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Abstract

We consider a nondominated model of a discrete-time financial mar-
ket where stocks are traded dynamically and options are available for
static hedging. In a general measure-theoretic setting, we show that
absence of arbitrage in a quasi-sure sense is equivalent to the existence
of a suitable family of martingale measures. In the arbitrage-free case,
we show that optimal superhedging strategies exist for general con-
tingent claims, and that the minimal superhedging price is given by
the supremum over the martingale measures. Moreover, we obtain a
nondominated version of the Optional Decomposition Theorem.
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1 Introduction
We consider a discrete-time financial market where stocks and, possibly, options
are available as hedging instruments. The market is governed by a set P of proba-
bility measures, not necessarily equivalent, whose role is to determine which events
are negligible (polar) and which ones are relevant. We thus unify two approaches:
On the one hand, the framework of model uncertainty, where each P ∈ P is seen
as a possible model for the stocks and a robust analysis over the class P is per-
formed. On the other hand, the model-free approach, where no attempt is made
to model the stocks directly, but one sees the distribution of the stocks as partially
described by the current prices of the traded options—an ill-posed inverse problem.
Both approaches typically lead to a set P which is nondominated in the sense that
there exists no reference probability measure with respect to which all P ∈ P are
absolutely continuous.

We answer three fundamental questions of mathematical finance in this context.
The first one is how to formulate a condition of market viability and relate it to
the existence of consistent pricing mechanisms. The condition NA(P) stated below
postulates that there is no trading strategy which yields a nonnegative gain that is
strictly positive on a relevant event; that is, an event that has positive probability for
at least one P ∈ P. We obtain a version of the “First Fundamental Theorem” stating
that NA(P) holds if and only if there exists a familyQ of martingale measures which
is equivalent to P in the sense that Q and P have the same polar sets. The next
question is the one of superhedging: for a contingent claim f , what is the minimal
price π(f) that allows the seller to offset the risk of f by trading appropriately
in the given stocks and options? We show in the “Superhedging Theorem” below
that π(f) = supQ∈QEQ[f ], which corresponds to the absence of a duality gap in
the sense of convex analysis, and moreover that an optimal superhedging strategy
exists. From these two theorems, it will follow that the precise range of arbitrage-
free prices of f is given by the open interval (−π(−f), π(f)) if −π(−f) 6= π(f),
and by the singleton π(f) otherwise. This latter case occurs if and only if f can be
replicated (up to a polar set) by trading in the hedging instruments. Finally, we
obtain a version of the “Second Fundamental Theorem,” stating that the market is
complete (i.e., all claims are replicable) if and only if Q is a singleton.

In addition to these main financial results, let us mention two probabilistic con-
clusions that arise from our study. The first one is a nondominated version of the
Optional Decomposition Theorem, stating that a process which is a supermartin-
gale under all of the (not necessarily equivalent) martingale measures Q ∈ Q can
be written as the difference of a martingale transform and an increasing process.
Second, our theory can be used to prove an intriguing conjecture of [1]; namely,
that every martingale inequality (in finite discrete time) can be reduced to a deter-
ministic inequality in Euclidean space. This aspect will be developed in a separate
paper.

The main difficulty in our endeavor is that P can be nondominated, which
leads to the failure of various tools of probability theory and functional analysis;
in particular, the Dominated Convergence Theorem, Komlós’ lemma (in the sense
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of [17]) and important parts of the theory of Lp spaces. As a consequence, we have
not been able to reach general results by using separation arguments in appropriate
function spaces, which is the classical approach of mathematical finance in the
case where P is a singleton. Instead, we proceed in a “local” fashion; our basic
strategy is to first answer our questions in the case of a one-period market with
deterministic initial data and then “glue” the solutions together to obtain the multi-
period case. To solve the superhedging problem in the one-period case, we show in a
first step that (the nontrivial inequality of) the duality holds for certain approximate
martingale measures, and in a second step, we use a strengthened version of the
First Fundamental Theorem to show that a suitable perturbation allows one to
turn an approximate martingale measure into a true one. To perform the gluing,
we tailor our theory such as to be compatible with the classical theory of analytic
sets.

In the remainder of the Introduction, we detail the notation, state the main
financial results and review the extant literature. In Section 2, we obtain the
existence of optimal superhedging strategies; this part is formulated in a more
general setting than the main results because we do not resort to a local analysis. In
Section 3, we prove the First Fundamental Theorem and the Superhedging Theorem
in the one-period case. In Section 4, we obtain the same theorems in the multi-
period case, under the hypothesis that only stocks are traded. In Section 5, we add
the options to the picture and prove the main results (as well as a slightly more
precise form of them). Section 6 discusses the Optional Decomposition Theorem,
and Appendix A collects some results of martingale theory that are used in the
body of the paper.

1.1 Notation
Given a measurable space (Ω,A), we denote by P(Ω) the set of all probability mea-
sures on A. If Ω is a topological space, B(Ω) denotes its Borel σ-field and we always
endow P(Ω) with the topology of weak convergence; in particular, P(Ω) is Polish
whenever Ω is Polish. The universal completion of A is the σ-field ∩P∈P(Ω)AP ,
where AP is the P -completion of A. If Ω is Polish, A ⊆ Ω is analytic if it is the
image of a Borel subset of another Polish space under a Borel-measurable map-
ping. A function f : Ω→ R := [−∞,∞] is upper semianalytic if the super-level set
{f > c} is analytic for all c ∈ R. Any Borel set is analytic, and any analytic set
is universally measurable (i.e., measurable for the universal completion of B(Ω));
similarly, any Borel function is upper semianalytic, and any upper semianalytic
function is universally measurable. We refer to [5, Chapter 7] for these facts. Given
P ∈ P(Ω), we define the P -expectation for any measurable function f : Ω→ R by

EP [X] := EP [X+]− EP [X−], with the convention ∞−∞ := −∞. (1.1)

The term random variable is reserved for measurable functions with values in R.
We shall often deal with a family P ⊆ P(Ω) of measures. Then, a subset A ⊆ Ω is
called P-polar if A ⊆ A′ for some A′ ∈ A satisfying P (A′) = 0 for all P ∈ P, and
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a property is said to hold P-quasi surely or P-q.s. if it holds outside a P-polar set.
(In accordance with this definition, any set is P-polar in the trivial case P = ∅.)

1.2 Main Results
Let T ∈ N be the time horizon and let Ω1 be a Polish space. For t ∈ {0, 1, . . . , T},
let Ωt := Ωt1 be the t-fold Cartesian product, with the convention that Ω0 is a
singleton. We denote by Ft the universal completion of B(Ωt) and write (Ω,F) for
(ΩT ,FT ). This will be our basic measurable space and we shall often see (Ωt,Ft)
as a subspace of (Ω,F). For each t ∈ {0, 1, . . . , T − 1} and ω ∈ Ωt, we are given a
nonempty convex set Pt(ω) ⊆ P(Ω1) of probability measures; we think of Pt(ω) as
the set of possible models for the t-th period, given state ω at time t. Intuitively,
the role of Pt(ω) is to determine which events at the “node” (t, ω) are negligible
(polar) and which ones are relevant (have positive probability under at least one
model). We assume that for each t,

graph(Pt) := {(ω, P ) : ω ∈ Ωt, P ∈ Pt(ω)} ⊆ Ωt ×P(Ωt) is analytic.

This ensures that Pt admits a universally measurable selector; that is, a universally
measurable kernel Pt : Ωt → P(Ω1) such that Pt(ω) ∈ Pt(ω) for all ω ∈ Ωt. If we
are given such a kernel Pt for each t ∈ {0, 1, . . . T − 1}, we can define a probability
P on Ω by Fubini’s theorem,

P (A) =

∫
Ω1

· · ·
∫

Ω1

1A(ω1, . . . , ωT )PT−1(ω1, . . . , ωT−1; dωT ) · · ·P0(dω1), A ∈ Ω,

where we write ω = (ω1, . . . , ωT ) for a generic element of Ω ≡ ΩT1 . The above
formula will be abbreviated as P = P0 ⊗ P1 ⊗ · · · ⊗ PT−1 in the sequel. We can
then introduce the set P ⊆ P(Ω) of possible models for the multi-period market
up to time T ,

P := {P0 ⊗ P1 ⊗ · · · ⊗ PT−1 : Pt(·) ∈ Pt(·), t = 0, 1, . . . T − 1},

where, more precisely, each Pt is a universally measurable selector of Pt. Or equiv-
alently, to state the same in reverse, P is the set of all P ∈ P(Ω) such that any
decomposition P = P0 ⊗ P1 ⊗ · · · ⊗ PT−1 into kernels Pt satisfies Pt(·) ∈ Pt(·) up
to a (P0 ⊗ P1 ⊗ · · · ⊗ Pt−1)-nullset.

Let d ∈ N and let St = (S1
t , . . . , S

d
t ) : Ωt → Rd be Borel-measurable for all

t ∈ {0, 1, . . . , T}. We think of St as the prices of d traded stocks at time t. Moreover,
let H be the set of all predictable Rd-valued processes, the trading strategies. Given
H ∈ H, the corresponding wealth process (from vanishing initial capital) is the
discrete-time integral

H • S = (H • St)t∈{0,1,...,T}, H • St =

t∑
u=1

Hu∆Su, (1.2)

where ∆Su = Su − Su−1 is the price increment and Hu∆Su is a shorthand for the
inner product

∑d
i=1H

i
u∆Siu on Rd.
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Moreover, let e ∈ N∪{0} and let g = (g1, . . . , ge) : Ω→ Rd be Borel-measurable.
Each gi is seen as a traded option which can be bought or sold at time t = 0 at
the price gi0; without loss of generality, gi0 = 0. Following [25], the options can be
traded only statically (i.e., at t = 0), which accounts for the difference in liquidity
and other market parameters compared to stocks. Given a vector h ∈ Re, the value
of the corresponding option portfolio is then given by hg =

∑e
i=1 h

igi and a pair
(H,h) ∈ H × Re is called a semistatic hedging strategy.

As in any model of mathematical finance, a no-arbitrage condition is needed
for the model to be viable. The following formulation seems natural in our setup.

Definition 1.1. Condition NA(P) holds if for all (H,h) ∈ H × Re,

H • ST + hg ≥ 0 P-q.s. implies H • ST + hg = 0 P-q.s.

We observe that NA(P) reduces to the classical condition “NA” in the case
where P is a singleton. More generally, if NA({P}) holds for all P ∈ P, then
NA(P) holds trivially, but the converse is false.

The two extreme cases of our setting occur when P consists of all measures on
Ω and when P is a singleton.

Example 1.2. (i) Let Ω = (Rd)T and let S be the coordinate-mapping process;
more precisely, S0 ∈ Rd is fixed and St(ω) = ωt for ω = (ω1, . . . , ωT ) ∈ (Rd)T and
t > 0. Moreover, let Pt(ω) = P(Rd) for all (t, ω); then P is simply the collection of
all probability measures on Ω. We emphasize that a P-q.s. inequality is in fact a
pointwise inequality in this setting, as P contains all Dirac measures. Consider the
case without options (e = 0); we show that NA(P) holds. Indeed, suppose there
exists H ∈ H such that H • ST (ω) ≥ 0 for all ω ∈ Ω and H • ST (ω̄) > 0 for some
ω̄ ∈ Ω. Then, if we consider the smallest t ∈ {1, . . . , T} such that H • St(ω̄) > 0
and let ω̄′t := −ω̄t + 2ω̄t−1, the path ω̃ := (ω̄1, . . . , ω̄t−1, ω̄

′
t, . . . , ω̄

′
t) satisfies

H • ST (ω̃) = H • St−1(ω̄)−Ht(ω̄)(ω̄t − ω̄t−1) < 0,

a contradiction.
We note that in this canonical setup, a contingent claim is necessarily a func-

tional of S. We can generalize this setting by taking Ω = (Rd′)T for some d′ > d
and defining S to be the first d coordinates of the coordinate-mapping process.
Then, the remaining d′ − d components play the role of nontradable assets and we
can model claims that depend on additional risk factors.

