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Abstract

Using Dupire’s notion of vertical derivative, we provide a functional (path-dependent)

extension of the Itô’s formula of Gozzi and Russo (2006) that applies to C0,1-functions of

continuous weak Dirichlet processes. It is motivated and illustrated by its applications

to the hedging or superhedging problems of path-dependent options in mathematical

finance, in particular in the case of model uncertainty. In this context, we also prove

a new regularity result for the vertical derivative of candidate solutions to a class of

path-depend PDEs, using an approximation argument which seems to be original and

of own interest.

1 Introduction

Let X be a Rd–valued continuous semimartingale with (unique) decomposition X = X0 +

M + A, where M is a continuous martingale and A is a finite variation process such that

M0 = A0 = 0. Let f : [0, T ]× Rd −→ R be a C1,2-function, then, Itô’s Lemma says that

f(t,Xt) = f(0, X0) +

∫ t

0
∇xf(s,Xs)dMs + Γft , a.s., (1.1)

in which ∇xf is the gradient in space of f , viewed as a line vector, and Γf is a continuous

process with finite variation, given by

Γft :=

∫ t

0
∂tf(s,Xs)ds+

∑
1≤i≤d

∫ t

0
∇xif(s,Xs)dAs +

1

2

∑
1≤i,j≤d

∫ t

0
∇2
xixjf(s,Xs)d[Xi, Xj ]s.

If we assume in addition that X and f(·, X) are both local martingales, then Γf ≡ 0, a.s.,

so that the formula does not involve the partial derivatives ∂tf and (∇2
xixj

f)i,j≤d any more.

In this case, one might expect that the above formula still holds even if f is only C0,1.

This was in fact achieved by using the stochastic calculus via regularization theory that

was developed in [25, 26, 27, 19, 1, 7].
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In this theory, notions of orthogonal (or zero energy) and weak Dirichlet processes have

been introduced (see below for a precise definition), which generalize respectively the no-

tions of finite variation processes and of semimartingales. It is proved that, for a C0,1

functions f and a continuous weak Dirichlet process X with finite quadratic variation, the

decomposition (1.1) still holds true for some orthogonal (or zero energy) process Γf . In

particular, if X and f(·, X) are both continuous local martingales, the orthogonal process

Γf must vanish, so that (1.1) reduces to

f(t,Xt) = f(0, X0) +

∫ t

0
∇xf(s,Xs)dXs, a.s. (1.2)

This is typically the case in mathematical finance under the so-called no free lunch with

vanishing risk property, see e.g. [10]. Such a formula is obviously very useful in many

situations where C1,2 regularity is difficult to prove, or not true at all. In particular, we

refer to [19] for an application to a verification argument in a stochastic control problem.

In this paper, our first main objective is to provide an extension of (1.1) and (1.2) to

the functional (path-dependent) case. For C1,2-functionals, the functional Itô’s formula for

continuous semimartingales has been investigated in [6, 8], using the notion of Dupire’s

[12] derivatives. For less regular functionals, a step forward in this direction was made in

[29, 3, 4]. The results in [3, 4] were motivated, respectively, by a verification argument for

the replication of path-dependent options in a model with market impact and by an optional

decomposition theorem for supermartingales, which in turn was applied to derive original

results in the field of robust hedging in mathematical finance. In the above papers, the

functional does not even need to be differentiable in space but is assumed to be concave in

space and non-increasing in time (in a sense that matches the notion of Dupire’s derivative),

up to a smooth function. These assumptions, which perfectly match the cases of application

motivating [3, 4], allows one to show that Γf is non-increasing without complex analysis.

It is restricted to càdlàg semimartingales in [4] and to continuous semimartingales in [3,

Appendix]. The main objective of [29] is to establish a path-dependent Meyer-Tanaka’s

formula. It has the advantage over [3, 4] to provide an explicit expression of the non-

decreasing process entering the decomposition in terms of local times, but it requires much

more regularity.

Also notice that a weaker notion of differentiability of path-dependent functionals has

been used in [13, 14] to define the viscosity solutions of path-dependent PDEs (see also [24]

for an overview).

In this paper, we show that the arguments of [19] can be used to easily provide a func-

tional version (1.1)-(1.2) using Dupire’s notion of derivatives for functionals F defined on

the space of paths. Unlike [1], we voluntarily restrict ourselves to the case where X has

continuous paths for tractability, see Remark 2.9. Since we will use the stochastic calculus

by regularization developed by Russo and Vallois, and their co-authors, we naturally pro-

vide a version for weak Dirichlet processes that extends [19] to the path-dependent case.

In general, it requires additional conditions involving both the path-regularity of the un-

derlying process X and of the path-dependent functional F , that are satisfied when X is
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a continuous semimartingale and F is smooth, or under other typical structure conditions

on F , in particular if F is Fréchet differentiable in space.

Our main motivation comes from mathematical finance. In models without frictions,

the prices of financial assets turn out to be semimartingales and even martingales under a

suitable probability measure. The C0,1–functional Itô’s formula allows one to understand

the structure/relation between the martingale parts of different financial assets, which is

the core problem for the hedging of risks. More concretely, we provide a new result on the

super-hedging of path-dependent options, under model uncertainty, where the gradient of

the value function provides the optimal super-hedging strategy. Unlike in [4], the situation

we consider does not correspond to that of a concave functional, so that the results of [3, 4]

can not be exploited. In particular, in this application, we prove an original regularity result

for the vertical derivative of the super-hedging price. For this, we use a PDE approximation

argument which seems to be original and which may open the door to a wide range of

applications in the PPDE literature.

The rest of the paper is organized as follows. We first provide our version of the path-

dependent Itô’s formula for C0,1-functionals and continuous weak Dirichlet processes in

Section 2. Applications in finance are then provided in Section 3.

2 Path-dependent Itô’s formula for C0,1-functionals

In this section, we fix a completed probability space (Ω,F ,P), equipped with a filtration

F = (Ft)t∈[0,T ] satisfying the usual conditions. The abbreviation u.c.p. denotes the uniform

convergence in probability.

2.1 Preliminaries

We start with preliminaries on the stochastic calculus via regularization and the notion of

Dupire’s derivatives of path-dependent functions.

2.1.1 Itô’s calculus via regularization and weak Dirichlet processes

Let us recall here some definitions and facts on the Itô calculus via regularization developped

by Russo and Vallois [25, 26, 28]. See also Bandini and Russo [1] (and [27, 19]) for a version

of the C1–Itô’s formula.

Definition 2.1. (i) Let X be a real valued càdlàg process, and H be a process with paths

in L1([0, T ]) a.s. The forward integral of H w.r.t. X is defined by∫ t

0
Hs d

−Xs := lim
ε↘0

1

ε

∫ t

0
Hs

(
X(s+ε)∧t −Xs

)
ds, t ≥ 0,

whenever the limit exists in the sense of u.c.p.

(ii) Let X and Y be two real valued càdlàg processes. The co-quadractic variation [X,Y ] is

defined by

[X,Y ]t := lim
ε↘0

1

ε

∫ t

0
(X(s+ε)∧t −Xs)(Y(s+ε)∧t − Ys)ds, t ≥ 0,
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whenever the limit exists in the sense of u.c.p.

(iii) We say that a real valued càdlàg process X has finite quadratic variation, if its quadratic

variation, defined by [X] := [X,X], exists and is finite a.s.

Remark 2.2. When X is a (càdlàg) semimartingale and H is a càdlàg adapted process,∫ t
0 Hs d

−Xs coincides with the usual Itô’s integral
∫ t

0 HsdXs. When X and Y are two

semimartingales, [X,Y ] coincides with the usual bracket.

Definition 2.3. (i) We say that an adapted process A is orthogonal if [A,N ] = 0 for any

real valued continuous local martingale N .

(ii) An adapted process X is called a weak Dirichlet process if it has a decomposition of

the form X = X0 + M + A, where M is a local martingale and A is orthogonal such that

M0 = A0 = 0.

Remark 2.4. (i) An adapted process with finite variation is orthogonal. Consequently, a

semimartingale is in particular a continuous weak Dirichlet process.

(ii) An orthogonal process has not necessarily finite variation. For example, any determin-

istic process (with possibly infinite variation) is orthogonal.

(iii) The decomposition X = X0 + M + A for a continuous weak Dirichlet process X is

unique, and both processes M and A in the decomposition are continuous.

