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Abstract

In principle, liabilities combining both insurancial risks (e.g. mortality/longevity, crop

yield,...) and pure financial risks cannot be priced neither by applying the usual actuar-

ial principles of diversification, nor by arbitrage-free replication arguments. Still, it has

been often proposed in the literature to combine these two approaches by suggesting to

hedge a pure financial payoff computed by taking the mean under the historical/objective

probability measure on the part of the risk that can be diversified. Not surprisingly, simple

examples show that this approach is typically inconsistent for risk adverse agents. We show

that it can nevertheless be recovered asymptotically when the number of sold claims goes

to infinity and the absolute risk aversion of the agent goes to zero simultaneously. This

follows from a general convergence result on utility indifference prices which is valid for

both complete and incomplete financial markets. In particular, if the underlying financial

market is complete, the limit price corresponds to the hedging cost of the mean payoff. If

the financial market is incomplete but the agent behaves asymptotically as an exponential

utility maximizer with vanishing risk aversion, we show that the utility indifference price

converges to the expectation of the discounted payoff under the minimal entropy martingale

measure.

Keywords: Utility indifference pricing, diversification, risk aversion, entropy.

Mathematics subject classification (2010): 60H30, 91B16, 91B24, 91B30.

1 Introduction

These last years have seen the explosion of the number of liabilities combining pure financial

and pure insurancial risks. They typically have the following form: an insurance company sells

to the client i a claim with discounted payoff gi paid at maturity T whose value depends on the

evolution of some tradable financial assets S = (St)t≥0 and some additional idiosyncratic risk.

The gi’s are usually not unconditionally independent, but still independent conditionally to S.
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It is (essentially) the case of many variable annuities schemes in which death times or with-

drawals policies can be assumed to be independent conditionally to the financial market’s be-

havior, see e.g. [1]. This is also the case for crop revenue insurance schemes that depend on the

production yield of the farmer and the market price of the crop, see e.g. [12]. More examples

can be found in [11] or [2].

In such a situation, and if the financial market formed by the financials assets S is complete, it

is tempting to play on the ability to diversify the conditionally idiosyncratic risks and cover the

systemic pure financial risk by dynamically trading on the market. If the gi’s are independent

and identically distributed given S, then the price of each of these contingent claims could be

defined as p̄ := EQ [ḡ(S)] where ḡ(S) := E
[
gi|S

]
does not depend on i, and Q denotes the unique

martingale measure on the pure financial market (i.e. restricted to S). The rationality behind

this is the following: by an unformal application of the law of large numbers conditionally to

S, we obtain the convergence Gn/n :=
∑n
i=1 g

i/n → ḡ(S) a.s. for a large number n of sold

contracts. In the above, the payoff ḡ(S) only depends on S and can thus be hedged dynamically

by trading on the (complete) pure financial market. Hence, by replicating the mean payoff ḡ(S),

we end up with a zero net position in mean (under the initial probability measure P).

This solution has been originally proposed by Brennan and Schwartz [5, 6], and then applied

several times, in particular in the literature on variables annuities, see e.g. [1], [4], [14] or

[15]. However, it seems to ignore the fact that playing with the law of large numbers on the

diversifiable part of the risk requires selling a large number of contracts, and therefore may

lead to huge positions on the financial market. If the law of large numbers does not operate

well enough, then the losses may be leveraged by an unfavorable evolution of the financial

market. More generally, the classical central limit theorem that allows to control the asymptotic

distribution of the risk in terms of the Gaussian law will in general not apply in this context.

One classical solution for pricing such claims is to use the indifference pricing rule of Hodge-

Neuberger [13], see e.g. [2] for the exponential utility case. Not surprisingly, it typically does not

lead to the price p̄ defined as above, see Section 2.2 for trivial counter-examples. However, one

should intuitively recover it when the number of sold contracts is large, so that the conditional

law of large numbers can operate, and the risk aversion is small.

In this note, we provide sufficient conditions under which the above holds true. Namely, we con-

sider a family of utility functions (Un)n, defined on R, with corresponding absolute risk aversion

(rn)n and indifference prices (npn)n for the aggregate claims (Gn)n. Under mild assumptions

detailed in Section 3.2, we show that n → ∞ and n‖rn‖∞ → 0 implies pn → p̄, whenever the

underlying financial market formed by the liquid financial assets S is complete. This follows

from a more general asymptotic result derived in Section 3.1, which provides a formulation

for the asymptotic unit price limn pn in terms of the sequence of martingales measures min-

imizing the corresponding dual problems. The latter applies to incomplete financial markets

without providing a clear identification of the asymptotic pricing measure, except when (Un)n
behaves asymptotically like a sequence of exponential utility functions. In this case, we show

that pn → pe := EQe [ḡ(S)] where Qe is the martingale measure with minimum relative entropy,

see Section 3.3. This generalizes to our setting the well-known property that the exponential

utility indifference price of a claim converges to the risk neutral price under Qe for vanishing

risk aversion, see [18] and [2]. Note that a similar result is obtained in [2] for the indifference

price of the mean payoff Ḡn := Gn/n =
∑n
i=1 g

i/n as n goes to infinity and the risk aversion is

fixed, which is a completely different situation.

In the following, any assertion involving random variables has to be understood in the a.s. sense.

Given a probability measure Q and a sigma-algebra G, we denote by L1(Q,G) (resp. L∞(Q,G))

the space of Q-integrable (resp. Q-essentially bounded) random variables that are G-measurable.

We omit the argument Q or G if it is clearly given by the context.
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2 Diversification based pricing rules and risk aversion

In this section, we describe the financial market and elaborate on the relation between diversi-

fication and utility indifference pricing.