(ii) Suppose we want to retrieve the classical case where we have a single mea-
sure P . Given P ∈ P(Ω), the existence of conditional probability distributions
on Polish spaces [54, Theorem 1.1.6, p. 13] implies that there are Borel kernels
Pt : Ωt → P(Ω1) such that P = P0 ⊗ P1 ⊗ · · · ⊗ PT−1, where P0 is the restriction
P |Ω1 . If we then take Pt(ω) := {Pt(ω)}, the Borel-measurability of ω 7→ Pt(ω)
implies that graph(Pt) is Borel for all t, and we have P = {P} as desired.

Similarly as in the classical theory, the absence of arbitrage will be related to
the existence of linear pricing mechanisms. A probability Q ∈ P(Ω) is a martingale

5



measure if S is a Q-martingale in the filtration (Ft). We are interested in martingale
measures Q which are absolutely continuous with respect to P in the sense that
Q(N) = 0 whenever N is P-polar; it seems natural to denote this relation by
Q� P. Let us also introduce a stronger notion of absolute continuity: we write

Q≪ P if there exists P ∈ P such that Q� P .

We shall use this stronger notion, mainly because it is better suited the theory of
analytic sets which will be used extensively later on. (However, a posteriori, one
can easily check that our main results hold also with the weaker notion Q� P.)

If Q is a martingale measure, then Q is consistent with the given prices of the
traded options gi if EQ[gi] = 0 for i = 1, . . . , e. We thus define the set

Q =
{
Q≪ P : Q is a martingale measure and EQ[gi] = 0 for i = 1, . . . , e

}
.
(1.3)

Our first main result states that NA(P) is equivalent to Q being sufficiently
rich, in the sense that any Q-polar set is P-polar. In this case, Q is equivalent to
P in terms of polar sets, which yields an appropriate substitute for the classical
notion of an equivalent martingale measure. In the body of this paper, we shall
work with the seemingly stronger condition (ii) below; it turns out to be the most
convenient formulation for our theory.

First Fundamental Theorem. The following are equivalent:

(i) NA(P) holds.

(ii) For all P ∈ P there exists Q ∈ Q such that P � Q.

(ii’) P and Q have the same polar sets.

The following result, which is the main goal of our study, establishes the dual
characterization for the superhedging price π(f) of a contingent claim f and the
existence of an optimal superhedging strategy. We use the standard convention
inf ∅ = +∞.

Superhedging Theorem. Let NA(P) hold and let f : Ω→ R be upper semiana-
lytic. Then the minimal superhedging price

π(f) := inf
{
x ∈ R : ∃ (H,h) ∈ H × Re such that x+H • ST + hg ≥ f P-q.s.

}
satisfies

π(f) = sup
Q∈Q

EQ[f ] ∈ (−∞,∞]

and there exist (H,h) ∈ H × Re such that π(f) +H • ST + hg ≥ f P-q.s.

We remark that the supremum over Q is not attained in general. For instance,
if P = P(Ω) while S is constant and e = 0, we have supQ∈QEQ[f ] = supω∈Ω f(ω),
which clearly need not be attained. On the other hand, the supremum is attained
if, for instance, f is a bounded continuous function and Q is weakly compact.
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A random variable f is called replicable if there exist x ∈ R and (H,h) ∈ H×Re
such that x + H • ST + hg = f P-q.s. We say that the market is complete if all
Borel-measurable functions f : Ω → R are replicable. Similarly as in the classical
theory, we have the following result.

Second Fundamental Theorem. Let NA(P) hold and let f : Ω → R be upper
semianalytic. The following are equivalent:

(i) f is replicable.

(ii) The mapping Q 7→ EQ[f ] is constant (and finite) on Q.

(iii) For all P ∈ P there exists Q ∈ Q such that P � Q and EQ[f ] = π(f).

Moreover, the market is complete if and only if Q is a singleton.

Regarding (iii), we remark that the existence of one Q ∈ Q with EQ[f ] = π(f)
is not sufficient for f to be replicable. Regarding (ii), we observe that if the market
is complete, the unique element Q ∈ Q satisfies EQ[f ] ∈ R for all real-valued Borel
functions f . This readily implies that Q must be supported by a finite set.

1.3 Literature
Our main financial results are, of course, extensions of the classical case where P is a
singleton; see, e.g., [18, 27] and the references therein. Our local way of proving the
First Fundamental Theorem is certainly reminiscent of arguments for the Dalang–
Morton–Willinger Theorem in [15] and [33]. To the best of our knowledge, our
approach to the Superhedging Theorem is new even in the classical case.

In the setting where no options are traded and P is supposed to consist of mar-
tingale measures in the first place, there is a substantial literature on superhedging
under “volatility uncertainty,” where S is a (continuous-time) process with contin-
uous trajectories; see, among others, [7, 26, 39, 40, 41, 44, 46, 47, 48, 52, 51, 53].
These results were obtained by techniques which do not apply in the presence of
jumps. Indeed, an important difference to our setting is that when S is a continu-
ous (hence predictable) process and each P ∈ P corresponds to a complete market,
the optional decomposition coincides with the Doob–Meyer decomposition, which
allows for a constructive proof of the Superhedging Theorem. In discrete time, a du-
ality result (without existence) for a specific topological setup was obtained in [21];
see also [22] for the case of American and game options. A comparable result for the
continuous case was given in [20]. The existence of optimal superhedging strategies
in the discrete-time case was established in [43] for the one-dimensional case d = 1;
its result is generalized by our Theorem 2.3 to the multidimensional case, with a
much simpler proof using the arguments of [34]. An abstract duality result was also
provided in [43], but it remained open whether there is a duality gap with respect
to (σ-additive) martingale measures.

Roughly speaking, the model-free approach corresponds to the case where P
consists of all probability measures on Ω. Starting with [9, 11, 31], one branch
of this literature is devoted to finding explicitly a model-independent semi-static
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hedging strategy for a specific claim, such as a barrier option, when a specific family
of options can be traded, such as call options at specific maturities. We refer to the
survey [32] which features an extensive list of references. Needless to say, explicit
results are not within reach in our general setting.

A more related branch of this literature, starting with [8], studies when a given
set (finite or not) of option prices is generated by a martingale measure and, more
generally, is consistent with absence of arbitrage; see [1, 6, 10, 12, 13, 14, 16, 31].
The recent paper [1] is the closest to our study. In the setting of Example 1.2 with
d = 1, it provides a version of the First Fundamental Theorem and the absence
of a duality gap, possibly with infinitely many options, under certain continuity
and compactness conditions. The arguments hinge on the weak compactness of a
certain set of measures; to enforce the latter, it is assumed that options with specific
growth properties can be traded.

Adapting the terminology of the previous papers to our context, our condition
NA(P) excludes both model-independent and model-dependent arbitrage. This is
crucial for the validity of the Second Fundamental Theorem in a general context.
For instance, it is not hard to see that the theorem does not hold under the no-
arbitrage condition of [1]; the reason is that, in a typical case, the superhedging
price π(f) will be arbitrage-free for some models P ∈ P and fail to be so for others.
On a related note, let us stress that the equivalence in our version of the First
Fundamental Theorem provides not just one martingale measure as in [1], but a
family Q equivalent to P. This concept seems to be new, and is important for
our general version of the Superhedging Theorem. Finally, let us remark that in
general, optimal superhedging strategies do not exist when infinitely many options
are traded.

In the case where all options (or equivalently, all call options) at one or more
maturities are available for static hedging, consistency with the option prices is
equivalent to a constraint on the marginals of the martingale measures. In this
case, the problem dual to superhedging is a so-called martingale optimal transport
problem. Following work of [3] in discrete time and [29] in continuous time, this can
be used to prove the absence of a duality gap under certain regularity conditions,
and in specific cases, to characterize a dual optimizer and a superhedging strategy.
See also [4, 23, 24, 30, 55] for recent developments.

The present study is also related to the theory of nonlinear expectations and we
make use of ideas developed by [42, 45] in that context. In particular, the dynamic
version of the superhedging price used in the proof of the Superhedging Theorem in
Section 4 takes the form of a conditional sublinear expectation. In that section, we
also make heavy use of the theory of analytic sets and related measurable selections;
see [56, 57] for an extensive survey.

2 Existence of Optimal Superhedging Strategies
In this section, we obtain the existence of optimal superhedging strategies via an
elementary closedness property with respect to pointwise convergence. The techni-
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cal restrictions imposed on the structure of Ω,P and S in the Introduction are not
necessary for this, and so we shall work in a more general setting: For the remainder
of this section, P is any nonempty collection of probability measures on a general
measurable space (Ω,F) with filtration {Ft}t∈{0,1,...,T}, and S = (S0, S1, . . . ST ) is
any collection of F-measurable, Rd-valued random variables St. To wit, the process
S is not necessarily adapted. The purpose of this unusual setup is the following.

Remark 2.1. Static hedging with options can be incorporated as a special case
of a non-adapted stock: Suppose we want to model dynamic trading in (typically
adapted) stocks S1, . . . , Sd as well as static trading in F-measurable random vari-
ables (options) g1, . . . , ge at initial prices gi0, . . . , ge0 (F-measurable at least, but
typically F0-measurable). Then, we can define the d+ e dimensional process S̃ by
S̃it = Sit for i ≤ d and

S̃i+d0 = gi0 and S̃it + d = gi, t = 1, . . . , T

for i = 1, . . . e. Since ∆S̃i+d1 = gi − gi0 and ∆S̃i+dt = 0 for t ≥ 2, dynamic trading
in S̃ is then equivalent to dynamic trading in S and static (F0-measurable) trading
in g1, . . . , ge.

In view of the previous remark, we do not have to consider the case with options
explicitly; i.e., we take e = 0. The only role of the filtration is to determine the set
H of trading strategies; as in the Introduction, this will be the set of all predictable
processes. (The arguments in this section could easily be extended to situations
such as portfolio constraints.) For H ∈ H, the wealth process H • S is defined as
in (1.2), and the condition NA(P) says that H • ST ≥ 0 P-q.s. implies H • ST = 0
P-q.s.

We write L0
+ for the set of all nonnegative random variables. The following

result states that the cone C of all claims which can be superreplicated from initial
capital x = 0 is closed under pointwise convergence.

Theorem 2.2. Let C := {H • ST : H ∈ H}−L0
+. If NA(P) holds, then C is closed

under P-q.s. convergence; i.e., if {Wn}n≥1 ⊆ C and W is a random variable such
that Wn →W P-q.s., then W ∈ C.

Before stating the proof, let us show how this theorem implies the existence of
optimal superreplicating strategies.

Theorem 2.3. Let NA(P) hold and let f be a random variable. Then

π(f) := inf
{
x ∈ R : ∃H ∈ H such that x+H • ST ≥ f P-q.s.

}
> −∞

and there exists H ∈ H such that π(f) +H • ST ≥ f P-q.s.

Proof. The claim is trivial if π(f) = ∞. Suppose that π(f) = −∞. Then, for all
n ≥ 1, there exists Hn ∈ H such that −n+Hn • ST ≥ f P-q.s. and hence

Hn • ST ≥ f + n ≥ (f + n) ∧ 1 P-q.s.
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That is, Wn := (f + n) ∧ 1 ∈ C for all n ≥ 1. Now Theorem 2.2 yields that
1 = limWn is in C, which clearly contradicts NA(P).

