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Abstract

We consider the problem of option hedging in a market with proportional

transaction costs. Since super-replication is very costly in such markets, we replace

perfect hedging with an expected loss constraint. Asymptotic analysis for small

transaction costs is used to obtain a tractable model. A general expansion theory

is developed using the dynamic programming approach. Explicit formulae are

obtained in the special cases of exponential and power utility functions. As a

corollary, we retrieve the asymptotics for the exponential utility indifference price.
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1 Introduction

As well known, in a complete market with no frictions, every contingent claim can be

replicated by continuous trading of the underlying asset. These replicating strategies

however typically yield portfolio processes that are of unbounded variations. Hence, any

size of transaction cost renders this portfolio to have an infinite trading cost. Indeed, it

has been shown that, generically, the cheapest super-replicating portolio is the simple

buy and hold strategy leading to a prohibitive cost [50, 42, 15, 19, 23, 37, 40, 41].

Theoretically almost sure replication is an appealing concept which has been ex-

tensively studied in the literature. Firstly, it provides the initial building block for the

utility maximization problems by providing the exact description of the wealth processes

that enter into the maximization. Also it provides complete risk aversion agreeing with

all other approaches and in incomplete markets it yields the pricing intervals. When

this interval is tight, it can also have practical uses. However, since this is not the case

in markets with transaction costs, one has to consider instead expected loss criteria

related to the risk attitude of the investors.

In the frictionless Black-Scholes market Föllmer and Leukert [27, 28] studied the

quantile and expected shortfall by exploiting the deep connection to the Neyman-

Pearson lemma, which applies to general complete markets. A more general approach
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for Markovian settings was then developed in [12, 9, 44, 13] for diverse markets includ-

ing jumps and several loss criteria. A particular application of this approach is the

utility indifference as introduced by Hodges and Neuberger [34] in which the hedging

constraint is given through the maximum utility that one may achieve without the lia-

bility. However, in the general formulation of hedging with expected loss, one can place

more than one constraint [16] and consider markets with general dynamics as well as

frictions.

In this paper, we follow the problem formulation of [12] and develop a coherent

asymptotic theory for hedging problems under an expected loss criterion, when the

transaction cost is small. Asymptotic analysis allows for more tractable formulae. Our

methodology is robust enough to treat models with general dynamics and many loss

criteria. For modeling the financial market, we follow the seminal papers [43, 17] and

the rigorous mathematical approaches of [22, 24, 49]. For further information on utility

maximization under transaction costs, we refer the reader to the book [38] and the

references therein.

On the technical side, we build upon the similar theory that was developed in the

case of the classical utility maximization. For this problem, an extensive theory is

now available starting with the appendix of [49]. There are now many rigorous results

[1, 3, 6, 7, 32, 35, 45, 48, 53] as well as interesting formal derivations [2, 33, 54]. The

partial differential equation (PDE) technique that we use has its origins in a recent

paper [53]. It is based on the theory of the viscosity approach to homogenization of

Evans [26]. This methodology allows for a flexible asymptotic theory that applies to

markets with multiple assets [48], fixed transaction costs [1] and market impact in factor

models [45]. A related asymptotic analysis is carried out for stochastic volatility models

with different time scales [30, 31], and for utility maximization asymptotics [29]. They

also use viscosity solution tools, but their methodology is different.

The asymptotic expansion is derived directly using the PDE characterization of the

expected loss based price. This equation follows from the stochastic target formulation

with controlled expected loss as in [12]. In the frictionless case, the problem described

in subsection 2.2 is

π(t, s, p) := inf
{
z ∈ R : E

[
Ψ
(
Zt,s,z,ϑT − g(St,sT )

)]
≥ p for some ϑ ∈ U(t, s, z)

}
,

where Ψ is the given expected loss function, p is the given desired threshold, g is option

pay-off, U(t, s, z) is the set of admissible controls and the process Zt,s,z,ϑ is the value

of the portfolio with initial stock value s, initial wealth value z and control process

ϑ. The diffusion type dynamics of Zt,s,z,ϑ and the exact description of the admissible

class U(t, s, z) are given in section 2 below. Then, with the help of the martingale

representation, [12] converts this problem into a standard stochastic target problem

introduced in [51, 52]. The model with transaction costs is introduced in Section 2.1

and the corresponding dynamic programming equation is a quasi-variational inequality

(2.7).

The main result of the paper, outlined in Section 3, is the asymptotic expansion

(3.1). It is proved under the hypothesis of Theorem 3.7 and states that the loss due

to frictions is proportional to the 2/3 power of the proportional transaction cost and

the coefficient of the first term in the expansion is characterized. Although our result

is proved for a single risk criteria, it can be generalized to the multi-criteria case by

exactly following the steps of [16]. This extension naturally increases the dimension of

the corresponding PDE but does not introduce any additional technical difficulties.

In the case of exponential and power utility functions, Ψ, explicit formulae are

available. We collect them in Section 4. In Section 7, we also explain how to construct

almost optimal strategies.
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In particular, if one chooses the threshold p to be the value function of the same

utility maximization problem with transaction costs but without any liability, one re-

covers the utility indifference price and its asymptotics. In this context this price was

first studied by [21]. In the case of an exponential utility, they obtained the price as

the difference of two functions. These functions are related to the maximum utility

of two similar problems whose solutions are described through a nonlinear parabolic

equation with gradient constraints. Related asymptotic formulae were formally derived

in [54] and only recently were proved rigorously by Bichuch in [5]. Later [46] used an

approach similar to ours for this problem. As discussed above, the problem we study is

equivalent to hedging the option not perfectly but with a prescribed expected loss. As

a consequence, our results described in Section 4 yield the asymptotic formula of [5].

The paper is organized as follows. The next section describes the model and its fric-

tionless counterpart. In Section 3, we state the main theorem and our assumptions. We

illustrate this result in the cases of exponential and power utilities in Section 4. Section

5 is devoted to the proof of the main theorem and Section 7 verifies the assumptions in

the examples. In Section 6, we prove several technical estimates.

Notations: Given O ⊂ Rk and a smooth function ϕ : (t, x1, ..., xk) ∈ [0, T ]×O 7→ R,

we write ϕt and ϕxi for the partial derivatives with respect to t and xi. Second order

derivatives are denoted by ϕxixj , and so on... We use the notations Dϕ and D2ϕ

to denote the gradient and the Hessian matrix with respect to the space component

(x1, ..., xk). If we want to define them with respect to a subfamily, say (x1, · · · , xi), we

write D(x1,··· ,xi)ϕ and D2
(x1,··· ,xi)ϕ. When ϕ depends on only one variable, we simply

write ϕ′ and ϕ′′ for the first and second order derivatives. Any element of Rk is viewed

as a column vector, and > denotes the transposition. For an element ζ ∈ Rk and r > 0,

the open ball of radius r > 0 centered at ζ is denoted by Br(ζ). We let B̄ and Int(B)

denote the closure and the interior of B. Assertions involving random variables have to

be understood in the a.s. sense, if nothing else is specified.

2 Partial hedging under expected loss constraints and

pricing equations

As usual, we let (Ω,F ,P) be a complete probability space supporting a one dimen-

sional Brownian motion W , F := (Ft)t≤T be the right-continuous augmented filtration

generated by W and T > 0 be the fixed time horizon.

2.1 Controlled loss pricing with proportional transaction costs

We consider a financial market which consists of a single risky asset S, called stock

hereafter. For ease of notations, we assume that the risk free interest rate is 0. Given

initial data (t, s) ∈ [0, T ] × (0,∞), we let St,s describe the evolution of this asset, and

we assume that it follows the dynamics

St,s = s+

∫ ·
t

St,sτ µ(τ, St,sτ )dτ +

∫ ·
t

St,sτ σ(τ, St,sτ )dWτ , (2.1)

in which

(t, s) ∈ [0, T ]× (0,∞) 7→ (sµ(t, s), sσ(t, s)) ∈ R× (0,∞) (2.2)

is Lipschitz continuous in s and continuous in t.

The latter condition implies the existence and uniqueness of a strong solution.
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Transactions on this market are subject to a proportional cost1 described by a pa-

rameter ε3 > 0. We use the notation ε because we will be interested by the asymptotic

ε→ 0. The scaling ε3 is just for notational convenience, as it will be clear later on.

As usual in the presence of transaction costs, a portfolio process has to be described

by a two dimensional process (Y,X) in which Y denotes the cash account and X denotes

the amount of money invested in the stock. We therefore call (y, x) ∈ R2 an initial

endowment at time t if y is the position in cash and x is the amount invested in the

stock at time t. Then, a financial strategy is an adapted process L with bounded

variations. The quantity Lτ − Lt− must be interpreted as the cumulated amount of

money transferred on the time interval [t, τ ] from the cash account into the account

invested in the stock. It admits the canonical decomposition into two non-decreasing

adapted processes L = L+ − L−. We denote by L the collection of trading strategies.

Given an initial endowment (y, x) at time t, the portfolio process (Y t,y,ε,L, Xt,x,s,L)

associated to the strategy L ∈ L evolves according to

Y t,y,ε,L = y −
∫ ·
t

(1 + ε3)dL+
τ +

∫ ·
t

(1− ε3)dL−τ ,

Xt,x,s,L = x+

∫ ·
t

Xt,x,s,L
τ

dSt,sτ
St,sτ

+

∫ ·
t

dL+
τ −

∫ ·
t

dL−τ .

In order to rule out any possible arbitrage, we restrict the set of admissible strategies

to the elements of L such that the liquidation value of the portfolio is bounded from

below, i.e. L ∈ L is admissible if there exists cL ≥ 0 such that

Y t,y,ε,L + `ε(Xt,x,s,L) ≥ −cL on [t, T ], (2.3)

where

`ε : r ∈ R 7→ r − ε3|r|.

We denote by Lε(t, s, y, x) the set of admissible strategies associated to the initial data

(s, y, x) at time t.

We now consider a trader whose aim is to hedge a plain vanilla European option with

payoff function g : r ∈ (0,∞) 7→ g(r) ∈ R. Hereafter, g is assumed to be continuous

with linear growth. In general, super-hedging in the presence of proportional transaction

costs is much too expensive to make sense in practice, see [20, 42, 50], and [15] for the

multivariate setting. We therefore introduce a risk criteria under which the pricing and

the hedging of the option will be performed. It is specified through a map Ψ : r ∈
R 7→ Ψ(r) ∈ (−∞, 0], which we call loss function. We assume that Ψ is concave2, non-

decreasing, continuous on its domain, that Im(Ψ) := {Ψ(r), r ∈ R s.t. Ψ(r) > −∞} is

open and that

E
[
Ψ(−g(St,sT ))

]
> −∞ for all (t, s) ∈ [0, T ]× (0,∞).

The hedging price associated to the loss function Ψ and a threshold p ∈ Im(Ψ) is

then defined by

vε(t, s, p, x) := inf
{
y ∈ R : ∃ L ∈ Lε(t, s, y, x) s.t. E

[
Ψ
(

∆ε,L
t,s,y,x

)]
≥ p
}
, (2.4)

where

∆ε,L
t,s,y,x := Y t,y,ε,LT + `ε(Xt,x,s,L

T )− g(St,sT ).

1See [38] for a general presentation of models with proportional transaction costs.
2We make this assumption to obtain the representation in Proposition 2.2. This representation is

then used to verify the assumptions. Hence, the main result applies to general loss functions provided
the assumptions are verified.
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The value vε(t, s, p, x) is the minimal initial price at which the option with payoff g(St,sT )

should be sold in order to ensure that the expected loss, as evaluated through Ψ, is not

below the threshold p. Note that the assumption that Ψ is bounded from above is rather

natural since we consider here a risk criterion, i.e. one should not have the possibility

of compensating losses by unbounded gains. From the mathematical point, it could be

relaxed up to additional integrability conditions ensuring that the corresponding opti-

mization problem Max E[Ψ(∆ε,L
t,s,y,x)] over L ∈ Lε(t, s, y, x) is well-posed, see e.g. [8] and

the references therein. Also note that this problem is of interest even in the degenerate

case g ≡ 0. Then, vε represents the threshold under which the cash account should not

go in order for the terminal wealth to satisfy the requirement in (2.4). This threshold is

a building block for the analysis of optimal investment problems under risk constraints,

see [10, 14].

The problem (2.4) is a stochastic target problem with controlled loss in the termi-

nology of [12]. In order to obtain a pde characterization, the first step of their analysis

consists of increasing the dimension of the state space and of the set of controls in order

to turn the target problem under controlled loss in (2.4) into a target problem with

P-a.s. terminal constraint in the form of [51, 52]. Namely, vε admits the equivalent

formulation

vε(t, s, p, x) = inf
{
y ∈ R : ∃ (L,α) ∈ Lε(t, s, y, x)× A s.t. Ψ

(
∆ε,L
t,s,y,x

)
≥ P t,p,αT

}
,(2.5)

where A denotes the set of a.s. square integrable predictable processes such that

P t,p,α := p+

∫ ·
t

ατdWτ is a martingale on [t, T ]. (2.6)

One direction follows by taking expectation, the other one is just a consequence of the

martingale representation theorem applied to Ψ(∆ε,L
t,s,y,x). Since Im(Ψ) is convex, by

the continuity of Ψ on its domain, it is not difficult to see that we can even restrict the

martingale P t,p,α to take values in Im(Ψ), see [12, 44].

Note that this reformulation is natural. Indeed, the expectation in (2.4) has to be

understood as a conditional expectation given the (trivial) information at the starting

point t. The conditional expectation evolves as time passes, and has no reason to stay

above the initial threshold p. The martingale process P t,p,α is here to take this evolution

into account and turns the problem into a time-consistent one: it describes the evolution

of the conditional expectation of Ψ(∆ε,L
t,s,y,x).