2.1.2 Dupire’s derivatives of path-dependent functions

Let us denote by C([0, T ]) the space of all Rd–valued continuous paths on [0, T ], and by

D([0, T ]) the space of all Rd–valued càdlàg paths on [0, T ], which are endowed with the

uniform convergence topology induced by the norm ‖x‖ := sups∈[0,T ] |xs|. Let Θ := [0, T ]×
D([0, T ]). For (t, x) ∈ Θ, let us define the (optional) stopped path xt∧ := (xt∧s)s∈[0,T ].

A function F : Θ −→ R is said to be non-anticipative if F (t, x) = F (t, xt∧) for all

(t, x) ∈ Θ. A non-anticipative function F : Θ −→ R is said to be continuous if, for all

(t, x) ∈ Θ and ε > 0, there exists δ > 0 such that

|t− t′|+ ‖xt∧ − x′t′∧‖ ≤ δ =⇒ |F (t, x)− F (t′, x′)| ≤ ε.

Let C(Θ) denote the class of all non-anticipative continuous functions. A non-anticipative

function F is said to be left-continuous if, for all (t, x) ∈ Θ and ε > 0, there exists δ > 0

such that

t′ ≤ t, |t− t′|+ ‖xt∧ − x′t′∧‖ ≤ δ =⇒ |F (t, x)− F (t′, x′)| ≤ ε.

We denote by Cl(Θ) the class of all non-anticipative left-continuous functions.

Let F : Θ −→ R be a non-anticipative function, we follow Dupire [12] to define the

Dupire’s derivatives: F is said to be horizontally differentiable if, for all (t, x) ∈ [0, T )×Θ,

its horizontal derivative

∂tF (t, x) := lim
h↘0

F (t+ h, xt∧)− F (t, xt∧)

h
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is well-defined ; F is said to be vertically differentiable if, for all (t, x) ∈ Θ, the function

y 7−→ F (t, x⊕t y) is differentiable at 0, with x⊕t y := x1[0,t) + (xt + y)1[t,T ],

whose derivative at y = 0 is called the vertical derivative of F at (t, x), denoted by∇xF (t, x).

One can then similarly define the second-order derivative ∇2
xF . Given

C0,1(Θ) :=
{
F ∈ C(Θ) : ∇xF is well defined and ∇xF ∈ Cl(Θ)

}
,

we let C1,2(Θ) denote the class of all functions F ∈ C0,1(Θ) such that both ∂tF and ∇2
xF

are well defined and belong to Cl(Θ).

A functional F : Θ −→ R is said to be locally bounded if, for all K > 0,

sup
t∈[0,T ], ‖x‖≤K

∣∣F (t, x)
∣∣ < ∞. (2.1)

Further, F is said to be locally uniformly continuous if, for each K > 0, there exists a

modulus of continuity1 δK such that, for all t ∈ [0, T ], h ∈ [0, T − t], ‖x‖ ≤ K, |y| ≤ K,∣∣F (t, x)− F (t+ h, xt∧)
∣∣+
∣∣F (t, x)− F (t, x⊕t y)

∣∣ ≤ δK(h+ |y|). (2.2)

Let us denote by Cu,bloc(Θ) the class of all locally bounded and locally uniformly continuous

functions F : Θ −→ R. Notice that a continuous function defined on [0, T ] × Rd is auto-

matically locally bounded and locally uniformly continuous, while it may not be true for a

continuous function defined on Θ. This is the reason for introducing the class Cu,bloc(Θ).

In the following, given a non-anticipative function F : Θ −→ R, we shall often write Ft(x)

in place of F (t, x) for ease of notations.

2.2 Functional Itô’s formula for C0,1(Θ)-functions

We first provide a functional Itô’s formula for continuous weak Dirichlet processes. More

precisely, let F ∈ C0,1 and X = M + A be a continuous weak Dirichlet process, we give a

necessary and sufficient condition for the following decomposition:

F (t,X) = F (0, X) +

∫ t

0
∇xFs(X)dMs + ΓFt , t ∈ [0, T ], (2.3)

where ΓF is a continuous orthogonal process.

Theorem 2.5. Let X = X0 + M + A be a continuous weak Dirichlet process with finite

quadratic variation, where M is a (continuous) local martingale and A is an orthogonal

process. Let F ∈ C0,1(Θ) be such that both F and ∇xF belong to Cu,bloc(Θ), and assume that

s 7→ ∇xFs(X) admits right-limits a.s. Then, F (·, X) is a continuous weak Dirichlet process

with decomposition (2.3) if and only if, for all continuous martingale N ,

1

ε

∫ ·
0

(
Fs+ε(X)−Fs+ε(Xs∧⊕s+ε(Xs+ε−Xs))

)(
Ns+ε−Ns

)
ds −→ 0, u.c.p., as ε −→ 0. (2.4)

1A non-negative function that is continuous at 0 and vanishes at 0.
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The proof of Theorem 2.5 is postponed to the end of this section. Notice that, when

F (t, x) = F◦(t, xt) for some F◦ : [0, T ]×Rd −→ R, it is clear that Fs+ε(X) = Fs+ε(Xs∧⊕s+ε
(Xs+ε −Xs)) so that (2.4) holds always true. Let us also provide a sufficient condition to

ensure (2.4).

Proposition 2.6. Assume that

Eε :=

∫ T

0

1

ε

(
Fs+ε(X)− Fs+ε

(
Xs∧ ⊕s+ε (Xs+ε −Xs)

))2
ds −→ 0, in probability (2.5)

as ε −→ 0. Then, condition (2.4) holds true.

Proof. Using Cauchy-Schwarz inequality, it follows that, for all continuous martingale N ,∣∣∣ ∫ ·
0

(Fs+ε(X)− Fs+ε(Xs∧ ⊕s+ε (Xs+ε −Xs)))√
ε

Ns+ε −Ns√
ε

ds
∣∣∣

≤
(∫ ·

0

(
Fs+ε(X)− Fs+ε(Xs∧ ⊕s+ε (Xs+ε −Xs))

)2
ε

ds
)1/2(∫ ·

0

(Ns+ε −Ns)
2

ε
ds
)1/2

,

which converges to 0 in the sense of u.c.p. by (2.5), together with the fact that N has finite

quadratic variation.

Remark 2.7. The sufficient condition (2.5) is still quite abstract, we will provide more

discussions on it in Section 2.3. In particular it is satisfied when X is a continuous semi-

martingale and F ∈ C1,2(Θ), so that the result in Theorem 2.5 is consistent with that in

[6]. Let us also notice that, to prove (2.3), it is indeed enough to check that for any se-

quence (εn)n≥1, such that εn −→ 0, there exists a subsequence (εnk)k≥1 along which the

convergence in (2.4) holds true.

We next provide a direct consequence of Theorems 2.5, by combining it with the Doob-

Meyer decomposition, in the case where X is a continuous martingale and F (·, X) is a

supermartingale. Notice that, in the following context, our result is more precise than the

classical Doob-Meyer decomposition for supermartingales.

Corollary 2.8. Let F : Θ −→ R satisfy the conditions in Theorem 2.5. Assume in addition

that X is a continuous local martingale, and F (·, X) is a supermartingale. Then

F (t,X) = F (0, X) +

∫ t

0
∇xFs(X)dXs + At, for all t ∈ [0, T ],

where A is a predictable non-increasing process.

Proof. It follows from Theorem 2.5 that the continuous supermartingale F (·, X) has the

decomposition

F (t,X) = F (0, X) +

∫ t

0
∇xFs(X)dXs + ΓFt , (2.6)

where ΓF is a continuous (predictable) orthogonal process. At the same time, ΓF should

be a supermartingale, since F (·, X) is a supermartingale and
∫ ·

0∇xFs(X)dXs is a local

martingale. Then, ΓF has finite variation, and hence (2.6) coincides with the Doob-Meyer
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decomposition of F (·, X). As a conclusion, ΓF = A for some predictable non-increasing

process A.

Proof of Theorem 2.5. Notice that F ∈ C(Θ), ∇xF ∈ Cl(Θ) and X is a continuous

process. Then the process t 7→ Ft(X) has a.s. continuous paths, t 7→ ∇xFt(X) has a.s. left-

continuous paths (see e.g. [6, Lemma 2.6]). We now follow the arguments of [1, Theorem

5.15] to show that (2.4) is a necessary and sufficient condition for the decomposition (2.3).

(i) Let us define the process ΓF by

ΓF· := F·(X)−
∫ ·

0
∇xFs(X)dMs.

We need to show that the condition (2.4) is necessary and sufficient to ensure that ΓF is

an orthogonal process (Definition 2.3), that is, for any continuous local martingales N ,

[
ΓF , N

]
=
[
F·(X)−

∫ ·
0
∇xFs(X)dMs , N

]
= 0.