2.1 The market model

From now on, we fix a time horizon T > 0 to avoid unnecessary technical issues, although for

some applications (e.g. mortality/longetivity linked contracts) it should in principle be infinite.

We consider a model of a security market which consists of d stocks with price process described

by a locally bounded càdlàg semi-martingale (Si)1≤i≤d defined on some complete filtered prob-

ability space (Ω,F ,F := (Ft)0≤t≤T ,P), with F satisfying the usual assumptions and F = FT .

As usual, we normalize the risk free rate to 0 for simplicity, which can always been done by

considering discounted values.

A (self financing) strategy is defined as an element ϑ = (ϑi)1≤i≤d of the set Θ of F-predictable

S-integrable processes. Given an initial endowment x ∈ R and a strategy ϑ ∈ Θ, the induced

wealth process Xx,ϑ = (Xx,ϑ
t )0≤t≤T is given by

Xx,ϑ
t = x+

∫ t

0

ϑu · dSu , 0 ≤ t ≤ T .

In order to avoid doubling strategies, we restrict as usual to strategies leading to bounded from

below wealth processes. We denote by Xb(x) the family of terminal values of wealth processes

starting from x such that the above holds:

Xb(x) :=
{
Xx,ϑ
T : ϑ ∈ Θ, Xx,ϑ ≥ −κ on [0, T ] for some κ ∈ R

}
. (2.1)

Note that Xb(x) = x+ Xb(0).

As usual, a probability measure Q is called an equivalent local martingale measure if it is

equivalent to P and if S is a (F,Q)-local martingale. The family of equivalent local martingales

will be denoted by M. We assume throughout this paper that

M 6= ∅, (2.2)

which ensures the absence of arbitrage opportunities (in the no-free lunch with vanishing risk

sense), see [10] for details. In the following, we will often use the notation Q∗ to denote a fixed

element of M.

Note that we do not impose that FT equals FST , where FS = (FSt )t≤T is the completion of the

right-continuous filtration generated by S, in order to allow for additional randomness.

However, we shall often consider that the pure financial market is complete in the following

sense.

Definition 2.1. We say that the pure financial market is complete, in short (HCM) holds, if

EQ∗ [ξ] = EQ[ξ] for all Q ∈M and ξ ∈ L∞(FST ),

where L∞(FST ) denotes the set of essentially bounded FST -measurable random variables.

Remark 2.1. Under (HCM), we must have ξ ∈ Xb(EQ [ξ]) for all ξ ∈ L∞(FST ). See [10].

Remark 2.2. Note that, if FST ( FT , then (HCM) only implies that the pure financial

market is complete in the sense of Remark 2.1, and not that M is reduced to a singleton.

As an example, assume that we can find A ∈ FT such that P [A] > 0 and A is independent

of FST given Fs for all s ∈ [0, T ] under P. Set H∗ := dQ∗/dP, H∗(S) := E
[
H∗|FST

]
and

Hε
A := εH∗ + (1 − ε)H∗(S)1A/P [A] for some ε ∈ (0, 1]. Then, for any increasing sequence of
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FS-stopping times (τk)k≥1 such that S(k) := S·∧τk is bounded on [0, T ] for all k ≥ 1, we have

E
[
Hε
AS

(k)
t |Fs

]
= εE [H∗|Fs]S(k)

s + (1− ε)E
[
E
[
H∗S

(k)
t |FST

]
1A|Fs

]
/P [A]

= εE [H∗|Fs]S(k)
s + (1− ε)E

[
E
[
H∗S

(k)
t |FST

]
|Fs
]
E [1A|Fs] /P [A]

= (εE [H∗|Fs] + (1− ε)E [H∗(S)|Fs]P [A|Fs] /P [A])S(k)
s

= E [Hε
A|Fs]S(k)

s

for 0 ≤ s ≤ t ≤ T , which shows that the measure QεA defined by dQεA/dP = Hε
A belongs to M.

In general QεA 6= Q∗.

Remark 2.3. The same arguments as in Remark 2.2 imply that Q∗(S) defined by dQ∗(S) =

E
[
dQ∗/dP|FST

]
dP belongs to M. Note for later use that dQ∗(S) = E

[
dQ/dP|FST

]
dP for any

Q ∈M when (HCM) holds.

Remark 2.4. Assume that F can be written as (FSt ∨F⊥t )t≤T for some filtration F⊥ = (F⊥t )t≤T
independent of FS under P, and satisfying the usual conditions. Then, any A ∈ F⊥T is inde-

pendent of FST given Fs for all s ∈ [0, T ] under P. Indeed, under the above assumption, Fs is

generated by elements of the form BSs ∩B⊥s with BSs ∈ FSs and B⊥s ∈ F⊥s . Given ξ ∈ L∞(FST ),

we then have

E
[
ξ1BSs ∩B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs

]
E
[
1B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs ∩B⊥s

]
,

so that E
[
ξ|FSs

]
= E [ξ|Fs]. Similarly, E

[
1A|F⊥s

]
= E [1A|Fs]. Moreover,

E
[
ξ1A1BSs ∩B⊥s

]
= E

[
ξ1BSs

]
E
[
1A1B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs

]
E
[
E
[
1A|F⊥s

]
1B⊥s

]
which, combined with the above assertions, leads to

E
[
ξ1A1BSs ∩B⊥s

]
= E

[
E
[
ξ|FSs

]
1BSs E

[
1A|F⊥s

]
1B⊥s

]
= E

[
E [ξ|Fs]E [1A|Fs]1BSs ∩B⊥s

]
.

