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Motivations

2 See under which conditions one can apply Itô-Dupire’s formula to
value functions associated to path-dependent pricing or optimal control
problems.

2 Use C 1+α-regularity or show C 2-regularity using PDEs.
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Example #1 : second order coupled FBSDE

2 B. and Tan [3] : Solve a second order BSDE related to a (perfect)
hedging problem under price impact. Find (X ,Y ,Z , g,B) such that

Xt = x0 +

∫ t

0
σs(X , gs)dWs

Yt = Φ(X )−
∫ T

t

Fs(X , gs)ds −
∫ t

0
ZsdXs and Zt = Z0 +

∫ t

0
gsdXs −Bt

where Φ, σ and F are path-dependent (non-anticipative).

2 Derive a solution from a dual formulation of the form :

v(t, x) := sup
α

E
[
Φ
(
X̄ t,x,α)− ∫ T

t

Gs

(
X̄ t,x,α, αs

)
ds
]
, dX̄ t,x,α = αdW ,

by using Itô’s lemma : Y = v(·,X ), Z = Dv(·,X ), etc.
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Reminder on Dupire’s derivatives

2 Notations :
• x belongs to C ([0,T ]) or D([0,T ]).
• xt∧ := (xt∧s)s∈[0,T ],
• x⊕t y := x + y1[t,T ].

2 Horizontal derivative :

∂tv(t, x) = lim
ε↓0

v(t + ε, xt∧)− v(t, x)

ε
.

2 Vertical derivative :

∇xv(t, x) · y = lim
ε↓0

v(t, x⊕t εy)− v(t, x)

ε
.

2 We define C0,1 and C1,2 accordingly.
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Monotonicity and concavity are defined accordingly.

2 We say that v is non-increasing in time if

v(t + h, xt∧)− v(t, x) ≤ 0 when h ≥ 0.

We say that v is Dupire-concave if for x1 = x2 on [0, t)

v(t, θx1 + (1− θ)x2) ≥ θv(t, x1) + (1− θ)v(t, x2), for all θ ∈ [0, 1]

2 If v is Dupire-concave, one can define its super-differential

∂v(t, x) :=
{
z : v(t, x⊕t y) ≤ v(t, x) + z · y , ∀ y

}
.
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Let P = {P ∈ P(D([0,T ])) : X is a càdlàg semimartingale under P }.

Theorem [B. and Tan [3, 4]] Assume that v is Dupire-concave and
non-increasing in time. Under additional local boundedness and
equi-continuity assumptions [· · · ], we have

v(t,X ) = v(0,X ) +

∫ t

0
HsdXs − CP

t , t ∈ [0,T ], P−a.s. ∀ P ∈ P,

in which {CP : P ∈ P} is a collection of non-decreasing processes and
Hs ∈ ∂v(s,X s−) for all s ∈ [0,T ], P-q.s, where

X s−
t := Xt1t∈[0,s) + Xs−1t∈[s,T ].

⇒ Enough to construct a solution to our second order FBSDE. See
also B. and Tan [4] for an application to robust super-hedging with
jumps (compare to Nutz 15).
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Example #2 : super-hedging under (bounded)
volatility uncertainty

Let us consider a payoff function of the form

g(X ) = g◦
(
XT ,

∫ T

0
XtdAt

)
, g◦ ∈ C 1+α(R).

2 Uncertainty modeled by P0 : P such that P[X0 = x0] = 1 and

dXs = σsdW
P
s , σs ∈ [σ, σ], s ∈ [0,T ], P-a.s. (1)

2 Dual formulation :

v(t, x) := sup
P∈P(t,x)

EP[g(X )
]

= robust super-hedging price

where P(t, x) :=
{
P : P[Xt∧ = xt∧] = 1, and (1) holds on [t,T ]

}
.

⇒ is not C1,2 a priori but may be C0,1+α since g is.
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If it is C0,1+α, then on can find the hedging strategy (and prove duality)
by applying this version of Itô-Dupire’s Lemma.