On the other hand, if π(f) is finite, then Wn := f − π(f) − 1/n ∈ C for all
n ≥ 1 and thus f − π(f) = limWn ∈ C by Theorem 2.2, which yields the existence
of H.

Proof of Theorem 2.2. We follow quite closely the arguments of [34]; as observed
in [35], they can be used even in the case where S is not adapted. Let

Wn = Hn • ST −Kn

be a sequence in C which converges P-q.s. to a random variableW ; we need to show
that W = H • ST −K for some H ∈ H and K ∈ L0

+. We shall use an induction
over the number of periods in the market. The claim is trivial when there are zero
periods. Hence, we show the passage from T − 1 to T periods; more precisely, we
shall assume that the claim is proved for any market with dates {1, 2, . . . , T} and
we deduce the case with dates {0, 1, . . . , T}.

For any real matrix M , let index(M) be the number of rows in M which vanish
identically. Now let H1 be the random (d ×∞)-matrix whose columns are given
by the vectors H1

1 , H
2
1 , . . . . Then index(H1) is a random variable with values in

{0, 1, . . . , d}. If index(H1) = d P-q.s., we have Hn
1 = 0 for all n, so that setting

H1 = 0, we conclude immediately by the induction assumption. For the general
case, we use another induction over i = d, d− 1, . . . , 0; namely, we assume that the
result is proved whenever index(H1) ≥ i P-q.s. and we show how to pass to i− 1.

Indeed, assume that index(H1) ≥ i − 1 ∈ {0, . . . , d − 1}; we shall construct H
separately on finitely many sets forming a partition of Ω. Consider first the set

Ω1 := {lim inf |Hn
1 | <∞} ∈ F0.

By a standard argument (e.g., [34, Lemma 2]), we can find F0-measurable random
indices nk such that on Ω1, Hnk

1 converges pointwise to a (finite) F0-measurable
random vector H1. As the sequence

W̃ k := Wnk −Hnk
1 ∆S1 =

T∑
t=2

Hnk
t ∆St −Knk

converges to W − H1∆S1 =: W̃ P-q.s. on Ω1, we can now apply the induction
assumption to obtain H2, . . . ,HT and K ≥ 0 such that

W̃ =

T∑
t=2

Ht∆St −K

and therefore W = H • ST −K on Ω1. It remains to construct H on

Ω2 := Ωc1 = {lim inf |Hn
1 | = +∞}.
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Let
Gn1 :=

Hn
1

1 + |Hn
1 |
.

As |Gn1 | ≤ 1, there exist F0-measurable random indices nk such that Gnk1 converges
pointwise to an F0-measurable random vector G1, and clearly |G1| = 1 on Ω2.
Moreover, on Ω2, we have Wnk/(1 + |Hnk

1 |)→ 0 and hence −G1∆S1 is the P-q.s.
limit of

T∑
t=2

Hnk
t

1 + |Hnk
1 |

∆St −
Knk

1 + |Hnk
1 |

.

By the induction assumption, it follows that there exist H̃2, . . . , H̃T such that∑T
t=2 H̃t∆St ≥ −G1∆S1 on Ω2 ∈ F0. Therefore,

G1∆S1 +

T∑
t=2

H̃t∆St = 0 on Ω2, (2.1)

since otherwise the trading strategy (G1, H̃2, . . . , H̃T )1Ω2
would violate NA(P). As

|G1| = 1 on Ω2, we have that for every ω ∈ Ω2, at least one component Gj1(ω) of
G1(ω) is nonzero. Therefore,

Λ1 := Ω2 ∩ {G1
1 6= 0}, Λj := (Ω2 ∩ {Gj1 6= 0}) \ (Λ1 ∪ · · · ∪ Λj−1), j = 2, . . . , d

defines an F0-measurable partition of Ω2. We then consider the vectors

H̄n
t := Hn

t −
d∑
j=1

1Λj

Hn,j
1

Gj1

(
G11{t=1} + H̃t1{t≥2}

)
, t = 1, . . . , T.

Note that H̄n • ST = Hn • ST by (2.1). Hence, we still have W = H̄n • ST −Kn.
However, on Ω2, the resulting matrix H̄1 now has index(H̄1) ≥ i since we have
created an additional vanishing row: the jth component of H̄n

1 vanishes on Λj by
construction, while the jth row of H1 cannot vanish on Λj ⊆ {Gj1 6= 0} by the
definition of G1. We can now apply the induction hypothesis for indices greater or
equal to i to obtain H on Ω2. Recalling that Ω = Ω1 ∪ Ω2, we have shown that
there exist H ∈ H and K ≥ 0 such that W = H • ST −K.

3 The One-Period Case
In this section, we prove the First Fundamental Theorem and the Superhedging
Theorem in the one-period case; these results will serve as building blocks for
the multi-period case. We consider an arbitrary measurable space (Ω,F) with a
filtration (F0,F1), where F0 = {∅,Ω}, and a nonempty convex set P ⊆ P(Ω).
The stock price process is given by a deterministic vector S0 ∈ Rd and an F1-
measurable, Rd-valued random vector S1. We write ∆S for S1 − S0 and note
that Q is a martingale measure simply if EQ[∆S] = 0; recall the convention (1.1).
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Moreover, we have H = Rd. We do not consider hedging with options explicitly
(i.e., we again take e = 0) as there is no difference between options and stocks in
the one-period case. Thus, we have Q = {Q ∈ P(Ω) : Q≪ P, EQ[∆S] = 0}.

3.1 First Fundamental Theorem
In the following version of the Fundamental Theorem, we omit the equivalent con-
dition (ii’) stated in the Introduction; it is not essential and we shall get back to it
only in Remark 5.2.

Theorem 3.1. The following are equivalent:

(i) NA(P) holds.

(ii) For all P ∈ P there exists Q ∈ Q such that P � Q.

For the proof, we first recall the following well-known fact; cf. [19, Theo-
rem VII.57, p. 246].

Lemma 3.2. Let {gn}n≥1 be a sequence of random variables and let P ∈ P(Ω).
There exists a probability measure R ∼ P with bounded density dR/dP such that
ER[|gn|] <∞ for all n.

The following lemma is a strengthening of the nontrivial implication in The-
orem 3.1. Rather than just showing the existence of a martingale measure (i.e.,
ER[∆S] = 0 for some R ∈ P(Ω)), we show that the vectors ER[∆S] fill a relative
neighborhood of the origin. This property will be of key importance in the proof
of the duality.

Lemma 3.3 (Fundamental Lemma). Let NA(P) hold and let f be a random vari-
able. Then

0 ∈ ri
{
ER[∆S] : R ∈ P(Ω), R≪ P, ER[|∆S|+ |f |] <∞

}
⊆ Rd.

Similarly, given P ∈ P, we also have

0 ∈ ri
{
ER[∆S] : R ∈ P(Ω), P � R≪ P, ER[|∆S|+ |f |] <∞

}
⊆ Rd.

Proof. We show only the second claim; the first one can be obtained by omitting
the lower bound P is the subsequent argument. We fix P and f ; moreover, we set
Ik := {1, . . . , d}k for k = 1, . . . , d and

Θ := {R ∈ P(Ω) : P � R≪ P, ER[|∆S|+ |f |] <∞}.

Note that Θ 6= ∅ as a consequence of Lemma 3.2. Given I ∈ Ik, we denote

ΓI := {ER[(∆Si)i∈I ] : R ∈ Θ} ⊆ Rk;

then our claim is that 0 ∈ ri ΓI for I = (1, . . . , d) ∈ Id. It is convenient to show
more generally that 0 ∈ ri ΓI for all I ∈ Ik and all k = 1, . . . , d. We proceed by
induction.

12



Consider first k = 1 and I ∈ Ik; then I consists of a single number i ∈ {1, . . . , d}.
If ΓI = {0}, the result holds trivially, so we suppose that there exists R ∈ Θ
such that ER[∆Si] 6= 0. We focus on the case ER[∆Si] > 0; the reverse case is
similar. Then, NA(P) implies that A := {∆Si < 0} satisfies R1(A) > 0 for some
R1 ∈ P. By replacing R1 with R2 := (R1 + P )/2 we also have that R2 � P , and
finally Lemma 3.2 allows to replace R2 with an equivalent probability R3 such that
ER3

[|∆S|+|f |] <∞; as a result, we have found R3 ∈ Θ satisfying ER3
[1A∆Si] < 0.

But then R′ ∼ R3 � P defined by

dR′

dR3
=

1A + ε

ER3
[1A + ε]

(3.1)

satisfies R′ ∈ Θ and ER′ [∆Si] < 0 for ε > 0 chosen small enough. Now set

Rλ := λR+ (1− λ)R′ ∈ Θ

for each λ ∈ (0, 1); then

0 ∈ {ERλ [∆Si] : λ ∈ (0, 1)} ⊆ ri{ER[∆Si] : R ∈ Θ},

which was the claim for k = 1.
Let 1 < k ≤ d be such that 0 ∈ ri ΓI for all I ∈ Ik−1; we show hat 0 ∈ ri ΓI

for all I ∈ Ik. Suppose that there exists I = (i1, . . . , ik) ∈ Ik such that 0 /∈ ri ΓI .
Then, the convex set ΓI can be separated from the origin; that is, we can find
y = (y1, . . . , yk) ∈ Rk such that |y| = 1 and

0 ≤ inf

{
ER

[ k∑
j=1

yj∆Sij
]

: R ∈ Θ

}
.

Using a similar argument as before (3.1), this implies that
∑k
j=1 y

j∆Sij ≥ 0 P-q.s.,
and thus

∑k
j=1 y

j∆Sij = 0 P-q.s. by NA(P). As |y| = 1, there exists 1 ≤ l ≤ k

such that yl 6= 0, and we obtain that

∆Sl = −
k∑
j=1

δj 6=l(y
j/yl)∆Sij P-q.s.

Using the definition of the relative interior, the assumption that 0 /∈ ri ΓI then
implies that 0 /∈ ri ΓI′ , where I ′ ∈ Ik−1 is the vector obtained from I by deleting
the l-th entry. This contradicts our induction hypothesis.

Proof of Theorem 3.1. (i) implies (ii): This is a special case of the Lemma 3.3,
applied with f ≡ 0.

(ii) implies (i): Let (ii) hold and let H ∈ Rd be such that H∆S ≥ 0 P-q.s.
Suppose that there exists P ∈ P such that P{H∆S > 0} > 0. By (ii), there
exists a martingale measure Q such that P � Q≪ P. Thus Q{H∆S > 0} > 0,
contradicting that EQ[H∆S] = 0.
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3.2 Superhedging Theorem
We can now establish the Superhedging Theorem in the one-period case. Recall
that the convention (1.1) is in force.

Theorem 3.4. Let NA(P) hold and let f be a random variable. Then

sup
Q∈Q

EQ[f ] = π(f) := inf
{
x ∈ R : ∃H ∈ Rd such that x+H∆S ≥ f P-q.s.

}
.

(3.2)
Moreover, π(f) > −∞ and there exists H ∈ Rd such that π(f) +H∆S ≥ f P-q.s.

The last statement is a consequence of Theorem 2.3. For the proof of (3.2),
the inequality “≥” is the nontrivial one; that is, we need to find Qn ∈ Q such
that EQn [f ] → π(f). Our construction proceeds in two steps. In the subsequent
lemma, we find “approximate” martingale measures Rn such that ERn [f ] → π(f);
in its proof, it is important to relax the martingale property as this allows us to use
arbitrary measure changes. In the second step, we replace Rn by true martingale
measures, on the strength of the Fundamental Lemma: it implies that if R is any
probability with ER[∆S] close to the origin, then there exists a perturbation of R
which is a martingale measure.