Hence, E [ξ1A|Fs] = E [ξ|Fs]E [1A|Fs].

2.2 Diversification and utility based pricing

We are interested in the pricing by utility indifference, see [13], of aggregated claims of the form

Gn :=

n∑
i=1

gi, n ≥ 1,

where (gi)i≥1 is a given sequence of random variables.

Although the specific structure of the Gn’s is not so important from the mathematical point

of view, we have in mind that each gi corresponds to a contingent claim sold by an insurance

company to a specific agent i, and that the gi’s have the same law and are independent con-

ditionally to FST under P. This means that the gi’s may depend of two sources or risks. One

related to the pure financial market behavior, i.e. S, the other one coming from an external

source of randomness which only depends on the agent i.

Example 2.1 (Revenue insurance). Let S1 denote the spot price of one quintal of wheat on the

financial market and let Y i denotes the number of quintals produced by the farmer i at time T .

The payoff of a revenue insurance takes the form gi = [K−Y iST ]+ for some strike K > 0 fixed

in advance. It compensates the losses incurred by the farmer i if his revenue Y iST , induced by

the sale of the production at the spot price ST at time T , is less than a targeted level K. If the

wheat market contains enough futures and provides enough liquidity, we can consider that it is

complete. Moreover, we can also consider that the global level of production (at the level of a

sufficiently large area) is already reflected into the prices so that the Y i’s can be assumed to be

independent given FST .
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Example 2.2 (Mortality derivatives). A simple example takes the form gi = f(S, ζi) where

f is a real valued measurable map on ID × ([0, T ] ∪ {∞}), with ID denoting the set of càdlàg

Rd-valued functions on [0, T ] (endowed with the Skorohod topology), and ζi is a [0, T ]-valued

random variable denoting the time of death of i if it is before T and taking the value∞ otherwise.

Again, one source of randomness comes from the financial market, while the ζi’s can generally

be assumed to be independent and with the same law (at least among a given sub-population).

Under the above interpretation, the global liability of the insurance company is Gn if the

contracts have been subscribed by the clients 1 to n. If the insurance company does not

differentiate her clients, then she has to fix the same price pn to each of them.

If the global market was complete, meaning that M = {Q∗}, and the law of Gn/n under Q∗

was independent on n, then pn should be equal to p̄ := EQ∗ [Gn/n]. Obviously the completeness

of the global market typically fails for the examples we have in mind. Still, as explained

in the introduction, this pricing rule has been proposed in the literature for the case where

(HCM) holds and (gi)i≥1 is a sequence of independent and identically distributed random

variables given FST . The later has essentially to be understood in the sense that one can appeal

to the law of large numbers, at least conditionally to FST , so that

Gn/n→ ḡ P− a.s. for some ḡ ∈ L∞(FST ). (2.3)

Under (HCM), one can indeed find ϑ ∈ Θ such that

X p̄,ϑ
T = ḡ for p̄ = EQ∗ [ḡ] ,

recall Remark 2.1. Then, (2.3) implies that(
Xnp̄,nϑ
T −Gn

)
/n→ 0 P− a.s.

i.e. by replicating nḡ we end up with a hedging error that converges P − a.s. to 0. This is

achieved by considering the strategy nϑ and starting from the n initial premiums, each equal

to p̄.

This is however inconsistent with the typical behavior of a risk adverse agent. In particular, it

has no reason to be in accordance with a (unit) utility indifference price defined by

pn(Gn, U) := inf{p ∈ R : sup
X∈Xb(np)

E [U(X −Gn)] ≥ sup
X∈Xb(0)

E [U(X)]}, (2.4)

where U is a concave non-decreasing function viewed as a utility function, and where we restrict

to a 0 initial endowment (before selling the claims) without loss of generality since any fixed

initial wealth can be incorporated in the utility function by a simple translation argument.

We conclude this section with simple counter-examples. The first one concerns utility functions

with bounded from below domains.

Example 2.3 (Utility with bounded from below domain). Let U be concave non-decreasing

with values in R ∪ {−∞} such that |U(0)| + |U(∞)| < ∞ and U(−c) = −∞ for some c > 0.

Let pn := pn(Gn, U) be defined as in (2.4). Since U(0) > −∞ and U is bounded from above,

for each ε > 0, there must exist ξn,ε ∈ Xb(0) such that npn + ε + ξn,ε ≥ Gn − c. This implies

that pn ≥ supQ∈M EQ [Gn/n]− c/n and therefore

lim inf
n→∞

pn ≥ lim inf
n→∞

sup
Q∈M

EQ [Gn/n] . (2.5)

Let us now concentrate on the case where (gi)i≥1 is defined as in Example 2.2 with f bounded.

Assume that the ζi’s form an independent family with a common law under P, and that σ(ζi, i ≥
1) ⊂ F⊥T with F⊥ satisfying the conditions of Remark 2.4. Note that

E
[
H∗(S)f(S, ζi)|F⊥T

]
= E

[
H∗(S)f(S, ζi)|ζi

]
, i ≥ 1 ,
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where H∗(S) is defined as in Remark 2.2. Set ψ := esssupE
[
H∗(S)f(S, ζ1)|ζ1

]
. For k, n ≥ 1

and ε ∈ (0, 1), we define Ank := {E
[
H∗(S)f(S, ζi)|ζi

]
≥ ψ − k−1, for all i ≤ n} and Hε

n,k :=

εH∗ + (1 − ε)H∗(S)1Ank /P [Ank ]. Note that P [Ank ] > 0 since the ζi’s are independent and have

the same law under P. Then, according to Remark 2.4 and Remark 2.2, Qεn,k := Hε
n,k · P ∈M.