A geometric dynamic programming principle for problems of the form (2.5) was

first obtained by [51, 52]. In the present framework, in which controls are of bounded

variation, it was further studied by [9]. Up to slight modifications, see the Appendix, it

follows from the analysis in [9] that vε is a (discontinuous) viscosity solution on D× R
of

max
{
−LSXϕ− L̂P|SXϕ , −ε3 + 1 + ϕx , −ε3 − (1 + ϕx)

}
= 0 on D<T × R ,

Ψ(ϕ+ x− ε3|x| − g) = p on DT × R ,
(2.7)

in which we use the notations

D<T := [0, T )× (0,∞)× Im(Ψ) , DT := {T} × (0,∞)× Im(Ψ) , D := D<T ∪DT ,

and

LaP|SXϕ := 1
2a(σ̄a + σ̄0)>Dϕp ,

L̂P|SXϕ := inf{LaP|SXϕ : a ∈ R s.t. σ̄>a Dϕ = 0} ,
LSXϕ := ϕt + µ̄>Dϕ+ 1

2Tr
[
σ̄0σ̄

>
0 D

2ϕ
]
,
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where Dϕp is vector of the derivatives of the partial derivative ϕp and for a given point

(t, s, x, a) ∈ [0, T ]× (0,∞)× R× R,

µ̄(t, s, x) :=

 sµ(t, s)

xµ(t, s)

0

 and σ̄a(t, s, x) :=

 sσ(t, s)

xσ(t, s)

a

 . (2.8)

Theorem 2.1. Assume that vε is locally bounded. Then, it is a discontinuous viscosity

solution of (2.7).

The above characterization can be exploited to compute the pricing function vε

numerically. However, it should be observed that the operator L̂P|SX involves an opti-

mization over the unbounded set R, which makes it discontinuous, and possibly difficult

to handle numerically. Moreover, except if vε is smooth, the above pde does not allow

to recover the associated hedging strategy.

In this paper, we follow the approach of [53], and try to provide an expansion

of vε around ε = 0, i.e. for small values of the transaction costs. For ε = 0, the

financial market is complete and the problem can be solved explicitly by tools from

convex analysis as described in the next subsection. We can therefore hope to obtain an

explicit expansion, or at least a characterization of the different terms in the expansion

which will be more tractable from the numerical point of view.

2.2 The frictionless benchmark case

We now consider the frictionless case which will be used to provide an expansion of vε.

We refer to [27, 28] for a general exposition of quantile and loss hedging problems in

this context, see also [11].

Let U denote the set of R-valued progressively-measurable and a.s. square integrable

processes. Elements of U will be interpreted as amounts of money invested in the risky

asset S. Given an initial allocation in amount of cash z at time t and ϑ ∈ U , the

corresponding (frictionless) wealth process Zt,s,z,ϑ evolves according to

Zt,s,z,ϑ = z +

∫ ·
t

ϑτdS
t,s
τ /St,sτ ,

and the analog of vε(t, s, p, 0) in (2.4) is

π(t, s, p) := inf
{
z ∈ R : E

[
Ψ
(
Zt,s,z,ϑT − g(St,sT )

)]
≥ p for some ϑ ∈ U(t, s, z)

}
,

in which U(t, s, z) is the restriction to controls ϑ ∈ U such that

Zt,s,z,ϑ ≥ −cϑ on [t, T ] for some cϑ ≥ 0.

Because this frictionless financial market is complete, one can describe π explicitly

under mild regularity and integrability conditions. We provide the proof of the following

in the Appendix for completeness.

Proposition 2.2. Fix (t, s, p) ∈ D. Assume that the function Ψ : R 7→ Im(Ψ) is

invertible, and that its inverse Φ is C1(Im(Ψ)). Assume further that Φ′ : Im(Ψ) →
(0,∞) admits an inverse I. Finally assume that λt,s := (µ/σ)(St,s) is square integrable

and that the process Qt,s defined by

Qt,s := exp

{
1

2

∫ ·
t

|λt,sτ |2dτ +

∫ ·
t

λt,sτ dWτ

}
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satisfies

E
[
I(q̂Qt,sT )

]
= p for some q̂ > 0,

and

g(St,sT ) + Φ ◦ I(q̂Qt,sT ) ∈ L1(Qt,s) where dQt,s/dP = 1/Qt,sT .

Then,

π(t, s, p) = EQt,s [g(St,sT ) + Φ ◦ I(q̂Qt,sT )
]
. (2.9)

As for the case with frictions, one can also obtain a characterization of π in terms of

a suitable Hamilton-Jacobi-Bellmann equation, see [12] and the Appendix. As in [53],

it will be used to obtain an expansion of vε around ε = 0. We state it in terms of the

function

v : (t, s, p, x) ∈ D× R 7→ π(t, s, p)− x, (2.10)

which is the analog of vε when the initial amount x invested in the stock is non-zero. We

note that formally v0, obtained by setting ε to zero, is equal to v. In the following, we

restrict to the case where v is smooth, increasing and strictly convex in the p parameter

(the monotony and convexity just follow from the monotony and concavity of Ψ). A

similar result in the sense of viscosity solutions can be found in [12].

Theorem 2.3. Assume that π ∈ C1,2(D<T ) and that min{πp, πpp} > 0 on D<T . Then,

v(t, x, p, x) = π(t, s, p)− x is a strong solution of

−LSθv − L̂P|Sθv = 0 on D<T × R and Ψ(v + x− g) = p on DT × R, (2.11)

where

LaP|Sθϕ := 2−1a(σ̄θ,a + σ̄θ,0)>Dϕp ,

L̂P|Sθϕ := inf{LaP|Sθϕ : a ∈ R s.t. σ̄>θ,aDϕ = 0} ,

LSθϕ := ϕt + µ̄>θ Dϕ+
1

2
Tr
[
σ̄θ,0σ̄

>
θ,0D

2ϕ
]
,

with, for (t, s, p) ∈ D,

µ̄θ(t, s) :=

 sµ(t, s)

θ(t, s, p)µ(t, s)

0

 and σ̄θ,a(t, s, p) :=

 sσ(t, s)

θ(t, s, p)σ(t, s)

a

 , (2.12)

θ(t, s, p) =

(
sπs +

πp
σ

(
µ
σπp − σsπsp

)
πpp

)
(t, s, p) . (2.13)

Remark 2.4. For later use, note that

L̂P|Sθv = LâP|Sθv with â := −σ̄>θ,0Dv/vp =
µ
σvp − σsvps

vpp
, (2.14)

and

θ = sπs + πpâ/σ . (2.15)
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3 Small transaction costs expansion

It follows from Proposition 2.2 that the value function v associated to the frictionless

case is known, or at least can be computed easily. Since it should identify to vε for

ε = 0, we seek for an expansion of vε as ε → 0 in which v is the 0-order term. From

[53], one can expect to obtain an o(ε2)-expansion if we introduce a second and a fourth

order term, the last one depending on a fast variable, ξξε below. Namely, we seek for

two functions u and $ such that

vε(ζ, x) = v(ζ, x) + ε2u(ζ) + ε4$ ◦ ξξε(ζ, x) + o(ε2) for (ζ, x) ∈ D× R, (3.1)

in which, for a map w : (ζ, ξ) ∈ D× R 7→ w(ζ, ξ), we set

(w ◦ ξξε)(ζ, x) := w(ζ, ξξε(ζ, x)), with ξξε(ζ, x) :=
x− θ(ζ)

ε
. (3.2)

Note that when w has sub quadratic growth in ξ, the term ε4$ ◦ ξξε(ζ, x) in (3.1) is in a

lower order than ε2 and plays no role in the expansion. We will show that this is indeed

the case. However, at least at the formal level, the second derivative of ε4$ ◦ ξξε(ζ, x)

is exactly of order ε2 and this observation is crucial in deriving the corrector equations.

Also, in the context of formal matched asymptotics, one may recognize (3.1) as in the

inner expansion.

Remark 3.1. In the case where the domain of Ψ is bounded from below, the conver-

gence vε → v can not hold except if g is linear. Indeed, assume that the domain of Ψ

is bounded by −κ ∈ R, i.e. Ψ ≡ −∞ on (−∞,−κ). Then, it follows from [15] that

vε(t, s, p, x) ≥ ĝ(s)−x−κ for all (t, s, p, x) ∈ D<T ×R, where ĝ is the concave envelope

of g. On the other hand limt→T v(t, s, p, x) = g(s) − x − κ + Ψ−1(p) + κ, by (2.11),

where Ψ−1 is the left-continuous inverse of Ψ. If g is not concave, i.e. if {ĝ > g} is

non-empty, we therefore obtain that vε does not converges to v on a non-empty subset

of {(t, s, p) ∈ D<T : ĝ(s) > g(s) + Ψ−1(p) + κ}. Hence, we need to assume that g is

concave, i.e. ĝ ≡ g. It can actually neither be strictly concave on any interval of (0,∞).

Otherwise, there will be (t, s) such that EQt,s [g(St,sT )
]

=: π̄(t, s) < g(s) and therefore

v(t, s, p, x) < g(s)− x+ Ψ−1(p) = g(s)− x−κ+ Ψ−1(p) +κ, since adding −x+ Ψ−1(p)

to π̄(t, s) allows to hedge ZT := g(St,sT ) + Ψ−1(p) which satisfies Ψ(ZT − g(St,sT )) = p.

By choosing p such that Ψ−1(p) +κ is close to 0, we again obtain that vε(t, s, p, x) does

not converge to v(t, s, p, x) even if ĝ = g 3.

Our main result provides a precise characterization of the functions u and $ under

the assumption that vε converges at a rate O(ε2). We shall see that this is true in typical

examples of application in Section 4 below4.

Assumption 3.2. For any (ζo, xo) ∈ D× R, there exists ro, εo > 0 such that

sup

{
uε(ζ, x) :=

vε(ζ, x)− v(ζ, x)

ε2
, (ζ, x) ∈ Bro(ζo, xo) ∩ (D× R), ε ∈ (0, εo]

}
<∞.

(3.3)

3When the lower bound is zero, the boundary of the natural domain of the problem is given by the
super-replication cost. We believe that in this case there is a boundary layer near this boundary.

4This assumption states that the expansion in the small parameter ε starts with a quadratic term.
In other words, we assume that the order of proposed expansion is “correct”. Under this and other
regularity assumptions, we prove the expansion and derive formulae for the coefficients in the expansion.
Indeed this assumption holds in many examples. However, in the case discussed in the Remark 3.1
we believe that there is a boundary layer and this assumption would only hold away from the super-
replication cost.
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It allows us to give a sense to the relaxed semi-limits

u∗(ζ, x) := lim sup
ε↓0,(ζ′,x′)→(ζ,x)

uε(ζ ′, x′) and u∗(ζ, x) := lim inf
ε↓0,(ζ′,x′)→(ζ,x)

uε(ζ ′, x′), (3.4)

which will be the main objects of our analysis. More precisely, we shall show that

u∗ = u∗ =: u does not depend on the x-variable and is a viscosity solution of{
−Hϕ− h = 0 on D<T ,

ϕ = 0 on DT ,
(3.5)

where

Hϕ = ϕt +
1

2
σ2s2ϕss +

1

2
(â)

2
ϕpp + σsâϕsp −

µ

σ
âϕp, (3.6)

in which â is defined in (2.14), and ($,h) are the solution of the so-called first corrector

equation, i.e. for each (ζ, ξ) ∈ D<T × R:

max{−1

2
[
πpp

(πp)
2σ

2](ζ)ξ2 +h(ζ)− 1

2
[σ2δ2](ζ)$ξξ(ζ, ξ);−1 +$ξ(ζ, ξ);−1−$ξ(ζ, ξ)} = 0,

(3.7)

where

δ := sθs − θ +
θp
πp

(θ − sπs) . (3.8)

In order to construct the pair ($,h), we need some smoothness and non-degeneracy

conditions on the value function π of the frictionless problem.

Assumption 3.3. The functions π, θ and δ are C1,2(D) and (πpp ∧πp ∧ |δ|) > 0 on D.

Lemma 3.4. Let the Assumption 3.3 hold. Then, there exists a locally bounded function

h on D and a non-negative function $ on D × R such that, for all ζ ∈ D, the map

ξ ∈ R 7→ $(ζ, ξ) is C2(R) and solves (3.7) on R. Moreover, it satisfies

(i) $(·, 0) = 0 on D.

(ii) $ ∈ C1,2(D× R) and |$ξ| ≤ 1 on D× R.

(iii) There exists a continuous function % : D→ R such that

|$(·, ξ)|
1 + |ξ|

+ (|$t|+ |D$|+ |D2$|)(·, ξ) ≤ % on D, ∀ ξ ∈ R. (3.9)

(iv) There exists a continuous positive function ξ̂ξ on D such that, for all (ζ, ξ) ∈ D×R,

$ξ(ζ, ξ) = −1 ⇔ ξ ≤ −ξ̂ξ(ζ) and $ξ(ζ, ξ) = 1 ⇔ ξ ≥ ξ̂ξ(ζ).

The proof of this result is postponed to Section 6. In that section, we also derive

explicit expressions for $, h and ξ̂ξ in terms of π and its derivatives, see (6.5), (6.3) and

(6.4) below.

Remark 3.5. It follows from Lemma 3.4 that we indeed have |$(·, ξ)| ≤ |ξ| for all

ξ ∈ R. This is a straightforward consequence of (3.7) and (i).

In order to fully characterize u as u∗ = u∗, we also need a comparison principle on

(3.5).
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Assumption 3.6. There exists a set of functions C which contains u∗ and u∗, and

such that u1 ≥ u2 on D whenever u1 (resp. u2) is a lower semi-continuous (resp. upper

semi-continuous) viscosity super-solution (resp. sub-solution) of (3.5) in C.

Under the above conditions, we will prove in Section 5 that the expansion announced

in (3.1) holds.

Theorem 3.7. Let the Assumptions 3.2, 3.3 and 3.6 hold. Then, (3.1) holds with $

as in Lemma 3.4 and u given by the unique viscosity solution of (3.5) in C. Moreover,

u = u∗ = u∗.

