since V (T, .) = g we have V∗(T, .) ≤ g∗.

Again the reserve inequality is proved by contradiction. Suppose that 0 =

V∗(T, χ) < g∗(χ) = 1 for some χ ∈ L2(Ω̃1, F̃ 1, P̃1;Rd). Since g∗ = g, we know

that χ ∈ Ḡc. Let (tn, χn)n be a sequence such that (tn, χn, V (tn, χn)) →
(T, χ, 0). Then, up to taking a subsequence, there exists νn ∈ U such that

X tn,χn,νn
T ∈ Ḡ. Since a and b are continuous bounded and Ḡ is closed in

L2(Ω̃1, F̃ 1, P̃1;Rd), we deduce that χ ∈ Ḡ by sending n to ∞, which is a

contradiction.

Remark 4.3. Note that the terminal condition in Theorem 4.3 is discontin-

uous, which prevents us from proving uniqueness of a solution to our PDE.

This point will be further discussed in Section 5.1 below.

5 Additional remarks

5.1 On the formulation

The formulation considered in this paper naturally leads to a PDE charac-

terization with a discontinuous terminal condition (upper- and lower-semi-

continuous enveloppes of 1 − 1G). Even for PDEs stated on a subset of Rd

this is problematic from a numerical point of view, in particular because

comparison does not hold. In some cases, an alternative formulation can be

used in order to retrieve a regular terminal condition and open the door to

the study of comparison and possibly of numerical methods by using already

existing results on PDE’s on Hilbert spaces, see e.g. [12].4 Let us discuss this

in the context of Example 3.1.

We consider the same problem as in Example 3.1 but now take the cost

induced by the fertilizing effort of each particle into account. Its dynamics

is of the form:

Ct,ν =

∫ ·
t

bC(νs)ds,

4Note that, even for general stochastic target problems set on Rd, no general comparison

theorem has been established so far. This is done on a case by case basis, and we therefore

do not enter into this issue in the abstract setting of this paper, but rather leave this to

the future study of particular situations.
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in which bC is non-negative. The initial budget of the farmer at t is y ∈ R,

and we set Y t,y,ν := y−Ct,ν
· , so that EB[Y t,y,ν ] denotes the remaining running

budget: initial budget minus integral with respect to the Lebesgues measure

of the costs associated to each particle. Letting X̂ t,χ,ν := (X t,χX ,ν , Y t,y,ν),

with χ = (χX , y), we retrieve the dynamics (2.7) for X̂ t,χ,ν . The aim of

the farmer is to find the minimal initial budget y and a control ν such that

PB
Xt,χ,ν
T

∈ GX and EB[Y t,y,ν
T ] ≥ 0 P-a.s. for some closed subset GX of the

collection of probability measures with second order moment. Otherwise

stated, he aims at computing at t how much money should be put aside to

cover with certainty5 the costs of driving the field in a given set of acceptable

states at time T .

In this context, let us define6, for t ∈ [0, T ] and µX ∈ P2,

v(t, µX) := inf{y ∈ R : (µX , δy) ∈ V(t)}

where δy is the Dirac mass at y and V is defined with respect to G = GX×GY

for GY defined as the collection of probability measures with support on R,

with finite second order moments and non-negative first order moment. The

dynamic programming principle of Theorem 3.1 reads as follows :

(GDP1) If y > v(t, µX) then there exists ν ∈ U and (χX , y) ∈ X2
t such

that EB[Y t,y,ν
θ ] ≥ v(t,PB

X
t,χX,ν

θ

) and PBχX = µX P-a.s.

(GDP2) If there exists ν ∈ U and (χX , y) ∈ X2
t such that EB[Y t,y,ν

θ ] >

v(t,PB
X
t,χX,ν

θ

) and PBχX = µX P-a.s., then y ≥ v(t, µX).

Indeed, y > v(t, µX) implies that (µX , δy) ∈ V(t), which by Theorem 3.1

induces that (PB
X
t,χX,ν

θ

,PB
Y t,y,νθ

) ∈ V(θ), for some ν ∈ U and (χX , y) ∈ X2
t such

that PBχX = µX . Since EB[Y t,χY ,ν
T ] ≥ 0 P-a.s. for some χY ∈ L2(Ω1,F 1

θ ,P;R)

is equivalent to saying that EB[Y t,y,ν
T ] ≥ 0 P-a.s. for y := EB[χY ], this implies

that (PB
X
t,χX,ν

θ

, δEB [Y t,y,νθ ]) ∈ V(θ). Conversely, EB[Y t,y,ν
θ ] > v(t,PB

X
t,χX,ν

θ

) and

PBχX = µX P-a.s. implies that (PB
X
t,χX,ν

θ

,PB
Y t,y,νθ

) ∈ V(θ).

From this version of the geometric dynamic programming principle, it

is not difficult to adapt the arguments of Section 4.3, see e.g. [4, 22], to

5One could relax the constraint by just asking for P[EB [Y t,y,ν
T ] ≥ 0] ≥ m for some

m ∈ (0, 1), see [4].
6The state space being increased to Rd+1.
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derive that the lift V of v is such that V∗ and V ∗ (if finite, e.g. because bC is

bounded) are respectively viscosity super- and subsolutions of (4.19), on the

corresponding space (now associated to the X component above only), with

terminal conditions V∗(T, ·) ≥ 0 ≥ V ∗(T, ·), up to mild regularity conditions

on the coefficients.

5.2 On the choice of controls

In the above sections, the collection U of controls permits to take into ac-

count the exact value of the initial random variable χ, it is F-progressively

measurable. If we think in terms of controlling a population of particles

whose initial distribution is the law of χ, this means that we allow each of

the particles to have its own control. One can also consider the case where

the control belongs to the subclass U◦ of controls in U that are only F̄◦-
progressively measurable. This would mean that the control of each particle

does not depend on its position but only of the conditional law of the whole

population of particles given B.

This can be treated in a similar way as the case we considered above. In par-

ticular, the result of Proposition 3.4 becomes trivial, see Proposition 2.3. In

(3.10), the control ν will be F̄◦-progressively measurable and the map ϑ will

take values in U◦, so that ν̄ will actually be F̄◦-progressively measurable since

the argument X t,χ,ν
θ (ω◦, ·) only enters as a random variable (not as the value

of the random variable). As for the first part of the proof of Theorem 3.1, the

construction will just be simpler. Then, Theorem 3.1 actually holds for the

class U◦ as well. As for the PDE characterization of Theorem 4.2, we only

have to replace Nε(t, χ, P ) with {u ∈ U : |EB[at(χ,Pχ, u)P ]| ≤ ε}, which

changes the definition of H∗ and H∗ accordingly. Up to this modification,

the proof is the same.
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