We first notice that, by [1, Proposition 2.8],[ ∫ ·
0
∇xFs(X)dMs, N

]
=

∫ ·
0
∇xFs(X)d[M,N ]s =

∫ ·
0
∇xFs(X)d[M,N ]s.

Then, to prove the decomposition (2.3), it is equivalent to show that, for any continuous

local martingale N ,

Iε· :=
1

ε

∫ ·
0

(
Fs+ε(X)− Fs(X)

)(
Ns+ε −Ns

)
ds −→

∫ ·
0
∇xFs(X)d[M,N ]s, as ε↘ 0, u.c.p.,

(2.7)

Let us write Iε = I1,ε + I2,ε, with

I1,ε
t :=

1

ε

∫ t

0

(
Fs+ε(Xs∧ ⊕s+ε (Xs+ε −Xs))− Fs(X)

)(
Ns+ε −Ns

)
ds,

and

I2,ε
t :=

1

ε

∫ t

0

(
Fs+ε(X)− Fs+ε(Xs∧ ⊕s+ε (Xs+ε −Xs))

)(
Ns+ε −Ns

)
ds.

(ii) Let us first consider I1,ε and write it as I1,ε = I11,ε + I12,ε + I13,ε + I14,ε, where

I11,ε
t :=

1

ε

∫ t

0

(
Fs+ε(Xs∧)− Fs(X)

)(
Ns+ε −Ns

)
ds,

I12,ε
t :=

1

ε

∫ t

0
∆ε
s ·
(
Xs+ε −Xs

)(
Ns+ε −Ns

)
ds,

with

∆ε
s :=

∫ 1

0

(
∇xFs+ε

(
Xs∧ ⊕s+ε λ(Xs+ε −Xs)

)
−∇xFs+ε(Xs∧)

)
dλ.

and

I13,ε
t :=

1

ε

∫ t

0

(
∇xFs+ε(Xs∧)−∇xFs(Xs∧)

)
·
(
Xs+ε −Xs

)(
Ns+ε −Ns

)
ds,
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I14,ε
t :=

1

ε

∫ t

0
∇xFs(Xs∧) ·

(
Xs+ε −Xs

)(
Ns+ε −Ns

)
ds.

For the term I11,ε, one has, by the integration by parts formula,

I11,ε
t =

1

ε

∫ t

0

((
Fs+ε(Xs∧)− Fs(X)

) ∫ s+ε

s
dNu

)
ds =

∫ t+ε

0
θ11,ε
u dNu,

where, by the uniform continuity condition (2.2) on F ,

θ11,ε
u :=

1

ε

∫ u

(u−ε)∨0

(
Fs+ε(Xs∧)− Fs(X)

)
ds −→ 0, for all u ∈ [0, T ], a.s.

Then, by e.g. [21, Theorem I.4.31],

I11,ε −→ 0, u.c.p. as ε −→ 0.

For the terms I12,ε and I13,ε, we notice that

sup
t∈[0,T ]

(∣∣I12,ε
t

∣∣+
∣∣I13,ε
t

∣∣) ≤ δε

(1

ε

∫ T

0

∣∣Xs+ε −Xs

∣∣2ds)(1

ε

∫ T

0

(
Ns+ε −Ns

)2
ds
)
,

where

δε := sup
0≤s≤T−ε

(
|∆ε

s|+
∣∣∇xFs+ε(Xs∧)−∇xFs(Xs∧)

∣∣) −→ 0, a.s. as ε↘ 0,

by the uniformly continuity condition (2.2) on ∇xF . Since(1

ε

∫ T

0

(
Xs+ε −Xs

)2
ds
)(1

ε

∫ T

0

(
Ns+ε −Ns

)2
ds
)
−→ [X]T [N ]T , u.c.p. as ε −→ 0,

it follows that I13,ε −→ 0 and I13,ε −→ 0, u.c.p.

Finally, for I14,ε, we apply [1, Corollary A.4 and Proposition A.6] to obtain that

I14,ε
· −→

∫ ·
0
∇xFs(X)d[M,N ]s, u.c.p., as ε −→ 0,

so that

I1,ε
· −→

∫ ·
0
∇xFs(X)d[M,N ]s, u.c.p., as ε −→ 0.

(iii) To conclude, we observe that (2.7) holds true (or equivalently (2.3) holds) if and only

if I2,ε −→ 0, u.c.p. (or equivalently (2.4) holds), for any continuous local martingale N .

This concludes the proof.

Remark 2.9. The results and proof of Theorem 2.5 remain valid even if X is a càdlàg

weak Dirichlet process with bounded quadratic variation, up to the fact that ∇xFs(X) must

be replaced by ∇xFs(X1[0,s) +Xs−1[s,T ]) in (2.3). However, in this case, the decomposition

of the weak Dirichlet process F·(X) may not be unique. To see this, recall that any purely

discontinuous martingale is orthogonal to a continuous martingale N , then one can always
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move a purely discontinuous martingale from the martingale part of F·(X) to the orthogonal

part of F·(X) and the decomposition of the weak Dirichlet process F·(X) stays valid.

To ensure the uniqueness of the decomposition of F·(X), one needs to use the notion of

special weak Dirichlet process in [1], where the orthogonal part ΓF entering (2.3) is required

to be predictable. Then it is possible to mimic the smoothing procedure of [1] to obtain such

a decomposition for F·(X). However, smoothing a C0,1(Θ)-function into a C1,2(Θ)-function

requires various and heavy technical assumptions, see [29], which may be difficult to check

in the applications we have in mind.

2.3 Discussions on the condition (2.5)

The sufficient technical condition (2.5) used to ensure the decomposition result in Theorem

2.5 is still too abstract. Let us provide some more explicit sufficient conditions for (2.5). We

first show that (2.5) holds true when X is a continuous semimartingale and F ∈ C1,2(Θ),

which makes our result consistent with [6]. We will then provide some examples of sufficient

conditions for (2.5) when F is not in C1,2(Θ). Also recall that (2.5) trivially holds when

F is Markovian, i.e. F (t, x) = F◦(t, xt) for all (t, x) ∈ [0, T ] × D([0, T ]), for some F◦ :

[0, T ]× Rd −→ R.

2.3.1 The case where F ∈ C1,2(Θ) and X is a continuous semimartingale

When X is a continuous semimartingale and F ∈ C1,2(Θ) with (local) bounded and uni-

formly continuous derivatives, one can check that (2.5) holds true by simply applying the

functional Itô’s formula of [6].

Proposition 2.10. Let X be a continuous semimartingale and F ∈ C1,2(Θ) be such that

∂tF and ∇2
xF are locally bounded, and ∇xF ∈ Cu,bloc. Then, condition (2.5) holds true.

Proof. For simplification of the notations, let us consider the one-dimensional case. First,

for every fixed (s, ε), we apply the functional Itô’s formula in [6, Theorem 4.1] on F (X) to

obtain that

Fs+ε(X)− Fs+ε(Xs∧) =
(
Fs+ε(X)− Fs(X)

)
+
(
Fs(X)− Fs+ε(Xs∧)

)
=

∫ s+ε

s

(
∂tFr(X)− ∂tFr(Xs∧)

)
dr +

∫ s+ε

s
∇xFr(X)dXr +

1

2

∫ s+ε

s
∇2

xFr(X)d[X]r.

Further, one can also apply the classical Itô’s formula to φ(Xr) := Fs+ε(Xs∧⊕s+ε(Xr−Xs))

to obtain that

Fs+ε
(
Xs∧ ⊕s+ε (Xs+ε −Xs)

)
− Fs+ε

(
Xs∧

)
=

∫ s+ε

s
∇xFs+ε(Xs∧ ⊕s+ε (Xr −Xs))dXr

+
1

2

∫ s+ε

s
∇2

xFs+ε(Xs∧ ⊕s+ε (Xr −Xs))d[X]r.

Then, it follows that

Fs+ε(X)−Fs+ε
(
Xs∧ ⊕s+ε (Xs+ε −Xs)

)
=

∫ s+ε

s
W 1,ε
s,r dr +

∫ s+ε

s
W 2,ε
s,r dXr +

1

2

∫ s+ε

s
W 3,ε
s,r d[X]r,

(2.8)
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where

W 1,ε
s,r := ∂tFr(X)− ∂tFr(Xs∧), W 2,ε

s,r := ∇xFr(X)−∇xFs+ε
(
Xs∧ ⊕s+ε (Xr −Xs)

)
,

and

W 3,ε
s,r := ∇2

xFr(X)−∇2
xFs+ε(Xs∧ ⊕s+ε (Xr −Xs)).