Proof. This is an immediate consequence of Propositions 5.5, 5.7 and 5.8 below, com-

bined with Assumption 3.6. 2

As explained above, the function π is explicit or can be computed easily, and so is v,

while $ is given in (6.5) below in terms of π and its derivatives. As for u, it solves the

linear equation (3.5) which can be solved numerically whenever the function â defined in

(2.14) and âµ/σ are Lipschitz on D. Note that, in this case, it admits the Feynman-Kac

representation

u(t, s, p) = E

[∫ T

t

h
(
τ, S̄t,sτ , P̄ t,s,pτ

)
dτ

]
,

in which S̄t,s solves (2.1) with µ ≡ 0, and

P̄ t,s,p := p−
∫ ·
t

(âµ/σ)(τ, S̄t,sτ , P̄ t,s,pτ )dτ +

∫ ·
t

â(τ, S̄t,sτ , P̄ t,s,pτ )dWτ .

If the probability measure Qt,s of Proposition 2.2 is well defined, this is equivalent to

u(t, s, p) = EQt,s
[∫ T

t

h
(
τ, St,sτ , P̂ t,s,pτ

)
dτ

]
,

in which

P̂ t,s,p := p+

∫ ·
t

â(τ, St,sτ , P̂ t,s,pτ )dWτ .

In the examples of Section 4, all these quantities are known, as far as one can compute

the price and the greeks of a plain vanilla European option in the Black and Scholes

model.

Note also that the functions π and ξ̂ξ can be used to construct almost optimal strate-

gies in the original problem (2.7). This will be explained later on in Section 7 for the

exponential and the power risk criterias.

Remark 3.8. We restrict here to the case of a single stock mainly for ease of notations.

The arguments contained in Section 5 can essentially be reproduced in the multidimen-

sional case. The main difficulties will come from the construction of $ in Lemma 3.4,

see [47], and from the existence of a solution to the Skorohod problem in the proofs of

Section 7.

4 Examples

In this section, we discuss two typical examples of application in which Assumptions

3.2, 3.3 and 3.6 are satisfied, and therefore the expansion result of Theorem 3.7 can be

applied.
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4.1 The exponential risk criterion in the Black and Scholes model

We first specialize the discussion to the case where the loss function Ψ is of exponential

form:

Ψ(r) := −e−ηr , r ∈ R , (4.1)

for some η > 0, and the stock price St,s follows the Black and Scholes dynamics

St,s = s+

∫ ·
t

λσSt,sτ dτ +

∫ ·
t

σSt,sτ dWτ , (4.2)

for some (λ, σ) ∈ R× (0,∞).

In this case, the pricing function π can be derived explicitly. This is an easy conse-

quence of Proposition 2.2. We recall that h and ξ̂ξ are given in (6.3) and (6.4) below.

Proposition 4.1. For all (t, s, p) ∈ D := [0, T ]× (0,∞)× (−∞, 0),

π(t, s, p) = π̄(t, s) + π̌(t, p) , (4.3)

where

π̌(t, p) := −λ
2(T − t)

2η
− 1

η
ln(−p)

and

π̄(t, s) := EQ [g(St,sT )
]

with dQ/dP := e−
λ2

2 T−λWT .

Moreover, if π̄ ∈ C0,2([0, T ]× (0,∞)), then θ(t, s) = sπ̄s(t, s) + λ
ση , δ(t, s) = s2π̄ss(t, s)− λ

ση , â(p) = −λp ,

h(t, s) =
(

3
16

) 2
3 σ2η

1
3 |δ(t, s)| 43 , ξ̂ξ(t, s) =

(
3
2η

) 1
3 |δ(t, s)| 23 .

(4.4)

They are well-defined under the conditions of Assumption 4.2 below. Note in par-

ticular that

θ, δ, h and ξ̂ξ only depend on (t, s). (4.5)

Moreover, the second corrector equation (3.5) can be written as−ϕt −
1
2σ

2s2ϕss − λ2

2 p
2ϕpp + σλspϕsp + λ2pϕp − h = 0 on D<T ,

ϕ = 0 on DT .
(4.6)

If h is bounded, which will be the case under Assumption 4.2 below, it follows from

standard arguments that

û : (t, s) ∈ [0, T ]× (0,∞) 7→ EQ

[∫ T

t

h(τ, St,sτ )dτ

]
, (4.7)

is the unique viscosity solution of (4.6) in the class of functions having polynomial

growth, see [18].

We now impose conditions under which Assumptions 3.2, 3.3 and 3.6 of Theorem

3.7 hold true. In particular, they are similar to the assumptions used in [5, Assumptions

3.1 and 3.2]. 5

Assumption 4.2. The following holds:

5These assumptions can be verified directly using the frictionless equation and assumptions on g.
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a. π̄ ∈ C1,4(D).

b. There exists K > 0 such that

|g|+ |sπ̄s|+ |s2π̄ss|+ |δ−1|+ |θt|+ |s2θss| ≤ K on D.

Note that these conditions imply in particular that û, $ ∈ C1,2(D), see (4.4) and

(6.5) below for the exact expression of $.

Proposition 4.3. Let Ψ be as in (4.1) and S as in (4.2). Then, Assumption 4.2 implies

Assumptions 3.2, 3.3 and 3.6 of Theorem 3.7.

The proof of this proposition is postponed to Section 7.

Remark 4.4. [ε2-optimal strategies] In the course of the proof of Proposition 4.3,

we shall explain how to construct strategies which are optimal at the order O(ε2), or

o(ε2) under an additional regularity assumption, for the problem with transaction costs,

and which only depends on the knowledge of v, û, $ and θ. See Propositions 7.1 and

7.2 below.

Note that, as a by-product, our expansion allows one to recover the result of [5] on

the Hodges and Neuberger indifference price. More precisely, let V ε be defined as

V ε(t, s, y, x) := sup
L∈Lε(t,s,y,x)

E
[
Ψ
(
Y t,y,ε,LT + `ε(Xt,x,s,L

T )− g(St,sT )
)]

and let Ṽ ε be defined similarly but for g ≡ 0. Then, the indifference price associated to

the market with transaction costs is given by

qε(t, s, y, x) := inf{q ∈ R : V ε(t, s, y + q, x) ≥ Ṽ ε(t, s, y, x)}.

It is easy to see that, for the exponential risk criterion, qε does not depend on the

y-variable and that

qε(t, s, x) = −1

η
ln

(
Ṽ ε(t, s, y, x)

V ε(t, s, y, x)

)
= vε(t, s,−1, x)− ṽε(t, s,−1, x) ,

in which ṽε is defined as vε but for g ≡ 0. Under the assumptions of Proposition 4.3, it

then follows that

qε(t, s, x) = π̄(t, s) + ε2EQ

[∫ T

t

∆h(τ, St,sτ )dτ

]
+ o(ε2) ,

in which

∆h(t, s) :=

(
3

16

) 2
3

σ2η
1
3

(
|δ(t, s)| 43 −

∣∣∣∣ λση
∣∣∣∣ 4

3

)
.

4.2 The power risk criterion in the Black and Scholes model

We now consider the case

Ψ(r) := −(r + κ)−β1{r>κ} −∞1{r≤κ} , r ∈ R, (4.8)

with β, κ > 0. For this risk function, Proposition 2.2 implies that π = π̄ + π̂ with

π̄(t, s) = EQ[g(St,sT )] and π̂(t, p) := −κ+ (−p)−
1
βm(t) , (4.9)

for (t, s, p) ∈ D, in which m is a C1
b ([0, T ]) positive function satisfying m(T ) = 1.
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In view of Remark 3.1, we can however not expect to have vε → v if g is not linear.

Since any linear payoff is hedged perfectly by the same buy-and-hold strategy in the two

models, this boils down to considering the case g ≡ 0 up to an initial shift of κ and x, at

the costs of an additional ε3 term. We therefore restrict to the degenerate case g ≡ 0.

Recall from Section 2.1 that the problem remains of interest, as vε is a building block

for the analysis of optimal investment problems under risk constraints, see [10, 14].

Proposition 4.5. Let Ψ be as in (4.8), S as in (4.2) and g ≡ 0. Then Assumptions

3.2, 3.3 and 3.6 of Theorem 3.7 hold.

The proof is postponed to Section 7.

Remark 4.6. [ε2-optimal strategies] As in the exponential case, we produce in the

course of the proof of Proposition 4.5 a strategy which is optimal at the order o(ε2) for

the problem with transaction costs, and which only depends on the knowledge of v, û,

$ and θ. See Remark 7.3 below.

5 Derivation of the small transaction costs expansion

5.1 Preliminaries

We start with the derivation of easy estimates that will be of important use in the

sequel.

Remark 5.1. Observe that, for (ζ, x) ∈ D×R, the initial dotation in cash and amount

of stock (vε(ζ, x)+x+ ε3|x|, 0) can be turned into (vε(ζ, x), x) by an immediate transfer

∆L0 = x, while the initial dotation (vε(ζ, 0)−x+ε3|x|, x) can be turned into (vε(ζ, 0), 0)

by an immediate transfer ∆L0 = −x. By the definition of vε, this implies that

vε(ζ, 0)− ε3|x| ≤ vε(ζ, x) + x ≤ vε(ζ, 0) + ε3|x|. (5.1)

Remark 5.2. It follows from the same arguments as in [15, Proposition 6.1] that vε ≥ v.

Lemma 5.3. (i) The functions u∗ and u∗ are independent of the x-variable;

(ii) Moreover, for all ζ ∈ D, we have

u∗(ζ) = lim sup
ε↓0,ζ′→ζ

uε∗(ζ ′, θ(ζ ′)) and u∗(ζ) = lim inf
ε↓0,ζ′→ζ

uε∗(ζ
′, θ(ζ ′)) , (5.2)

in which uε∗ and uε∗ denote the upper- and lower-semicontinuous envelopes of uε.

Proof. We only show the result for u∗, the same reasoning can be used for the relaxed

semi-limit u∗. Fix ζ ∈ D and x ∈ R. By the definition of u∗, there exists a sequence

(ζε, xε)ε>0 such that

(ζε, xε) −→
ε↓0

(ζ, x) and uε(ζε, xε) −→
ε↓0

u∗(ζ, x). (5.3)

Fix also a sequence (x′ε)ε>0 going to x′ ∈ R as ε→ 0. By Remark 5.1 and the definitions

of uε and v in (3.3) and (2.10), we have

vε(ζε, 0)− ε3|xε| ≤ ε2uε(ζε, xε) + π(ζε) ≤ vε(ζε, 0) + ε3|xε| ,
vε(ζε, 0)− ε3|x′ε| ≤ ε2uε(ζε, x′ε) + π(ζε) ≤ vε(ζε, 0) + ε3|x′ε| ,

so that

−ε (|xε|+ |x′ε|) ≤ uε(ζε, xε)− uε(ζε, x′ε) ≤ ε (|xε|+ |x′ε|) .
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Sending ε→ 0 and using (5.3) then leads to

lim
ε→0

uε(ζε, x
′
ε) = u∗(ζ, x).

This shows in particular that u∗(ζ, x′) ≥ u∗(ζ, x). By arbitrariness of x, x′ ∈ R, the

reverse inequality holds as well, showing that u∗ does not depend on its x-variable.

Moreover, applied to x = x′ := θ(ζ) and x′ε := θ(ζε), the above implies that

lim sup
ε↓0,ζ′→ζ

uε∗(ζ ′, θ(ζ ′)) ≥ u∗(ζ, θ(ζ)) = lim sup
ε↓0,(ζ′,x′)→(ζ,θ(ζ))

uε(ζ ′, x′).

To conclude the proof of the left hand-side of (5.2), it remains to show that

lim sup
ε↓0,(ζ′,x′)→(ζ,θ(ζ))

uε(ζ ′, x′) = lim sup
ε↓0,(ζ′,x′)→(ζ,θ(ζ))

uε∗(ζ ′, x′), (5.4)

and to use the inequality

lim sup
ε↓0,(ζ′,x′)→(ζ,θ(ζ))

uε∗(ζ ′, x′) ≥ lim sup
ε↓0,ζ′→ζ

uε∗(ζ ′, θ(ζ ′)).

To see that the above holds, note that the continuity of v, see Assumption 3.3 and recall

(2.10), implies that for (ζ, ξ) ∈ D× R and ε > 0 we can find (ζε, ξε) ∈ D× R such that

(vε − v)(ζ, ξ) ≤ (vε∗ − v)(ζ, ξ) ≤ (vε − v)(ζε, ξε) + ε3. Recalling the definition of uε in

(3.3), this proves (5.4).

In view of the above result, we shall from now on omit the x-variable in the functions

u∗ and u∗.

5.2 The key expansion lemma

We now provide the following key lemma, which is the counterpart of [53, Remark 3.4,

Section 4.2].

Lemma 5.4. Assume that π, θ ∈ C1,2(D<T ). For ε > 0, and two C1,2(D<T × R)

functions φ and w, define

ψε = v + ε2φ+ ε4wε with wε := w ◦ ξξε. (5.5)

Set Dι
ε := (D<T × R) ∩ {ψεp > 0} ∩ {ε2φp + ε4wεp ≥ ιπp} for some ι > −1. Then,

ε−2(LSX + L̂P|SX)ψε =
1

2

πpp

(πp)
2σ

2ξξ2
ε + (H+ LâX|SP)φ+

1

2
σ2δ2(wξξ ◦ ξξε) +Rε on Dι

ε, (5.6)

where

LâX|SPφ =
1

2
σ2θ2φxx + σ2sθφsx + θσâφpx

with â defined in (2.14), and where Rε is a continuous map defined on Dι
ε such that:

(i) For each bounded set B ⊂ Dι
ε, there exists εB > 0 such that {ε−1Rε(ζ, x) : (ζ, x,

ξξε(ζ, x)) ∈ B, ε ∈ (0, εB ]} is bounded.

(ii) Let B ⊂ Dι
ε be a bounded set. Assume that φ ∈ C∞b (B) and that w satisfies (3.9).

Then, there exists εB > 0 and CB > 0 such that

|Rε(ζ, x)| ≤ CB(1 + ε|ξξε|+ ε2|ξξε|2)(ζ, x) ,

for all ε ∈ (0, εB ] and (ζ, x) ∈ B.
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Proof. All over this proof, we work on Dι
ε and omit the argument for simplicity.