Lemma 3.5. Let NA(P) hold and let f be a random variable with π(f) = 0. There
exist probabilities Rn≪ P, n ≥ 1 such that

ERn [∆S]→ 0 and ERn [f ]→ 0.

Proof. It follows from Lemma 3.2 that the set

Θ := {R ∈ P(Ω) : R≪ P, ER[|∆S|+ |f |] <∞}

is nonempty. Introduce the set

Γ :=
{
ER[(∆S, f)] : P ∈ Θ

}
⊆ Rd+1;

then our claim is equivalent to 0 ∈ Γ, where Γ denotes the closure of Γ in Rd+1.
Suppose for contradiction that 0 /∈ Γ, and note that Γ is convex because P is convex.
Thus, Γ can be separated strictly from the origin; that is, there exist (y, z) ∈ Rd×R
with |(y, z)| = 1 and α > 0 such that

0 < α = inf
R∈Θ

ER[y∆S + zf ].

Using again a similar argument as before (3.1), this implies that

0 < α ≤ y∆S + zf P-q.s. (3.3)

Suppose that z < 0; then this yields that

f ≤ |z−1|y∆S − |z−1|α P-q.s.,
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which implies that π(f) ≤ −|z−1|α < 0 and thus contradicts the assumption that
π(f) = 0. Hence, we must have 0 ≤ z ≤ 1. But as π(zf) = zπ(f) = 0 < α/2, there
exists H ∈ Rd such that α/2 +H∆S ≥ zf P-q.s., and then (3.3) yields

0 < α/2 ≤ (y +H)∆S P-q.s.,

which contradicts NA(P). This completes the proof.

Lemma 3.6. Let NA(P) hold, let f be a random variable, and let R ∈ P(Ω) be
such that R≪ P and ER[|∆S| + |f |] < ∞. Then, there exists Q ∈ Q such that
EQ[|f |] <∞ and

|EQ[f ]− ER[f ]| ≤ c(1 + |ER[f ]|)|ER[∆S]|,

where c > 0 is a constant independent of R and Q.

Proof. Let Θ = {R′ ∈ P(Ω) : R′≪ P, ER′ [|∆S|+ |f |] <∞} and

Γ = {ER′ [∆S] : R′ ∈ Θ}.

If Γ = {0}, then R ∈ Θ is itself a martingale measure and we are done. So let us
assume that the vector space span Γ ⊆ Rd has dimension k > 0 and let e1, . . . , ek be
an orthonormal basis. Lemma 3.3 shows that 0 ∈ ri Γ; hence, we can find P±i ∈ Θ
and α±i > 0 such that

α±i EP±i
[∆S] = ±ei, 1 ≤ i ≤ k.

Note also that P±i , α
±
i do not depend on R.

Let λ = (λ1, . . . , λk) ∈ Rk be such that −ER[∆S] =
∑k
i=1 λiei. Then, we have

|λ| = |ER[∆S]| and

−ER[∆S] =

∫
∆S dµ for µ :=

k∑
i=1

λ+
i α

+
i P

+
i + λ−i α

−
i P
−
i ,

where λ+
i and λ−i denote the positive and the negative part of λi. Define the

probability Q by

Q =
R+ µ

1 + µ(Ω)
;

then R� Q≪ P and EQ[∆S] = 0 by construction. Moreover,

|EQ[f ]− ER[f ]| =
∣∣∣∣ 1

1 + µ(Ω)

∫
f dµ− µ(Ω)

1 + µ(Ω)
ER[f ]

∣∣∣∣
≤
∣∣∣∣∫ f dµ

∣∣∣∣+ µ(Ω) |ER[f ]|

≤ c|λ|(1 + |ER[f ]|),

where c is a constant depending only on α±i and EP±i [f ]. It remains to recall that
|λ| = |ER[∆S]|.
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Proof of Theorem 3.4. The last claim holds by Theorem 2.3, so π(f) > −∞. Let us
first assume that f is bounded from above; then π(f) <∞, and by a translation we
may even suppose that π(f) = 0. By Theorem 3.1, the setQ of martingale measures
is nonempty; moreover, EQ[f ] ≤ π(f) = 0 for all Q ∈ Q by Lemma A.2. Thus, we
only need to find a sequence Qn ∈ Q such that EQn [f ] → 0. Indeed, Lemma 3.5
yields a sequence Rn ≪ P such that ERn [∆S] → 0 and ERn [f ] → 0. Applying
Lemma 3.6 to each Rn, we obtain a sequence Qn ∈ Q such that EQn [|f |] <∞ and

|EQn [f ]− ERn [f ]| ≤ c(1 + |ERn [f ]|)|ERn [∆S]| → 0;

as a result, we have EQn [f ]→ 0 as desired.
It remains to discuss the case where f is not bounded from above. By the

previous argument, we have

sup
Q∈Q

EQ[f ∧ n] = π(f ∧ n), n ∈ N; (3.4)

we pass to the limit on both sides. Indeed, on the one hand, we have

sup
Q∈Q

EQ[f ∧ n]↗ sup
Q∈Q

EQ[f ]

by the monotone convergence theorem (applied to all Q such that EQ[f−] < ∞).
On the other hand, it also holds that

π(f ∧ n)↗ π(f),

because if α := supn π(f ∧ n), then (f ∧ n)−α ∈ C for all n and thus f −α ∈ C by
Theorem 2.2, and in particular π(f) ≤ α.

4 The Multi-Period Case Without Options
In this section, we establish the First Fundamental Theorem and the Superhedging
Theorem in the market with T periods, in the case where only stocks are traded.

4.1 Preliminaries on Quasi-Sure Supports
We first fix some terminology. Let (Ω,F) be any measurable space and let Y be
a topological space. A mapping Ψ from Ω into the power set of Y will be denoted
by Ψ : Ω� Y and called a random set or a set-valued mapping. We say that Ψ is
measurable (in the sense of set-valued mappings) if

{ω ∈ Ω : Ψ(ω) ∩A 6= ∅} ∈ F for all closed A ⊆ Y . (4.1)

It is called closed-valued if Ψ(ω) ⊆ Y is closed for all ω ∈ Ω.
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Remark 4.1. The mapping Ψ is called weakly measurable if

{ω ∈ Ω : Ψ(ω) ∩O 6= ∅} ∈ F for all open O ⊆ Y . (4.2)

This condition is indeed weaker than (4.1), whenever Y is metrizable [2, Lemma 18.2,
p. 593]. If Y = Rd, then (4.2) is equivalent to (4.1); cf. [49, Proposition 1A].

Another useful notion of measurability refers to the graph of Ψ, defined as

graph(Ψ) = {(ω, y) : ω ∈ Ω, y ∈ Ψ(ω)} ⊆ Ω× Y.

In particular, if Ω and Y are Polish spaces and graph(Ψ) ⊆ Ω× Y is analytic, then
Ψ admits a universally measurable selector ψ on the (universally measurable) set
{Ψ 6= ∅} ⊆ Ω; that is, ψ : {Ψ 6= ∅} → Y satisfies ψ(ω) ∈ Ψ(ω) for all ω such that
Ψ(ω) 6= ∅.

Lemma 4.2. Given a nonempty family R of probability measures on (Rd,B(Rd)),
let

supp(R) :=
⋂{

A ⊆ Rd closed: R(A) = 1 for all R ∈ R
}
⊆ Rd.

Then supp(R) is the smallest closed set A ⊆ Rd such that R(A) = 1 for all R ∈ R.
In particular, if P ⊆ P(Ω), X : Ω→ Rd is measurable, and R = {P ◦X−1 : P ∈ P}
is the associated family of laws, then

suppP(X) := supp(R)

is the smallest closed set A ⊆ Rd such that P{X ∈ A} = 1 for all P ∈ P.

Proof. Let {Bn}n≥1 be a countable basis of the topology of Rd and let An = Bcn.
Since the intersection

supp(R) =
⋂
{An : R(An) = 1 for all R ∈ R}

is countable, we see that R(supp(R)) = 1 for all R ∈ R. The rest is clear.

Lemma 4.3. Let Ω,Ω1 be Polish spaces, let P : Ω� P(Ω1) have nonempty values
and analytic graph, and let X : Ω × Ω1 → Rd be Borel. Then the random set
Λ : Ω� Rd,

Λ(ω) := suppP(ω)(X(ω, ·)) ⊆ Rd, ω ∈ Ω

is closed-valued and universally measurable. Moreover, its polar cone Λ◦ : Ω� Rd,

Λ◦(ω) := {y ∈ Rd : yv ≥ 0 for all v ∈ Λ(ω)}, ω ∈ Ω

is nonempty-closed-valued and universally measurable, and it satisfies

Λ◦(ω) = {y ∈ Rd : yX(ω, ·) ≥ 0 P(ω)-q.s.}, ω ∈ Ω. (4.3)

17



Proof. Consider the mapping ` which associates to ω ∈ Ω and P ∈ P(Ω1) the law
of X(ω, ·) under P ,

` : Ω×P(Ω1)→ P(Rd), `(ω, P ) := P ◦X(ω, ·)−1.

If X is continuous and bounded, it is elementary to check that ` is separately
continuous (using the weak convergence on P(Ω1), as always) and thus Borel. A
monotone class argument then shows that ` is Borel whenever X is Borel. Consider
also the random set consisting of the laws of X(ω, ·),

R : Ω� P(Rd), R(ω) := `(ω,P(ω)) ≡ {P ◦X(ω, ·)−1 : P ∈ P(ω)}.

Its graph is the image of graph(P) under the Borel mapping (ω, P ) 7→ (ω, `(ω, P ));
in particular, graph(R) is again analytic by [5, Proposition 7.40, p. 165]. Now let
O ⊆ Rd be an open set; then

{ω ∈ Ω : Λ(ω) ∩O 6= ∅} = {ω ∈ Ω : R(O) > 0 for some R ∈ R(ω)}
= projΩ{(ω,R) ∈ graph(R) : R(O) > 0},

where projΩ denotes the canonical projection Ω×P(Rd)→ Ω. Since R 7→ R(O) is
semicontinuous and in particular Borel, this shows that {ω ∈ Ω : Λ(ω) ∩O 6= ∅} is
the continuous image of an analytic set, thus analytic and in particular universally
measurable. In view of Remark 4.1, it follows that Λ is universally measurable as
claimed. Moreover, Λ is closed-valued by its definition. Finally, the polar cone Λ◦

is then also universally measurable [49, Proposition 1H, Corollary 2T], and it is
clear that Λ◦ is closed-valued and contains the origin.

It remains to prove (4.3). Let ω ∈ Ω. Clearly, y ∈ Λ◦(ω) implies that

P{yX(ω, ·) ≥ 0} = P{X(ω, ·) ∈ Λ(ω)} = 1

for all P ∈ P(ω), so y is contained in the right-hand side of (4.3). Conversely, let
y /∈ Λ◦(ω); then there exists v ∈ Λ(ω) such that yv < 0, and thus yv′ < 0 for all v′ in
an open neighborhood B(v) of v. By the minimality property of the support Λ(ω),
it follows that there exists P ∈ P(ω) such that P{X(ω, ·) ∈ B(v)} > 0. Therefore,
P{yX(ω, ·) < 0} > 0 and y is not contained in the right-hand side of (4.3).