Recalling (2.5), this implies that

lim inf
n→∞

pn ≥ lim inf
n→∞

lim
k→0

lim
ε→0

EQεn,k [Gn/n] = ψ.

Clearly, the above lower bound is typically strictly larger than EQ∗ [E [f(S, ζ1)|FST
]]

, while ap-

plying the law of large numbers conditionally to FST implies that Gn/n → ḡ = E
[
f(S, ζ1)|FST

]
P − a.s. For instance, if f is lower-semicontinuous, non-decreasing with respect to its sec-

ond parameter, and if each ζi has a support equal to [ymin, ymax] ⊂ R under P, then ψ =

E [H∗(S)f(S, ymax)] = EQ∗ [f(S, ymax)] = EQ∗ [max{f(S, y), ymin ≤ y ≤ ymax}]. Under (HCM),

the later is the hedging price of max{f(S, y), ymin ≤ y ≤ ymax}, recall Remark 2.1, so that

pn ≤ ψ for all n ≥ 1, and therefore pn → ψ.

In general, going through utility function with unbounded domain does not help, as show in

our second example.

Example 2.4 (Exponential utility function). Let U be an exponential utility function of the

form Uη(y) = −e−ηy, η > 0. Assume that the gi’s have the form taken in Example 2.3, that

F⊥t = σ(F⊥,it , i ≥ 1), t ≤ T , for some filtrations (F⊥,i)i≥1 such that FST , F⊥,1T , F⊥,2T , . . . are

independent under P, and that ζi is F⊥,iT -measurable for each i ≥ 1. Then, it can be shown

that pηn := pn(Gn, U
η) = p1(g1, Uη) =: pη whenever there exists a unique element of M with

finite relative entropy and whose density is FST -measurable, see Theorem 4.10 in [2]. It is in

particular the case if (HCM) holds and Q∗(S) defined in Remark 2.3 has a finite relative

entropy. On the other hand, it is well-known that pη converges to the super-hedging price of g1

as η →∞, see [9] and [2]. This implies that, for all ε > 0, we can find ηε large enough so that

limn p
ηε
n = pηε ≥ supQ∈M EQ [g1

]
− ε. For ε > 0 small enough, this is again typically greater

than EQ∗ [E [f(S, ζ1)|FST
]]

.

3 Asymptotic diversification rule

As pointed out in the previous examples, the convergence of the mean aggregated claim Gn/n

to a replicable claim ḡ ∈ L∞(FST ) is not enough in order to ensure the convergence of its unit

utility indifference price pn(Gn, U) to EQ∗ [ḡ]. Intuitively, this can be recovered only if the risk

aversion vanishes as the number of sold claims goes to infinity.

Hence, we suppose from now on that the preferences of the agent are characterized by a sequence

of utility functions (Un)n≥1, which depends on the number n of sold claims (gi)0≤i≤n. The

purpose of this section is to investigate the asymptotic behavior of the corresponding unit

utility indifference price when n times the absolute risk aversion of Un vanishes to 0 as n goes

to ∞.

We first provide a general characterization of the asymptotic unit utility indifference price in

terms of the sequence of associated dual pricing measures. Whenever the pure financial market

is complete, i.e. (HCM) is satisfied, this limit identifies to the risk neutral price of ḡ. When the

pure financial market is incomplete, it does not seem possible to obtain a precise characterization

of the limit price, except when (Un)n≥1 behaves asymptotically like a sequence of exponential

utility functions with vanishing absolute risk aversion. In this case, we prove that the asymptotic

price coincides with the price of ḡ under the minimal entropy martingale measure.

3.1 General convergence result

In this section, we consider a sequence of twice continuously differentiable, strictly concave

and increasing utility functions (Un)n≥1 defined on the whole real line and satisfying the Inada

conditions:

U ′n(−∞) = lim
x→−∞

U ′n(x) =∞ and U ′n(∞) = lim
x→∞

U ′n(x) = 0 , n ≥ 1 . (3.1)
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Besides, we suppose that all the utility functions have a reasonable asymptotic elasticity as

defined in [19], i.e.

lim sup
x→∞

xU ′n(x)

Un(x)
< 1 , lim inf

x→−∞

xU ′n(x)

Un(x)
> 1 , n ≥ 1 . (3.2)

We finally introduce the convex conjugates of the Un’s defined by

Vn : y ∈ (0,∞) 7→ sup
x∈R
{Un(x)− xy},

and assume that the dual problems are finite:

{(y,Q) ∈ (0,∞)×M : E [Vn(ydQ/dP)] <∞} 6= ∅ for all n ≥ 1. (3.3)

Under the additional uniform boundedness assumption

sup
n≥1
‖Gn/n‖L∞ <∞, (3.4)

the unit utility indifference prices pn(Gn, Un) given by (2.4) are well defined for any n ≥ 1 and

existence for the optimal dual probability and multiplier, given by

(y0
n,Q0

n) := arg min

{
E
[
Vn

(
y
dQ
dP

)]
, (y,Q) ∈ (0,∞)×M

}
, (3.5)

is guaranteed, see e.g. Theorem 3.1, Remark 3.3 and Proposition 3.1 in [3] (see also [19] for a

fomulation in terms of absolutely continuous local martingale measures).

In the rest of this section, we work under the standing assumption:

Assumption 3.1. The conditions (3.1), (3.2), (3.3) and (3.4) hold.

In order to derive the asymptotic behavior of the unit indifference price, we now also suppose

that the agent tends to become risk neutral when selling a large number of claims. More

precisely, we shall work under the following additional condition on the asymptotic absolute

risk aversion:

n‖rn‖∞ −→
n→∞

0 , with rn : x 7→ −U
′′
n (x)

U ′n(x)
, (3.6)

and ‖rn‖∞ := supx∈R |rn(x)|.