Theorem [B., Loeper and Tan [2]] : Let X be a semimatingale,
v ∈ C0,1 such that v and ∇xv are locally uniformly continuous and [· · · ].
Then,

v(t,X ) = v(0,X ) +

∫ t

0
∇xv(s,X )dXs + Γt , t ∈ [0,T ],

where Γ is a continuous orthogonal process, if and only if

1
ε

∫ ·
0

{
v(s+ε,X )−v(s+ε,Xs∧⊕s+ε(Xs+ε−Xs))

}{
Ns+ε−Ns

}
ds −−→

ε↓0
, u.c.p.

for all (bounded) continuous martingale N.

Remark : Compare with Bandini and Russo (17) and Gozzi and Russo
(06). Here

[X ,Y ]t = lim
ε→0

1
ε

∫ t

0
(Xs+ε − Xs)(Ys+ε − Ys)ds



Remark : The above condition holds as soon as for some L ∈ BV :

|v(t, x)− v(t, x′)| ≤ C

∫ t

0
|xs − x′s |dLs .

2 Similar result for càdlàg processes (B. and Vallet [5]).



2 It remains to show that the candidate solution to the PPDE

−∂tv − sup
σ∈[σ,σ]

σ2

2
∇2

xv = 0, v(T , ·) = g

is C0,1 with locally uniformly continuous vertical Dupire’s derivative.



Approximate viscosity solutions of PPDEs
(A tool for regularity)

−∂tϕ(t, x)− F (t, x, ϕ(t, x),∇xϕ(t, x),∇2
xϕ(t, x)) = 0, ϕ(T , ·) = g

B., Loeper and Tan [10].

Related works : Ekren, Touzi and Zhang (16), Ren, Touzi and Zhang
(17), Ekren and Zhang (16), Cosso and Russo (19), Jianjun Zhou (21).



Definition of solutions by approximation
2 Let π = (πn)n, with πn = (tni )0≤i≤n, be an increasing sequence of time
grids. Set

x̄n :=
n−1∑
i=0

xtni
1[tni ,t

n
i+1) + xtnn 1{T}

2 We say that a continuous function vn is a πn-viscosity solution of

− ∂tϕ(t, x)− F (t, x, ϕ(t, x),∇xϕ(t, x),∇2
xϕ(t, x)) = 0 ∀ t < T

if it is of the form
n−1∑
i=0

1[tni ,t
n
i+1)v

n
i (t, x̄n

∧tni
, x)

in which each vn
i (·, x̄n

∧tni
, ·) is a viscosity solution on Rd × [tni , t

n
i+1) of

− ∂tvn
i (t, x̄n

∧tni
, x)− F (t, x̄n

∧tni
, vn

i (t, x̄n
∧tni
, x),Dvn

i (t, x̄n
∧tni
, x),D2vn

i (t, x̄n
∧tni
, x)) = 0

vn
i (tni+1−, x̄n

∧tni
, x) = vn

i+1(tni+1, x̄
n
∧tni

1[0,tni+1) + 1{tni+1}x , x)
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2 Example : Think about replacing

v(t, x) := sup
P∈P(t,x)

EP[g(X )
]

by
vn(t, x̄n) := sup

P∈P(t,x̄n)

EP[g(X̄ n
tn0
, . . . , X̄ n

tnn
)
]
.

(i) If t ∈ [tni , t
n
i+1), then (X̄ n

tn0
, · · · , X̄ n

tni
) is known (and is a parameter for

the period [t,T ])
(ii) At the boundary t = tni+1, the value X̄ n

tni+1
is also frozen, and serves

as a starting point for X̄ n on the period [tni+1, t
n
i+2).

(iii) Ends up with a sequence of backward PDEs on : [tnn−1,T ),
[tnn−2, t

n
n−1), and so on.
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2 We say that v is a π-approximate-viscosity solution on D([0,T ]) of

− ∂tv(t, x)− F (t, x, v(t, x),∇xv(t, x),∇2
xv(t, x)) = 0 , t < T

with terminal condition
v(T , ·) = g

if vn(t, x, xt)→ v(t, x) for all (t, x) ∈ [0,T ]× D([0,T ]) where (vn)n is
the sequence defined as above with

vn(tnn , x, x) = g(x̄n1[0,tnn ) + 1{tnn}x)

2 Typical examples : Semi-linear PPDEs or HJB equations.
⇒ In both cases, amounts to replacing X by X̄ n in the coefficients and
payoff.

