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Aim of this work

2 Aim :
• Consider a model with price impact and liquidity cost, but in
which hedging still makes sense without being degenerate (in
any sense).

• Not high frequency (no bid-ask spread), but still impact on
prices. To be considered as a liquidity model.

• Here, only permanent impact.
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Option pricing with illiquidity or impact in the
literature (part of)

2 Equilibrium dynamics (modified price dynamics) : Sircar and
Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98.

2 Liquidity curve (but no impact) : Cetin, Jarrow and Protter 04,
Cetin, Soner and Touzi 09.

2 Illiquidity + impact : Loeper 14 (verification arguments).

2 Related works : Liu and Yong 05, Almgren and Li 2013, Millot
and Abergel 2011, Guéant and Pu 2013,...



Impact rule and continuous time trading dynamics



Impact rule

2 Basic rule : a small order δ moves the price by

Xt− −→ Xt = Xt− + δf (Xt−),

and costs
δXt− +

1
2
δ2f (Xt−) = δ(

1
2
Xt− +

1
2
Xt).

2 We just model the curve around δ = 0. This should be
understood for a “small” order δ.

Would obtain the same with

Xt− −→ Xt = Xt− + F (Xt−, δ)

if F (x , 0) = 0 and ∂δF (x , δ) = f (x) + o(δ).
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Trading signal and discrete trading dynamics
2 A trading signal is an Itô process of the form

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs .

2 Need to define the dynamics of the wealth and of the asset. As
usual, consider discrete trading and pass to the limit.

2 Trade at times tn
i = iT/n the quantity δntni = Ytni − Ytni−1

.

2 We assume that the stock price evolves according to

X = Xtni +

∫ ·
tni

σ(Xs)dWs

between two trades (can add a drift or be multivariate without
extra complications).
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Trading signal and discrete trading dynamics

2 Passing to the limit n→∞, it converges in S2 to

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dYs +

∫ ·
0

asσf ′(Xs)ds

V = V0 +

∫ ·
0

YsdXs +
1
2

∫ ·
0

a2
s f (Xs)ds,

at a speed
√

n, where

V = cash part + YS = “portfolio value”.



How to define the super-hedging problem ?



Super-hedging problem

2 Fix a claim g = (g0, g1) with
• g0 = cash part
• g1 = # of stocks to deliver.

2 Super-hedging price = minimal initial cash so that

VT − YTXT ≥ g0(XT ) and YT = g1(XT ).

(Recall that V = cash +YX )
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Natural definition

2 ŵ(0,X0,Y0) is the min over V0 such that super-hedge for some
(a, b), starting from Y0.

2 Problems :
• certainly needs an initial jump of Y at 0 to have
“Y0+ = ∂x ŵ(0,X0+,Y0+)”

• from the pde point of view, will be on a curve
Y = ∂x ŵ(·,X ,Y ) !
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Another difficulty

2 Expending the dynamics leads to

Y = Y0 +

∫ ·
0

bsds +

∫ ·
0

asdWs

X = X0 +

∫ ·
0

(σ + as f )(Xs)dWs +

∫ ·
0

(asσf ′ + bs f )(Xs)ds

V = V0 +

∫ ·
0

Ys(σ + as f )(Xs)dWs +

∫ ·
0

Ys(asσf ′ + bs f )(Xs)ds

+
1
2

∫ ·
0

a2
s f (Xs)ds,

2 b appears linearly and is not constrained a-priori ⇒ singular
control problem !
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Learning from the above definition

2 Formally, if v = ŵ(t, x , y), we can find (a, b) such that

0 = d(V v − ŵ(·,X·,Y·))

= b[Yf (X )− (f ∂x ŵ + ∂y ŵ)(·,X ,Y )]dt + · · ·

but not better (i.e. with >).

In particular, we should have

yf (x) = f (x)∂x ŵ(t, x , y) + ∂y ŵ(t, x , y).
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ŵ(t, x , y)− I(x(x ,−y), y) = ŵ(t, x(x ,−y), 0) =: w(t, x(x ,−y))

in which

x(x , δ) = x +

∫ δ

0
f (x(x , s))ds and I(x , δ) :=

∫ δ

0
sf (x(x , s))ds.

2 Interpretation :
• x(x , δ) : impact of a jump δ on Y by using the splitting rule,
• I(x , δ) : corresponding impact on the portfolio value V if the
initial stock position is 0.