Step 1: We first provide an expansion for LSXψ
ε. The first term follows from the relation

x = θ + εξξε:

LSX(v + ε2φ) = LSθ(v + ε2φ)− εµξξε + ε2Rε1 ,

with

Rε1 = εξξε

(
µφx +

σ2

2
((2θ + εξξε)φxx + 2sφxs)

)
.

Then, we use the fact that ξξε = ξξ1/ε and the definitions of σ̄a and σ̄θ,a in (2.8) and

(2.12) to obtain

LSX(ε4wε) =
ε2

2
(wξξ ◦ ξξε)Dξξ>1 σ̄0σ̄

>
0 Dξξ1 + ε2Rε2

=
ε2

2
(wξξ ◦ ξξε)Dξξ>1 σ̄θ,0σ̄>θ,0Dξξ1 + ε2Rε3 ,

where

Rε2 = ε2(LSw) ◦ ξε + ε
(
(wξ ◦ ξξε)LSXξξ1 + 2s2σ2∂sξξ1(wsξ ◦ ξξε)

)
and

Rε3 = Rε2 +
σ2

2
(wξξ ◦ ξξε)(D(s,x)ξξ1)>

(
0 sεξξε
sεξξε θεξξε + (εξξε)

2

)
D(s,x)ξξ1

= Rε2 + εξξε
σ2

2
(wξξ ◦ ξξε)(D(s,x)ξξ1)>

(
0 s

s θ + εξξε

)
D(s,x)ξξ1.

Combining the above expansions leads to

LSXψ
ε = LSθ(v + ε2φ)− εµξξε +

ε2

2
(wξξ ◦ ξξε)Dξξ>1 σ̄θ,0σ̄>θ,0Dξξ1 + ε2(Rε1 +Rε3). (5.7)

Step 2: We now focus on the operator L̂P|SX applied to ψε. Since ψεp > 0 on Dι
ε, we have

L̂P|SXψ
ε = La

ε

P|SXψ
ε with aε :=

−σ̄>0 Dψε

πp
× 1

1 + ε2∂p(φ+ ε2wε)/πp
. (5.8)

a. We first provide an expansion for aε around â defined in (2.14). We start by

performing a first order expansion on the right-hand side of (5.8) to obtain

aε =
−σ̄>0 Dψε

πp
×
(
1− ε2∂p(φ+ ε2wε)/πp

)
+Rε4 , (5.9)

where Rε4 is a continuous map satisfying

|Rε4| ≤
|σ̄>0 Dψε|

πp

2

(1 + ι)3

∣∣ε2∂p(φ+ ε2wε)/πp
∣∣2 on Dι

ε

=
|σ̄>0 Dψε|

πp

2

(1 + ι)3

∣∣∣∣ε2φpπp − ε3 θp(wξ ◦ ξξε)πp
+ ε4

(wp ◦ ξξε)
πp

∣∣∣∣2 .
Then, we obverse that

−σ̄>0 Dψε = −σ̄>0 Dv − σ̄>0 D(ε2φ+ ε4wε)

= −σ̄>θ,0Dv + σεξξε − σ̄θ+εξξε,0D(ε2φ+ ε4wε).
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By the definition of â in (2.14), dividing the above by πp = vp implies

−σ̄>0 Dψε

πp
= â+ ε

σξξε
πp
−
σ̄>θ+εξξε,0D(ε2φ+ ε4wε)

πp
.

Recalling (5.9), this leads to

aε = â+ ε
σξξε
πp
− ε2

σ̄>θ,âDφ

πp
+Rε5 , (5.10)

(aε)2 = (â)
2

+ 2εâ
σξξε
πp

+ ε2

[(
σξξε
πp

)2

− 2âσ̄>θ,âDφ/πp

]
+Rε6 , (5.11)

where

Rε5 := Rε4 − ε2
[
εξξε

σφp
(πp)2

+
σ̄>εξξε,0Dφ

πp

]
+ ε4

wεp
πp

(
−â− εξξε

σ

πp
+ ε2

σ̄>θ+εξξε,0Dφ

πp

)

−ε4
σ̄>θ+εξξε,0Dw

ε

πp

(
1− ε2∂p(φ+ ε2wε)/πp

)
+ ε4

φp
π2
p

σ̄>θ+εξξε,0Dφ ,

Rε6 =

(
−ε2

σ̄>θ,âDφ

πp
+Rε5

)2

+ 2âRε5 + 2
σξξε
πp

(
−ε2

σ̄>θ,âDφ

πp
+Rε5

)
.

b. We now plug the expansions (5.10) and (5.11) in the left-hand side equality in

(5.8) to obtain

L̂P|SXψ
ε = LâP|Sθv + ε

[
πppâ

σξξε
πp

+ σ2sπsp
ξξε
πp

]
(5.12)

+ε2

(
1

2
πpp

[(
σξξε
πp

)2

− 2â

(
σ̄>θ,âDφ

πp

)]
− σsπsp

σ̄>θ,âDφ

πp
+ LâP|Sθφ

)

+ε2
(

1

2
(wξξ ◦ ξξε)Dξξ>1 (σ̄θ,âσ̄

>
θ,â − σ̄θ,0σ̄>θ,0)Dξξ1 +Rε7

)
,

with

Rε7 =
1

2
Rε6πpp +Rε5σsπsp +

1

2
((aε)2 − (â)2)(ε2φpp + ε4wεpp) + σs(aε − â)(ε2φsp + ε4wεsp)

+[(aε − â)(εξξε + θ) + âεξξε]σφpx

+
ε3

2
(â)2 (εwpp − 2θpwpξ − θppwξ) ◦ ξξε

+ε3âσ (εswsp − sθpwsξ − sθswpξ − sθspwξ + θwpξ) ◦ ξξε.

Step 3: It remains to combine the results of Steps 1 and 2. We first observe that (2.11)

and the definition â implies that

LSθv + LâP|Sθv = LSθv + L̂P|Sθv = 0.

Second, we use (2.14) and the identity v = π − x to obtain

â =
µ
σπp − σsπps

πpp
,

which leads to

εξξε

(
−µ+ πppâ

σ

πp
+ σ2sπsp

1

πp

)
= 0,
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and

LSθφ+ LâP|Sθφ− πppâ

(
σ̄>θ,âDφ

πp

)
− σsπsp

σ̄>θ,âDφ

πp
= LSθφ+ LâP|Sθφ−

µ

σ
σ̄>θ,âDφ

= (H+ LâX|SP)φ.

Finally, we use the identities ξξ1 = θ − x and â = (θ − sπs)σ/πp, recall (2.15), to obtain

σ2δ2 = Dξξ>1 σ̄θ,0σ̄
>
θ,0Dξξ1 +Dξξ>1 (σ̄θ,âσ̄

>
θ,â − σ̄θ,0σ̄>θ,0)Dξξ1,

where δ is defined in (3.8). The above identities combined with (5.7) and (5.12) leads

to (5.6) for Rε defined as

Rε := Rε1 +Rε3 +Rε7. (5.13)

Step 4: The estimates on Rε follow from direct computations. 2

5.3 Viscosity subsolution property

Proposition 5.5. Let the conditions of Theorem 3.7 hold. Then, u∗ is a viscosity

subsolution of (3.5).

Proof. Let ζo ∈ D<T and ϕ ∈ C1,2(D<T ) be such that

max
D<T

(strict)(u∗ − ϕ) = (u∗ − ϕ)(ζo).

By Lemma 5.3, there exists (ζε)ε>0 satisfying

ζε −→
ε↓0

ζo, xε := θ(ζε) −→
ε↓0

θ(ζo) =: xo,

uε∗(ζε, xε) −→
ε↓0

u∗(ζo) and ∆ε := uε∗(ζε, xε)− ϕ(ζε) −→
ε↓0

0.
(5.14)

Assumptions 3.2 and 3.3 entail the existence of r̄o > 0, 0 < ro ≤ r̄o and εo > 0 such

that

m̄ := sup {uε∗(ζ, x), (ζ, x) ∈ Bo, ε ∈ (0, εo]} <∞,

and

θ ∈ B̄ r̄o
4

(xo) on B̄ro(ζo), (5.15)

where Bo := Bro(ζo)×Br̄o(xo). After possibly changing εo, we can also assume that

|ζε − ζo| ∨ |xε − xo| ≤
ro
4

and |∆ε| ≤ 1 for all ε ∈ (0, εo]. (5.16)

We have

uε∗ ≤ m̄ on Bo for ε ∈ (0, εo], (5.17)

and, by Assumption 3.3,

πpp ∧ πp > ι on Bro(ζo), for some ι ∈ (0, 1). (5.18)

Step 1: We first construct a suitable test function for vε, for ε ∈ (0, εo].

Since the function ϕ is continuous,

sup
{

2 + m̄− ϕ(ζ) ; ζ ∈ B̄ro(ζo)
}

=: M̄ < +∞.

On the other hand, (5.16) implies that there is γ > 0 such that

|ζ − ζε|4 ≥ γ for ζ ∈ B̄ro(ζo)\B̄ ro
2

(ζo). (5.19)
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We choose a strictly non-negative constant co satisfying co(γ ∧ ( ro4 )4) ≥ M̄ and define

for ε ∈ (0, 1)

φε : (ζ, x) ∈ D× R 7→ co

(
|ζ − ζε|4 + |x− θ(ζ)|4

)
.

Consider now the following subset of B̄o:

Bo, 12 :=
{

(ζ, x) ∈ B̄o s.t. ζ ∈ B̄ ro
2

(ζo) and x ∈ B̄ r̄o
2

(xo)
}
.

It follows from (5.19), (5.15) and the choice of co that

φε ≥ 2 + m̄− ϕ on B̄o\Bo, 12 . (5.20)

We now define, for η ∈ (0, 1],

ψε,η := v + ε2 (∆ε + ϕ+ φε) + ε4(1 + η)$ ◦ ξξε,

where the function ξξε is defined in (3.2) and $ is given in Lemma 3.4.

Step 2: Given ε ∈ (0, εo] and η ∈ (0, 1], we now show that vε∗ − ψε,η admits a local

maximizer (ζ̃ε, x̃ε) in Bo.

Note that, a-priori, this local maximizer should depend on η. We shall not emphasize

this to alleviate notations but will come back to this point at the end of the proof. We

set

Iε,η := uε∗ −∆ε − ϕ− φε − ε2(1 + η)$ ◦ ξξε.

Combining the fact that $(·, 0) = 0, see Lemma 3.4, (5.16) and the definitions of xε,

∆ε and φε, we obtain

sup
B̄o

Iε,η ≥ sup
B̄
o, 1

2

Iε,η ≥ Iε,η(ζε, xε) = 0.

On the other hand, by (5.16), (5.17), (5.20), the fact that $ ≥ 0, see Lemma 3.4, and

the defnition of m̄, we have

Iε,η ≤ uε∗ − m̄− 1− ε2(1 + η)$ ◦ ξξε < 0 on B̄o\B̄o, 12 ,

after possibly changing ε0. Also Iε,η is upper-semicontinuous. Hence, we may find a

maximizer (ζ̃ε, x̃ε) ∈ B̄o, 12 ⊂ Bo which satisfies

Iε,η
(
ζ̃ε, x̃ε

)
≥ 0 and

∣∣∣εξξε(ζ̃ε, x̃ε)∣∣∣ ∨ ∣∣∣ζ̃ε − ζo∣∣∣ ≤ r1 , (5.21)

for some constant r1 > 0. We recall that

εξξε(ζ̃
ε, x̃ε) = x̃ε − θ(ζ̃ε). (5.22)

Step 3: We now prove that there exists ε̄o ≤ εo such that for all ε ∈ (0, ε̄o] we have

−ξ̂ξ(ζ̃ε) < ξξε(ζ̃
ε, x̃ε) < ξ̂ξ(ζ̃ε), (5.23)

where ξ̂ξ is given in Lemma 3.4.

We only prove the right hand-side. The other inequality is proved similarly. We first

observe that Theorem 2.1 and step 2 imply that

−ε3 + 1 + ψε,ηx

(
ζ̃ε, x̃ε

)
≤ 0. (5.24)

Recalling the definitions of ψε,η, v and φε, direct computations lead to

1 + ψε,ηx

(
ζ̃ε, x̃ε

)
= 4ε2co

(
εξξε(ζ̃

ε, x̃ε)
)3

+ ε3(1 + η)$ξ ◦ ξξε(ζ̃ε, x̃ε),
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so that we may rewrite (5.24) as

−ε+ ε(1 + η)$ξ ◦ ξξε(ζ̃ε, x̃ε) ≤ −4co

(
εξξε(ζ̃

ε, x̃ε)
)3

. (5.25)

Assume now that the right hand-side of (5.23) does not hold for all ε > 0, small enough.

Then, there exists a sequence (εk)k≥1 satisfying εk → 0 as k →∞ such that

ξξεk(ζ̃εk , x̃εk) ≥ ξ̂ξ
(
ζ̃εk
)
.

Recall from Lemma 3.4 that this implies that

$ξ ◦ ξξεk(ζ̃εk , x̃εk) = 1 and ξξεk(ζ̃εk , x̃εk) > 0.

Combined with (5.25) the later leads to a contradiction since co, η, εk > 0.

