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Motivation

2 Given (Ω,F), a family P of probability measures and S = (St)t≤T a
d -dimensional process for stock prices.

2 Give necessary and sufficient conditions for No-Arbitrage in terms of
Martingale Measures.

2 Show existence of minimal super-hedging strategy.

2 Provide a dual formulation for super-hedging prices.
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Classical Framework

2 Only one reference measure P = {Po} which fixes the null sets.

2 No-Arbitrage NA(Po) : YT ≥ 0 Po-a.s. ⇒ YT = 0 Po-a.s.

2 NA(Po)⇔ Q(Po) := {Q ∼ Po : S is a Q-mart.} 6= ∅.

2 Completeness ⇔ |Q(Po)| = 1.

2 There exists a minimal super-hedging strategy.

2 Super-hedging price of f is sup{EQ [f ], Q ∈ Q(Po)}.



The non-dominated case

2 The family P is made of (possibly) singular measures P which fix the
polar sets : A ⊂ A′ with P[A′] = 0 ∀ P ∈ P, i.e. A = ∅ P-q.s.

⇒ it stands for model uncertainty.

Example : all Dirac masses on Ω = (Rd)T⇒ Model free point of view.

2 A huge related literature : see below.

2 Questions :
- What is the good notion of arbitrage ?
- Which duality do we look for ?
- What minimal conditions can we afford ?
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What is a good notion of no-arbitrage ?

2 Different possibilities :

• YT ≥ 0 P-q.s. and P[YT > 0] > 0 ∀ P ∈ P is impossible. One has to
be lucky whatever the true model is.

• YT ≥ 0 P-q.s. and P[YT > 0] > 0 for some P ∈ P is impossible. One
has to be lucky on the model as well. (e.g. Deparis and Martini 04 for P
generated by Dirac Mass)

• YT (ω) > 0 for all ω is impossible (Acciaio, Beiglböck, Penkner and
Schachermayer 2013).
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No-Arbitrage and martingale measures ?

2 Most of the time assumed, or P is already a set of martingale
measures.

- Mass transport : Henry-Labordère, Juillet, Galichon,Touzi, Tan,
Dolynski, Soner, etc...
- Uncertain volatility : Denis, Martini, Soner, Touzi, Zhang, Possamaï,
Nutz, Neufeld, Kupper, Peng, etc..

2 If not assumed, there are different possibilities :
- ∃ Q on (Ω,F) (e.g. Acciaio et al. 2013).
- ∃ a family Q with the same polar sets : Q ∼ P.

2 One can ask to be consistent with the prices of some options :
- All calls : Embedding point of view of Hobson, Obloj, Cox,..., and Mass
Transport approach.
- I infinite + a power option (or suitable calls) : Acciaio et al. 2013.
- I finite.
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Dual formulation and super-hedging price

π(f ) := inf
{
x ∈ R : ∃ (H, h) ∈ H × R|I| s.t. x + (H • S)T + hg ≥ f -q.s.

}
= sup

Q
EQ [f ]

2 On which set do we take the maximum sup{EQ [f ], Q ∈??}
- Martingales measures on (Ω,F)
- Linear functionals on L1(P) generated by sup{EP [| · |],P ∈ P} (Nutz
2013).
- A family of mart. measures Q with the same polar sets : Q ∼ P.
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The one period case

(Ω,F) a measurable price. ∆S a random variable. P a convex set of
measures on (Ω,F). No option for static hedging.



First Fundamental Theorem

2 No-Arbitrage condition : Condition NA(P) holds if for all H ∈ H

H∆S ≥ 0 P-q.s. implies H∆S = 0 P-q.s.

2 Martingale measures :

Q =
{
Q ≪ P : Q is a martingale measure

}
.

2 First Fundamental Theorem : The following are equivalent :
(i) NA(P) holds.
(ii) For all P ∈ P there exists Q ∈ Q such that P � Q.
(ii’) P and Q have the same polar sets.

Rem : These are the usual equivalent conditions when P = {Po}.
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2 One can not use the usual separation argument based on the
closedness of the set of super-hedgeable claims. Could show closedness in
L1(P) (generated by sup{EP [| · |],P ∈ P}) but would have to work with
(L1(P))∗ (Nutz 2013 and talk of M. Kupper).

2 Our approach is close to Dalang, Morton and Willinger (90) and
Rasonyi (09).

Finite dimensional separation on Rd :
Step 1 : Assume d = 1 and that EP [∆S ] > 0.
NA(P) implies that ∃ P ′ � P s.t. EP′ [∆S ] < 0.
Do a convex combination to find P � Q � P + P ′.

Step 2 : For d > 1. Show that
0 ∈ ri

{
ER [∆S ] : P � R ≪ P, ER [|∆S |] <∞

}
.