Theorem 3.1. Let Assumption 3.1 and (3.6) hold. Then, the sequence of utility indifference

prices satisfies

lim inf
n→∞

pn(Gn, Un) = lim inf
n→∞

EQ0
n [Gn/n] and lim sup

n→∞
pn(Gn, Un) = lim sup

n→∞
EQ0

n [Gn/n] .

Proof. We set pn := pn(Gn, Un) for ease of notations. We only provide the proof for the

lim inf, the other one being similar.

1. Given n ≥ 1, it follows from standard duality arguments, see [16] and [3], that

inf
y>0,Q∈M

E
[
Vn

(
y
dQ
dP

)
+ ynpn − y

dQ
dP

Gn

]
= inf
y>0,Q∈M

E
[
Vn

(
y
dQ
dP

)]
= E

[
Vn

(
y0
n

dQ0
n

dP

)]
,

recall (3.5). Taking in particular (y,Q) =
(
y0
n,Q0

n

)
, this implies that

E
[
Vn

(
y0
n

dQ0
n

dP

)
+ y0

nnpn − y0
n

dQ0
n

dP
Gn

]
≥ E

[
Vn

(
y0
n

dQ0
n

dP

)]
,

and therefore pn ≥ EQ0
n [Gn/n].

2. On the other hand, it follows from [19] that, for n ≥ 1, we can find X̂n ∈ L0(FT ) such that

sup
X∈Xb(0)

E [Un (XT )] = E
[
Un

(
X̂n
)]

7



and for which there exists a sequence of optimizers
(
Xk,n

)
k≥1
⊂ Xb(0) such that

Un

(
Xn,k
T

)
L1(P)−→
k→∞

Un

(
X̂n
)
. (3.7)

In order to upper-bound pn, we then introduce the following candidate

πn := inf
{
p ∈ R : E

[
Un

(
np+ X̂n −Gn

)]
≥ E

[
Un

(
X̂n
)]}

.

a. We first check that

πn ≥ pn, for all n ≥ 1. (3.8)

To this purpose, it suffices to fix n ∈ N and show that

Un

(
np+Xn,k

T −Gn
)
L1(P)−→
k→∞

Un

(
np+ X̂n −Gn

)
∈ L1(P), for all p ∈ R . (3.9)

To see that the above holds, first note that

∣∣∣Un (np+Xn,k
T −Gn

)
− Un

(
np+ X̂n −Gn

)∣∣∣ =

∣∣∣∣∣
∫ Xn,kT

X̂n
U ′n(np+ t−Gn)dt

∣∣∣∣∣ . (3.10)

Consider now the relation

logU ′n(np+ t−Gn)− logU ′n(t) ≤ n
∥∥∥∥U ′′nU ′n

∥∥∥∥
∞

∣∣∣∣p− Gn
n

∣∣∣∣ , t, p ∈ R,

which, together with (3.4) and (3.6) leads to the existence of a constant Cp (which only depends

on p) such that

U ′n(np+ t−Gn) ≤ CpU ′n(t), for all t ∈ R. (3.11)

Plugging (3.11) into (3.10) gives∣∣∣Un (np+Xn,k
T −Gn

)
− Un

(
np+ X̂n −Gn

)∣∣∣ ≤ Cp

∣∣∣Un (Xn,k
T

)
− Un

(
X̂n
)∣∣∣ .

Hence, (3.9) follows from (3.7), which proves (3.8).

b. We now conclude the proof by providing a lower bound for lim infn→∞ πn. By definition

of πn, the continuity of the non-increasing function Un, (3.9) and the monotone convergence

theorem, we have

E
[
Un

(
nπn + X̂n −Gn

)]
= E

[
Un

(
X̂n
)]
. (3.12)

This implies that

E
[
Un

(
X̂n
)]

= E
[
Un

(
X̂n
)

+ U ′n

(
X̂n
)

(nπn −Gn) +
1

2
U ′′n (ξn) (nπn −Gn)

2

]
,

where ξn is a random variable lying in the (random) interval In formed by X̂n and nπn+X̂n−Gn.

We now use the fact that U ′n

(
X̂n
)

= y0
n
dQ0

n

dP , recall (3.5) and see [19] and [3], to deduce that

EQ0
n

πn − Gn
n
−nrn(ξn)

2

U ′n (ξn)

U ′n

(
X̂n
) (πn − Gn

n

)2
 = 0. (3.13)

We shall prove in c. below that

sup
n≥1

∣∣∣∣∣∣ U
′
n (ξn)

U ′n

(
X̂n
) (πn − Gn

n

)2
∣∣∣∣∣∣ <∞. (3.14)

Combining this last estimate with (3.6) and (3.13) leads to

lim inf
n→∞

πn ≤ lim inf
n→∞

EQ0
n [Gn/n] ,
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which together with (3.8) and step 1. concludes the proof.

c. It remains to prove the claim (3.14). To see that it holds, we first appeal to (3.12) to deduce

that E
[
U ′n(ξ̃n) (nπn −Gn)

]
= 0 for some random variable ξ̃n such that ξ̃n ∈ In. Since Un is

strictly increasing, we deduce from (3.4) that

|πn −Gn/n| =
E
[
U ′n(ξ̃n)|Gn|/n

]
E
[
U ′n(ξ̃n)

] + |Gn/n| ≤ C
E
[
U ′n(ξ̃n)

]
E
[
U ′n(ξ̃n)