But we also want to consider general non-linear parabolic PPDEs.
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Existence, comparison, stability
2 We focus on the case where

F (t, x, r , p, q) = H(t, x, r , p, q) + ρ(t, x)r + b(t, x)p +
1
2
σ2(t, x)q

where all the coefficients are continuous and Lipschitz/uniformly
continuous in space [· · · ] + standard assumptions to have comparison
and existence of a viscosity solution with linear growth in finite dimension
(for the F (·, x̄n

∧tni
, ·)).

Theorem : Let g be uniformly continuous, then ∃ a unique
π-approximate viscosity solution v on D([0,T ]). Moreover,
• It is locally uniformly continuous.
• If π′ is another increasing sequence of time grids and if v′ is the
π′-approximate viscosity solution, then v′ = v.

Proposition : Comparison and stability holds in the class of solutions.

Remark : We have precise estimates on the approximation error
|vn(t, x, xt)− v(t, x)| (depending on the regul. of x).
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Moreover,
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Remark : We have precise estimates on the approximation error
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Regularity in the fully non-linear case

Recall that

− ∂tvn
i (t, x̄n

∧tni
, x)− F (t, x̄n

∧tni
, vn

i (t, x̄n
∧tni
, x),Dvn

i (t, x̄n
∧tni
, x),D2vn

i (t, x̄n
∧tni
, x)) = 0

vn
i (tni+1−, x̄n

∧tni
, x) = vn

i+1(tni+1, x̄
n
∧tni

1[0,tni+1) + 1{tni+1}x , x)



2 For terminal conditions of the form (can be made more abstract)

g(x) = g◦
(∫ T

0
xtdAt

)
,

where g◦ ∈ C 1+α(R) is bounded, and A is BV with at most finitely many
jumps on [0,T ].

2 Two cases
(a) Either α ∈ (0, 1) and F (t, x, y , z , γ) = F1(t)y + F2(t)z + F3(t, γ),

(b) Or α = 1 and F (t, x, y , z , γ) = F1(t, y , γ) + F2(t)z with
y ∈ R 7→ F1(t, y , γ) ∈ C 1 with bounded and Lipschitz first order
derivative, uniformly in γ ∈ R and t ≤ T .

2 In any case γ 7→ F (·, γ) is concave or d ≤ 2.

Theorem : ∇xv is well-defined and locally uniformly continuous.

Remark : In the semi-linear case F = F (t, x, y , z), only needs C 1+α (in
the Fréchet sense with respect to the path) : just differentiate the
corresponding BSDE...
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Regularization in the uniformly elliptic case
(Bouchard and Tan [11])

We focus on the linear case (with d = 1) and consider

−∂tv(t, x)− µt(x)∇xv(t, x)− 1
2
σt(x)2∇2

xv(t, x) = 0, v(T , ·) = g

with

(µt , σt)(x) = (µt , σt)(xt ,

∫ t

0
xsdAs) and g(x) = g(xT ,

∫ T

0
xsdAs),

in which

µ and σ2 are Hölder (bounded), σ2 ≥ a > 0 and g measurable (bounded).



Relation with degenerate equations
2 If A was absolutely continuous, this would amount to looking for
regularity for the degenerate PDE

−∂tϕ(t, x)− x1
·
At∂x2ϕ(t, x)− µt(x)∂x1ϕ(t, x)− 1

2
σt(x)2∂2

x1,x1ϕ(t, x) = 0

in which derivatives are taken in the traditional sense and

(t, x) := (t, xt ,

∫ t

0
xs

·
Asds) , ϕ(t, x) := v(t, x).

Compare with : M. Di Francesco and A. Pascucci (05), V. Konakov, S.
Menozzi and S. Molchanov (10).

⇒ In general ∂tϕ and ∂x2ϕ are not well defined ! Even if ∂2
x1,x1ϕ is, due

to the regularizing effect of the noise .

2 Still all can be well-defined if we appeal to the notion of Dupire’s
derivative :

∂tϕ(t, x) + x1
·
At∂x2ϕ(t, x) = horizontal derivative ∂tv of v !
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Change of variables

2 Another way to look at the PPDE is to make the change of variables

(t, x) = (t, xt , xtAt −
∫ t

0
xsdAs) = (t, xt ,

∫ t

0
Asdxs)

which leads to

−∂tϕ(t, x)− µt(x)(1,At)Dϕ(t, x)− σ2
t (x)

2
Tr[ΣA

t D
2ϕ(t, x)] = 0

with

ΣA
t :=

(
1 At

At A2
t

)
.