By the local boundedness of ∂tF , ∇xF and ∇2
xF , it follows that

sup
0≤s≤r≤T, ε>0

(∣∣W 1,ε
s,r

∣∣+
∣∣W 2,ε

s,r

∣∣+
∣∣W 3,ε

s,r

∣∣) <∞, a.s.

Further, since ∇xF satisfies the (locally) uniform continuity condition (2.2), for every fixed

r ∈ [0, T ], one has∣∣W 2,ε
s,r

∣∣ ≤ ∣∣∇xFr(X)−∇xFs(X)
∣∣+ δK(ε+|Xr −Xs|), whenever ‖X‖ ≤ K.

As s 7→ ∇xFs(X) is left-continuous, then for every fixed r ∈ [0, T ],

sup
s∈[(r−ε)∨0,r]

∣∣W 2,ε
s,r

∣∣ −→ 0, a.s. as ε −→ 0. (2.9)

Let X = X0 + M + A where M is a continuous martingale and A is a finite variation

process, and denote by (|A|t)t∈[0,T ] the total variation process of A. The two non-decreasing

processes |A| and [M ] are continuous, so that they are uniformly continuous on [0, T ], a.s.

Recall the definition of Eε in (2.5). It follows from (2.8) that

Eε ≤ 4Eε1 + 4Eε2 + 4Eε3 + 4Eε4,

where

Eε1 :=
1

ε

∫ T

0

(∫ s+ε

s
W 1,ε
s,r dr

)2
ds ≤

∫ T

0

∫ s+ε

s

∣∣W 1,ε
s,r

∣∣2drds −→ 0, a.s.,

Eε2 :=
1

ε

∫ T

0

(∫ s+ε

s
W 2,ε
s,r dAr

)2
ds ≤

∫ T

0

(
|A|s+ε − |A|s

)1

ε

∫ s+ε

s

∣∣W 2,ε
s,r

∣∣2d|A|rds
=

∫ T

0

(1

ε

∫ r

(r−ε)∨0

(
|A|s+ε − |A|s

)∣∣W 2,ε
s,r

∣∣2ds)d|A|r −→ 0, a.s.,

Eε3 :=
1

4ε

∫ T

0

(∫ s+ε

s
W 3,ε
s,r d[X]r

)2
ds

≤
∫ T

0

(1

ε

∫ r

(r−ε)∨0

(
[X]s+ε − [X]s

)∣∣W 3,ε
s,r

∣∣2ds)d[X]r −→ 0, a.s.,

and

Eε4 :=
1

ε

∫ T

0

(∫ s+ε

s
W 2,ε
s,r dMr

)2
ds.

To study the limit of Eε4, one can assume w.l.o.g. that W 2,ε and [M ]T are uniformly bounded

by using localization techniques. Then, by (2.9),

E
[∣∣Eε4∣∣] =

1

ε
E
[ ∫ T

0

∫ s+ε

s

∣∣W 2,ε
s,r

∣∣2d[M ]rds
]

= E
[ ∫ T

0

(1

ε

∫ r

(r−ε)∨0

∣∣W 2,ε
s,r

∣∣2ds)d[M ]r

]
−→ 0.

It follows that Eε −→ 0 in probability, and therefore that (2.5) holds true.
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2.3.2 Examples of sufficient conditions for (2.5)

We now provide examples of sufficient conditions for (2.5). The general idea behind them

is to exploit Item (ii) of Definition 2.1 to control the terms in (2.5) by some quadratic

variations, possibly up to an additional vanishing element. In the following, we let BV+

denote the collection of all non-decreasing paths on [0, T ].

Proposition 2.11. Assume that, for all x ∈ D([0, T ]), s ∈ [0, T ] and ε ∈ [0, T − s],∣∣Fs+ε(x)− Fs+ε(xs∧ ⊕s+ε (xs+ε − xs))
∣∣ ≤ ∫

(s,s+ε)
φ
(
x, |xu − xs|

)
dbu(x),

where φ : C([0, T ])× R+ −→ R satisfies sup|y|≤K φ(x, y) <∞, limy↘0 φ(x, y) = φ(x, 0) = 0

for all x ∈ C([0, T ]) and K > 0, and b : C([0, T ]) −→ BV+. Then, (2.5) holds for any

continuous process X.

Proof. We first notice that, since X is a continuous process, then, for all u ∈ [0, T ],

1

ε

∫ u

(u−ε)∨0
φ
(
X, |Xu −Xs|

)2
ds −→ φ

(
X, 0

)2
= 0, a.s., as ε −→ 0.

Recall the definition of Eε in (2.5), and define the process B with finite variations by

B := b(X). Then, Minkowski’s integral inequality implies that

√
Eε ≤

∫ T

0

(1

ε

∫ u

(u−ε)∨0
φ
(
X, |Xu −Xs|

)2
ds
)1/2

dBu −→ 0, a.s.,

which concludes the proof.

Example 2.12. Assume that there exists a family of signed measures (µ(·; t, x), (t, x) ∈
[0, T ] × D([0, T ]), which is dominated by a non-negative finite measure µ̂, and a locally

bounded map m : [0, T ] × D([0, T ]) × D([0, T ]) 7→ R such that, for all t ≤ T and x, x′ ∈
D([0, T ]) satisfying xt = x′t,

F (t, x)− F (t, x′) =

∫
[0,t)

(
xs − x′s

)
µ(ds; t, x) + o

(
‖xt∧ − x′t∧‖

)
m(t, x, x′). (2.10)

Then, one has ∂λFt(x + λ(x′ − x)) =
∫ t

0 (x′s − xs)µ(ds; t, x + λ(x′ − x)). It follows that

Fs+ε(X)− Fs+ε(Xs∧ ⊕s+ε (Xs+ε −Xs)) =

∫ 1

0
∂λFs+ε(X

ε,λ)dλ

=

∫ 1

0

∫
(s,s+ε)

(Xs −Xu)µ(du; s+ ε,Xε,λ)dλ,

with Xε := Xs∧⊕s+ε(Xs+ε−Xs) and Xε,λ := Xε+λ(X−Xε). As (µ(·; t, x))t,x is dominated

by µ̂, letting b̂u := µ̂([0, u]), one has∣∣Fs+ε(X)− Fs+ε(Xs∧ ⊕s+ε (Xs+ε −Xs))
∣∣ ≤ ∫

(s,s+ε)
|Xs −Xu|db̂u.

Then, (2.5) holds true when X has continuous paths, by Proposition 2.11.

Notice that a Fréchet differentiable function in the sense of Clark [5] satisfies (2.10). The

difference is that we only need to check (2.10) for paths x such that xt = x′t.
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When X is a semimartingale, we can also exploit its semimartigale property to obtain

sufficient conditions for (2.5).

Proposition 2.13. Assume that, for all x ∈ D([0, T ]), s ∈ [0, T ] and ε ∈ [0, T − s],∣∣Fs+ε(x)− Fs+ε(xs∧ ⊕s+ε (xs+ε − xs))
∣∣ ≤ φ

(
x, ‖x(s+ε)∧ − xs∧‖, ε

)
,

where φ : C([0, T ]× R+ × R+ −→ R satisfies

lim
ε↘0, y↘0

sup
‖x‖≤K

|φ(x, y, ε)|/y = 0, for all K ≥ 0.

Assume in addition that X is a continuous semimartingale. Then (2.5) holds true.

Proof. We first notice that∫ T

0

φ(X, ‖X(s+ε)∧ −Xs∧‖, ε)2

‖X(s+ε)∧ −Xs∧‖2
‖X(s+ε)∧ −Xs∧‖2

ε
ds ≤ C2

ε

∫ T

0

1

ε
‖X(s+ε)∧ −Xs∧‖2ds,

where

Cε := sup
s∈[0,T ]

φ(X, ‖X(s+ε)∧ −Xs∧‖, ε)
‖X(s+ε)∧ −Xs∧‖

−→ 0, as ε −→ 0.

Further, up to adding additional components, one can assume that each component of X

is a martingale or a non-decreasing process. We therefore assume this and it suffices to

consider the one dimensional case. Since X is a martingale or a non-decreasing process,

there exists C > 0 such that

E
[∫ T

0

1

ε

∥∥X(s+ε)∧ −Xs∧
∥∥2
ds
]
≤ CE

[∫ T

0

1

ε

∣∣Xs+ε −Xs

∣∣2ds] −→ CE
[
X
]
T
, in probability.

This is enough to prove that Eε −→ 0 in probability, so that (2.5) holds.

By combining the conditions in Propositions 2.11 and 2.13, one obtains immediately new

sufficient conditions for (2.5).