] + C = 2C , n ≥ 1, (3.15)

for some constant C > 0. Similarly, since ξn ∈ In, we have

log (U ′n (ξn))− log
(
U ′n

(
X̂n
))
≤
∥∥∥∥U ′′nU ′n

∥∥∥∥
∞

∣∣∣ξn − X̂n
∣∣∣ ≤ n∥∥∥∥U ′′nU ′n

∥∥∥∥
∞

∣∣∣∣πn − Gn
n

∣∣∣∣, n ≥ 1 ,

which is bounded uniformly in n thanks to (3.6) and (3.15). 2

Remark 3.1. Let (pϕ(n))n≥1 be a convergent subsequence of (pn(Gn, Un))n≥1. Then, the same

arguments as above show that lim
n→∞

pϕ(n) = lim
n→∞

EQ0
ϕ(n) [Gϕ(n)/ϕ(n)] whenever ϕ(n)rϕ(n) → 0.

Remark 3.2. Note that a similar result can be obtained for the indifference price of the aggre-

gated risk p1(Gn, Un) under the weaker condition ‖rn‖∞ → 0, whenever (Gn)n≥1 is assumed to

be uniformly bounded in L∞. Indeed, a straightforward adaptation of the above proof shows

that, under the above conditions,

lim inf
n→∞

p1(Gn, Un) = lim inf
n→∞

EQ0
n [Gn] and lim sup

n→∞
p1(Gn, Un) = lim sup

n→∞
EQ0

n [Gn] .

This provides a general convergence result for bounded sequences of contingent claims when the

absolute risk aversion vanishes in the sup norm, which is of own interest.

3.2 Semi-complete markets

The representation of the asymptotic unit utility indifference price presented in Theorem 3.1

does not provide a-priori an exact formulation, except in particular cases. When the pure

financial market is complete, i.e. (HCM) is satisfied, and (2.3) holds, we verify hereafter that

it coincides with the price under the risk neutral measure Q∗ of the replicable claim ḡ.

Corollary 3.1. Let the conditions of Theorem 3.1 hold. Assume further that (2.3) and (HCM) are

satisfied. Then the sequence of unit utility indifference prices satisfies

lim
n→∞

pn(Gn, Un) = EQ∗ [ḡ].

Proof. In view of Theorem 3.1, it suffices to show that (HCM) implies that the minimal

dual measure Q0
n, see (3.5), coincides with Q∗(S) as constructed in Remark 2.3, and to apply

the dominated convergence theorem, recall (3.4) and (2.3):

lim
n→∞

pn(Gn, Un) = lim
n→∞

EQ0
n [Gn/n] = lim

n→∞
EQ∗(S)[Gn/n] = EQ∗(S)[ḡ] = EQ∗ [ḡ] ,

where the last equality follows from the fact that ḡ is FST -measurable.

To see this, we use the convexity of Vn to obtain that E
[
Vn(y0

n
dQ0

n

dP )
]
≥ E

[
Vn(y0

nH
0
n(S))

]
where

H0
n(S) := E

[
dQ0

n

dP |F
S
T

]
= dQ∗(S)/dP by Remark 2.3, under (HCM). Since Q∗(S) ∈ M by

Remark 2.3 again, this proves the claim. 2

Remark 3.3. If the gi’s have the same law and form an independent family conditionally to

FST under P, then applying the law of large numbers conditionally to FST implies ḡ = E
[
g1|FST

]
,

so that limn→∞ pn(Gn, Un) = EQ∗ [E [g1|FST
]]

. We thus retrieve asymptotically the hybrid

pricing rule which consists in taking the mean on the part of the risk that can be diversified

and computing the hedging price of the resulting replicable claim.
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Remark 3.4. In [2], the author refers to semi-complete product models to designate situations

where the filtration F and M have the structure specified in Example 2.4, in particular:

(HCMe): there exists only one element Qe(S) of M with finite relative entropy and whose

density with respect to P is FST -measurable.

This later condition is weaker than (HCM), up to the restriction related to the finite relative

entropy. However, if we are only interested in utility functions of exponential type, the same

argument as in the proof of Corollary 3.1 above shows that Q0
n = Qe(S) whenever (HCMe)

holds. Assuming further that the conditions of Theorem 3.1 and (2.3) hold, this leads to

limn→∞ pn(Gn, Un) = EQe(S)[ḡ].

3.3 Incomplete markets and asymptotically exponential utility behav-

iors

In a general incomplete framework, it seems to be hopeless to interpret the limit of EQ0
n [Gn/n]

as the expectation under some martingale measure of ḡ, the limit of Gn/n, except if the Un’s

are all of exponential type, compare with Remark 3.4.

In this section, we show that the convergence result of Remark 3.4 remains true even if the

utility functions do not have a constant absolute risk aversion but only asymptotically behave

like a sequence of exponential utility functions in the following sense.

Assumption 3.2. There exist two sequences of strictly positive numbers
(
η1
n

)
n≥1

and
(
η2
n

)
n≥1

converging toward 0 such that

0 < η2
n ≤ rn(x) ≤ η1

n for all x ∈ R and n ≥ 1, (3.16)

lim
n→∞

η2
n/η

1
n = 1. (3.17)

Remark 3.5. The existence of the sequence (η1
n)n≥1 converging to zero is exactly the content of

the assumption (3.6). Assumption 3.2 implies that the function rn is asymptotically bounded

in between two sequences converging to zero with the same first order convergence rate. In

particular, this assumption includes the case of agents with utility functions of the form Un :

x 7→ −(λn)−1e−λnx − (µn)−1e−µn(x+x0), for n ≥ 1 and x0 > 0 as long as the positive sequences

(λn)n≥1 and (µn)n≥1 are equivalent as n goes to ∞.