Step 4: We now prove that there is ξ̄ ∈ R such that

0 ≥

(
−1

2

πpp

(πp)
2σ

2ξ̄2 −Hϕ− 1

2
σ2δ2(1 + η)$ξξ(·, ξ̄)

)
(ζo) . (5.26)

Recall that ξ̂ξ is a continuous functions. In view of (5.23) and (5.21), it follows that

(ζ̃ε, x̃ε, ξξε(ζ̃
ε, x̃ε))0<ε≤ε̄o is bounded. (5.27)

We can then find a sequence (εn)n≥1 ⊂ (0, ε̄o] such that εn → 0 as n→∞ and

(ζ̃εn , x̃εn , ξξεn(ζ̃εn , x̃εn))→ (ζ̄, x̄, ξ̄) ∈ D× R× R as n→∞. (5.28)

Moreover, classical arguments show that

(ζ̄, x̄) = (ζo, xo). (5.29)

Observe for later use that

−ξ̂ξ(ζo) ≤ ξ̄ ≤ ξ̂ξ(ζo) , (5.30)

by (5.23) and the continuity of ξ̂ξ. By Step 2 and Theorem 2.1 again, we have{
−LSXψ

εn,η − L̂P|SXψ
εn,η
}(

ζ̃εn , x̃εn
)
≤ 0 for all n ≥ 1. (5.31)

Moreover, (5.27), (5.18) and Lemma 3.4 imply that we can apply Lemma 5.4 to ψεn,η.

For n large enough:

0 ≥

(
− πpp

2 (πp)
2σ

2ξξ2
εn −Hϕ̄

εn − LâX|SPφ
εn − σ2δ2(1 + η)($ξξ ◦ ξξεn)

2
+Rεn

)(
ζ̃εn , x̃εn

)
,

where

ϕ̄εn := ∆εn + ϕ+ φεn ,

and Rεn(ζ̃εn , x̃εn) → 0 as n → ∞. Sending n → ∞ and using (5.22), (5.28) and (5.29)

provides (5.26).

Step 5: We can now conclude the proof. By the construction of $ as a solution of the

first corrector equation (3.7) and by (5.30), we have

1

2
(
πpp

(πp)
2σ

2)(ζo)ξ̄
2 +

1

2
(σ2δ2)(ζo)$ξξ

(
ζo, ξ̄

)
= h(ζo) ,
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which plugged into (5.26) gives

−Hϕ(ζo) ≤ h(ζo) + η
1

2
σ2δ(ζo)

2$ξξ

(
ζo, ξ̄

)
. (5.32)

Finally we note that, although ξ̄ as constructed in Step 4 above depends on η, ζo does

not depend on this parameter, and therefore |$ξξ(ζo, ·)| is bounded by Lemma 3.4.

Sending η → 0 in the above inequality leads to

−Hϕ(ζo) ≤ h(ζo).

5.4 Viscosity supersolution property

For sake of completeness, we report here [47, Lemma 5.4] that will be used in the proof

below.

Lemma 5.6. For all η ∈ (0, 1), there exists cη > 1 and a smooth function hη : R→ [0, 1]

satisfying hη = 1 on [−1, 1], hη = 0 on [−cη, cη]c and

|x||h′η(x)| ≤ η, and |x||h′′η(x)| ≤ 2C∗, (5.33)

for some constant C∗ > 0 independent of η.

Proposition 5.7. Let the conditions of Theorem 3.7 hold. Then, u∗ is a viscosity

supersolution of (3.5).

Proof. Let ζo ∈ D<T and ϕ ∈ C1,2(D<T ) be such that

min
D<T

(strict)(u∗ − ϕ) = (u∗ − ϕ)(ζo) = 0.

By Lemma 5.3 and the continuity of ϕ, there exists (ζε)ε>0 such that

ζε −→
ε↓0

ζo, xε := θ(ζε) −→
ε↓0

θ(ζo) =: xo ,

uε∗(ζ
ε, xε) −→

ε↓0
u∗(ζo) and ∆ε := uε∗(ζ

ε, xε)− ϕ(ζε) −→
ε↓0

0 .
(5.34)

Let ro > 0 and εo ∈ (0, 1] be such that

|ζε − ζo| ≤
ro
2

and |∆ε| ≤ 1 for all ε ≤ ε0. (5.35)

Step 1: We fix ε ∈ (0, εo] and construct a first test function for uε∗.

Since ϕ is smooth, there exists a constant M <∞ such that

sup
{
ϕ(ζ) ; ζ ∈ B̄ro(ζo)

}
≤M − 4. (5.36)

By (5.35), there exists a finite d > 0 such that |ζ − ζε|4 ≥ d for all ζ ∈ ∂Bro(ζo). We fix

co > 0 such that cod ≥M and define

φε(ζ) := ϕ(ζ) + ∆ε − co
(
|ζ − ζε|4

)
.

It follows from (5.35), (5.36) and the choice of co that

−φε ≥ 3 on ∂Bro(ζo). (5.37)

Observe for later use that

(uε∗ − φε)(ζε, xε) = 0 , (5.38)
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by the definition of ∆ε.

For η ∈ (0, 1), we now set

ψε,η := v + ε2φε + ε4 (1− η) ($Hη) ◦ ξξε ,

in which

Hη : ξ ∈ R 7→ hη

(
ξ

ξ∗

)
,

for some ξ∗ ≥ 1 to be chosen later on, see (5.49) in Step 6, and where hη is as in Lemma

5.6.

Step 2: Let Qo := B̄ro(ζo) × R and fix ε ∈ (0, εo]. We now show that, for each n ≥ 1,

there exists (ζ̂ε,n, x̂ε,n) ∈ Int(Qo) satisfying

Iε,η
(
ζ̂ε,n, x̂ε,n

)
≤ inf
Qo

Iε,η +
1

2n
, (5.39)

in which

Iε,η := ε−2 (vε∗ − ψε,η) = uε∗ − φε − ε2(1− η)($Hη) ◦ ξξε. (5.40)

Note that ξξε(ζ
ε, xε) = 0 since xε = θ(ζε). Recalling that $(·, 0) = 0 by Lemma 3.4,

(5.38) implies that

Iε,η(ζε, xε) = 0. (5.41)

On the other hand, (5.40) combined with Remark 5.2, Remark 3.5 and Lemma 5.6

implies that

Iε,η ≥ −φε − ε2(1− η){|ξξε|1{|ξξε|≤cηξ∗}} ≥ −φ
ε − ε2(1− η)cηξ∗.

In particular,

Iε,η ≥ −φε − 1 if ε ≤ εη := εo ∧ ((1− η)cηξ∗)
− 1

2 . (5.42)

The set B̄ro(ζo) being compact, the inf over B̄ro(ζo) of the right-hand side is finite,

which proves our claim.

Step 3: For η ∈ (0, 1), ε ∈ (0, εη] and n ≥ 1, we now construct a C2 function ψε,η,n and

(ζε,n, xε,n) ∈Int(Qo) such that

min
Qo

(vε − ψε,η,n) = (vε − ψε,η,n)(ζε,n, xε,n).

Let f ∈ C∞b (R) be an even function satisfying 0 ≤ f ≤ 1, f(0) = 1 and f(x) = 0

whenever |x| ≥ 1. We set

ψε,η,n(·, x) := ψε,η(·, x) +
ε2

n
f (x− x̂ε,n)

and

Iε,η,n(·, x) :=
1

ε2
(vε∗ − ψε,η,n) (·, x) = Iε,η(·, x)− 1

n
f (x− x̂ε,n) .

By (5.39) and the identity f(0) = 1,

Iε,η,n
(
ζ̂ε,n, x̂ε,n

)
= Iε,η

(
ζ̂ε,n, x̂ε,n

)
− 1

n
≤ inf
Qo

Iε,η − 1

2n
. (5.43)

Moreover, by the definition of f ,

Iε,η,n = Iε,η on Qo\Qn1 , where Qn1 := {(ζ, x) ∈ Qo s.t. |x− x̂ε,n| ≤ 1}.
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Since (ζ̂ε,n, x̂ε,n) ∈ Qn1 , the later combined with (5.43) implies that

inf
Qn1

Iε,η,n < inf
Qo

Iε,η ≤ inf
Qo\Qn1

Iε,η = inf
Qo\Qn1

Iε,η,n,

so that

inf
Qo

Iε,η,n = inf
Qn1

Iε,η,n.

By the lower semi-continuity of Iε,η,n and the compactness of Qn1 , we can then find

(ζε,n, xε,n) ∈ Qo which minimizes Iε,η,n on Qo. It remains to show that it belongs to

Int(Qo). Indeed, the left hand-side of (5.35), the property f ≥ 0, and (5.41) imply that

Iε,η,n (ζε,n, xε,n) ≤ Iε,η,n (ζε, xε) ≤ Iε,η (ζε, xε) = 0,

whereas by (5.37), (5.42) and the fact that −f ≥ −1, we have

Iε,η,n ≥ Iε,η − 1

n
≥ 2− 1

n
> 0 on ∂Qo = ∂Bro(ζo)× R. (5.44)

Step 4: Given η ∈ (0, 1) and ε ∈ (0, εη], we now show that there exists Nε,η ≥ 1 such

that

−
(
LSXv

ε + L̂P|SX

)
ψε,η,n (ζε,n, xε,n) ≥ 0 for n ≥ Nε,η. (5.45)

In view of step 3 and Theorem 2.1, it suffices to show that

max
{
−ε3 + 1 + ψε,η,nx ;−ε3 − (1 + ψε,η,nx )

}
(ζε,n, xε,n) < 0,

or equivalently that

|1 + ψε,η,nx | (ζε,n, xε,n) < ε3.

Recalling that f ∈ C∞b (R) is even, we first compute

1 + ψε,η,nx (ζε,n, xε,n) = ε3(1− η)($Hη)ξ ◦ ξξε (ζε,n, xε,n) +
ε2

n
f ′ (|xε,n − x̂ε,n|) .

Since f ∈ C∞b (R) is constant outside [−1, 1], there exists 0 < cf < +∞, which does not

depend on ε nor n, such that

|1 + ψε,η,nx (ζε,n, xε,n)| = ε3(1− η)
(
|$ξHη|+

∣∣$H ′η∣∣) ◦ ξξε (ζε,n, xε,n) +
ε2cf
n

.

In view of (3.7), (ii) of Lemma 3.4, Remark 3.5 and the fact that |Hη| ≤ 1 by Lemma

5.6, this implies that

|1 + ψε,η,nx (ζε,n, xε,n)| = ε3(1− η)

(
1 +
|ξξε|
ξ∗

∣∣h′η∣∣ ( ξξεξ∗
))

(ζε,n, xε,n) +
ε2cf
n

.

Recalling from Lemma 5.6 that |x||h′η(x)| ≤ η for x ∈ R, we finally obtain

|1 + ψε,η,nx (ζε,n, xε,n)| ≤ ε3(1− η2) +
ε2cf
n

<ε3 for all n≥ 1 +
cf
εη2

=: Nε,η.

(5.46)

Step 5: We now show that {ξξε(ζε,n, xε,n) ; ε ∈ (0, εη], n ≥ Nε,η} is uniformly bounded.

We first appeal to Lemma 5.4, recall Assumption 3.3, Lemma 3.4 and that (ζε,n,

n ≥ 1, ε ∈ (0, εη]) is bounded, see step 3. Since φε does not depend on the x-variable,

this implies

−ε−2(LSX + L̂P|SX)ψε,η,n = −1

2

πpp

(πp)
2σ

2ξξ2
ε −Hφε −

1− η
2

σ2δ2($H)ξξ ◦ ξξε +Rε,n ,
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at the point (ζε,n, xε,n), in which, by (ii) of Lemma 5.4,

|Rε,n| ≤ Cη(1 + ε|ξξε|+ ε2|ξξε|2)(ζε,n, xε,n), (5.47)

for some Cη > 0 independent on n and ε. By (5.45), we then have(
1

2

πpp

(πp)
2σ

2ξξ2
ε

)
(ζε,n, xε,n)− |Rε,n| ≤ −

(
Hφε +

1− η
2

σ2δ2($H)ξξ ◦ ξξε
)

(ζε,n, xε,n).

(5.48)

We first consider the last term of the previous inequality. By Lemma 3.4 and the

boundedness of (ζε,n, ε ∈ (0, εη], n ≥ 1), we can find Cη > 0, independent on n, ε and

η, such that such that |$ξξ ◦ ξξε|(ζε,n, xε,n) ≤ C. The same Lemma and Remark 3.5

also imply that |$ξ ◦ ξξε|(ζε,n, xε,n) ≤ 1 and |$ ◦ ξξε|(ζε,n, xε,n) ≤ |ξξε(ζε,n, xε,n)|. Using

Lemma 5.6, and the fact that ξ∗ ≥ 1 and η ≤ 1, it follows that, at the point (ζε,n, xε,n),

|($Hη)ξξ| ◦ ξξε =
∣∣∣$ξξHη + 2$ξH

′
η +$H

′′

η

∣∣∣ ◦ ξξε
≤ Cη +

2

ξ∗

∣∣∣∣h′η ( ξξεξ∗
)∣∣∣∣1[ξ∗,cηξ∗](|ξξε|) +

|ξξε|
(ξ∗)2

∣∣∣∣h′′η ( ξξεξ∗
)∣∣∣∣

≤ Cη +
2|ξξε|
(ξ∗)2

∣∣∣∣h′η ( ξξεξ∗
)∣∣∣∣+

|ξξε|
(ξ∗)2

∣∣∣∣h′′η ( ξξεξ∗
)∣∣∣∣

≤ Cη +
2

ξ∗
(η + C∗)

≤ Cη + 2(1 + C∗) =: C̄η.

Plugging this result into (5.48) leads to(
1

2

πpp

(πp)
2σ

2ξξ2
ε

)
(ζε,n, xε,n)− |Rε,n| ≤ −

(
Hφε−C̄ 1− η

2
σ2δ2

)
(ζε,n, xε,n).

The later combined with Assumption 3.3, (2.2), (5.47) and the fact that both ζε,n and

ζε lie in Bro(ζo), and the identity εξξε(ζ
ε,n, xε,n) = xε,n − θ(ζε,n), allows us to find a

constants Kη > 0, independent on n and ε, such that[
(ξξε)

2 −Kη

(
1 + |εξξε|+ |εξξε|2

)]
(ζε,n, xε,n) ≤ 0.

This proves our claim.

Step 6: We are now in position to conclude the proof.

By the previous step, for all ε ∈ (0, εη], we may assume, after possibly passing to

a subsequence, that (ζε,n, xε,n, ξξε(ζ
ε,n, xε,n)) → (ζ̄ε, θ(ζ̄ε), ξ̄ε) ∈ D × R2 as n → ∞.