Corollary 2.14. Assume that X = (X1, X2), where X1 is a continuous process, X2 is a

continuous semimartingale, and, for all 0 ≤ s ≤ s+ ε ≤ T and x = (x1, x2) ∈ D([0, T ]),∣∣Fs+ε(x)−Fs+ε(xs∧⊕s+ε(xs+ε−xs))
∣∣ ≤ ∫

[s,s+ε]
φ1

(
x, |xu−xs|

)
dbu(x)+φ2

(
x, ‖x2

(s+ε)∧−x2
s∧‖, ε

)
,

where (φ1, b) satisfies the conditions in Proposition 2.11, and φ2 satisfies the conditions in

Proposition 2.13. Then (2.5) holds true.

3 Applications in mathematical finance

In frictionless financial models, under the no-arbitrage (in the sense of no free lunch with

vanishing risk) assumption, the prices of tradable financial assets need to be semimartin-

gales, see e.g. [10]. If the pricing function of a financial derivative is C0,1(Θ), then one can

apply the Itô’s formula in Theorems 2.5 to characterize the martingale part of the deriva-

tive’s price process, and therefore identify the hedging strategy. Below we provide some

examples of such applications in finance.
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3.1 General formulations under C0,1(Θ)-regularity condition

3.1.1 Replication of path-dependent options

Let us consider a continuous martingale X = (Xt)0≤t≤T , which represents the discounted

price of some risky asset, and a path-dependent derivative with payoff g(X) such that

E[|g(X)|] <∞. Define

V (t, x) := E
[
g(X)

∣∣Xt∧ = xt∧
]
, (t, x) ∈ [0, T ]×D([0, T ]). (3.1)

Proposition 3.1. Assume that V belongs to C0,1(Θ) and satisfies all the conditions of

Theorem 2.5. Then

g(X) = E
[
g(X)

]
+

∫ T

0
∇xV (t,X)dXt.

Proof. Since V (t,X) and −V (t,X) are both supermartingales, the result follows from

Corollary 2.8.

Remark 3.2. (i) The above result can be compared to [6, Theorem 5.2 ] but we require

less regularity conditions (C0,1(Θ) and (2.4) rather than C1,2
b (Θ), which implies (2.4) by

Propositions 2.6 and 2.10).

(ii) Let X be a diffusion process with dynamics

Xt = X0 +

∫ t

0
µ(s,X)ds+

∫ t

0
σ(s,X)dWt,

in which W is a Brownian motion and (µ, σ) are continuous, non-anticipative and Lipschitz

in space. When V ∈ C1,2(Θ) in the sense of [6, Theorem 4.1], it is easy to deduce from

their functional Itô’s formula that V is a classical solution of the path-dependent PDE

∂tV + µ · ∇xV +
1

2
σσ> · ∇2

xV = 0.

Without the C1,2(Θ)–regularity condition, one can still prove that V is a viscosity solution

of the path-dependent PDE in the sense of [14], for which numerical algorithms can be

found in [23, 30].

Remark 3.3. As already mentioned in [12] and [6], the result of Proposition 3.1 is con-

sistent with the classical Clark-Haussmann-Ocone formula. Indeed, let X be a continuous

martingale with independent increments, and g be Fréchet differentiable with derivative λg,

then by the Clark-Haussmann-Ocone formula (see e.g. Haussmann [20]),

g(X) = E[g(X)] +

∫ T

0
E
[
λg(X; [t, T ])

∣∣Ft]dXt.

On the other hand, for the value function V in (3.1), one can also compute the vertical

derivative ∇xV from its definition to obtain that

∇xV (t, x) = E
[
λg(X; [t, T ])

∣∣Xt∧ = xt∧
]
.
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3.1.2 Super-replication under model uncertainty

Let us now denote by Ω◦ := D([0, T ],Rd) the canonical space of Rd-valued càdlàg paths on

[0, T ], let X be the canonical process, and F◦ = (F◦t )t∈[0,T ] the canonical filtration. Let us

denote by B(Ω◦) the space of all Borel probability measures on Ω◦. We consider a subset

P ⊂ B(Ω◦), such that X is a P–continuous local martingale satisfying P[X0 = x0] = 1

for all P ∈ P, for some x0 ∈ Rd. Recall that, given a probability measure P on (Ω◦,F◦T )

and a F◦–stopping time τ taking values in [0, T ], a r.c.p.d. (regular conditional probability

distribution) of P conditional to F◦τ is a family (Pω)ω∈Ω of probability measures on (Ω◦,F◦T ),

such that ω 7→ Pω is F◦τ –measurable, Pω[Xs = ωs, s ≤ τ(ω)] = 1 for all ω ∈ Ω, and

EP[1A|F◦τ ](ω) = EPω [1A] for P–a.e. ω ∈ Ω◦ for all A ∈ F◦T . Recall also that a subset A of

a Polish space E is called an analytic set if there exists another Polish space E′ together

with a Borel subset B ⊂ E × E′ such that A = {x ∈ E : (x, x′) ∈ B}.
We further make the following assumptions.

Assumption 3.4. One has P = ∪ω∈Ω◦P(0, ω), for a collection of families of probability

measures
(
P(t, ω)

)
(t,ω)∈[0,T ]×Ω◦

on Ω◦. Moreover, for every (t, ω) ∈ [0, T ]× Ω◦:

1. P(t, ω) = P(t, ωt∧), P[Xt∧ = ωt∧] = 1 for all P ∈ P(t, ω) and the graph set

[[P]] :=
{

(t, ω,P) : P ∈ P(t, ω)
}

is an analytic subset of [0, T ]× Ω◦ ×B(Ω◦).

2. Let P ∈ P(t, ω), s ≥ t and (Pω)ω∈Ω◦ be a family of regular conditional probability of

P knowing F◦s , then Pω ∈ P(s, ω) for P-a.e. ω ∈ Ω◦.

3. Let P ∈ P(t, ω), s ≥ t and (Qω)ω∈Ω◦ be a family such that ω 7→ Qω is F◦s –measurable

and Qω ∈ P(s, ω) for P-a.e. ω ∈ Ω◦, then

P⊗s Q· ∈ P(t, ω),

where P⊗s Q· is defined by

EP⊗sQ· [ξ] :=

∫
Ω◦

∫
Ω◦
ξ(ω′)Qω(dω′)P(dω), for all bounded r.v. ξ : Ω◦ −→ R.

Let g : Ω◦ −→ R be such that supP∈P EP[∣∣g(X)
∣∣] <∞, let us define

V (t, ω) := sup
P∈P(t,ω)

EP[g(X)
]
, (t, ω) ∈ [0, T ]×D([0, T ]).

We simply write V (0, x0) for V (0, ·). We also denote by H the collection of all Rd–valued

F◦–predictable processes H such that
∫ T

0 H>t d〈X〉tHt < ∞, P–a.s. and
∫ ·

0 HsdXs is a

P–supermartingale, for all P ∈ P.

Proposition 3.5. Let Assumption 3.4 hold true, and suppose in addition that (V,X,P)

satisfies the conditions of Theorem 2.5 for each P ∈ P. Then V (·, X) is a P–supermartingale

for every P ∈ P and

V (0, x0) = inf
{
x : x+

∫ T

0
HtdXt ≥ g(X), H ∈ H, P–a.s. for all P ∈ P

}
. (3.2)

Moreover, the superhedging problem at the r.h.s. of (3.2) is achieved by H∗ := ∇xV (·, X).
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Proof. First, it is clear that one has the weak duality

V (0, x0) ≤ inf
{
x ∈ R : x+

∫ T

0
HtdXt ≥ g(X), H ∈ H, P–a.s. for all P ∈ P

}
.

Next, our stability conditions under conditioning and concatenation of Assumption 3.4

imply the dynamic programming principle.

V (t, ω) = sup
P∈P(t,ω)

EP[V (t+ h,X)
]
, (3.3)

see e.g. [17, 18]. Together with the fact that V ∈ C0,1, this implies that V (·, X) is a

P–continuous supermartingale for every P ∈ P. By Corollary 2.8, one has

V (0, x0) +

∫ T

0
∇xV (t,X)dXt ≥ g(X), P–a.s. for all P ∈ P.

This implies the duality result (3.2) as well as the fact that H∗ := ∇xV (·, X) is the optimal

superhedging strategy.

Remark 3.6. The duality result (3.2) in the model independent setting has been much in-

vestigated, see e.g. [11, 22]. In most cases, one obtains the existence of an optimal strategy

H∗ but without an explicit expression. In [22], the duality is obtained for just measurable

payoff functions g, but they require P to be made of extremal martingale measures. Our

duality result of Proposition 3.5 does not requires P ∈ P to be extremal, but requires regular-

ity conditions on the value function V . This in turn allows us to characterize the optimal

superhedging strategy explicitly as the Dupire’s vertical derivative of the pricing function,

which also justify the initial motivation of Dupire [12] to introduce this notion of derivative.