⇒ Again ∂tϕ and ∂x2ϕ are not well defined in general (unless coefficients
are smooth). But this opens the door to the use of the parametrix
approach.
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Parametrix
2 Given (t, y), look for the transition density

(s, x) ∈ [0, t]× R2 7→ f̄y (s, x ; t, y)

associated to the dynamics with frozen coefficients and zero drift

−∂tϕ(s, x)− σ2
t (y)

2
Tr[ΣA

s D
2ϕ(s, x)]︸ ︷︷ ︸

Lyϕ(s,x)

= 0 .

It is a Gaussian density

f̄y (s, x ; t, y) =
1

2π|Σs,t(y)| 12
e−

1
2 (y−x)>Σs,t(y)−1(y−x)

where

Σs,t(y) := σt(y)2

(
(t − s) A

(1)
s,t

A
(1)
s,t A

(2)
s,t

)
with A

(p)
s,t :=

∫ t

s

(Ar − As)pdr , p ∈ {1, 2}.
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Link with the original density

2 Let
(s, x) ∈ [0, t]× R2 7→ f̄ (s, x ; t, y)

be the density for the original dynamics (without freezing the coefficients
and with a drift), assuming it exists and is smooth.

With Ss,t := [s, t]× R2 and
Lϕ(t, x) := Lxϕ(t, x) + µt(x)(1,At)Dϕ(t, x) :

f̄ (s, x ; t, y)− f̄y (s, x ; t, y)

=

∫
Ss,t

∂r
[
f̄ (s, x ; r , z)f̄y (r , z ; t, y)

]
drdz

=

∫
Ss,t

(−L∗ f̄ (s, x ; r , z))f̄y (r , z ; t, y)− f̄ (s, x ; r , z)Ly f̄y (r , z ; t, y)drdz

=

∫
Ss,t

(L− Ly )f̄y (r , z ; t, y)f̄ (s, x ; r , z)drdz .
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2 This leads to

f̄ (s, x ; t, y) = f̄y (s, x ; t, y) +

∫
Ss,t

f̄y (s, x ; r , z)Φ̄(r , z ; t, y)drdz

with Φ̄(r , z ; t, y) :=
∑

k≥1 ∆̄k(r , z ; t, y) where

∆̄1(s, x ; t, y) := (L− Ly )f̄y (s, x ; t, y)

∆̄k+1(s, x ; t, y) :=

∫
Ss,t

(L− Lz)f̄z(s, x ; r , z)∆̄k(r , z ; t, y)drdz .

⇒ Remains to check that the sum converges...

2 Formally,

Dx f̄ (s, x ; t, y) = Dx f̄y (s, x ; t, y) +

∫
Ss,t

Dx f̄y (s, x ; r , z)Φ̄(r , z ; t, y)drdz

in which (s, x) 7→ f̄y (s, x ; t, y) is smooth !

⇒ Remains to estimate the derivatives and check that they are
integrable...
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Existence of a transition density

2 It requires structural conditions, which are just enough to obtain the
correct estimates. Define

m
(1)
s,t :=

1
t − s

∫ t

s

Ardr

m
(2)
s,t :=

1
t − s

∫ t

s

(Ar −m
(1)
s,t )2dr and m

(2)
s,t :=

1
t − s

∫ t

s

(Ar − As)2dr .

2 Assumption : ∃ (βi )0≤i≤4 ∈ R5
+ and C > 0 s.t., ∀ 0 ≤ s < t ≤ T ,

1
C

(t − s)−β1 ≤
m

(2)
s,t

m
(2)
s,t

≤ C (t − s)−β0 ,

1
C

(t − s)−β2 ≤ 1

m
(2)
s,t

≤ C (t − s)−β3 .

|At − As | ≤ C (t − s)β4 .
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2 Assumption : We have

β′1 := β1 − β0 > −1, β′2 := β2 − β0 > −1,

and ∃ (a, ā) ∈ R2, b ∈ R, C > 0 and α > 0 s.t.

|µ| ≤ b, 0 < a ≤ σ2 ≤ ā,∣∣σs(x)− σt(y)
∣∣ ≤ C

(
|t − s|α +

∣∣ws,t(x , y)
∣∣ 2α
1+β′1 +

∣∣ws,t(x , y)
∣∣ 2α
1+β′2

)
∣∣µt(x)− µt(y)

∣∣ ≤ C
(∣∣x1 − y1

∣∣ 2α
1+β′1 +

∣∣x2 − y2
∣∣ 2α
1+β′2

)
,

with

ws,t(x , y) := x −
(

1 0
−(At − As) 1

)
y .