Classical arguments then show that (ζ̄ε, ξ̄ε) → (ζo, ξ̂) for some bounded ξ̂ ∈ R, and

therefore θ(ζ̄ε) → θ(ζo) = xo, as ε → 0, after possibly passing to a subsequence.

Moreover, (i) of Lemma 5.4 now implies that Rε,n → 0 as n → ∞ and then ε → 0.

Hence, sending n→∞ and then ε→ 0 in (5.48) provides

1

2

(
πpp

(πp)
2σ

2

)
(ζo)ξ̂

2 ≤ −Hϕ(ζo)−
1− η

2
{σ2δ2($Hη)ξξ}(ζo, ξ̂).

The same arguments as in step 5 then shows that

ξ̂2 ≤

(
−Hϕ+ σ2δ2C̄(1− η)/2

1
2
πpp

(πp)2σ2

)
(ζo).
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We now choose ξ∗ ≥ 1 defined by

(ξ∗)
2 := 2 ∨ 2

(
−Hϕ+ σ2δ2C̄/2

1
2
πpp

(πp)2σ2
.

)
(ζo). (5.49)

Note that all the quantities on the right-hand side are given a-priori. Then, |ξ̂| < ξ∗. In

particular, Hη = 1 in a neighborhood of ξ̂, see Lemma 5.6, and the above then implies

that
1

2

(
πpp

(πp)
2σ

2

)
(ζo)ξ̂

2 ≤ −Hϕ(ζo)−
1− η

2

(
σ2δ2$ξξ

) (
ζo, ξ̂

)
.

Since $ is solution of (3.7), it follows that

Hϕ(ζo) ≤ −h(ζo) +
η

2
σ2δ2$ξξ(ζo, ξ̂).

It remains to let η → 0 and recall from Lemma 3.4 that |$ξξ(ζo, ·)| is bounded.

5.5 The Terminal condition

Proposition 5.8. Let the conditions of Theorem 3.7 hold. Then, u∗ = u∗ = 0 on DT .

Proof. The fact that u∗(T, ·) ≥ 0 follows from Remark 5.2. In the following, we prove

that u∗(T, ·) ≤ 0. We assume to the contrary that we can find (T, so, po) := ζo ∈ DT

such that

u∗(ζo) ≥ 4κ for some κ > 0 (5.50)

and work towards a contradiction.

Step 1: We construct a test function ψε for vε∗ and show that vε∗ − ψε admits a local

maximizer (t̃ε, s̃ε, p̃ε, x̃ε) = (ζ̃ε, x̃ε) ∈ D<T × R.

By Lemma 5.3, there are (ζε)ε>0 ⊂ D and xo ∈ R such that

ζε −→
ε↓0

ζo, xε := θ(ζε) −→
ε↓0

θ(ζo) =: xo and uε∗(ζε, xε) −→
ε↓0

u∗(ζo) , (5.51)

in which (tε, sε, pε) := ζε. Note that, after possibly passing to a subsequence, one can

assume that

ζε ∈ D<T for all ε > 0. (5.52)

Indeed, Theorem 2.1 and Theorem 2.3 imply that

uε∗(ζ, x) ≤ ε|x| for all (ζ, x) ∈ DT × R,

which would lead to a contradiction of (5.50) if (5.52) was not satisfied, at least along

a subsequence, since, by (5.51), (ζε, xε)ε>0 is bounded.

Combining arguments similar to those of the proof of Proposition 5.5 (Step 1) with

(5.50), (5.51), Assumptions 3.2 and 3.3 allow us to construct 0 < ro ≤ r̄o, εo ∈ (0, 1], co >

0 and ι > 0 such that, for all ε ∈ (0, εo],

(ζε, xε) ∈ Bo, 12 and uε∗(ζε, xε) ≥ 2κ, (5.53)

πp ≥ 2ι on Bo, (5.54)

uε∗ − φ̄(·; sε, pε) < 0 on Bo\Bo, 12 , (5.55)
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where Bo := [T − ro, T ]× B̄ro(so, po)× B̄r̄o(xo),

Bo, 12 :=
{

(ζ, x) ∈ Bo s.t. ζ ∈ [T − ro
2
, T ]× B̄ ro

2
(so, po) and x ∈ B̄ r̄o

2
(xo)

}
,

φ̄(·; sε, pε) : (t, s, p, x) ∈ D× R 7−→ co

(
|sε − s|4 + |pε − p|4 + |x− θ(t, s, p)|2

)
.

Recalling (5.52) and Assumption 3.3, we may then define, for each ε ∈ (0, εo], the smooth

function ψε := v + ε2φε with

φε : (t, s, p, x) ∈ D× R 7−→ κ
T − t
T − tε

+ φ̄(t, s, p, x; sε, pε).

By the upper semi-continuity of vε∗, we deduce from (5.53) and (5.55) that vε∗ − ψε
admits on Bo a local maximizer (ζ̃ε, x̃ε) ∈ Bo, 12 for every ε ∈ (0, εo], and that moreover

uε∗(ζ̃ε, x̃ε) ≥ κ.

By the argument used above, this implies that ζ̃ε ∈ D<T for all ε ∈ (0, εo] after possibly

choosing a subsequence.

Step 2: We now show that (ξξε(ζ̃ε, x̃ε))ε∈(0,εo] is uniformly bounded.

We fix ε ∈ (0, εo]. The previous step and Theorem 2.1 imply that

max
{
−(LSX + L̂P|SX)ψε ; −ε3 + 1 + ψεx ; −ε3 − 1− ψεx

}
(ζ̃ε, x̃ε) ≤ 0. (5.56)

Straightforward computations based on the gradient constraints give

− 1

2co
≤ ξξε(ζ̃ε, x̃ε) ≤

1

2co
. (5.57)

Step 3: We can now conclude the proof.

We fix ε ∈ (0, εo] and focus on the second order operator in (5.56). It follows from

(5.54) that ψεp(ζ̃ε, x̃ε) ≥ ι > 0, after possibly changing εo. Hence, Step 2 and (i) of

Lemma 5.4 imply that(
−1

2

πpp
(πp)2

σ2ξξ2
ε −Hφε − LâX|SPφ

ε +Rε
)

(ζ̃ε, x̃ε) ≤ 0 ,

where supε∈(0,εo] |Rε| (ζ̃ε, x̃ε) < ∞. Recalling (5.57), the fact that (ζ̃ε, ε ∈ (0, εo]) is

bounded, that x̃ε = εξξε(ζε) + θ(ζε), and Assumption 3.3, we finally deduce that

κ

T − tε
≤
(

1

2

πpp
(πp)2

σ2 1

4c2o
+
(
H+ LâX|SP

)
φ̄(·; sε, pε) +Rε

)(
ζ̃ε, x̃ε

)
≤ C for all ε ∈ (0, ε̄o] ,

for some constant C > 0 (independent of ε). As tε → T , we obtain a contradiction.

6 Explicit resolution of the first corrector equation

In this section, we prove Lemma 3.4. We follow the steps of [53]. Namely, we look for a

solution of the first order equation (3.7) with an additional condition at the boundary

ξ = 0. We fix ζ ∈ D and simply write $(ξ) for $(ζ, ξ). We recall that we work under

Assumption 3.3.

It is natural to search for a solution of the form

$(ξ) =


k4ξ

4 + k2ξ
2 + k1ξ ξ1 ≤ ξ ≤ ξ0 ,

−ξ + k3 ξ ≤ ξ1 ,

ξ + k0 ξ ≥ ξ0 ,
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for some real numbers k4, k3, k2, k1, k0 and ξ1 ≤ ξ0. Since the fourth order polynomial

solves the second order equation, we find

k4 = − 1

12

πpp

δ2 (πp)
2 and k2 =

h

σ2δ2
. (6.1)

If we now assume that $ξξ is continuous at the point ξ0 and ξ1, we have

12k4(ξ0)2 + 2k2 = 12k4(ξ1)2 + 2k2 = 0,

that is

(ξ0)2 = (ξ1)2 = 2
h

σ2
× (πp)

2

πpp
,

which, by the fact that πpp > 0, implies that h ≥ 0 and

ξ̂ξ := ξ0 = −ξ1 =

(
2
h

σ2
× (πp)

2

πpp

) 1
2

.

Assuming now that $ξ is continuous at the point ξ0 and ξ1 leads to

4k4(ξ̂ξ)3 + 2k2ξ̂ξ + k1 = 1 ,

−4k4(ξ̂ξ)3 − 2k2ξ̂ξ + k1 = −1 ,
(6.2)

which gives k1 = 0. By substituting (6.1) into (6.2),

− πpp

δ2 (πp)
2 (ξ̂ξ)3 +

6h

σ2δ2
ξ̂ξ = 3.

Since, by the above,

h =
σ2πpp
2(πp)2

(ξ̂ξ)2, (6.3)

we obtain

ξ̂ξ =

(
3

2

δ2 (πp)
2

πpp

) 1
3

. (6.4)

The remaining constants k0 and k3 are obtained by assuming the continuity of $ at the

points ξ0 and ξ1. Gathering the above terms together, we finally obtain

$(ξ) =


− 1

8ξ̂ξ
3 ξ4 + 3

4ξ̂ξ
ξ2 −ξ̂ξ ≤ ξ ≤ ξ̂ξ ,

−ξ − 3ξ̂ξ
8 ξ ≤ −ξ̂ξ ,

ξ − 3ξ̂ξ
8 ξ ≥ ξ̂ξ .

(6.5)

The remaining properties stated in Lemma 3.4 are straightforward under Assumption

3.3.

7 Verification of the assumptions in the examples

In this section, we provide the proofs of Propositions 4.3 and 4.5. We also explain how

to construct an explicit almost optimal strategy.
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7.1 Exponential case

We provide here the proof of Proposition 4.3.

Proof of Proposition 4.3 First note that (4.3) together with Assumption 4.2

imply Assumption 3.3. Under the boundedness condition b. of Assumption 4.2, the

function h is bounded, see (4.4). It follows that the map defined in (4.7) is bounded.

Moreover, standard arguments show that comparison holds in the viscosity solution

sense for the above equation in the class of functions with polynomial growth, see [18].

Then, Assumption 3.6 will hold if one shows that there exists C > 0 such that

0 ≤ uε(ζ, x) ≤ C(1 + ε|x|) for all (ζ, x) ∈ D× R and ε ∈ (0, 1], (7.1)

in which the left-hand side inequality is already a consequence of Remark 5.2. This will

also imply Assumption 3.2. The following arguments aim at proving the right-hand side

inequality of (7.1).

Step 1. We restrict to 0 < ε ≤ 1. Set

ψε(t, s, p, x) := v(t, s, p, x) + ε4$̌ ◦ ξξε(t, s, x) for (t, s, p, x) ∈ D× R, (7.2)

in which $̌ is the solution of (3.7) as constructed in Section 6 but for δ = σ = 1 and

π2
p/πpp = 1. For later use, observe that it takes non-negative values. We denote by ξ̌ξ

the corresponding ξ̂ξ and ȟ the corresponding h. Then, ξ̌ξ and ȟ are constant, and $̌

depends only on ξ. Let us also define

âε :=
−σ̄>0 Dψε

πp

= ηpσ

[
(θ − x)(1− ε3$ξ ◦ ξξε) + ε3$ξ ◦ ξξε(

λ

ση
− s2π̄ss)−

λ

ση

]
and

Jε := {(t, s, x) ∈ [0, T ]× (0,∞)× R : −ξ̌ξ(t, s) < ξξε(t, s, x) < ξ̌ξ(t, s)}
= {(t, s, x) ∈ [0, T ]× (0,∞)× R : −ε ξ̌ξ(t, s) < x− θ(t, s) < ε ξ̌ξ(t, s)}, (7.3)

recall Proposition 4.1 and (4.5). Lemma 3.4 allows one to characterize the boundaries

of this domain in terms of the function $:

∂J±ε :=
{
ξξε = ∓ξ̌ξ

}
⊂ {$ξ ◦ ξξε = ∓1}. (7.4)

For later use, note that Assumption 4.2 implies that

(t, s, x) ∈ Jε =⇒
{
|x| ≤ CK and |p−1âε(t, s, x, p)| ≤ CK for all p < 0

}
, (7.5)

in which CK denotes from now on a generic positive constant which depends only on

the constant K > 0 of Assumption 4.2, and that may change from line to line.

We now fix (to, so, xo) in the closure of Jε. The general case will be discussed in the

last step of the proof. We define (Xε, Lε) as the solution of the following Skorokhod

problem 
Xε = xo +

∫ ·
to

Xε
τ

dSτ
Sτ

+

∫ ·
to

dLε+τ −
∫ ·
to

dLε−τ ,

(·, S,Xε) ∈ Jε dt⊗ dP-a.e. on [to, T ] ,

Lε± =

∫ ·
to

χ{(τ,Sτ ,Xετ )∈∂J±ε }dL
ε±
τ ,

(7.6)

in which S = Sto,so and Lε = Lε+ − Lε− where Lε+, Lε− are continuous and non-

decreasing. To see that the above admits a solution, first observe that Assumption 4.2
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ensures that we can find κ ∈ R such that −ξ̌ξ + θ > κ on [0, T ] × (0,∞). Hence, the

process Xε satisfies the above if and only if Xε − κ > 0, in which case

Xε − κ = (xo − κ) exp

(∫ ·
t0

(µ− 1
2σ

2)dτ +

∫ ·
t0

dWτ +

∫ ·
t0

dL̄ε+τ −
∫ ·
t0

dL̄ε−τ

)
on [to, T ] ,

with dL̄ε± = dLε±/(Xε
τ − κ). Thus, solving (7.6) is equivalent to finding the solution

(X̄ε, L̄ε) of the Skorohod problem
X̄ε = ln(xo − κ) +

∫ ·
t0

(µ− 1
2σ

2)dτ +

∫ ·
t0

dWτ +

∫ ·
t0

dL̄ε+τ −
∫ ·
t0

dL̄ε−τ ,

U− ≤ X̄ε ≤ U+ dt⊗ dP-a.e. on [to, T ] ,

L̄ε± =

∫ ·
to

χ{X̄ετ=U±}dL
ε±
τ ,

in which

U± := ln
(
−κ+ (±ε ξ̌ξ + θ)(·, S)

)
.