Remark 3.7. The main idea in Propositions 3.1 and 3.5 is to show that the replication

or super-replication prices of the options are supermartingales, so that one can apply the

Doob-Meyer decomposition result of Corollary 2.8. We can also apply the same technique to

other situations, such as the hedging of American options, the superhedging problems under

constraints, etc., in which the option price process has a natural supermartingale structure

(see e.g. [2]).

3.2 Verification of the C0,1(Θ)-regularity in a model with (bounded) un-

certain volatility

Let us consider a more concrete superhedging problem in the context of an uncertain

volatility model. Let d = 1, x0 ∈ R, 0 ≤ σ < σ be fixed, we denote by P0 the collection of

all probability measures P such that P[X0 = x0] = 1 and

dXs = σsdW
P
s , σs ∈ [σ, σ], s ∈ [0, T ], P-a.s. (3.4)

for some P–Brownian motion W P. We then consider a derivative option with payoff function

g : D([0, T ]) −→ R satisfying the following conditions.
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Assumption 3.8. (i) The function g is bounded, and there exist α ∈ (0, 1] and a finite

positive measure µ on [0, T ] with at most finitely many atoms such that, for all x, x′ ∈
D([0, T ]), B = [s, t) ⊂ [0, T ] and δ ∈ R,

|g(x)− g(x′)| ≤
∫ T

0
|xs − x′s|µ(ds), (3.5)

δ′ ∈ R 7→ g(x + δ′1B) is differentiable and∣∣∣dg(x + δ1B + x′)

dδ
− dg(x + δ1B)

dδ

∣∣∣ ≤ (∫ T

0

∣∣x′s∣∣µ(ds)
)α
µ(B). (3.6)

(ii) for any increasing sequence 0 = t0 < t1 < · · · < tn = T with maxi<n |ti+1 − ti|
small enough, for all 1 ≤ i < j < n, there exists pi,j 6= 0 such that, for all δ ∈ R, and

(x`)0≤`≤n−1 ⊂ Rn,

g

(
n−1∑
`=0

(x` + δ1{`=i})1[t`,t`+1) + 1{T}xn−1

)

= g

(
n−1∑
`=0

(x` + pi,jδ1{`≥j})1[t`,t`+1) + 1{T}(xn−1 + pi,jδ)

)
. (3.7)

Remark 3.9. Let

g(X) = g◦

(∫ T

0
Xtµ0(dt)

)
,

where g◦ ∈ C1+α(R) is bounded, and µ0 is a finite positive measure with at most finitely

many atoms on [0, T ] satisfying µ0([T − h, T ]) 6= 0 for all h > 0 small enough. Then it

satisfies Assumption 3.8.

For each (t, x) ∈ [0, T ]×D([0, T ]), we define

P(t, x) :=
{
P ∈ B(Ω◦) : P[Xt∧ = xt∧] = 1, and (3.4) holds on [t, T ]

}
, (3.8)

and

V (t, x) := sup
P∈P(t,x)

EP[g(X)
]
.

Proposition 3.10. Let P0 and g be given as above. Then, V is vertically differentiable and

the duality result (3.2) holds true with the optimal superhedging strategy H∗ := ∇xV (·, X).

Proof. First, by rewriting P ∈ P(t, x) as solution of a controlled martingale problem, it is

easy to check that the graph set [[P0]] is a closed set, and satisfies the stability conditions

under conditioning and concatenation (see e.g. [18, Section 4]), so that Assumption 3.4

holds true. As in Proposition 3.5, one has the dynamic programming principle (3.3), and

consequently, V (·, X) is a P–supermartingale for every P ∈ P0 .

Next, we assume that µ has possible atoms on {0 = T0 < T1 < · · · < Tn = T}. Then by

Propositions 3.12 and 3.13 below, together with Propositions 2.6 and 2.11, it follows that

V satisfies (2.4) and the C0,1–regularity as well as other conditions required in Theorem

2.5 on each interval [Tk + ε, Tk+1], for all k = 0, · · · , n − 1, and all ε > 0 small enough.
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Recalling that V (·, X) is a supermartingale under each P ∈ P0, it follows by Corollary 2.8

that

V (Tk+1, X)− V (Tk + ε,X) ≤
∫ Tk+1

Tk+ε
H∗t dXt, with H∗t := ∇xV (t,X).

Taking the sum on k = 0, · · · , n − 1 and then letting ε −→ 0, we can then conclude as in

Proposition 3.5 to obtain the duality result (3.2) and that H∗ is the optimal strategy.

Remark 3.11. The regularity property of V is given in Propositions 3.12 and 3.13 below,

which seems to be original in the literature. Moreover, it can be naturally extended to

payoff functions of the form g
( ∫ T

0 xtρ1(dt), · · · ,
∫ T

0 xtρm(dt)
)
, for finitely many measures

ρ1, · · · , ρm. We nevertheless restrict to the one measure case to make the presentation more

accessible.

Proposition 3.12. Let Assumption 3.8 hold true. Then for all (t, x, x′, h) ∈ [0, T ] ×
D([0, T ])×D([0, T ])× R+ with t+ h ≤ T , one has

|V (t+ h, xt∧)− V (t, x)| ≤ σh
1
2µ([t, T ]) and |V (t, x′)− V (t, x)| ≤

∫ t

0
|x′s − xs|µ(ds). (3.9)

Proof. It suffices to observe that (3.5) implies that

∣∣V (t+ h, xt∧)− V (t, x)
∣∣ ≤ sup

P∈P(t,x)
EP
[ ∫ T

t

∣∣∣xt +

∫ s∨(t+h)

t+h
σrdW

P
r − xt −

∫ s

t
σrdW

P
r

∣∣∣µ(ds)
]

≤ sup
P∈P(t,x)

EP
[ ∫ T

t

∣∣∣ ∫ s∧(t+h)

t
σrdW

P
r

∣∣∣µ(ds)
]
.

The second estimate is also an immediate consequence of (3.5).

We can now state the main result of this section. It can be viewed as a first result on the

regularity of solutions of path-dependent PDEs, see Remark 3.14 below.

Proposition 3.13. Let Assumption 3.8 hold true. Then the vertical derivative ∇xV (t, x) is

well defined for all (t, x) ∈ [0, T ]×D([0, T ]), and there exists C > 0 such that |∇xV (t, x)| ≤
C,

|∇xV (t, x′)−∇xV (t, x)| ≤ C
(∣∣∣ ∫ t

0
|x′s − xs|µ(ds)

∣∣∣α + |x′t − xt|α
)
, (3.10)

and

|∇xV (t′, xt∧)−∇xV (t, x)| ≤ C
(
|t′ − t|

α
2+2α + µ([t, t′))

)
, (3.11)

for all t ≤ t′ ≤ T and x, x′ ∈ D([0, T ]).

Proof. Without loss of generality, we restrict to the collection D0([0, T ]) of càdlàg paths x

with initial condition x0 = x0, where x0 ∈ R is the constant introduced above (3.4).

1. Let us consider a sequence (πn)n≥1 of discrete time grids, dense in [0, T ], such that πn =

(tni )0≤i≤n ⊂ [0, T ] and {0, T} ⊂ πn ⊂ πn+1 for all n ≥ 1, and max0≤i≤n−1 |tni+1 − tni | −→ 0

as n −→∞. Remembering that µ has at most finitely many atoms on [0, T ], one can choose
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(πn)n≥1 such that {t ∈ [0, T ] : µ({t}) > 0} ⊂ ∪n≥1π
n. Next, let us define, for all n ≥ 1 and

(t, x, x) ∈ [0, T ]×D0([0, T ])× R,

V n(t, x, x) := sup
P∈P(t,x⊕t(x−xt))

EP[g(Πn[x1[0,tni+1) +X1[tni+1,T ]]
)]

if t ∈ [tni , t
n
i+1), i ≤ n− 1,

where

Πn[x] :=
n−1∑
i=0

xtni 1[tni ,t
n
i+1) + xtnn−1

1{T}.

Notice that, for t ∈ [tni , t
n
i+1), V n(t, x, x) depends on (x, x) only through (xtn1 , · · · , xtni , x).