2 Remark : can also impose standard Hölder continuity conditions on σ
(slightly more complex to handle).
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Let us now assume that

κ0 :=
1− β0

2
∧ (α− β0) > 0.

2 Proposition : Φ̄ is well-defined as well as

f̄ (s, x ; t, y) = f̄y (s, x ; t, y) +

∫
Ss,t

f̄y (s, x ; r , z)Φ̄(r , z ; t, y)drdz .

2 This is however not enough for f̄ to be even C 1 in x ...
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Back to the original variables

2 To obtain more regularity, we need to come back to the original
variables (and think in terms of Dupire’s derivatives) :

(t, xt ,

∫ t

0
xsdAs) =

(
t, Γt(xt , xtAt −

∫ t

0
xsdAs)

)
with

Γt =

(
1 0
At −1

)
.

2 The corresponding density is

f (s, x ; t, y) = f̄ (s, Γsx ; t, Γty),

which we write as

f(s, x; t, y) := f (s, (xs ,

∫ s

0
xrdAr ); t, y).
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C0,1-regularity in the sense of Dupire
We now also assume that

(1− β0) ∧ (
1
2

+ α− 3
2
β0) > 0.

2 Theorem : (s, x) ∈ [0, t)× C ([0, t]) 7→ f(s, x; t, y) is C0,1 and, for all
(bounded) g : x 7→ g(xT ,

∫ T

0 xsdAs), the map

(s, x) ∈ [0,T ]× C ([0,T ]) 7→ v(s, x) :=

∫
R2

f(s, x;T , y)g(y)dy

is C0,1([0,T )). If moreover

Xt = X0 +

∫ t

0
µs(Xs , Is)ds +

∫ t

0
σt(Xs , Is)dWs , It =

∫ t

0
XsdAs ,

admits a unique (strong Markov) weak solution, then f is the transition
density of (X , I ) and (under additional technical conditions)

v(t,X ) = v(0,X ) +

∫ t

0
∇xv(s,X )σs(X )dWs .
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C1,2-regularity in the sense of Dupire
We finally also assume that ∃αΦ > 0 s.t.

0 < αΦ < κ0 ∧ α̂Φ ∧ min
i=1,2

1 + β′
i

2
, with α̂Φ :=

1
2
−β0−

∆̂β

2
− (β0 + 1− 2α)+

2
,

where ∆̂β := max {β0 − β1 , β3 − β2} , and

min
(2β4 + 1 + β′

1

1 + β′
2

, 1
)

min{αΦ, α} − β0 > 0.

2 Theorem : The SDE

Xt = X0 +

∫ t

0
µs(Xs , Is)ds +

∫ t

0
σt(Xs , Is)dWs , It =

∫ t

0
XsdAs

admits a unique weak solution that is a strong Markov process. f is its
transition density and (s, x) ∈ [0, t)× C ([0, t]) 7→ f(s, x; t, y) is C1,2.
v is C1,2([0,T )) and solves the PPDE

−∂tv(t, x)− µt(x)∇xv(t, x)− 1
2
σt(x)2∇2

xv(t, x) = 0, v(T , ·) = g .
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Toy examples

(i) At =
∫ t

0 ρ(s)ds, with ε ≤ ρ ≤ 1/ε a.e. for some ε > 0.
⇒ all assumptions are satisfied for α > 0.

(ii) At = tγ for some γ ∈ (0, 1).
⇒ all assumptions are satisfied for α > 0.

(iii) ∃ 1 ≥ γ1 ≥ γ2 > 0 and C1,C2 > 0 s.t.

C1|t − s|γ1 ≤ At − As ≤ C2|t − s|γ2 .

⇒ all assumptions are satisfied for γ1 − γ2 > 0 small enough (with
respect to α). Typically, γ1 = 1 in this case.
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