Existence now follows from [39, Lemma 6.14], see the constructive proof for the fact

that the solution is adapted.

We next define (Y ε, P ε) as the solution of

Y ε = yo−
∫ ·
to

(1+ε3)dLε+τ +

∫ ·
t

(1−ε3)dLε−τ , P ε = po+

∫ ·
to

âε (τ, Sτ , P
ε
τ , X

ε
τ ) dWτ , (7.7)

in which po < 0 and yo := ψε(to, so, po, xo) + c for some c > 0 to be chosen later on.

The existence of a unique strong solution to (7.7) follows from (7.5), the process P ε is

a martingale.

Step 2. We now apply Itô’s Lemma to ψε. The definition of âε and the above

dynamics lead to

Y εT − ψε(T, ST , P εT , Xε
T ) = c−

∫ T

to

(
LSX + L̂P|SX

)
ψε (τ, Sτ , P

ε
τ , X

ε
τ ) dτ

−
∫ T

to

[
(1 + ε3) + ψεx (τ, Sτ , P

ε
τ , X

ε
τ )
]
dLε+τ

+

∫ T

to

[
(1− ε3) + ψεx (τ, Sτ , P

ε
τ , X

ε
τ )
]
dLε−τ

≥ c−
∫ T

to

(
LSX + L̂P|SX

)
ψε (τ, Sτ , P

ε
τ , X

ε
τ ) dτ

− ε3
∫ T

to

[1 + $̌ξ ◦ ξξε (τ, Sτ , X
ε
τ )] dLε+τ

+ ε3
∫ T

to

[−1 + $̌ξ ◦ ξξε (τ, Sτ , X
ε
τ )] dLε−τ .

We next appeal to (7.4) and the characterization of Lε+, Lε− in (7.6) to provide a lower

bound to the last expression:

Y εT − ψε(T, ST , P εT , Xε
T ) ≥ c−

∫ T

to

(
LSX + L̂P|SX

)
ψε (τ, Sτ , P

ε
τ , X

ε
τ ) dτ =: c− ε2Eε.(7.8)

We first consider the left-hand side term. The definition of ψε and the identities
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v(T, s, p, x) = g(s)− x− 1
η ln(−p), see Proposition 4.1, lead to

Y εT + `ε(Xε
T )− g(ST ) +

1

η
ln(−P εT ) ≥ Y εT − ψε(T, ST , P εT , Xε

T ) + ψε(T, ST , P
ε
T , X

ε
T )

+`ε(Xε
T )− g(ST ) +

1

η
ln(−P εT )

≥ Y εT − ψε(T, ST , P εT , Xε
T ) + ε4$̌ ◦ ξξε(T, ST , Xε

T )

−ε3|Xε
T |.

Recall that $̌ ≥ 0. We also know from (7.5) and (7.6) that |Xε
T | ≤ CK . Hence, we

deduce from the above that

Y εT + `ε(Xε
T )− g(ST ) +

1

η
ln(−P εT ) ≥ Y εT − ψε(T, ST , P εT , Xε

T )− CKε3. (7.9)

We now consider the right-hand side term in (7.8). Since πp > 0 and $̌ do not depend

on p, one can apply the expansion of Lemma 5.4. It implies

Eε =

∫ T

to

(
σ2

2
ηξξε(τ, Sτ , X

ε
τ )2 +

σ2

2
δ2($̌ξξ ◦ ξξε)(τ, Sτ , Xε

τ ) +Rε(τ, Sτ , P
ε
τ , X

ε
τ )

)
dτ

(7.10)

in which the map Rε is given by (5.13) for φ := 0 and w := $̌.

Direct computations based on condition b. of Assumption 4.2, the specific forms of â

and π, and (7.5) lead to |Rε| ≤ CK on the closure of Jε, and therefore: |Rε(·, S, P ε, Xε)| ≤
CK . It also follows from Assumption 4.2, (4.4) and (7.3) that |ξξε(·, S,Xε)| ≤ CK . Fi-

nally (6.5) above for the coefficients entering in the definition of $̌ provides a uniform

bound for the remaining term. Therefore

|Eε| ≤ CK . (7.11)

Combining (7.8), (7.9) and (7.11) leads to

Y εT + `ε(Xε
T )− g(ST ) ≥ c− 1

η
ln(−P εT )− CKε2. (7.12)

Recall that CK depends only on K but not on c. Hence, we can choose c = (CK + 1)ε2,

and obtain from the previous inequality that

Ψ (Y εT + `ε(Xε
T )− g(ST )) ≥ P εT e−ηε

2

,

so that

E [Ψ (Y εT + `ε(Xε
T )− g(ST ))] ≥ poe−ηε

2

, (7.13)

since P ε is a martingale.

Step 3. Note that the strategy Lε does not satisfy the admissibility condition (2.3).

However, in Step 4, below we overcome this by replacing Lε by an appropriately stopping

it (see definition (7.15)). Towards this goal we start by proving below that the latter

inequality implies that

sup
L∈Lε(to,so,yo,xo)

E
[
Ψ(∆ε,L)

]
> po, (7.14)

in which we abbreviate notations by setting

∆ε,L := Y to,yo,ε,LT + `ε(Xto,xo,so,L
T )− g(Sto,soT ).

29



Hence,

yo = v(to, so, po) + ε4$̌ ◦ ξξε(to, so, po, xo) + (CK + 1)ε2

≥ vε(to, so, po, xo),

and therefore

uε(to, so, po, xo) = ε−2 (vε − v) (to, so, po, xo)

≤ ε2$̌ ◦ ξξε(to, so, po, xo) + (CK + 1).

Recall that Assumption 4.2 implies that ε$̌ ◦ ξξε has linear growth in x, uniformly in its

other variables and in 0 < ε ≤ 1, see Remark 3.5. The latter leads to the right-hand

side inequality of (7.1).

Step 4. We now prove our claim (7.14). Recalling (7.5) and the fact that g is

bounded, (7.12) implies that

Y εT + `ε(Xε
T ) ≥ −CK −

∫ T

to

γετdWτ ,

for some predictable process γε which satisfies |γε| ≤ CK for all 0 < ε ≤ 1. Then, it

follows from [36] that

Y ε + `ε(Xε) ≥ −CK − EQ[

∫ T

to

γετdWτ |F·]

≥ −CK +M ε,

in which M ε := −
∫ ·
to
γετdWτ satisfies E

[
e2η sup[to,T ] |M

ε|
]
≤ CK .

Given k ≥ CK , we now denote by τk the first time after to such that Y ε + `ε(Xε) =

−k. Set

Lε,k := Lε·∧τk . (7.15)

Then, Lε being continuous, Lε,k ∈ Lε(to, so, yo, xo) for all k ≥ 1. Moreover, since Ψ ≤ 0,

Ψ(∆ε,Lε)−Ψ(∆ε,Lε,k) ≤ −Ψ(−k)1{τk≤T} ≤ −Ψ(−k)1{sup[to,T ] |Mε|≥k−CK}.

We next use (7.13) and the Markov’s inequality to obtain

poe
−ηε2 ≤ E

[
Ψ(∆ε,Lε)

]
≤ E

[
Ψ(∆ε,Lε,k)

]
−Ψ(−k)CK/e

2ηk = E
[
Ψ(∆ε,Lε,k)

]
+CKe

−ηk.

Then, taking

k := −η−1 ln
(
po(e

−ηε2 − 1)/CK

)
+ 1 (7.16)

leads to (7.14), recall that po < 0.

Step 5. It remains to explain how to consider the general case (to, so, xo) ∈ [0, T ]×
(0,∞) × R. First note that an immediate transfer allows one to pass from the initial

position (yo, xo) to (y′o, x
′
o) with

y′o := yo + `ε(xo − x′o) , (7.17)

x′o := xo + [−ε ξ̌ξ(to, so) + θ(to, so)− xo]+ − [xo − ε ξ̌ξ(to, so)− θ(to, so)]+. (7.18)

By Remark 5.1, one has

vε(to, so, po, xo) ≤ vε(to, so, po, x
′
o) + x′o − xo + ε3|xo − x′o|

≤ vε(to, so, po, x
′
o) + x′o − xo + ε3(CK + |xo|) ,
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in which the last inequality follows from Assumption 4.2. Hence,

(vε − v)(to, so, po, xo) ≤ (vε − v)(to, so, po, x
′
o) + xo − x′o + x′o − xo + ε3(CK + |xo|)

≤ (vε − v)(to, so, po, x
′
o) + ε3(CK + |xo|).

Since (to, so, x
′
o) belongs to the closure of Jε, we can apply the analysis of the preceding

steps to conclude. 2

A by-product of the above argument is the explicit construction of a strategy Lε

which is O(ε2)-optimal for the problem with transaction costs. The constant CK in the

following proposition can be recovered in terms of the constant K of Assumption 4.2.

Proposition 7.1. Let the conditions of Proposition 4.3 hold. Then, there exists a

constant CK > 0 such that the following holds: Fix (to, so, xo, po) ∈ [0, T ] × (0,∞) ×
R× (−∞, 0), ε ∈ (0, 1), let

yo := ψε(to, so, po, xo) + ε2 (CK + 1) ,

where ψε is defined as in (7.2), (y′o, x
′
o) be defined as in (7.17)-(7.18), Lε,k be given

by the solution of (7.6)-(7.15)-(7.16) for the initial condition (to, so, x
′
o, y
′
o), and Lε :=

Lε,k + x′o − xo, then

E
[
Ψ(∆ε,Lε

to,so,yo,xo)
]
≥ po and yo = vε(to, so, po, xo) +O(ε2). (7.19)

Proof. We first prove the left-hand side inequality of (7.19). When (to, so, xo) belongs

to the closure of Jε defined in (7.3), then (x′o, y
′
o) = (xo, yo) and this is an immediate

by-product of the construction made in the proof of Proposition 4.3. The general case

is treated as in Step 5 of the proof of Proposition 4.3, observing that

ψε(to, so, po, xo) = ψε(to, so, po, x
′
o)+x′o−xo+ε3|xo−x′o| = ψε(to, so, po, x

′
o)−`ε(xo−x′o),

by Proposition 4.1 and (6.5).

To prove the right-hand side identity in (7.19), it suffices to use Proposition 4.3 and

to recall (6.5):

(ψε − vε)(to, so, po, xo) = (ψε − v)(to, so, po, xo) + (v − vε)(to, so, po, xo) = O(ε2).

2

Under an additional regularity conditions, one can obtain a strategy which is optimal

at the leading order ε2.

Proposition 7.2. Let the conditions of Proposition 4.3 hold. Assume further that

|s2δss| ≤ K on D. Then, there exists CK > 0 such that the following holds: Fix

(to, so, xo, po) ∈ [0, T ]× (0,∞)× R× (−∞, 0), ε ∈ (0, 1), set

yo := (v + ε2û+ ε4$ ◦ ξξε)(to, so, po, xo) + ε3 (CK + 1) ,

let (y′o, x
′
o) be defined as in (7.17)-(7.18) with ξ̂ξ in place of ξ̌ξ, Lε,k be given by the solution

of (7.6)-(7.15) for Jε defined with ξ̂ξ in place of ξ̌ξ and for

k := −η−1 ln
(
po(e

−ηε3 − 1)/CK

)
+ 1

and the initial condition (to, so, x
′
o, y
′
o), and set Lε := Lε,k + x′o − xo, then

E
[
Ψ(∆ε,Lε

to,so,yo,xo)
]
≥ po and yo = vε(to, so, po, xo) +O(ε3).
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Proof. We only sketch the proof since it is a straightforward adaptation of the proof of

Proposition 7.1, see also the proof of Proposition 4.5 below.

We follow line by line the arguments of the proof of Proposition 7.1 but with ψε and

Jε defined by

ψε := v + ε2û+ ε4$ ◦ ξξε,
Jε := {(t, s, x) ∈ [0, T ]× (0,∞)× R : −ξ̂ξ(t, s) < ξξε(t, s, x) < ξ̂ξ(t, s)}.

The fact that û is a classical solution of (3.5) while $ solves (3.7) implies that the

counterpart of (7.10) is

Eε =

∫ T

to

Rε (τ, Sτ , P
ε
τ , X

ε
τ ) dτ ,

where Rε is given by (5.13) for φ := û and w := $. Observe that (7.5) remains in force

since neither û nor $ depend on p and sûs and s$s ◦ ξξε1J̄ε are bounded. Under our

additional assumptions, it is easy to check from the proof of Lemma 5.4, see (5.13), that

|Eε| ≤ εCK : the additional assumption that s2δss is bounded allows to control the term

LS$ in Rε2 whereas the other terms are bounded by Assumption 4.2.

2

7.2 Power case

We now provide the proof of Proposition 4.5. Since it is very close to the one of

Proposition 4.3, we focus on the differences.

Proof of Proposition 4.5. We only show that, for any compact subset Bo ⊂
(−∞, 0), there exists co, εo > 0 such that

uε(ζ, x) ≤ co(1 + ε|x|) for all (ζ, x) ∈ [0, T ]× (0,∞)×Bo × R , ε ∈ (0, εo]. (7.20)

From now on, we fix a compact subset Bo ⊂ (−∞, 0). We also fix another compact set

B ⊂ (−∞, 0) such that Bo ⊂ Int(B), and denote by CB > 0 a generic constant that

depends at most on B, and that may change from line to line. It will be clear later on

that B can be chosen in terms of Bo.