Split δ in δ/n then

x +
δ

n
f (x) ' x(x ,

δ

n
) ; x(x(x ,

δ

n
),
δ

n
)) = x(x ,

2δ
n

) ; . . . ' x(x , δ)
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Specification with jumps



Adding jumps and splitting of large orders
2 We now consider a trading signal of the form

Y = Y0− +

∫ ·
0

bsds +

∫ ·
0

asdWs+

∫ ·
0
δν(dδ, ds)

2 Jumps δi at time τi is passed on [τi , τi + ε] at a rate δi/ε.

2 The limit dynamics when ε→ 0 is (∆x(x , δ) = x(x , δ)− x)

X = X0− +

∫ ·
0
σ(Xs)dWs +

∫ ·
0

f (Xs)dY c
s +

∫ ·
0

asσf ′(Xs)ds

+

∫ ·
0

∫
∆x(Xs−, δ)ν(dδ, ds)

V = V0− +

∫ ·
0

YsdX c
s +

1
2

∫ ·
0

a2
s f (Xs)ds

+

∫ ·
0

∫
(Ys−∆x(Xs−, δ) + I(Xs−, δ)) ν(dδ, ds).
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Geometric dynamic principle
2 With this construction, we have the relation

w(t, x(x ,−y)) = ŵ(t, x , y)− I(x(x ,−y), y).

2 Geometric dynamic programming transferred from ŵ to w .

2 GDP : (i) If v > w(t, x) then ∃ (a, b, ν) and y ∈ R s.t.

Vθ ≥ w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ),

for all θ ≥ t, where (Xt ,Yt ,Vt) = (x(x , y), y , v + I(x , y)).

(ii) If v < w(t, x) then 6 ∃ (a, b, ν), y and θ ≥ t s.t.

Vθ > w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ),

with (Xt ,Yt ,Vt) = (x(x , y), y , v + I(x , y)).



Geometric dynamic principle
2 With this construction, we have the relation
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Pricing equation

2 If v = w(t, x) the GDP “implies”

dEt := dVt − dw(t, x(Xt ,−Yt))− dI(x(Xt ,−Yt),Yt) = 0,

where (Xt ,Yt ,Vt) = (x(x , y), y , v + I(x , y)).

2 Key property :

dE = [Y̌ − Y ]
[
(f ′f )(X )a2/2dt − σ(X )dW

]
+F̂ [w ](·, x(X ,−Y ),Y )dt

in which Y̌ = Y iff

Y = ŷ(·,X ) := x−1(X ,X + f (X )∂xw(·,X )).
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Pricing equation - viscosity sense
2 By identifying the dW and dt terms, we obtain the PDE :

0 = F̂ [w ](·, ŷ)

= −∂tw − µ̂(·, ŷ)∂x [w + I]− 1
2 σ̂(·, ŷ)2∂2

xx [w + I]

where

µ̂(·, y) :=
1
2

[∂2
xxxσ

2](x(·, y),−y) and σ̂(·, y) := (σ∂xx)(x(·, y),−y),

and
ŷ(t, x) := x−1(x , x + f (x)∂xw(t, x)).

2 Terminal condition

G (x) := inf {yx(x , y) + g0(x(x , y))− I(x , y) : y = g1(x(x , y))} .

2 To be first taken in the discontinuous viscosity sense for the
relaxed semi-limits associated to problems with bounded controls
(comparison holds-> uniqueness + numerical schemes / smooth
solution).
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xx [w + I]

where

µ̂(·, y) :=
1
2

[∂2
xxxσ

2](x(·, y),−y) and σ̂(·, y) := (σ∂xx)(x(·, y),−y),

and
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2 σ̂(·, ŷ)2∂2
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Pricing equation - verification
2 Assume that w is a smooth solution with w(T−, ·) = G of

F̂ [w ](·, ŷ) = −∂tw − µ̂(·, ŷ)∂x [w + I]− 1
2 σ̂(·, ŷ)2∂2

xx [w + I] = 0.

2 Then Et := V − w(·, x(X ,−Y ))− I(x(X ,−Y ),Y ) satisfies

dE = [Y̌ − Y ] [(· · · )dt + (· · · )dW ] + F̂ [w ](·, X̂ ,Y )dt

with X̂ = x(X ,−Y )

2 We can use a strategy ensuring Y = Y̌ = ŷ(·, X̂ ) :
• Make an initial jump of size Y0 = x−1(x , x(x , ∂xw(0,X0−))).
• Follow (a, b) such that Y = x−1(X̂ , x(X̂ , ∂xw(t, X̂ ))).

2 Then
• VT− = G (x(XT−,−YT−)) + I(x(XT−,−YT−),YT−).

• Liquidate YT− : VT = G (XT ) and YT = 0.
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2 σ̂(·, ŷ)2∂2
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Constant impact

2 Model : dXt = σ(Xt)dWt (between trades) and f (X ) = λ.

2 In this case, x(x , δ) = x + λδ, I(x , δ) = 1
2δ

2λ, and the pde is

−∂tw −
1
2
σ2(x + λ∂xw)∂2

xxw = 0

For λ = 0 or σ =cst, this is the usual heat equation ! ! !

2 We can use the strategy : Y = ∂xw(·, X̂ ) = ∂xw(·,X − λY ).
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Thank you very much !


