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Problem formulation

2 S : d -dimensional continuous semimartingale.

2 Frictionless market

X θ := X0 +

∫ ·
0
θ>s dSs .

2 Market with transaction costs (on volumes for the moment)

Xϑ,ε := X0 +

∫ ·
0
ϑ>s dSs − ε

∫ ·
0

d |ϑ|s − 1{T}ε|ϑT |.

2 Compare X θ and Xϑ,ε in terms of an Lp norm or in terms of expected
utility. In particular, compare

sup
θ

E[U(X θ
T )] and sup

ϑ
E[U(Xϑ,ε

T )]
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Expected results

2 Balance between deviating from θ and paying transaction costs (local
time control).

If we stay at distance δ, the local time total variation
should be of order 1/δ (by scaling of the Brownian motion).

2 Lp-bounds

‖X θ
t − Xϑ,ε

t ‖Lp ≤ C ε
1
2 , for δ ∼ ε 1

2 .

2 Expected utility bounds

| sup
θ

E[U(X θ
T )]− sup

ϑ
E[U(Xϑ,ε

T )]| ≤ C ε
2
3 , for δ ∼ ε 1

3 .
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Litterature (part of...)

2 PDE approach : Goes back to Shreve and Soner (94), Whalley and
Wilmott (97) - utility based pricing -, Jaceneck and Shreve (04) and
Rogers (04) - ideas -.

Further developped by Bichuch (14) - power utility as well.

2 Homogenization approach : Soner and Touzi (13), and Soner, Touzi
and Possamai (15), ... Systematic but need to know that the order is
O(ε

2
3 ) + regularity/bounds on the Merton problem.

2 Probabilistic approach (Shadow price and duality) : Kallsen and
Muhle-Karbe (15) - ideas -, Kallsen and Li (13) (exponential utility),
Gerhold et al. (14) (long run power utility).

In all cases, complex arguments, quite heavy conditions and special care
on the design of the transaction region (hand-made).

See also Cai, Rosenbaum and Tankov (17) for tracking errors (general
asymptotic lower bounds in probability).
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General idea

2 Balance between deviating from θ̂ and paying transaction costs (local
time control).

2 We just write down these ideas using the very simplest transaction
region + use a trick from B., Elie and Moreau (12) : leads to a very
simple proof of the bounds of order ε

1
2 and ε

2
3 .

2 Based on mild moment conditions, that can be checked by using
Malliavin calculus in complete Itô semimartingale frameworks.

2 We restrict to bounded risk aversion but it can be made more general.

2 Can be complemented by the approach of Soner and Touzi to derive
explicit expansion.
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Elementary Lp-bounds
2 The simplest possible transaction region : ϑ solves the Skhorohod
problem{

θ − ϑ ∈ [−δ, δ]d on [0,T ],∑d
i=1

(∫ T
0 1{θi

t−ϑi
t=δ}dϑ

i+
t +

∫ T
0 1{θi

t−ϑi
t=−δ}dϑ

i−
t

)
= 0.

2 Take ϕ such that −ϕ′(−1) = ϕ′(1) = 1, |ϕ| ∨ |ϕ′| ∨ |ϕ′′| ≤ 1 and set
Z := (θ − ϑ)/δ ∈ [−1, 1]. Then (d = 1 case),

ϕ(Zt) = ϕ(Z0) +
1
δ

(∫ t

0
ϕ′(Zs)d(θ − ϑ)s +

1
2δ

∫ t

0
ϕ′′(Zs)d〈θ〉s

)

= ϕ(Z0) +
1
δ

(∫ t

0
ϕ′(Zs)dθs − |ϑ|t +

1
2δ

∫ t

0
ϕ′′(Zs)d〈θ〉s

)
.

Thus, there exists ξ ∈ B1 (i.e. ‖ξ‖ ≤ 1) s.t.

|ϑ| ≤ 2dδ +

∫ ·
0
ξ>s dθs +

1
2δ
〈θ〉.
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Recall :

|ϑ| ≤ 2dδ +

∫ ·
0
ξ>s dθs +

1
2δ
〈θ〉.

2 Assumption : For some p ≥ 1 and Q ∼ P,

sup
ξ∈B1

∣∣∣∣∣∣ ∫ T

0
ξ>s dθs

∣∣∣∣∣∣
Lp(Q)

+ ‖〈θ〉T‖Lp(Q) ≤ C (p).

2 Proposition : Fix δ ∈ (0, 1), then

‖|ϑ|T ‖Lp(Q) ≤ C (p)

(
1 +

1
δ

)
.

2 Remark : Suppose that θ is a Q-Brownian motion and choose
ϕ(z) = z2/2 for z ∈ [−1, 1], then

EQ [|ϑ|t ] = EQ
[
δ(ϕ(Z0)− ϕ(Zt)) +

d
2δ

t
]
≥ −1

2
+

d
2δ

t.