Remark 4.4. The assertion of Lemma 4.3 cannot be generalized to the case where
X is universally measurable instead of Borel (which would be quite handy in Sec-
tion 4.3 below). Indeed, if Ω = Ω1 = [0, 1], P ≡ P(Ω) and X = 1A for some
A ⊆ Ω × Ω1, then {Λ ∩ {1} 6= ∅} = projΩ(A). But there exists a universally mea-
surable subset A of [0, 1]× [0, 1] whose projection is not universally measurable; cf.
the proof of [28, 439G].

4.2 First Fundamental Theorem
We now consider the setup as detailed in Section 1.2, for the case when there are no
options (e = 0). In brief, (Ω,F) = (ΩT ,FT ), where Ωt = Ωt1 is the t-fold product of
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a Polish space Ω1 (and often identified with a subset of Ω) and FT is the universal
completion of B(ΩT ). The set P is determined by the random sets Pt(·), which
have analytic graphs, and St is B(Ωt)-measurable. It will be convenient to write
St+1 as a function on Ωt × Ω1,

St+1(ω, ω′) = St+1(ω1, . . . , ωt, ω
′), (ω, ω′) = ((ω1, . . . , ωt), ω

′) ∈ Ωt × Ω1,

since the random variable ∆St+1(ω, ·) = St+1(ω, ·)− St+1(ω) on Ω1 will be of par-
ticular interest. Indeed, ∆St+1(ω, ·) determines a one-period market on (Ω1,B(Ω1))
under the set Pt(ω) ⊆ P(Ω1). Endowed with deterministic initial data, this mar-
ket is of the type considered in Section 3, and we shall write NA(Pt(ω)) for the
no-arbitrage condition in that market. The following result contains the First Fun-
damental Theorem for the multi-period market, and also shows that absence of
arbitrage in the multi-period market is equivalent to absence of arbitrage in all the
one-period markets, up to a polar set.

Theorem 4.5. The following are equivalent:

(i) NA(P) holds.

(ii) The set Nt = {ω ∈ Ωt : NA(Pt(ω)) fails} is P-polar for all t ∈ {0, . . . , T−1}.

(iii) For all P ∈ P there exists Q ∈ Q such that P � Q.

Before stating the proof, let us isolate some preliminary steps.

Lemma 4.6. Let t ∈ {0, . . . , T − 1}. The set

Nt = {ω ∈ Ωt : NA(Pt(ω)) fails}

is universally measurable, and if NA(P) holds, then Nt is P-polar.

Proof. We fix t and set Xω(·) := St+1(ω, ·) − St(ω) for ω ∈ Ωt. Let Λ(ω) =
suppPt(ω)(X

ω) and let Λ◦(ω) be its polar cone. Our first claim is that

N c
t ≡ {ω : NA(Pt(ω)) holds} = {ω : Λ◦(ω) = −Λ◦(ω)}. (4.4)

Indeed, suppose that Λ◦(ω) = −Λ◦(ω); then (4.3) shows that yXω ≥ 0 Pt(ω)-q.s.
implies −yXω ≥ 0 Pt(ω)-q.s., and hence NA(Pt(ω)) holds. On the other hand,
if there exists y ∈ Λ◦(ω) such that −y /∈ Λ◦(ω), then we have yXω ≥ 0 Pt(ω)-
q.s. while {yXω > 0} is not Pt(ω)-polar, meaning that NA(Pt(ω)) is violated.
Therefore, (4.4) holds.

Since Λ◦(·) is universally measurable by Lemma 4.3, it follows from the repre-
sentation (4.4) (and, e.g., [49, Proposition 1A]) that Nt is universally measurable.

It remains to show that Nt is P-polar under NA(P). Suppose for contradiction
that there exists P∗ ∈ P such that P∗(Nt) > 0; then we need to construct (mea-
surable) arbitrage strategies y(ω) ∈ Rd and measures P (ω) ∈ Pt(ω) under which
y(ω) makes a riskless profit with positive probability, for ω ∈ Nt. In other words,
we need to select P∗-a.s. from

{(y, P ) ∈ Λ◦(ω)× Pt(ω) : EP [yXω] > 0}, ω ∈ Nt.
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To this end, note that by modifying as in [5, Lemma 7.27, p. 173] each member
of a universally measurable Castaing representation [2, Corollary 18.14, p. 601] of
Λ◦, we can find a Borel-measurable mapping Λ◦∗ : Ωt � Rd with nonempty closed
values such that

Λ◦∗ = Λ◦ P∗-a.s. (4.5)

This implies that graph(Λ◦∗) ⊆ Ωt × Rd is Borel [2, Theorem 18.6, p. 596]. Let

Φ(ω) := {(y, P ) ∈ Λ◦∗(ω)× Pt(ω) : EP [yXω] > 0}, ω ∈ Ωt.

After using a monotone class argument to see that the function

ψ : Ω×P(Ω1)× Rd → R, ψ(ω, P, y) := EP [yXω]

is Borel, we deduce that (with a minor abuse of notation)

graph(Φ) = [graph(Pt)× Rd] ∩ [P(Ω1)× graph(Λ◦∗)] ∩ {ψ > 0}

is an analytic set. Now, we can apply the Jankov–von Neumann Theorem [5, Propo-
sition 7.49, p. 182] to obtain a universally measurable function ω 7→ (y(ω), P (ω))
such that (y(·), P (·)) ∈ Φ(·) on {Φ 6= ∅}. By the definition of Nt and (4.5), we have

Nt = {Φ 6= ∅} P∗-a.s.,

so that y is P∗-a.s. an arbitrage on Nt. On the universally measurable P∗-nullset
{y /∈ Λ◦}, we may redefine y := 0 to ensure that y takes values in Λ◦. Similarly, on
{Φ = ∅}, we may define P to be any universally measurable selector of Pt. Setting
Ht+1 := y and Hs := 0 for s 6= t+ 1, we have thus defined H ∈ H and P (·) ∈ Pt(·)
such that

P (ω){Ht+1(ω)Xω > 0} > 0 for P∗-a.e. ω ∈ Nt (4.6)

and Ht+1(ω)Xω ≥ 0 Pt(ω)-q.s. for all ω ∈ Ω; cf. (4.3). As any P ′ ∈ P satisfies a
decomposition of the form P ′|Ωt+1 = P ′|Ωt ⊗P ′t for some selector P ′t of Pt, Fubini’s
theorem yields that H • ST ≥ 0 P-q.s. On the other hand, let

P ∗ := P∗|Ωt ⊗ P ⊗ P̃t+1 ⊗ · · · ⊗ P̃T−1,

where P̃s is any universally measurable selector of Ps, for s = t + 1, . . . , T − 1.
Then P ∗ ∈ P, while P∗(Nt) > 0 and (4.6) imply that P ∗{H • ST > 0} > 0. This
contradicts NA(P) and completes the proof that Nt is P-polar.

We recall the following result of Doob; it based on the fact that the Borel σ-
field of Ω1 is countably generated (see [19, TheoremV.58, p. 52] and the subsequent
remark).

Lemma 4.7. Let µ, µ′ : Ω × P(Ω1) → P(Ω1) be Borel. There exists a Borel
function D : Ω× Ω×P(Ω1)×P(Ω1)× Ω1 → R such that

D(ω, ω′, P, P ′; ω̃) =
dµ(ω, P )

dµ′(ω′, P ′)

∣∣∣∣
B(Ω1)

(ω̃)
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for all ω, ω′ ∈ Ω and P, P ′ ∈ P(Ω1); i.e., D(ω, ω′, P, P ′; ·) is a version of the
Radon–Nikodym derivative of the absolutely continuous part of µ(ω, P ) with respect
to µ′(ω′, P ′), on the Borel σ-field of Ω1.

Lemma 4.8. Let t ∈ {0, . . . , T − 1}, let P (·) : Ωt → P(Ω1) be Borel, and let

Qt(ω) := {Q ∈ P(Ω1) : Q≪ Pt(ω), EQ[∆St+1(ω, ·)] = 0}, ω ∈ Ωt.

Then Qt has an analytic graph and there exist universally measurable mappings
Q(·), P̂ (·) : Ωt → P(Ω1) such that

P (ω)� Q(ω)� P̂ (ω) for all ω ∈ Ωt,

P̂ (ω) ∈ Pt(ω) if P (ω) ∈ Pt(ω),

Q(ω) ∈ Qt(ω) if NA(Pt(ω)) holds and P (ω) ∈ Pt(ω).

Proof. Given ω ∈ Ωt, we write Xω for ∆St+1(ω, ·). Let P (·) : Ωt → P(Ω1) be
Borel. As a first step, we show that the random set

Ξ(ω) := {(Q, P̂ ) ∈ P(Ω1)×P(Ω1) : EQ[Xω] = 0, P̂ ∈ Pt(ω), P (ω)� Q� P̂}
(4.7)

has an analytic graph. To this end, let

Ψ(ω) := {Q ∈ P(Ω1) : EQ[Xω] = 0}, ω ∈ Ωt.

Since the function

ψ : Ωt ×P(Ω1)→ R, ψ(ω,R) := ER[Xω]

is Borel, we see that

graph(Ψ) = {ψ = 0} ⊆ Ωt ×P(Ω1) is Borel.

Next, consider the random set

Φ(ω) := {(R, R̂) ∈ P(Ω1)×P(Ω1) : P (ω)� R� R̂}, ω ∈ Ωt.

Moreover, let

φ : Ωt ×P(Ω1)×P(Ω1)→ R, φ(ω,R, R̂) := EP (ω)[dR/dP (ω)] + ER[dR̂/dR],

where dR/dP (ω) and dR̂/dR are the jointly Borel-measurable Radon–Nikodym
derivatives as in Lemma 4.7. Then, P (ω) � R � R̂ if and only if φ(ω,R, R̂) = 2.
Since Lemma 4.7 and [5, Proposition 7.26, p. 134] imply that φ is Borel, we deduce
that

graph(Φ) = {φ = 2} ⊆ Ωt ×P(Ω1) is Borel.

As a result, we obtain that

Ξ(ω) = [Ψ(ω)× Pt(ω)] ∩ Φ(ω), ω ∈ Ωt
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has an analytic graph. Thus, the Jankov–von Neumann Theorem [5, Proposi-
tion 7.49, p. 182] allows us to find universally measurable selectors Q(·), P̂ (·) for Ξ
on the universally measurable set {Ξ 6= ∅}. Setting Q(·) := P (·) and P̂ (·) := P (·)
on {Ξ 6= ∅} completes the construction, as by Theorem 3.1, Ξ(ω) = ∅ is possible
only if NA(Pt(ω)) does not hold or P (ω) /∈ Pt(ω).

It remains to show that Qt has an analytic graph. Using the same arguments
as for the measurability of Ξ, but omitting the lower bound P (·), we see that the
random set

Ξ̃(ω) := {(Q, P̂ ) ∈ P(Ω1)×P(Ω1) : EQ[∆St+1(ω, ·)] = 0, P̂ ∈ Pt(ω), Q� P̂}
(4.8)

has an analytic graph. Moreover, we observe that graph(Qt) is the image of
graph(Ξ̃) under the canonical projection Ωt × P(Ω1) × P(Ω1) → Ωt × P(Ω1), so
that graph(Qt) is indeed analytic.

Proof of Theorem 4.5. Lemma 4.6 shows that (i) implies (ii). Let (iii) hold, then
a set is P-polar if and only if it is Q-polar. Let H ∈ H be such that H • ST ≥ 0
P-q.s. For all Q ∈ Q, we have H • ST ≥ 0 Q-a.s., and as Lemma A.1 shows that
the local Q-martingale H • S is a true one, it follows that H • ST = 0 Q-a.s. Hence,
(i) holds.