It follows from Lemma 3.1 below that (3.3) is equivalent to{
Q ∈M : E

[
dQ
dP

log

(
dQ
dP

)]
<∞

}
6= ∅, (3.18)

whenever Assumption 3.2 holds. Hence, Assumption 3.1 can now be formulated as

Assumption 3.3. The conditions (3.1), (3.2), (3.18) and (3.4) hold.

In the following, we denote by Qe the element of M that minimizes the relative entropy,

E
[
dQe

dP
log

(
dQe

dP

)]
= inf

Q∈M
E
[
dQ
dP

log

(
dQ
dP

)]
,

and whose existence is guaranteed by Theorem 2.2 in [8].

Remark 3.6. The map y > 0 7→ y ln y being strictly convex, it follows from Remark 2.3 that

dQe/dP is FST -measurable, recall the argument used in the proof of Corollary 3.1. However, we

do not impose in (3.18) the uniqueness condition of (HCMe) in Remark 3.4.

Theorem 3.2. Let Assumption 3.2, Assumption 3.3 and (2.3) be in force. Then the sequence

of unit utility indifference prices satisfies

lim
n→∞

pn(Gn, Un) = EQe [ḡ] .
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Remark 3.7. When the gi’s satisfy the conditions of Remark 3.3, the above result shows that

the unit indifference prices converges to EQe [E
[
g1|FST

]
]. Again, this consists in taking the mean

over the part of the risk that can be diversified and computing the price under the minimal

entropy martingale measure of the pure financial remaining claim.

In the rest of this section, we provide the proof of Theorem 3.2. In view of Theorem 3.1, it

would suffice to show that

lim
n→∞

EQ0
n [Gn/n] = EQe [ḡ] , (3.19)

where we recall that Q0
n is defined in (3.5).

In the following, we actually prove that

lim
n→∞

EQαn [Gn/n] = EQe [ḡ] , (3.20)

where (yαn ,Qαn) are defined as (y0
n,Q0

n) in (3.5) but with

Uαn : x 7→ αn
Un(x)− Un(0)

U ′n(0)
, n ≥ 1

in place of Un. In the above, (αn)n≥1 is a sequence of positive numbers to be chosen later on,

see (3.34) in the proof of Lemma 3.2 below. This trick is inspired from [7] and allows to reduce

to the case where

Uαn (0) = 0 and [Uαn ]′(0) = αn, n ≥ 1. (3.21)

Obviously, since Uαn is an affine transformation of the utility function Un, we have

pn(Gn, Un) = pn(Gn, U
α
n ). (3.22)

Recalling Theorem 3.1, (3.20) is thus sufficient to deduce the result of Theorem 3.2.

We first provide upper and lower bounds for the Fenchel transform V αn of Uαn in terms of Fenchel

transforms of exponential utility functions with risk aversion η1
n and η2

n.

Lemma 3.1. Let Assumption 3.2 hold. Then, for each n ≥ 1,

V 1
n (y) ≤ V αn (y) ≤ V 2

n (y) , y ∈ (0,∞) , (3.23)

where the functions V 1
n and V 2

n are defined by

V in(y) :=
y

ηin
log

(
y

αn

)
+
αn − y
ηin

, y ∈ (0,∞), i = 1, 2.

Proof. It follows from the definition of (V in)i=1,2 and (3.21) that

V αn (αn) = V in(αn) = 0 and [V αn ]′(αn) = [V in]′(αn) = 0, i = 1, 2. (3.24)

Since rn = −[Uαn ]′′/[Uαn ]′ and [Uαn ]′′ ◦ ([Uαn ]′)−1 = 1/[V αn ]′′, we deduce from (3.16) in Assump-

tion 3.2 that

η2
n ≤

1

y[V αn ]′′(y)
≤ η1

n , y ∈ (0,∞).

Together with the strict convexity of V αn , of each V in, and the relation η1
n[V 1

n ]′′(y) = η2
n[V 2

n ]′′(y) =

1/y, this shows that

[V 1
n ]′′ ≤ [V αn ]′′ ≤ [V 2

n ]′′. (3.25)

We now simply deduce from the right-hand side of (3.24) and (3.25) that

[V 2
n ]′ ≤ [V αn ]′ ≤ [V 1

n ]′ on (0, αn] and [V 2
n ]′ ≥ [V αn ]′ ≥ [V 1

n ]′ on [αn,∞) .

We conclude by using the left-hand side of (3.24).
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We can now use the fact that V 1
n and V 2

n interpret as Fenchel transforms of exponential utility

functions, and that the dual probability associated to any exponential utility function is the

minimal entropic one Qe, to deduce from (3.23) that the sequence of dual martingale measures

(Qαn)n≥1 associated to (Uαn )n≥1 achieves asymptotically the mininal relative entropy, under

Assumption 3.2 and for a suitable choice of the sequence (αn)n≥1. We shall see later that this

implies convergence to Qe is the total variation norm.

