Some regularity results for a class of PPDE and applications

B. Bouchard

CEREMADE, Université Paris Dauphine - PSL

Based on works with G. Loeper (Monash Univ. and BNP), X. Tan (Chinese University of Hong Kong) and M. Vallet (Université Paris Dauphine - PSL)

Motivations

 $\hfill\square$ See under which conditions one can apply Itô-Dupire's formula to value functions associated to path-dependent pricing or optimal control problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivations

 $\hfill\square$ See under which conditions one can apply Itô-Dupire's formula to value functions associated to path-dependent pricing or optimal control problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Box Use $C^{1+\alpha}$ -regularity or show C^2 -regularity using PDEs.

Example #1 : second order coupled FBSDE

 \Box B. and Tan [3] : Solve a second order BSDE related to a (perfect) hedging problem under price impact. Find ($X, Y, Z, \mathfrak{g}, \mathfrak{B}$) such that

$$X_t = x_0 + \int_0^t \sigma_s(X, \mathfrak{g}_s) dW_s$$

$$Y_t = \Phi(X) - \int_t^T F_s(X, \mathfrak{g}_s) ds - \int_0^t Z_s dX_s \text{ and } Z_t = Z_0 + \int_0^t \mathfrak{g}_s dX_s - \mathfrak{B}_t$$

where Φ , σ and F are path-dependent (non-anticipative).

Example #1 : second order coupled FBSDE

 \Box B. and Tan [3] : Solve a second order BSDE related to a (perfect) hedging problem under price impact. Find (*X*, *Y*, *Z*, \mathfrak{g} , \mathfrak{B}) such that

$$X_t = x_0 + \int_0^t \sigma_s(X, \mathfrak{g}_s) dW_s$$

$$Y_t = \Phi(X) - \int_t^T F_s(X, \mathfrak{g}_s) ds - \int_0^t Z_s dX_s \text{ and } Z_t = Z_0 + \int_0^t \mathfrak{g}_s dX_s - \mathfrak{B}_t$$

where Φ , σ and F are path-dependent (non-anticipative).

□ Derive a solution from a dual formulation of the form :

$$\mathbf{v}(t,\mathbf{x}) := \sup_{\alpha} \mathbb{E}\Big[\Phi\big(\bar{X}^{t,\mathbf{x},\alpha}\big) - \int_{t}^{T} G_{s}\big(\bar{X}^{t,\mathbf{x},\alpha},\alpha_{s}\big)ds\Big], \ d\bar{X}^{t,\mathbf{x},\alpha} = \alpha dW,$$

by using Itô's lemma : $Y = v(\cdot, X)$, $Z = Dv(\cdot, X)$, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

□ Notations :

- x belongs to C([0, T]) or D([0, T]).
- $\mathbf{x}_{t\wedge} := (\mathbf{x}_{t\wedge s})_{s\in[0,T]}$,
- $\mathbf{x} \oplus_t \mathbf{y} := \mathbf{x} + \mathbf{y} \mathbf{1}_{[t,T]}$.

□ Notations :

- x belongs to C([0, T]) or D([0, T]).
- $\mathbf{x}_{t\wedge} := (\mathbf{x}_{t\wedge s})_{s\in[0,T]}$,
- $\mathbf{x} \oplus_t \mathbf{y} := \mathbf{x} + \mathbf{y} \mathbf{1}_{[t,T]}$.

□ Horizontal derivative :

$$\partial_t \mathbf{v}(t,\mathbf{x}) = \lim_{\varepsilon \downarrow 0} \frac{\mathbf{v}(t+\varepsilon,\mathbf{x}_{t\wedge}) - \mathbf{v}(t,\mathbf{x})}{\varepsilon}.$$

□ Notations :

- x belongs to C([0, T]) or D([0, T]).
- $\mathbf{x}_{t\wedge} := (\mathbf{x}_{t\wedge s})_{s\in[0,T]}$,
- $\mathbf{x} \oplus_t \mathbf{y} := \mathbf{x} + \mathbf{y} \mathbf{1}_{[t,T]}$.

□ Horizontal derivative :

$$\partial_t \mathbf{v}(t,\mathbf{x}) = \lim_{\varepsilon \downarrow 0} \frac{\mathbf{v}(t+\varepsilon,\mathbf{x}_{t\wedge}) - \mathbf{v}(t,\mathbf{x})}{\varepsilon}.$$

□ Vertical derivative :

$$abla_{\mathbf{x}}\mathbf{v}(t,\mathbf{x})\cdot\mathbf{y} = \lim_{\varepsilon\downarrow 0} rac{\mathbf{v}(t,\mathbf{x}\oplus_t \varepsilon\mathbf{y}) - \mathbf{v}(t,\mathbf{x})}{arepsilon}.$$

□ Notations :

- x belongs to C([0, T]) or D([0, T]).
- $\mathbf{x}_{t\wedge} := (\mathbf{x}_{t\wedge s})_{s\in[0,T]}$,
- $\mathbf{x} \oplus_t \mathbf{y} := \mathbf{x} + \mathbf{y} \mathbf{1}_{[t,T]}$.

□ Horizontal derivative :

$$\partial_t \mathrm{v}(t,\mathrm{x}) = \lim_{\varepsilon \downarrow 0} rac{\mathrm{v}(t+\varepsilon,\mathrm{x}_{t\wedge}) - \mathrm{v}(t,\mathrm{x})}{\varepsilon}.$$

□ Vertical derivative :

$$abla_{\mathbf{x}}\mathbf{v}(t,\mathbf{x})\cdot\mathbf{y} = \lim_{\varepsilon\downarrow 0} \frac{\mathbf{v}(t,\mathbf{x}\oplus_t\varepsilon\mathbf{y}) - \mathbf{v}(t,\mathbf{x})}{\varepsilon}.$$

 \Box We define $\mathbb{C}^{0,1}$ and $\mathbb{C}^{1,2}$ accordingly.