Generally speaking : this is just the Brownian motion scalling propety...
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2 As a consequence :∣∣∣Xϑ,ε
t − X θ

t

∣∣∣ =

∣∣∣∣∫ t

0
(ϑs − θs)>dSs − ε|ϑ|t − 1{T}ε|ϑT |

∣∣∣∣
≤ δ

∣∣∣∣∫ t

0
ξ̃>s dSs

∣∣∣∣+ 2ε
(
2dδ +

∫ t

0
ξ>s dθs +

1
2δ
〈θ〉t

)
where ξ, ξ̃ ∈ B1.

2 Assumption : supξ̃∈B1

∣∣∣∣∣∣ ∫ T
0 ξ̃>t dSt

∣∣∣∣∣∣
Lp(Q)

≤ C (p).

2 Proposition :

‖Xϑ,ε
t − X θ

t ‖Lp(Q) ≤ δ C (p) + 2ε C (p)

(
1 +

1
δ

)
.

For δ = ε1/2 ∈ (0, 1),

‖Xϑ,ε
t − X θ

t ‖Lp(Q) ≤ C (p) ε1/2.
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2 Remark : if θ is a Brownian motion and S an Itô semi-martingale :

δEQ
[∫ t

0
ξ>s µ

S
s ds
]
− cε

(
1 +

1
δ

)
≤ EQ

[
Xϑ,ε

t − X θ
t

]
≤ δEQ

[∫ t

0
ξ>s µ

S
s ds
]
− c ′ε

(
1 +

1
δ

)
.

Cannot do better in general... unless S is a Q-martingale (as in the utility
maximization problem).



Elementary bounds for utility maximization

2 Assumption : U has a bounded risk aversion, namely

0 < r < −U ′′(x)

U ′(x)
< R <∞, for constants r , R and all x ∈ R.

2 Admissibility A (resp. Aε) : X θ (resp. Xϑ,ε) is a supermartingale
under all absolutely continuous martingale measures with finite entropy.

2 There exists an optimizer θ̂ ∈ A and a dual optimizer Q̂ ∼ P s.t.

U ′(X θ̂
T )

E[U ′(X θ̂
T )]

=
dQ̂
dP
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1
2
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1
2
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2 Assumption : There exists ι > 0 such that

sup
ξ∈B1

{
EQ̂[eι

∫ T
0 ξ>t d θ̂t ]

}
+ EQ̂[eι〈θ̂〉T + eι〈S〉T ] ≤ C .

Then,

E[∆ε
T ] ≥ αEQ̂

[(
Xϑ,ε

T − X θ̂
T

)
− R

2
eRλ|Xϑ,εT −X θ̂T |

(
Xϑ,ε

T − X θ̂
T

)2
]

≥ −2αεEQ̂[Rδ(ξ)t ]− CEQ̂
[(

Xϑ,ε
T − X θ̂

T

)2η
] 1
η

with η > 1 and Rδ(ξ)t := 2dδ +
∫ t
0 ξ
>
s d θ̂s + 1

2δ 〈θ̂〉t .

2 Theorem : E[U(Xϑ,ε
T )− U(X θ̂

T )] ≥ −C ε
2
3 , for δ = ε

1
3 .

In particular,

| sup
ϑ

E[U(Xϑ,ε
T )]− sup

θ
E[U(X θ

T )] | ≤ C ε
2
3 .
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Complete Itô diffusion case
2 We assume that

S = S0 +

∫ ·
0
µ(St)dt +

∫ ·
0
σ(St)dWt .

2 Assumption : λ := σ−1µ, σ and σ−1 are C 2
b ∩ C 0

b . U ∈ C 3(R), and
U ′′′/U ′′ is bounded. (can easily relax to be more general...)

Simply write that

X θ̂
T = (U ′)−1

(
c dQ̂/dP

)
and θ̂>t σ(St) = EQ̂[DtX θ̂

T |Ft ]

and use standard estimates (need second order Malliavin derivatives to
control the martingale part of θ).

2 Proposition : θ is bounded and is of the form

θ = θ0 +

∫ ·
0
αtdt +

∫ ·
0
γtdW Q̂

t ,

where θ0 ∈ R and α, γ are bounded adapted processes.
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Costs on transacted amounts
2 We now write the frictionless wealth process as

X θ
t := X0 +

∫ t

0
(θs/Ss)>dSs .

2 The frictional wealth process is

Xϑ,ε
t := X0 +

∫ t

0
(Y ϑ

s /Ss)
>

dSs − ε
∫ t

0
d |ϑ|s − 1{T}ε|Y ϑ

T |,

where

Y ϑ
t :=

∫ t

0
(Y ϑ

s /Ss)
>

dSs + ϑt .

2 The Skorokhod problem becomes{
θ − Y ϑ ∈ [−δ, δ]d on [0,T ],∑d

i=1

(∫ T
0 1{θi

t−Yϑ,it =δ}dϑ
i+
t +

∫ T
0 1{θi

t−Yϑ,it =−δ}dϑ
i−
t

)
= 0.

But the analysis is very similar.... (simply a bit more painful to write).
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