Lemma 3.2. Let Assumption 3.2 and (3.18) hold. Then, there exists a sequence of positive

numbers (αn)n≥1 such that

lim
n→∞

E
[
dQαn
dP

log

(
dQαn
dP

)]
= E

[
dQe

dP
log

(
dQe

dP

)]
. (3.26)

Proof. For i = 1, 2, direct computations leads to

inf
y>0,Q∈M

E
[
V in

(
y
dQ
dP

)]
= inf
y>0,Q∈M

{
y

ηin
E
[
dQ
dP

log

(
dQ
dP

)]
+

y

ηin
log

(
y

αn

)
+
αn − y
ηin

}
= inf
y>0

{
y

ηin
E
[
dQe

dP
log

(
dQe

dP

)]
+

y

ηin
log

(
y

αn

)
+
αn − y
ηin

}
= E

[
V in

(
ŷn
dQe

dP

)]
,

(3.27)

where the common minimizer ŷn > 0 is given by

ŷn := αne
−ρ̂ with ρ̂ := E

[
dQe

dP
log

(
dQe

dP

)]
. (3.28)

Also note that

E
[
V 2
n

(
ŷn
dQe

dP

)
− V 1

n

(
ŷn
dQe

dP

)]
= (1− e−ρ̂)αn

(
1

η2
n

− 1

η1
n

)
,

so that

lim
n→∞

E
[
V 2
n

(
ŷn
dQe

dP

)
− V 1

n

(
ŷn
dQe

dP

)]
= 0 whenever αn

(
1
η2n
− 1

η1n

)
−→
n→∞

0. (3.29)

On the other hand, Lemma 3.1 implies

E
[
V 1
n

(
y
dQ
dP

)]
≤ E

[
V αn

(
y
dQ
dP

)]
≤ E

[
V 2
n

(
y
dQ
dP

)]
, y > 0, (3.30)

for any Q ∈M. Picking in particular Q = Qαn, we deduce

inf
Q∈M

E
[
V 1
n

(
y
dQ
dP

)]
≤ E

[
V 1
n

(
y
dQαn
dP

)]
≤ E

[
V αn

(
y
dQαn
dP

)]
, y > 0.

Taking the infimum over y > 0 and recalling (3.27), this shows that

E
[
V 1
n

(
ŷn
dQe

dP

)]
≤ E

[
V 1
n

(
yn
dQαn
dP

)]
≤ inf
y>0

E
[
V αn

(
y
dQαn
dP

)]
, (3.31)

where the minimizer yn > 0 associated to the middle term is given by

yn := αne
−ρn with ρn := E

[
dQαn
dP

log

(
dQαn
dP

)]
. (3.32)

Similarly, (3.27) and (3.30) imply

inf
y>0

E
[
V αn

(
y
dQαn
dP

)]
= inf
y>0,Q∈M

E
[
V αn

(
y
dQ
dP

)]
≤ E

[
V 2
n

(
ŷn
dQe

dP

)]
,
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which, combined with (3.31), entails

E
[
V 1
n

(
ŷn
dQe

dP

)]
≤ E

[
V 1
n

(
yn
dQαn
dP

)]
≤ E

[
V 2
n

(
ŷn
dQe

dP

)]
.

If αn

(
1
η2n
− 1

η1n

)
−→
n→∞

0, (3.29) thus implies that

0 ≤ E
[
V 1
n

(
yn
dQαn
dP

)
− V 1

n

(
ŷn
dQe

dP

)]
−→
n→∞

0,

which, by the definitions in (3.28) and (3.32) of ŷn and yn, is equivalent to

αn
η1
n

(
e−ρ̂ − e−ρn

)
−→
n→∞

0 whenever αn

(
1

η2
n

− 1

η1
n

)
−→
n→∞

0 . (3.33)

We now choose the sequence (αn)n≥1 as

αn := η1
n

√
η2
n

η2
n − η1

n

1{η2n 6=η1n} + 1{η2n=η1n} , n ≥ 1 . (3.34)

By Assumption 3.2, it satisfies

αn

(
1

η2
n

− 1

η1
n

)
= 1{η2n 6=η1n}

√
η1
n

η2
n

− 1 −→
n→∞

0 and
αn
η1
n

=

√
η2
n

η2
n − η1

n

1{η2n 6=η1n} +
1{η2n=η1n}

η1
n

−→
n→∞

∞.

Coming back to (3.33), this implies that ρn → ρ̂ as n→∞, i.e. (3.26) holds.

We are now in position to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. In the following, we let (αn)n≥1 be as in Lemma 3.2.

1. We first deduce from Lemma 3.2 that (Qαn)n≥1 converges to Qe in the norm of total

variation. Since Qe minimizes the entropy with respect to P over the convex set M, it follows

from Theorem 2.2 in [8] that

E
[
dQ
dP

log

(
dQ
dP

)]
≥ E

[
dQ
dQe

log

(
dQ
dQe

)]
+ E

[
dQe

dP
log

(
dQe

dP

)]
for any Q ∈M.

In particular,

0 ≤ E
[
dQαn
dQe

log

(
dQαn
dQe

)]
≤ E

[
dQαn
dP

log

(
dQαn
dP

)]
− E

[
dQe

dP
log

(
dQe

dP

)]
, n ≥ 1 .

Hence, (3.26) implies that

E
[
dQαn
dQe

log

(
dQαn
dQe

)]
−→
n→∞

0 .

The fact that

E
[∣∣∣∣dQαndP − dQe

dP

∣∣∣∣] −→n→∞ 0 (3.35)

then follows from Pinsker’s inequality, see e.g. [17].

2. Combining (3.4) and (3.35) implies that∣∣∣∣EQαn
[
Gn
n

]
− EQe

[
Gn
n

]∣∣∣∣ =

∣∣∣∣E [Gnn
(
dQαn
dP
− dQe

dP

)]∣∣∣∣ ≤ C E
[∣∣∣∣dQαndP − dQe

dP

∣∣∣∣] −→n→∞ 0,

with C := supn≥1 ‖Gn/n‖L∞ . Besides, (2.3) and (3.4) imply that EQe [Gn/n] −→
n→∞

EQe [ḡ]. This

shows that (3.20) holds. We conclude by using (3.22) and Theorem 3.1.
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