It remains to show that (ii) implies (iii). Let P ∈ P; then P = P0 ⊗ · · · ⊗PT−1

for some universally measurable selectors Pt(·) of Pt(·), t = 0, . . . , T − 1. We first
focus on t = 0. Using Theorem 3.1, we can find P̂0 ∈ P0 and Q0 ∈ Q0 such that
P0 � Q0 � P̂0. Next, consider t = 1. By changing P1(·) on a P̂0-nullset (hence
a P0-nullset), we find a Borel kernel which takes values in P1(·) P0-a.e.; we again
denote this kernel by P1(·). As any P̂0-nullset is a P0-nullset, this change does not
affect the identity P = P0 ⊗ · · · ⊗ PT−1. In view of (ii), we can apply Lemma 4.8
to find universally measurable kernels Q1(·) and P̂1(·) such that

P1(·)� Q1(·)� P̂1(·), (4.9)

Q1(·) takes values in Q1(·) P̂0-a.s. (and hence Q0-a.s.), and P̂1(·) takes values in
P1(·) P̂0-a.s. Let

P 1 := P0 ⊗ P1, P̂ 1 := P̂0 ⊗ P̂1, Q1 := Q0 ⊗Q1.

Then (4.9) and Fubini’s theorem show that P 1 � Q1 � P̂ 1 and so we can proceed
with t = 2 as above, using P̂ 1 instead of P̂0 as a reference measure, and continue
up to t = T − 1. We thus find kernels

Pt(·)� Qt(·)� P̂t(·), t = 0, . . . , T − 1,

and we define

Q := Q0 ⊗ · · · ⊗QT−1, P̂ := P̂0 ⊗ · · · ⊗ P̂T−1.

By construction, we have P � Q � P̂ and P̂ ∈ P; in particular, P � Q≪ P.
Moreover, the fact that Qt(·) ∈ Qt(·) holds (Q0 ⊗ · · · ⊗ Qt−1)-a.s. and Fubini’s
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theorem yield that S is a generalized martingale under Q in the sense stated before
Lemma A.1. (We do not have that St ∈ L1(Q), which is the missing part of the
martingale property.) However, Lemma A.1 and Lemma A.3 imply that there exists
Q′ ∼ Q under which S is a true martingale, which completes the proof.

4.3 Superhedging Theorem
We continue with the same setting as in the preceding subsection; that is, the setup
detailed in Section 1.2 for the case when there are no options (e = 0). Our next aim
is to prove the Superhedging Theorem in the multi-period market where only stocks
are traded. To avoid some integrability problems in the subsequent section, we use
a slightly smaller set of martingale measures: given a random variable (“weight
function”) ϕ ≥ 1, we define Qϕ := {Q ∈ Q : EQ[ϕ] <∞}.

Theorem 4.9. Let NA(P) hold, let ϕ ≥ 1 be a random variable and let f : Ω→ R
be an upper semianalytic function such that |f | ≤ ϕ. Then

sup
Q∈Qϕ

EQ[f ] = π(f) := inf
{
x ∈ R : ∃H ∈ H such that x+H • ST ≥ f P-q.s.

}
.

We shall give the proof through two key lemmas. First, we provide a measur-
able version of the one-step duality (Theorem 3.4). Then, we apply this result in
a recursive fashion, where the claim is replaced by a dynamic version of the super-
hedging price. The relevance of upper semianalytic functions in this context is that
semianalyticity is preserved through the recursion, whereas Borel-measurability is
not. For the next statement, recall the random set Qt introduced in Lemma 4.8.

Lemma 4.10. Let NA(P) hold, let t ∈ {0, . . . , T − 1} and let f : Ωt × Ω1 → R be
upper semianalytic. Then

Et(f) : Ωt → R, Et(f)(ω) := sup
Q∈Qt(ω)

EQ[f(ω, ·)]

is upper semianalytic. Moreover, there exists a universally measurable function
y(·) : Ωt → Rd such that

Et(f)(ω) + y(ω)∆St+1(ω, ·) ≥ f(ω, ·) Pt(ω)-q.s. (4.10)

for all ω ∈ Ωt such that NA(Pt(ω)) holds and f(ω, ·) > −∞ Pt(ω)-q.s.

Proof. It is easy to see that the mapping (ω,Q) 7→ EQ[f(ω, ·)] is continuous when
f is bounded and uniformly continuous. By a monotone class argument, the same
mapping is therefore Borel when f is bounded and Borel. Using [5, Proposition 7.26,
p. 134] and [5, Proposition 7.48, p. 180], it follows that (ω,Q) 7→ EQ[f(ω, ·)] is upper
semianalytic when f is. After recalling from Lemma 4.8 that the graph of Qt is
analytic, it follows from the Projection Theorem in the form of [5, Proposition 7.47,
p. 179] that Et(f) is upper semianalytic.
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To avoid dealing with too many infinities in what follows, set

Et(f)′ := Et(f)1R(Et(f));

then Et(f)′ is universally measurable and we have Et(f)′(ω) = Et(f)(ω) unless
Et(f)(ω) = ±∞. Consider the random set

Ψ(ω) := {y ∈ Rd : Et(f)′(ω) + y∆St+1(ω, ·) ≥ f(ω, ·) Pt(ω)-q.s.}, ω ∈ Ωt.

We show below that {Ψ 6= ∅} is universally measurable and that Ψ admits a uni-
versally measurable selector y(·) on that set. Before stating the proof, let us check
that this fact implies the lemma. Indeed, define also y(·) = 0 on {Ψ = ∅}. For
ω such that Ψ(ω) = ∅, there are two possible cases. Either Et(f)′(ω) < Et(f)(ω);
then necessarily Et(f)(ω) = +∞, and in this case (4.10) is trivially satisfied for
our choice y(ω) = 0. Or, there exists no y′(ω) ∈ Rd solving (4.10) with y(ω)
replaced by y′(ω); but then it follows from Theorem 3.4 that we must be in one
of three sub-cases: either ω ∈ Nt (that is, NA(Pt(ω)) fails), or {f(ω, ·) = −∞}
is not Pt(ω)-polar, or {f(ω, ·) = +∞} is not Pt(ω)-polar. In the first two sub-
cases, the lemma claims nothing. If we are not in the first two sub-cases and
{f(ω, ·) = +∞} is not Pt(ω)-polar, it follows via Theorem 3.1 and Lemma A.3 that
Et(f)(ω) = +∞, so (4.10) is again trivially satisfied for y(ω) = 0. On the other
hand, if Ψ(ω) 6= ∅, then our selector y(ω) solves (4.10) unless Et(f)′(ω) > Et(f)(ω);
that is, Et(f)(ω) = −∞. However, it follows from Theorem 3.4 that then again
either ω ∈ Nt or {f(ω, ·) = −∞} is not Pt(ω)-polar.

As a result, it remains to construct a universally measurable selector for Ψ. To
this end, it will be necessary to consider the difference f −Et(f)′ which, in general,
fails to be upper semianalytic. For that reason, we shall consider a larger class of
functions. Given a Polish space Ω′, recall that we are calling a function g on Ωt×Ω′

upper semianalytic if for any c ∈ R, the set {g > c} is analytic, or equivalently, the
nucleus of a Suslin scheme on B(Ωt ⊗ Ω′) = B(Ωt) ⊗ B(Ω′). Let us denote more
generally by A[A] the set of all nuclei of Suslin schemes on a paving A; the mapping
A is called the Suslin operation. Moreover, let USA[A] be the set of all R-valued
functions g such that {g > c} ∈ A[A] for all c ∈ R. Hence, if A is the Borel σ-field
of a Polish space, USA[A] is the set of upper semianalytic functions in the classical
sense. However, we shall extend consideration to the class USA[U(Ωt) ⊗ B(Ω′)],
where U(Ωt) is the universal σ-field on Ωt. It is a convex cone containing both
USA[B(Ωt)⊗B(Ω′)] and the linear space of U(Ωt)⊗B(Ω′)-measurable function; in
particular, is contains the function f − Et(f)′.

On the other hand, the class USA[U(Ωt) ⊗ B(Ω′)] shares the main benefits
of the classical upper semianalytic functions. This is due to the following fact;
it is a special case of [38, Theorem 5.5] (by the argument in the proof of that
theorem’s corollary and the subsequent scholium), in conjunction with the fact
that A[U(Ωt)] = U(Ωt) since U(Ωt) is universally complete [5, Proposition 7.42,
p. 167].

Lemma 4.11. Let Γ ∈ A[U(Ωt)⊗B(Ω′)]. Then projΩt(Γ) ∈ U(Ωt) and there exists
a U(Ωt)-measurable mapping γ : projΩt(Γ)→ Ω′ such that graph(γ) ⊆ Γ.
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We can now complete the proof of Lemma 4.10 by showing that {Ψ 6= ∅} is
universally measurable and Ψ admits a universally measurable selector y(·) on that
set. Fix y ∈ Rd. Given ω ∈ Ωt, we have y ∈ Ψ(ω) if and only if

θy(ω, ·) := f(ω, ·)− Et(f)′(ω)− y∆St+1(ω, ·) ≤ 0 Pt(ω)-q.s.

Moreover, we have θy ∈ USA[U(Ωt)⊗B(Ω1)] as explained above. Note that for any
P ∈ Pt(ω), the condition θy(ω, ·) ≤ 0 P -a.s. holds if and only if

EP̃ [θy(ω, ·)] ≤ 0 for all P̃ � P,

and by an application of Lemma 3.2, it is further equivalent to have this only for
P̃ � P satisfying EP̃ [|∆St+1(ω, ·)|] <∞. Therefore, we introduce the random set

P̃t(ω) := {P̃ ∈ P(Ω1) : P̃ ≪ Pt(ω), EP̃ [|∆St+1(ω, ·)|] <∞}.

By the same arguments as at the end of the proof of Lemma 4.8, we can show that
P̃t has an analytic graph (in the classical sense). Define also

Θy(ω) := sup
P̃∈P̃t(ω)

EP̃ [θy(ω, ·)];

the next step is to show that ω 7→ Θy(ω) is universally measurable. Indeed, fol-
lowing the arguments in the very beginning of this proof, the first term in the
difference

EP̃ [θy(ω, ·)] = EP̃ [f(ω, ·)]− Et(f)′(ω)− yEP̃ [∆St+1(ω, ·)]

is an upper semianalytic function of (ω, P̃ ); that is, in USA[B(Ωt) ⊗ B(P(Ω1))].
Moreover, the second term can be seen as a U(Ωt) ⊗ B(P(Ω1))-measurable func-
tion of (ω, P̃ ), and the third is even Borel. As a result, (ω, P ) 7→ EP̃ [θy(ω, ·)]
is in USA[U(Ωt) ⊗ B(P(Ω1))]. Thus, by the Projection Theorem in the form of
Lemma 4.11,

{Θy > c} = projΩt
{

(ω, P̃ ) ∈ graph (P̃t) : EP̃ [θy(ω, ·)] > c
}
∈ U(Ωt)

for all c ∈ R. That is, ω 7→ Θy(ω) is universally measurable for any fixed y.
On the other hand, fix ω ∈ Ωt and m ≥ 1. Then, the function y 7→ Θy(ω) ∧m

is lower semicontinuous because it is the supremum of the continuous functions

y 7→ EP̃ [θy(ω, ·)] ∧m =
(
EP̃ [f(ω, ·)]− Et(f)′(ω)− yEP̃ [∆St+1(ω, ·)]

)
∧m

over P̃t(ω). (To be precise, Θy(ω) ∧m may be infinite for some ω. For such ω, the
function y 7→ Θy(ω) ∧m is semicontinuous in that it is constant.) By Lemma 4.12
below, it follows that (y, ω) 7→ Θy(ω) ∧m is B(Rd) ⊗ U(Ωt)-measurable. Passing
to the supremum over m ≥ 1, we obtain that (y, ω) 7→ Θy(ω) is B(Rd) ⊗ U(Ωt)-
measurable as well. As a result, we have that

graph(Ψ) = {(y, ω) : Θy(ω) ≤ 0} ∈ B(Rd)⊗ U(Ωt).