If not : 0 ≤ y∆S ⇒ 0 = y∆S .
And reduce the dimension by one until the case d = 1 is reached.
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Super-hedging Theorem

2 Theorem : Let NA(P) hold and let f be a random variable. Then

sup
Q∈Q

EQ [f ] = π(f ) := inf
{
x : ∃H ∈ Rd s.t. x + H∆S ≥ f P-q.s.

}
.

Moreover, π(f ) > −∞ and ∃ H s.t. π(f ) + H∆S ≥ f P-q.s.

2 Existence of the cheapest super-hedging strategy holds by the
argument in Kabanov and Stricker’s Teacher’s Note (even with finitely
many options and T periods). One has the closure property for the
P-q.s.-convergence. Not true with infinitely many options in general.

2 Again, one can not use the usual separation argument based on the
closedness of the set of super-hedgeable claims. We do neither have
compactness on Q (role plaid by the power option in Acciaio et al. 2013).
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Step 1 : Construct approximating martingale measures
Assume π(f ) = 0 and show that

∃ Rn ≪ P s.t. ERn [∆S ]→ 0 and ERn [f ]→ 0.

1. If not : 0 /∈ cl
{
ER [(∆S , f )] : R ≪ P, ER [|∆S |+ |f |] <∞

}
2. This implies 0 < α ≤ y∆S + zf .

Step 2 : Correct the approximating martingale measures
1. Choose Rn ≪ P s.t. ERn [∆S ]→ 0 and ERn [f ]→ 0.
2. One has 0 ∈ ri

{
ER [∆S ] : P � R ≪ P, ER [|∆S |+ |f |] <∞

}
.

3. We can correct in R̃n = (1− λn)Rn + λnR ′n s.t.

ER̃n
[∆S ] = 0 and ER̃n

[f ]→ 0 = π(f ).
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The multiperiod case with options for static hedging

Q =
{
Q ≪ P : Q is a mart. measure and EQ [g i ] = 0 for i = 1, . . . , |I|

}
.

Theorem : The following are equivalent :
(i) NA(P) holds.
(ii) For all P ∈ P there exists Q ∈ Q such that P � Q.
(ii’) P and Q have the same polar sets.

Theorem : Let NA(P) hold and let f : Ω→ R be upper semianalytic.
Then,

π(f ) := inf
{
x ∈ R : ∃ (H, h) ∈ H×R|I| s.t. x+(H • S)T +hg ≥ f P-q.s.

}
admits existence and satisfies

π(f ) = sup
Q∈Q

EQ [f ] ∈ (−∞,∞]



Strategy of proof and Assumptions

2 One argue on one step models and then try to glue the steps
together. This requires some measurable selection arguments.

This is feasible under the assumptions :

- Ω = ΩT
1 with Ω1 a Polish space.

- Ft is the universal completion of B(Ωt
1). F = FT .

- (St)t≤T are Borel, possibly not adapted.

- P =
{
P = P0 ⊗ · · · ⊗ PT−1 : Pt(ω) ∈ Pt(ω)

}
.

- The ω 7→ Pt(ω) have analytic graphs.

- Options for static hedging are assumed Borel.
- Claims to super-hedge are upper-semianalytic.
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Second Fundamental Theorem

2 As in the dominated setting it follows from the super-hedging theorem.

Theorem : Let NA(P) hold and let f : Ω→ R be upper semianalytic.
The following are equivalent :

(i) f is replicable, i.e. π(f ) + (H • S)T = f P-q.s.
(ii) Q 7→ EQ [f ] is constant (and finite) on Q.
(ii) ∀ P ∈ P ∃ Q ∈ Q s.t. P � Q and EQ [f ] = π(f ).

Moreover, the market is complete (for Borel claims) if and only if Q is a
singleton.
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Application to Optional Decomposition

2 Theorem : Let NA(P) hold and let V be an adapted process such
that Vt is upper semianalytic and in L1(Q) ∀ Q ∈ Q.
The following are equivalent :
- V is a supermartingale under each Q ∈ Q.
- There exist a predictable H and an adapted increasing process K with
K0 = 0 such that

Vt = V0 + (H • S)t − Kt P-q.s., t ∈ {0, 1, . . . ,T}.

Rem : The decomposition can not be obtained by hand as for continuous
processes, but we have discrete time (measurable selection).



Connection to Martingale Inequalities

2 Take Ω1 = Rd , P be generated by all Dirac Mass and let S be the
canonical process.

2 Then, NA(P) holds for the universal completion of the raw filtration.

2 One can apply the super-hedging theorem :
Assume that

EP [f (S1, · · · , ST )] ≤ 0 for all martingale measure P on ΩT .

Then, there exists universally measurable maps H1, . . . ,HT such that

f (x1, · · · , xT ) ≤
T−1∑
t=0

Ht+1(x0, . . . , xt)(xt+1 − xt) ∀ x ∈ (Rd)T+1.

Compare with Acciaio, Beiglböck, Penkner and Schachermayer (2013).
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