This motivates us to introduce Πn,i
t : Ri+1 → D0([0, T ]) defined for i < n by

Πn,i
t (y1, · · · , yi, x) :=

i−1∑
j=0

yj1[tnj ,t
n
j+1) + yi1[tni ,t)

+ x1[t,T ], t ∈ (tni , t
n
i+1]

as well as

gn(y1, . . . , yn−2, x) := g
(

Πn,n−2
tnn−1

(
x0, y1, · · · , yn−2, x

))
,

and

vn(t, y1, . . . , yi, x) := V n
(
t,Πn,i

tni+1

(
y1, · · · , yi

)
, x
)
, t ∈ [tni , t

n
i+1).

Notice that, for all t ∈ [tni , t
n
i+1), x ∈ D0([0, T ]), x ∈ R,

V n(t, x, x) = V n(t, x̄n, x) = vn(t, xtn1 , · · · , xtni , x), with x̄n := Πn[x].

We further observe from (3.5) that, for all (t, x) ∈ [0, T ]× C([0, T ]) with t ∈ [tni◦−1, t
n
i◦) for

some 1 < i◦ ≤ n,

∣∣V n(t, x̄n, xt)− V (t, x)
∣∣ ≤∫ tni◦

0
|x̄ns − xs|µ(ds) +

n−1∑
i=i◦

∫ tni+1

tni

sup
P∈P0

EP
[∣∣∣ ∫ s

tni

σrdW
P
r

∣∣∣]µ(ds)

≤
∫ tni◦

0
|x̄ns − xs|µ(ds) +

n−1∑
i=i◦

∫ tni+1

tni

σ(s− tni )
1
2µ(ds)

≤
∫ tni◦

0
|x̄ns − xs|µ(ds) + σ

(
max

0≤i≤n−1
|tni+1 − tni |

1
2

)
µ([0, T ]).

As µ is a finite measure on [0, T ], it follows that∣∣V n(t, x, xt)− V (t, x)
∣∣ =

∣∣V n(t, x̄n, xt)− V (t, x)
∣∣ −→ 0, as n −→∞. (3.12)

2. Let us set

F : γ ∈ R 7−→ max
a∈[σ2,σ2]

1

2
aγ =

1

2
σ2γ+ − 1

2
σ2γ−. (3.13)

Then for each i ≤ n− 2, vn is a continuous viscosity solution of

∂tv
n(t, z) + F (D2vn(t, z)) = 0 for (t, z) ∈ [tni , t

n
i+1)× Ri+1, (3.14)

lim
t↑tni+1,(y

′,x′)−→(y,x)
vn(t, y′, x′) = vn(tni+1, y, x, x), for (y, x) ∈ Ri × R, (3.15)
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with terminal condition

vn(tnn−1, ·) = gn. (3.16)

In the above, Dvn and D2vn denote for the first and second order derivative with respect to

the last argument of vn. The operator F being Lipschitz, it follows from standard arguments

that this system satisfies a comparison principle among (semi-continuous) bounded viscosity

solutions.

Let us denote by Dig
n the partial derivative of gn w.r.t. the i-th argument, then by

(3.5)-(3.6), for all z, z′ ∈ Rn−1,

∣∣Dig
n(z)

∣∣ ≤ µ([tni , tni+1)
)
,
∣∣Dig

n(z+ z′)−Dig
n(z)

∣∣ ≤ (∫ T

0

∣∣Πn,n−2
tnn−1

[z′]t
∣∣µ(dt)

)α
µ
(
[tni , t

n
i+1)

)
.

We will next regularize (gn, F ). Let ρk : Rn−1 → R+ be a C∞ density function with

compact support, and gnk := gn ∗ ρk be the regularized function obtained by convolution.

Then it is clear that gnk still satisfies

∣∣Dig
n
k (z)

∣∣ ≤ µ([tni , tni+1)
)
,
∣∣Dig

n
k (z+ z′)−Dig

n
k (z)

∣∣ ≤ (∫ T

0

∣∣Πn,n−2
tnn−1

[z′]t
∣∣µ(dt)

)α
µ
(
[tni , t

n
i+1)

)
.

(3.17)

Moreover, it follows from (3.7) that for each i < j, there exists pi,j 6= 0 such that, for all

z ∈ Rn−1, δ ∈ R,

gnk
(
z + δen−1

i

)
= gnk

(
z + pi,jδ

n−1∑
`=j

en−1
j

)
, (3.18)

where en−1
i denotes the i-th standard unit vector in Rn−1.

Since F is a convex function, one can approximate it by a C∞ convex function Fk, k ≥ 1,

such that

Fk(γ) =

{
1
2σ

2γ, for γ ≥ 1,
1
2σ

2
kγ, for γ ≤ −1,

with σ2
k := σ2 ∨ k−1.

Let F ∗k (a) = supγ∈R(aγ − Fk(γ)) be the Fenchel transformation of Fk, so that

Fk(γ) = sup
a∈[ 1

2
σ2
k,

1
2
σ̄2]

(
aγ − F ∗k (a)

)
.

Let vnk be the corresponding solutions of (3.14)-(3.15)-(3.16) with parameters (Fk, g
n
k ) such

that (Fk, g
n
k )→ (F, gn) as k →∞. Then vnk ∈ C

1,3
b and

vnk −→ vn, pointwise as k →∞. (3.19)

Moreover, as Fk is convex, the associated equations on vnk is still a HJB equation, so that

vnk can be considered as the value function of a control problem:

vnk (t, y, x) = sup
α∈Ak

E
[
gnk
(
y1, · · · , yi, Xt,x,α

tni+1
, · · · , Xt,x,α

tnn−1

)
−
∫ T

t
F ∗k (

1

2
α2
s)ds

]
, t ∈ [tni , t

n
i+1),

(3.20)
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where Xt,x,α
s := x+

∫ s
t αrdWr, s ≥ t, and Ak is the collection of all progressively measurable

process α taking value in [σk, σ] on some filtered probability space equipped with a Brownian

motion W .

3. For i ≤ n− 2, t ∈ [tni , t
n
i+1), and (x, x) ∈ D0([0, T ])× R, let us set

V n
k (t, x, x) := vnk (t, xtn1 , . . . , xtni , x).

We claim that there exists a constant C > 0 such that, for all k, n ≥ 1, t ∈ [tni , t
n
i+1),

h ∈ (0, T − t], x, x′ ∈ D0([0, T ]),

|DV n
k (t, x, x)| ≤ C, (3.21)∣∣DV n

k (t, x′, x′t)−DV n
k (t, x, xt)

∣∣ ≤ C
(∣∣ ∫ t

0 |x̄
′n
s − x̄ns |µ(ds)

∣∣α +
∣∣x′t − xt

∣∣α), (3.22)∣∣DV n
k (t+ h, xt∧·, xt)−DV n

k (t, x, xt)
∣∣ ≤ C

(
h

α
2+2α + µ([t, t+ h))

)
, (3.23)

where DV n
k denote the derivative of V n

k with respect to its last argument. Then, for each

t ≤ t′ ∈ [0, T ], x, x′ ∈ D0([0, T ]) and x, x′ ∈ R,∣∣V n
k (t, x, x)− V n

k (t, x, x′)−DV n
k (t, x, x)(x− x′)

∣∣ ≤ C
∣∣x− x′∣∣1+α

. (3.24)

Next, let T := ∪n≥1π
n and Q be the set of all rational numbers, so that T×Q is a countable

dense subset of [0, T ]×R. We then define a countable subset QT of [0, T ]×D0([0, T ])×R
by

QT := ∪n≥1

{
(t, x, x) : t ∈ T, x = Πn[x], x ∈ Q, xs ∈ Q for s ∈ [0, T ]

}
.

In view of (3.21) and the convergence results (3.12) and (3.19), one can extract a subse-

quence (n`, k`)`≥1, such that, for all (t, x, x) ∈ QT ,(
V n`
k`

(t, x, xt), DV
n`
k`

(t, x, x)
)
−→

(
V (t, x), DV (t, x, x)

)
, as ` −→∞,

for some function DV : QT −→ R. Moreover, by (3.21)-(3.22)-(3.23) and (3.24), DV

satisfies ∣∣V (t, x⊕t x)− V (t, x⊕t x′)−DV (t, x, x)(x− x′)
∣∣ ≤ C|x− x′|1+α,

and ∣∣DV (t, x, x)−DV (t′, x′, x′)
∣∣

≤ C
(∣∣∣ ∫

[0,t′)

∣∣xt∧s − x′s
∣∣µ(ds)

∣∣∣α+ ∣∣x− x′∣∣α+ |t− t′| α
2+2α + µ([t, t′))

)
, (3.25)

for all (t, x, x), (t′, x′, x′) ∈ QT such that t ≤ t′. Notice that under the distance

ρ
(
(t, x, x), (t′, x′, x′)

)
:=

∫
[0,t′)

∣∣xt∧s − x′s
∣∣µ(ds)+

∣∣x− x′∣∣+ |t− t′|+ µ([t, t′)), when t ≤ t′,

QT is a dense subset of [0, T ] ×D0([0, T ]) × R. Then, by continuity of V and DV , recall

(3.9) and (3.25), one can extend the definition of DV to [0, T ] ×D0([0, T ]) × R in such a
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way that DV (t, x, xt) = ∇xV (t, x) for all (t, x) ∈ [0, T ]×D0([0, T ]), and ∇xV is uniformly

bounded and satisfies (3.10)-(3.11).