Now, Lemma 4.11 yields that {Ψ 6= ∅} ∈ U(Ωt) and that Ψ admits a U(Ωt)-
measurable selector on that set, which completes the proof of Lemma 4.10.
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The following statement was used in the preceding proof; it is a slight general-
ization of the fact that Carathéodory functions are jointly measurable.

Lemma 4.12. Let (A,A) be a measurable space and let θ : Rd × A → R be a
function such that ω 7→ θ(y, ω) is A-measurable for all y ∈ Rd and y 7→ θ(y, ω) is
lower semicontinuous for all ω ∈ A. Then θ is B(Rd)⊗A-measurable.

Proof. Let {yk}k≥1 be a dense sequence in Rd. For all c ∈ R, we have

{θ ≥ c} =
⋂
n≥1

⋃
k≥1

B1/n(yk)× {θ(yk, ·) > c− 1/n},

where B1/n(yk) is the open ball of radius 1/n around yk. The right-hand side is
clearly in B(Rd)⊗A.

We now turn to the second key lemma for the proof of Theorem 4.9. Recall
that Qϕ = {Q ∈ Q : EQ[ϕ] <∞}.

Lemma 4.13. Let NA(P) hold, let f : Ω→ R be upper semianalytic and bounded
from above, and let ϕ ≥ 1 be a random variable such that |f | ≤ ϕ. Then there exists
H ∈ H such that

sup
Q∈Qϕ

EQ[f ] +H • ST ≥ f P-q.s.

Proof. Let E(f) := (E0 ◦ · · · ◦ ET−1)(f); note that the composition is well defined
by Lemma 4.10. We first show that there exists H ∈ H such that

E(f) +H • ST ≥ f P-q.s. (4.11)

Define Et(f)(ω) := (Et◦· · ·◦ET−1)(f)(ω), and let N be the set of all ω ∈ Ω such that
NA(Pt(ω)) fails for some t ∈ {0, . . . , T − 1}. Then N is a universally measurable,
P-polar set by Lemma 4.6. Using Lemma 4.10, there exist universally measurable
functions yt : Ωt → Rd such that

yt(ω)∆St+1(ω, ·) ≥ Et+1(f)(ω, ·)− Et(f)(ω) Pt(ω)-q.s.

for all ω ∈ N c. Recalling that any P ∈ P is of the form P = P0 ⊗ · · · ⊗ PT−1 for
some selectors Pt of Pt, it follows by Fubini’s theorem that

T−1∑
t=0

yt∆St+1 ≥
T−1∑
t=0

Et+1(f)− Et(f) = f − E(f) P-q.s.;

that is, (4.11) holds for H ∈ H defined by Ht+1 := yt. Next, we show that

E(f) ≤ sup
Q∈Qϕ

EQ[f ]; (4.12)
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together with (4.11), this will imply the result. (The reverse inequality of this
dynamic programming principle is also true, but not needed here.) Recall from
below (4.8) that the graph of the random set

Ξ̃t(ω) = {(Q, P̂ ) ∈ P(Ω1)×P(Ω1) : EQ[∆St+1(ω, ·)] = 0, P̂ ∈ Pt(ω), Q� P̂}

is analytic. We may see its section Ξ̃t(ω) as the set of controls for the control
problem supQ∈Qt(ω)EQ[Et+1(f)(ω, ·)]; indeed, Qt(ω) is precisely the projection of
Ξ̃t(ω) onto the first component. As in the proof of Lemma 4.10, we obtain that the
reward function (ω,Q) 7→ EQ[Et+1(f)(ω, ·)] is upper semianalytic. Given ε > 0,
it then follows from the Jankov-von Neumann Theorem in the form of [5, Propo-
sition 7.50, p. 184] that there exists a universally measurable selector (Qεt (·), P̂ εt (·))
of Ξ̃t(·) such that Qεt (ω) is an ε-optimal control; that is,

EQεt (ω)[Et+1(f)(ω, ·)] ≥ sup
Q∈Qt(ω)

EQ[Et+1(f)(ω, ·)]−ε for all ω such that Ξ̃t(ω) 6= ∅.

(4.13)
Define also Qεt and P̂ εt as an arbitrary (universally measurable) selector of Pt on
{Ξ̃t = ∅}; note that the latter set is contained in the P-polar set N by Theorem 3.1.
Now let

Qε := Qε0 ⊗ · · · ⊗QεT−1 and P̂ ε := P̂ ε0 ⊗ · · · ⊗ P̂ εT−1.

As in the proof of Theorem 4.5, we then have Qε � P̂ ∈ P (thus Qε≪ P) and S
is a generalized martingale under Qε. Moreover, recalling that f is bounded from
above, we may apply Fubini’s theorem T times to obtain that

E(f) = (E0 ◦ · · · ◦ ET−1)(f) ≤ ε+ EQε0 [E1(f)] ≤ · · · ≤ Tε+ EQε [f ].

By Lemma A.1 and Lemma A.3, there exists Qε∗ ∈ Qϕ such that EQε∗ [f ] ≥ EQε [f ].
Thus, we have

E(f) ≤ Tε+ sup
Q∈Qϕ

EQ[f ].

As ε > 0 was arbitrary, we conclude that (4.12) holds. In view of (4.11), the proof
is complete.

Proof of Theorem 4.9. By the same argument as below (3.4), we may assume that f
is bounded from above. The inequality “≥” then follows from Lemma 4.13, whereas
the inequality “≤” follows from Lemma A.2.

5 The Multi-Period Case With Options
In this section, we prove the main results stated in the Introduction. The setting is
as introduced in Section 1.2; in particular, there are d stocks available for dynamic
trading and e options available for static trading. Our argument is based on the
results of the preceding section: if e = 1, we can apply the already proved versions
of the Fundamental Theorem and the Superhedging Theorem to study the option
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g1; similarly, we shall add the options g2, . . . , ge one after the other in an inductive
fashion. To avoid some technical problems in the proof, we state the main results
with an additional weight function ϕ ≥ 1 that controls the integrability; this is by
no means a restriction and actually yields a more precise conclusion (Remark 5.2).
We recall the set Q from (1.3) as well as the notation Qϕ = {Q ∈ Q : EQ[ϕ] <∞}.

Theorem 5.1. Let ϕ ≥ 1 be a random variable and suppose that |gi| ≤ ϕ for
i = 1, . . . , e.

(a) The following are equivalent:

(i) NA(P) holds.

(ii) For all P ∈ P there exists Q ∈ Qϕ such that P � Q.

(b) Let NA(P) hold and let f : Ω → R be an upper semianalytic function such
that |f | ≤ ϕ. Then

π(f) := inf
{
x ∈ R : ∃ (H,h) ∈ H×Re such that x+H • ST +hg ≥ f P-q.s.

}
satisfies

π(f) = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞]

and there exist (H,h) ∈ H × Re such that π(f) +H • ST + hg ≥ f P-q.s.

(c) Let NA(P) hold and let f : Ω → R be an upper semianalytic function such
that |f | ≤ ϕ. The following are equivalent:

(i) f is replicable.

(ii) The mapping Q 7→ EQ[f ] ∈ R is constant on Qϕ.
(iii) For all P ∈ P there exists Q ∈ Qϕ such that P � Q and EQ[f ] = π(f).

Proof. We proceed by induction; note that if NA(P) holds for the market with
options g1, . . . , ge, then it also holds for the market with options g1, . . . , ge

′
for any

e′ ≤ e.
In the case e = 0, there are no traded options. Then, (a) follows from The-

orem 4.5 and Lemma A.3, and (b) holds by Theorem 4.9. To see (c), suppose
that (i) holds; i.e., f = x+H • ST P-q.s. for some x ∈ R and H ∈ H. Using that
|f | ≤ ϕ, we deduce via Lemma A.1 that EQ[f ] = x for all Q ∈ Qϕ, which is (ii). In
view of (a), (ii) implies (iii). Let (iii) hold, let H ∈ H be an optimal superhedging
strategy as in (b), and let K := π(f)+H • ST −f . Then K ≥ 0 P-q.s., but in view
of (iii) and (a), we have K = 0 P-q.s., showing that H is a replicating strategy.

Next, we assume that the result holds as stated when there are e ≥ 0 traded
options g1, . . . , ge and we introduce an additional (Borel-measurable) option f ≡
ge+1 with |f | ≤ ϕ in the market at price f0 = 0.

We first prove (a). Let NA(P) hold. If f is replicable, we can reduce to the
case with at most e options, so we may assume that f is not replicable. Let π(f)
be the superhedging price when the stocks and g1, . . . , ge are available for trading
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(as stated in the theorem); we have π(f) > −∞ by (b) of the induction hypothesis.
If f0 ≥ π(f), then as f is not replicable, we obtain an arbitrage by shortselling one
unit of f and using an optimal superhedging strategy for f , which exists by (b) of
the induction hypothesis. Therefore, f0 < π(f). Together with (b) of the induction
hypothesis, we have

f0 < π(f) = sup
Q∈Qϕ

EQ[f ].

As Q 7→ EQ[f ] is not constant by (c) of the induction hypothesis and EQ[|f |] <∞
for all Q ∈ Qϕ, it follows that there exists Q+ ∈ Qϕ such that

f0 < EQ+
[f ] < π(f).

A similar argument applied to −f (which is Borel-measurable and not replicable
like f) yields Q− ∈ Qϕ such that

− π(−f) < EQ− [f ] < f0 < EQ+ [f ] < π(f). (5.1)

Now let P ∈ P. By (a) of the induction hypothesis, there exists Q0 ∈ Qϕ such
that P � Q0 ≪ P. By choosing suitable weights λ−, λ0, λ+ ∈ (0, 1) such that
λ− + λ0 + λ+ = 1, we have that

P � Q := λ−Q− + λ0Q0 + λ+Q+ ∈ Q and EQ[f ] = f0.

This completes the proof that (i) implies (ii). The reverse implication can be shown
as in the proof of Theorem 4.5, so (a) is established. Moreover, the argument for (c)
is essentially the same as in the case e = 0.

Next, we prove (b). The argument is in the spirit of Theorem 3.4; indeed, (5.1)
states that the price f0 is in the interior of the set {EQ[f ] : Q ∈ Qϕ} and will
thus play the role that the Fundamental Lemma (Lemma 3.3) had in the proof of
Theorem 3.4. We continue to write f for ge+1 and let f ′ be an upper semianalytic
function such that |f ′| ≤ ϕ. Let π′(f ′) be the superhedging price of f ′ when the
stocks and g1, . . . , ge, f ≡ ge+1 are available for trading. Recall that π′(f ′) > −∞
by Theorem 2.3 which also yields the existence of an optimal strategy. Let Q′ϕ be
the set of all martingale measures Q′ which satisfy EQ′ [gi] = 0 for i = 1, . . . , e+ 1
(whereas we continue to write Qϕ for those martingale measures which have that
property for i = 1, . . . , e). Then, we need to show that

π′(f ′) = sup
Q′∈Q′ϕ

EQ′ [f
′].