Step 1. We first deduce from (4.9) that, for (t, p) ∈ [0, T ]× (−∞, 0) one has θ(t, p) = λm(t)
σ(1+β) (−p)−

1
β , δ(t, p) = θ(t, p)( λ

σ(1+β) − 1) , â(p) = λβ
β+1 (−p) ,

h(t, p) = σ2

2
πpp

(πp)2 (t, p)ξ̂ξ(t, p)2 , ξ̂ξ(t, p) =
(

3
2δ(t, p)

2 (πp)2

πpp
(t, p)

) 1
3

.
(7.21)

Let ($,h) be defined as in Lemma 3.4 and note that ($(·, ξ), h) depends only on p, for

ξ ∈ R. Let û be the solution of (3.7). It is not difficult to deduce from (7.21) that one

has

f(t, p) = f(t,−1)(−p)−
1
β with f(·,−1) ∈ C∞b ([0, T ]), f ∈ {θ, δ, ξ̂ξ, h, û}. (7.22)

We set

ψε = v + ε2û+ ε4$ ◦ ξξε , âε :=
−σ̄>0 Dψε

ψεp
,

and

Jε := {(t, p, x) ∈ [0, T ]× (−∞, 0)× R : −ξ̂ξ(t, p) < ξξε(t, p, x) < ξ̂ξ(t, p)}. (7.23)
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We now fix (to, so, xo) in the closure of Jε, the general case being handled as in Step 5

of the proof of Proposition 4.3. We let po ∈ B and

yo := c+ ψε(to, so, po, xo) , (7.24)

for some c > 0 to be chosen later on. We next define (Y ε, Xε, S, Lε, P ε) as in the proof

of Proposition 4.3 but with ($, ξ̂ξ) in place of ($̌, ξ̌ξ), namely

P ε = po +

∫ ·
to

âε (τ, Sτ , P
ε
τ , X

ε
τ ) dWτ ,

Xε = xo +

∫ ·
to

Xε
τ

dSτ
Sτ

+

∫ ·
to

dLε+τ −
∫ ·
to

dLε−τ ,

(·, P ε, Xε) ∈ Jε dt⊗ dP-a.e. on [to, T ] ,

Lε± =

∫ ·
to

χ{(τ,P ετ ,Xετ )∈∂J±ε }dL
ε±
τ ,

(7.25)

and

Y ε = yo −
∫ ·
to

(1 + ε3)dLε+τ +

∫ ·
t

(1− ε3)dLε−τ , yo := c+ ψε(to, so, po, xo).

We claim that a solution exists and that, for all q > 0, there exists CqB > 0, which

depends only on B and q, such that

sup
ε∈(0,1]

E

[
sup

t∈[t0,T ]

(
|P εt |q + |P εt |−q

)]
≤ CqB . (7.26)

This will be proved in Step 3 below. Since û, $ ≥ 0, and û does not depend on x, the

same arguments as in Step 2 of the proof of Proposition 4.3 leads to

Y ε + `ε(Xε) ≥ c+ ψε(·, S, P ε, 0)− ε2Eε(·) ≥ c+ v(·, S, P ε, 0)− ε2Eε, (7.27)

where

Eε := ε|Xε|+
∫ ·
to

(
σ2

2

πpp
(πp)2

ξξ2
ε +

σ2

2
δ2($ξξ ◦ ξξε) +Hû+Rε

)
(τ,Xε

τ , P
ε
τ )dτ

= ε|Xε|+
∫ ·
to

Rε(τ, Sτ , P
ε
τ , X

ε
τ )dτ,

in which the second equality follows from the fact that û and $ solve (3.5) and (3.7)

respectively, and Rε is defined in (5.13) for φ := û and w := $. Observe that all the

functions in the definition of Rε are powers of the p-variable multiplied, at least, by ε.

Moreover, the definition of Xε combined with (7.23) and (7.21) implies that Xε is also

controlled by a polynomial in |P ε|. Namely, we can find qβ , Cβ > 0, which only depend

on β, such that

ε−1

∫ t

to

|Rε(τ, Sτ , P ετ , Xε
τ )|dτ + |Xε

t | ≤ Γεt := Cβ sup
[to,t]

(1 + |P ε|−qβ + |P ε|qβ ) , t ∈ [to, T ].

(7.28)

We now take c = 3ε5/2. Since v ≥ −κ, (7.27) implies

Y ε + `ε(Xε) ≥ −κ+ 2ε5/2 + ε5/2(1− ε1/2Γε).

Let τε be the first time such that Y ε + `ε(Xε) is equal to ε5/2 − κ. We let (Ỹ ε, X̃ε) be

defined by the strategy in which we follow Lε on [to, τε[ and liquidate the position at τε,

i.e.

(Ỹ ε, X̃ε) = (Y ε, Xε)1[[to,τε∧T [[ + (Y ετε∧T , `
ε(Xε

τε∧T ))1[[τε∧T,T ]].
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Note that this strategy is admissible by construction. Set Aε := {ε 1
2 ΓεT ≤ 1}. The

inclusion Aε ⊂ {τε ≥ T} follows from the last inequality and the fact that Γε is non-

decreasing. We then obtain

E
[
Ψ(Ỹ εT + `ε(X̃ε

T ))
]
≥ E

[
Ψ(2ε5/2 + Φ(P εT ))1Aε

]
− |Ψ(ε5/2 − κ)|P [Acε]

≥ E [P εT ]−
(
E
[
|P εT |2

] 1
2 + |Ψ(ε5/2 − κ)|

)
P [Acε]

1
2

= po −
(
E
[
|P εT |2

] 1
2 + |Ψ(ε5/2 − κ)|

)
P [Acε]

1
2 , (7.29)

in which we used the fact that P ε is a martingale by (7.26). We now appeal to (7.26)

and (7.28) to obtain

E
[
|P εT |2

]
≤ CB , |Ψ(ε5/2 − κ)| = 1

ε5β/2
and P [Acε] ≤ ε6+5βE

[
|ΓεT |12+10β

]
≤ ε5βCBε6.

Combining the above shows that, for some cB > 0, which only depends on B,

E
[
Ψ(Ỹ εT + `ε(X̃ε

T ))
]
≥ po − cBε3,

and therefore, by (7.24), our choice c = 3ε5/2, the fact that û, $ satisfy (7.22) and that

vε is non-decreasing in p,

vε(to, so, po − c̃Bε3, xo) ≤ v(to, so, po, xo) + c̃Bε
5/2, (7.30)

for some constant c̃B > 0 that only depends on B.

Step 2. Since c̃B does not depend on po ∈ B, the above is true for any p ∈ B in

place of po. Set ι(p) := p+ ε5/2 for p ∈ Bo, recall that Bo ⊂ Int(B). Then,

0 > ι(p)− c̃Bε3 = p+ ε5/2 − c̃Bε3 ≥ p for all p ∈ Bo and 0 < ε ≤ εB ,

for some εB ∈ (0, 1) such that p+ ε
5/2
B ∈ B for all p ∈ Bo. For the rest of the proof, we

assume that po ∈ Bo. Then, (7.30) applied to ι(po) in place of po and the fact that vε

is non-decreasing in p imply that

vε(to, so, po, xo) ≤ vε(to, so, ι(po)− c̃Bε3, xo) ≤ v(to, so, ι(po), xo) + c̃Bε
5/2.

We now use (4.9) to obtain

vε(to, so, po, xo) ≤ v(to, so, po, xo) + ε5/2β−1|m(to)|
∣∣∣po + ε

5/2
B

∣∣∣− 1
β−1

+ c̃Bε
5/2.

This proves (7.20).

Step 3. It remains to prove our claim. Using (7.22) and (6.5) below, we obtain that

âε is locally Lispchitz on Jε and that there exists a function f ∈ C∞b ([0, T ]) such that

|âε(t, p, x)| ≤ (−p)
1
β+1

m(t) + ε2f(t)

∣∣−σx+ ε4σx$ξ ◦ ξε(t, p, x)
∣∣ , (t, p, x) ∈ [0, T ]× (−∞)× R.

It follows from (7.22) and (ii) of Lemma 3.4 that

|âε(t, p, x)| ≤ CK |p| for (t, p, x) ∈ Jε, (7.31)

and for ε small enough with respect to f and m. In particular, the existence to the

system (7.25) will automatically imply (7.26). For ρ > 0, set Bρ := [−eρ,−e−ρ] and

let âε,ρ be a Lipschitz function such that âε,ρ = âε on [0, T + 1]× Bρ × R and âε,ρ = 0

on [0, T + 1] × Bc2ρ × R. Here all functions are extended to [0, T + 1] by taking their
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values at T on [T, T + 1]. The set J ρε := ([0, T + 1]× (B2ρ)
c × R) ∩ Jε is bounded and

it follows from [25] that there exists a strong solution (P ε,ρ, Xε,ρ) to (7.25) with âε,ρ

in place of âε. Let τρε be the first time after to when P ε,ρ reaches the boundary of Bρ.

For ρ > | ln(−po)|, (Xε,ρ, P ε,ρ) solves (7.25) on [[to, τ
ρ
ε ∧ T ]]. It follows from (7.31) that

τρε ∧ (T + 1) converges to T + 1 in probability as ρ→∞. Hence, after possibly passing

to a subsequence (τρnε )n≥1, it converges almost surely to T + 1 as n→∞. Let us set

(Xε, P ε) := (xo, po)1{to} +
∑
n≥1

1
]]τ
ρn−1
ε ∧T,τρnε ∧T ]]

(Xε,ρn , P ε,ρn)

with the convention τρ0
ε := t0. Since (Xε,ρn , P ε,ρn) = (Xε,ρn+k , P ε,ρn+k) on [[to, τ

ρn
ε ∧T ]],

for all k ≥ 1, it solves (7.25) on each [[to, τ
ρn
ε ∧ T ]], n ≥ 1. Since (τρnε ∧ (T + 1))n≥1

converges almost surely to T + 1 as n→∞, (Xε, P ε) solves (7.25) on [to, T ]. 2

Remark 7.3. The same arguments as in the proof of Propositions 7.1 and 7.2 show

that the above allows to construct a strategy Lε, based on the sole knowledge of v, û,

$ and θ, satisfying E
[
Ψ(∆ε,Lε

to,so,yo,xo)
]
≥ po for

yo = (v + ε2û+ ε4$ ◦ ξξε)(to, so, po, xo) + Cε5/2

= vε(to, so, po, xo) + o(ε2),

where C > 0 can be computed explicitly.

Appendix

We provide here the proofs of Theorem 2.1, Theorem 2.3 and Proposition 2.2 for com-

pleteness. These results are essentially known but our framework requires some slight

adjustments.

Proof of Theorems 2.1 and 2.3: We focus on the proof of Theorem 2.1. Theorem

2.3 is proved by combining the following arguments with the results of [12] instead of

[9]. The arguments of [9] can not be applied per-se to obtain Theorem 2.1 because their

Standing Assumption 4 may not hold in our context. We explain briefly how to modify

it. First, this does not alter the proof of (GDP1) in [9, Corollary 2.9], which in turn

leads to the viscosity supersolution property by the same arguments as in [9, Section 5].

Similarly, the proof of the subsolution property [9, Section 5] can be reproduced once

(GDP2) stated in [9, Corollary 2.9] is valid. It is the case, by [9], if one imposes the ad-

ditional constraints Y t,y,ε,L+`ε(Xt,x,s,L) ≥ −c on [t, T ], with c > 0 fixed independent of

the control L. Their standing Assumption 4 is then satisfied, see [36, Lemma 3.3] which

imposes a uniform L2 bound on the admissible controls L. Then, the corresponding

value function vε,c satisfies that its upper-semicontinuous envelope vε,c ∗ is a viscosity

subsolution of (2.7) on {vε,c, ∗(t, s, p, x)+`ε(x) > −c}, by [9, Section 5]. The sequence of

corresponding operators converges to the one of (2.7) as c→∞. By standard stability

results for viscosity solutions, see e.g. [4], this implies that the relaxed semi-limit vε,∞ ∗

defined by vε,∞ ∗(t, s, p, x) := lim sup(c,t′,s′,p′,x′)→(∞,t,s,p,x) v
ε,c ∗(t′, s′, p′, x′) is a viscos-

ity subsolution of (2.7). Note that vε,∞ ∗ ≥ vε∗ by monotonicity. It remains to check

that the converse inequality holds. But the admissibility constraint entering in the defi-

nition of Lε means that, for all ι > 0, we can find cι > 0 such that vε,cι ≤ vε+ι ≤ vε ∗+ι.
2

Proof of Proposition 2.2: Let us first fix z > π(t, s, p). Then, we can find (ϑ, α) ∈
U×A such that Ψ(Zt,s,z,ϑT −g(St,sT )) ≥ P t,p,αT . Recall from the discussion after (2.6) that

we can restrict P t,p,αT to take values in the image of Ψ, and therefore in the domain of
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definition of Φ. Since Φ is non decreasing, it follows that Zt,s,z,ϑT ≥ g
(
St,sT

)
+Φ

(
P t,p,αT

)
.

Then, the convexity of Φ and the fact that Φ′ ◦ I is the identity imply

Zt,s,z,ϑT ≥ g
(
St,sT

)
+ Φ ◦ I(q̂Qt,sT ) + Φ′ ◦ I(q̂Qt,sT )(P t,p,αT − I(q̂Qt,sT ))

= g
(
St,sT

)
+ Φ ◦ I(q̂Qt,sT ) + q̂Qt,sT (P t,p,αT − I(q̂Qt,sT )).

We conclude by taking expectation under Qt,s. Since Zt,s,z,ϑ is a Qt,s-supermartingale,

as a local-martingale bounded from below, and P t,p,α a P-martingale, the definition of

q̂ and Qt,s lead to y ≥ γ + q̂(p − p) = γ, where γ denotes the right-hand side term in

(2.9). This shows that π(t, s, p) ≥ γ.

To see that the reverse inequality holds, just observe that our integrability condition

imply that we can find ϑn ∈ U(t, s, zn) such that

Zt,s,zn,ϑnT = Hn :=
(
g(St,sT ) + Φ ◦ I(q̂Qt,sT )

)
∨ (−n),

in which zn := EQt,s [Hn] ↓ γ as n→∞. Then, E
[
Ψ(Hn − g(St,sT ))

]
↓ E

[
I(q̂Qt,sT )

]
= p,

by monotone convergence and definition of q̂. 2
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