4. It remains to prove (3.21)-(3.22)-(3.23).

a. We start by proving (3.21). Recall that vnk ∈ C
1,3
b . Let us denote by φn,jk the derivative

of vnk in its j-th space argument. For all i ≤ n− 2 and j ≤ i+ 1, it solves

∂tφ
n,j
k (t, z) + F ′k(D

2vnk (t, z))D2φn,jk (t, z) = 0, (t, z) ∈ [tni , t
n
i+1)× Ri+1, (3.26)

with the boundary condition

lim
t′↑tni+1

φn,jk (t, y, x) = φn,jk (tni+1, y, x, x)+1{j=i+1}φ
n,i+2
k (tni+1, y, x, x), (y, x) ∈ Ri×R, (3.27)

where

φn,jk (tnn−1, ·) = Djg
n
k , for j ≤ n− 1. (3.28)

As x ∈ R 7→ F ′k(D
2vnk (t, y, x)) is Lipschitz, it follows from the Feynman-Kac formula that,

for all t ∈ [tni , t
n
i+1), x ∈ Ri+1 and j ≤ i+ 1,

φn,jk (t, z) = E
[(
Djg

n
k + 1{j=i+1}

n−1∑
j′=i+2

Dj′g
n
k

)(
Πn(Y t,z)

)]
,

for some process Y t,z. Then the first inequality in (3.17) implies that |φn,jk | ≤ µ([0, T ]).

b. We now prove (3.22). Let us fix i ≤ n − 2, j, ` ≤ i + 1, z′ ∈ R` and then define, for

t ∈ [tni , t
n
i+1), z ∈ Ri+1,

ψ
n,j,[z′]i+1

`
k (t, z) :=

(
φn,jk

(
t, z + [z′]i+1

`

)
− φn,jk (t, z)

)
,

where [z′]i+1
` = (z′1, · · · , z′`, 0, · · · 0) ∈ Ri+1. Using (3.26), one obtains that,

0 = ∂tψ
n,j,[z′]i+1

`
k (t, z) + F ′k(D

2vnk (t, z + [z′]i+1
` ))D2ψ

n,j,[z′]i+1
`

k (t, z)

+ F ′′k
(
A[z′]i+1

` (t, z)
)
D2φn,jk (t, z)Dψ

n,i+1,[z′]i+1
`

k (t, z), (t, z) ∈ [tni , t
n
i+1)× Ri+1,

in which A[z′]i+1
` is a continuous function. We now observe that (3.18)-(3.20) imply that

φn,jk (t, ·) = φn,i+1
k (t, ·)pj,i+1

for some pj,i+1 6= 0. Hence, ψ
n,j,[z′]i+1

`
k satisfies the PDE

0 = ∂tψ
n,j,[z′]i+1

`
k (t, z) + F ′k

(
D2vnk (t, z + [z′]i+1

` )
)
D2ψ

n,j,[z′]i+1
`

k (t, z)

+
1

pj,i+1

[
F ′′k (A[z′]i+1

` (t, z))D2φn,jk (t, z)
]
Dψ

n,j,[z′]i+1
`

k (t, z), (t, z) ∈ [tni , t
n
i+1)× Ri+1,

and, by (3.27)-(3.28),

lim
t′↑tni+1

ψ
n,j,[z′]i+1

`
k (t, y, x) =1{`<i+1}

(
ψ
n,j,[z′]i+2

`
k + 1{j=i+1}ψ

n,i+2,[z′]i+2
`

k

)
(tni+1, y, x, x)

+ 1{`=i+1}

(
ψ
n,j,[[z′]]`+1

k + 1{j=i+1}ψ
n,i+2,[[z′]]`+1

k

)
(tni+1, y, x, x),
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for (y, x) ∈ Ri × R, and

ψn,j,z
′′

k (tnn−1, ·) = ∆z′′Djg
n
k :=

(
Djg

n
k (·+ z′′)−Djg

n
k

)
, for all z′′ ∈ Rn−1,

in which

[[z′]]`+p := (z′1, · · · , z′`, z′`, · · · , z′`) ∈ R`+p, p ≥ 1.

Then one can apply the Feynman-Kac formula to find a process Ỹ t,z such that

ψ
n,j,[z′]i+1

`
k (t, z) =1{`<i+1}E

[(
∆[z′]n−1

`
Djg

n
k + 1{j=i+1}

n−1∑
j′=i+2

∆[z′]n−1
`

Dj′g
n
k

)(
Πn[Ỹ t,z]

)]

+ 1{`=i+1}E
[(

∆[[z′]]`+n`
Djg

n
k + 1{j=i+1}

n−1∑
j′=i+2

∆[[z′]]`+n`
Dj′g

n
k

)(
Πn[Ỹ t,z]

)]
,

with n` := n− 1− `. In view of the second inequality in (3.17), this concludes the proof of

(3.22).

c. We finally prove (3.23). In view of the representation of vnk as the value function

of an optimal control problem in (3.20), one can apply exactly the same arguments as in

Proposition 3.12, together with (3.17), to obtain that, for all t ≤ t′ ∈ [0, T ] and x, x′ ∈
D0([0, T ]), ∣∣V n

k (t′, xt∧, xt)− V n
k (t, x, xt)

∣∣ ≤ σ|t′ − t|
1
2µ([t, T ]),

and ∣∣V n
k (t, x′, xt)− V n

k (t, x, xt)
∣∣ ≤ ∫ t

0

∣∣x̄′ns − x̄ns
∣∣µ(ds).

Let us set f := DV n
k . It follows from the above estimations, together with (3.22), that,∣∣f(t+ h2+2α, xt∧, xt)− f(t, x, xt)

∣∣
≤ h−1

∣∣V n
k (t+ h2+2α, xt∧, xt + h)− V n

k (t+ h2+2α, xt∧, xt)− V n
k (t, x, xt + h) + V n

k (t, x, xt)
∣∣

+ 2Chα

≤ h−1
∣∣V n
k (t+ h2+2α, (x⊕t h)t∧, xt + h)− V n

k (t, x, xt + h)
∣∣

+ h−1
∣∣V n
k (t, x, xt)− V n

k (t+ h2+2α, xt∧, xt)
∣∣

+ h−1
∣∣V n
k (t+ h2+2α, xt∧, xt + h)− V n

k (t+ h2+2α, (x⊕t h)t∧, xt + h)
∣∣

+ 2Chα

≤ 2Chα + 2σhαµ([0, T ]) + µ([t, t+ h2+2α)),

for all x ∈ Cx0([0, T ]) and t < t+ h ≤ T . This concludes the proof of (3.23).

Remark 3.14. Note that the same proof would go through if F , recall (3.13), was affine in

place of assuming (3.7). In this case, the term F ′′k in Step 4.b. of the proof of Proposition

3.13 would simply be zero. This corresponds to the case where σ = σ. If we assume (3.7),

then one can replace F in the proof by any convex function, say growing linearly at infinity.

The specific definition of F does not play any role. Then, Proposition 3.13 can be seen as

a first result on the regularity of path-dependent PDEs of the form

∂tv + F (∇2
xv) = 0,
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in the case where F is convex. Although, we do not define here the notion of solution

explicitly, such PDEs are associated to optimal control problems for which one can, for

instance, appeal to the notions of solution of [9]-[15]-[16], see also the references therein.

We hope that this first step will open the door to the study of more general equations.
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Meyer, pages 81–116. Springer, 2006.

[8] Andrea Cosso and Francesco Russo. A regularization approach to functional itô

calculus and strong-viscosity solutions to path-dependent pdes. arXiv preprint

arXiv:1401.5034, 2014.

[9] Andrea Cosso and Francesco Russo. Crandall-lions viscosity solutions for path-

dependent pdes: The case of heat equation. arXiv preprint arXiv:1911.13095, 2019.

[10] Freddy Delbaen and Walter Schachermayer. The mathematics of arbitrage. Springer

Science & Business Media, 2006.

[11] Laurent Denis and Claude Martini. A theoretical framework for the pricing of contin-

gent claims in the presence of model uncertainty. The Annals of Applied Probability,

16(2):827–852, 2006.
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