As above, we may assume that f is not replicable given the stocks and g1, . . . , ge,
as otherwise we can reduce to the case with e options. The inequality

π′(f ′) ≥ sup
Q′∈Q′ϕ

EQ′ [f
′] (5.2)

follows from Lemma A.2; we focus on the reverse inequality

π′(f ′) ≤ sup
Q′∈Q′ϕ

EQ′ [f
′]. (5.3)
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Suppose first that π′(f ′) <∞; then we have π′(f ′) ∈ R. In this situation, we claim
that

there exist Qn ∈ Qϕ such that EQn [f ]→ f0, EQn [f ′]→ π′(f ′). (5.4)

Before proving this claim, let us see how it implies (5.3). Indeed, as f is not
replicable, there exist measures Q± ∈ Qϕ as in (5.1). Given Qn from (5.4), we can
then find weights λn−, λn, λn+ ∈ [0, 1] such that λn− + λn + λn+ = 1 and

Q′n := λn−Q− + λnQn + λn+Q+ ∈ Qϕ satisfies EQ′n [f ] = f0 = 0;

that is, Q′n ∈ Q′ϕ. Moreover, since EQn [f ] → f0, the weights can be chosen such
that λn± → 0. Using that EQ± [|f ′|] <∞ as |f ′| ≤ ϕ, we conclude that

EQ′n [f ′]→ π′(f ′),

which indeed implies (5.3).
We turn to the proof of (5.4). By a translation we may assume that π′(f ′) = 0;

thus, if (5.4) fails, we have

0 /∈ {EQ[(f, f ′)] : Q ∈ Qϕ} ⊆ R2.

Then, there exists a separating vector (y, z) ∈ R2 with |(y, z)| = 1 such that

0 > sup
Q∈Qϕ

EQ[yf + zf ′].

But by (b) of the induction hypothesis, we know that

sup
Q∈Qϕ

EQ[yf + zf ′] = π(yf + zf ′).

Moreover, by the definitions of π and π′, we clearly have π(ψ) ≥ π′(ψ) for any
random variable ψ. Finally, the definition of π′ shows that π′(yf + ψ) = π′(ψ),
because f is available at price f0 = 0 for hedging. Hence, we have

0 > sup
Q∈Qϕ

EQ[yf + zf ′] ≥ π′(zf ′), (5.5)

which clearly implies z 6= 0. If z > 0, the positive homogeneity of π′ yields that
π′(f ′) < 0, contradicting our assumption that π′(f ′) = 0. Thus, we have z < 0.
To find a contradiction, recall that we have already shown that there exists some
Q′ ∈ Q′ϕ ⊆ Qϕ. Then, (5.5) yields that 0 > EQ′ [yf + zf ′] = EQ′ [zf

′] and hence
EQ′ [f

′] > 0 = π′(f ′) as z < 0, which contradicts (5.2). This completes the proof
of (5.3) in the case π′(f ′) <∞.

Finally, to obtain (5.3) also in the case π′(f ′) =∞, we apply the above to f ′∧n
and let n→∞, exactly as below (3.4). This completes the proof of (b).
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Remark 5.2. Given the options g1, . . . , ge and f , we can always choose the weight
function ϕ := 1 + |g1|+ · · ·+ |ge|+ |f |; that is, the presence of ϕ in Theorem 5.1 is
not restrictive. The theorem implies the main results as stated in the Introduction.
Indeed, the implication from (i) to (ii) in the First Fundamental Theorem as stated
in Section 1.2 follows immediately from (a), and it is trivial that (ii) implies (ii’).
The fact that (ii’) implies (i) is seen as in the proof of Theorem 4.5. The Super-
hedging Theorem of Section 1.2 is a direct consequence of (b) and Lemma A.2. The
equivalence of (i)–(iii) in the Second Fundamental Theorem then follows from (c);
in particular, if Q is a singleton, the market is complete. Conversely, if the market
is complete, then using f = 1A, we obtain from (ii) that Q 7→ Q(A) is constant on
Q for every A ∈ B(Ω). As any probability measure on the universal σ-field F is
determined by its values on B(Ω), this implies that Q is a singleton.

6 Nondominated Optional Decomposition
In this section, we derive a nondominated version of the Optional Decomposition
Theorem of [36] and [37], for the discrete-time case. As in Section 4, we consider
the setting introduced in Section 1.2 in the case without options (e = 0).

Theorem 6.1. Let NA(P) hold and let V be an adapted process such that Vt is
upper semianalytic and in L1(Q) for all Q ∈ Q and t ∈ {1, 2, . . . , T}. The following
are equivalent:

(i) V is a supermartingale under each Q ∈ Q.
(ii) There exist H ∈ H and an adapted increasing process K with K0 = 0 such

that
Vt = V0 +H • St −Kt P-q.s., t ∈ {0, 1, . . . , T}.

Proof. It follows from Lemma A.1 that (ii) implies (i). We show that (i) implies (ii);
this proof is similar to the one of Theorem 4.9, so we shall be brief. Recall the
operator Et(·) from Lemma 4.10. Our first aim is to show that for every t ∈
{0, 1, . . . , T − 1}, we have

Et(Vt+1) ≤ Vt P-q.s. (6.1)

Let Q ∈ Q and ε > 0. Following the same arguments as in (4.13), we can construct
a universally measurable ε-optimizer Qεt (·) ∈ Qt(·); that is,

EQεt (ω)[Vt+1(ω, ·)] + ε ≥ sup
Q∈Qt(ω)

EQ[Vt+1(ω, ·)] ≡ Et(Vt+1)(ω) for all ω ∈ Ωt \Nt,

where Nt = {ω ∈ Ωt : NA(Pt(ω)) fails} is universally measurable and P-polar
(hence Q-polar) by Lemma 4.6. Let

Q′ := Q|Ωt ⊗Qεt ⊗Qt+1 ⊗ · · · ⊗QT−1,

where Qs is an arbitrary selector of Qs for s = t + 1, . . . , T − 1. Then, S is a
generalized martingale under Q′ and

EQεt (ω)[Vt+1(ω, ·)] = EQ′ [Vt+1|Ft](ω) for Q′-a.e. ω
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by Fubini’s theorem, where the conditional expectation is understood in the gen-
eralized sense (cf. the Appendix). As both sides of this identity are Ft-measurable
and Q = Q′ on Ft, we also have that

EQεt (ω)[Vt+1(ω, ·)] = EQ′ [Vt+1|Ft](ω) for Q-a.e. ω.

Finally, by a conditional version of Lemma A.3, there exists a martingale measure
Q′′ ∈ Q with Q′′ = Q′ on Ft such that

EQ′′ [Vt+1|Ft] ≥ EQ′ [Vt+1|Ft] Q-a.s.,

and since V is a Q′′-supermartingale by (i), we also have

Vt ≥ EQ′′ [Vt+1|Ft] Q-a.s.

Collecting the above (in)equalities, we arrive at

Et(Vt+1)− ε ≤ Vt Q-a.s.

Since ε > 0 and Q ∈ Q were arbitrary, we deduce that Et(Vt+1) ≤ Vt Q-q.s., and
as Theorem 4.5 shows that Q and P have the same polar sets, we have estab-
lished (6.1).

For each t ∈ {0, 1, . . . , T − 1}, Lemma 4.10 yields a universally measurable
function yt(·) : Ωt → Rd such that

Et(f)(ω) + yt(ω)∆St+1(ω, ·) ≥ Vt+1(ω, ·) Pt(ω)-q.s.

for all ω ∈ Ωt \Nt. By Fubini’s theorem and (6.1), this implies that

Vt + yt∆St+1 ≥ Vt+1 P-q.s.

Define H ∈ H by Ht+1 := yt; then it follows that

Vt ≤ V0 +H • St P-q.s., t = 0, 1, . . . , T ;

that is, (ii) holds with Kt := V0 +H • St − Vt.

A Appendix
For ease of reference, we collect here some known facts about the classical (domi-
nated) case that are used in the body of the paper. Let (Ω,F , P ) be a probability
space, equipped with a filtration (Ft)t∈{0,1,...,T}. An adapted process M is a gen-
eralized martingale if

EP [Mt+1|Ft] = Mt P -a.s., t = 0, . . . , T − 1

holds in the sense of generalized conditional expectations; that is, with the definition

EP [Mt+1|Ft] := lim
n→∞

EP [M+
t+1 ∧ n|Ft]− lim

n→∞
E[M−t+1 ∧ n|Ft]

and the convention that ∞−∞ = −∞. To wit, if MT ∈ L1(P ), then M is simply
a martingale in the usual sense. We refer to [33] for further background and the
proof of the following fact.
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Lemma A.1. Let M be an adapted process with M0 = 0. The following are
equivalent:

(i) M is a local martingale.

(ii) H •M is a local martingale whenever H is predictable.

(iii) M is a generalized martingale.

If EP [M−T ] <∞, these conditions are further equivalent to:

(iv) M is a martingale.

Let S be an adapted process with values in Rd. The following is a standard
consequence of Lemma A.1.

Lemma A.2. Let f and g = (g1, . . . , ge) be F-measurable and let Q be a probability
measure such that EQ[gi] = 0 for all i and S − S0 is a local Q-martingale. If there
exist x ∈ R and (H,h) ∈ H × Re such that x + H • ST + hg ≥ f Q-a.s., then
EQ[f ] ≤ x.
Proof. If EQ[f−] =∞, then EQ[f ] = −∞ by our convention (1.1) and the claim is
trivial. Suppose that EQ[f−] <∞; then H • ST ≥ f − x− hg implies (H • ST )− ∈
L1(Q). Therefore, H • S is a Q-martingale by Lemma A.1 and we conclude that
x = EP [x+H • ST + hg] ≥ EQ[f ].

Lemma A.3. Let Q be a probability measure under which S − S0 is a local mar-
tingale, let ϕ ≥ 1 be a random variable, and let f be a random variable satisfying
|f | ≤ ϕ. There exists a probability measure Q′ ∼ Q under which S is a martingale,
EQ′ [ϕ] <∞, and EQ′ [f ] ≥ EQ[f ].

Proof. As Q is a local martingale measure, the classical no-arbitrage condition
NA({Q}) holds. By Lemma 3.2 there exists a probability P∗ ∼ Q such that
EP∗ [|ϕ|] < ∞. We shall use P∗ as a reference measure; note that NA({P∗}) is
equivalent to NA({Q}). It suffices to show that

sup
Q∈Q∗loc

EQ[f ] ≤ π(f) ≤ sup
Q∈Q∗ϕ

EQ[f ],

where π(f) is the P∗-a.s. superhedging price, Q∗loc is the set of all Q ∼ P∗ such that
S−S0 is a local Q-martingale, and Q∗ϕ is the set of all Q ∼ P∗ such that EQ[ϕ] <∞
and S is a Q-martingale. The first inequality follows from Lemma A.2. The second
inequality corresponds to a version of the classical superhedging theorem with an
additional weight function. It can be obtained by following the classical Kreps–Yan
separation argument, where the usual space L1(P ) is replaced with the weighted
space L1

1/ϕ(P∗) of random variables X such that EP [|X/ϕ|] <∞. Indeed, the dual
(L1

1/ϕ(P∗))
∗ with respect to the pairing (X,Z) 7→ EP [XZ] is given by the space

of all random variables Z such that Zϕ is P -a.s. bounded. As a consequence, the
separation argument yields a martingale measure Q ∈ Q∗ϕ, for if Z ∈ (L1

1/ϕ(P∗))
∗

is positive and normalized such that EP [Z] = 1, then the measure Q defined by
dQ/dP = Z satisfies EQ[ϕ] = EP [Zϕ] < ∞. The arguments are known (see, e.g.,
[50, Theorem 4.1]) and so we shall omit the details.
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