・ロト・4日ト・4日ト・4日・9000

 $\hfill\square$ We say that v is non-increasing in time if

$$v(t + h, x_{t \wedge}) - v(t, x) \leq 0$$
 when $h \geq 0$.

We say that v is non-increasing in time if

$$v(t + h, x_{t \wedge}) - v(t, x) \le 0$$
 when $h \ge 0$.

We say that v is **Dupire-concave** if for $x^1 = x^2$ on [0, t)

 $\mathrm{v}(t,\theta\mathrm{x}^1+(1-\theta)\mathrm{x}^2)\ \geq\ \theta\mathrm{v}(t,\mathrm{x}^1)+(1-\theta)\mathrm{v}(t,\mathrm{x}^2), \ \text{ for all } \theta\in[0,1]$

We say that v is non-increasing in time if

$$v(t + h, x_{t \wedge}) - v(t, x) \leq 0$$
 when $h \geq 0$.

We say that v is **Dupire-concave** if for $x^1 = x^2$ on [0, t)

 $\mathrm{v}(t,\theta\mathrm{x}^1+(1-\theta)\mathrm{x}^2)\ \ge\ \theta\mathrm{v}(t,\mathrm{x}^1)+(1-\theta)\mathrm{v}(t,\mathrm{x}^2), \ \text{for all}\ \theta\in[0,1]$

□ If v is **Dupire-concave**, one can define its super-differential

$$\partial \mathrm{v}(t,\mathrm{x}) := \{ z : \mathrm{v}(t,\mathrm{x}\oplus_t y) \leq \mathrm{v}(t,\mathrm{x}) + z \cdot y, \ \forall \ y \}.$$

Let $\mathcal{P} = \{\mathbb{P} \in \mathcal{P}(D([0, T])) : X \text{ is a càdlàg semimartingale under } \mathbb{P} \}.$

・ロト・日本・モト・モー ショー ショー

Let $\mathcal{P} = \{\mathbb{P} \in \mathcal{P}(D([0, T])) : X \text{ is a càdlàg semimartingale under } \mathbb{P} \}.$

Theorem [B. and Tan [3, 4]] Assume that v is Dupire-concave and non-increasing in time. Under additional local boundedness and equi-continuity assumptions $[\cdots]$, we have

$$\mathbf{v}(t,X) = \mathbf{v}(0,X) + \int_0^t H_s dX_s - C_t^{\mathbb{P}}, \ t \in [0,T], \ \mathbb{P}-\text{a.s.} \ \forall \ \mathbb{P} \in \mathcal{P},$$

in which $\{C^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}\}$ is a collection of non-decreasing processes and $H_s \in \partial v(s, X^{s-})$ for all $s \in [0, T]$, \mathcal{P} -q.s, where

$$X_t^{s-} := X_t \mathbb{1}_{t \in [0,s)} + X_{s-} \mathbb{1}_{t \in [s,T]}.$$

Let $\mathcal{P} = \{\mathbb{P} \in \mathcal{P}(D([0, T])) : X \text{ is a càdlàg semimartingale under } \mathbb{P} \}.$

Theorem [B. and Tan [3, 4]] Assume that v is Dupire-concave and non-increasing in time. Under additional local boundedness and equi-continuity assumptions $[\cdots]$, we have

$$\mathbf{v}(t,X) = \mathbf{v}(0,X) + \int_0^t H_s dX_s - C_t^{\mathbb{P}}, \ t \in [0,T], \ \mathbb{P}-\text{a.s.} \ \forall \ \mathbb{P} \in \mathcal{P},$$

in which $\{C^{\mathbb{P}} : \mathbb{P} \in \mathcal{P}\}$ is a collection of non-decreasing processes and $H_s \in \partial v(s, X^{s-})$ for all $s \in [0, T]$, \mathcal{P} -q.s, where

$$X_t^{s-} := X_t \mathbb{1}_{t \in [0,s)} + X_{s-} \mathbb{1}_{t \in [s,T]}.$$

 \Rightarrow Enough to construct a solution to our second order FBSDE. See also B. and Tan [4] for an application to robust super-hedging with jumps (compare to Nutz 15).

Let us consider a payoff function of the form

$$g(X) = g_{\circ}\left(X_{T}, \int_{0}^{T} X_{t} dA_{t}\right), g_{\circ} \in C^{1+\alpha}(\mathbb{R}).$$

・ロト・日本・モト・モート ヨー うへで

Let us consider a payoff function of the form

$$g(X) = g_{\circ}\left(X_{T}, \int_{0}^{T} X_{t} dA_{t}\right), g_{\circ} \in C^{1+\alpha}(\mathbb{R}).$$

 \Box Uncertainty modeled by \mathcal{P}_0 : \mathbb{P} such that $\mathbb{P}[X_0 = x_0] = 1$ and

$$dX_s = \sigma_s dW_s^{\mathbb{P}}, \ \sigma_s \in [\underline{\sigma}, \overline{\sigma}], \ s \in [0, T], \ \mathbb{P}\text{-a.s.}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let us consider a payoff function of the form

$$g(X) = g_{\circ}\left(X_{T}, \int_{0}^{T} X_{t} dA_{t}\right), g_{\circ} \in C^{1+\alpha}(\mathbb{R}).$$

 \Box Uncertainty modeled by $\mathcal{P}_0 : \mathbb{P}$ such that $\mathbb{P}[X_0 = x_0] = 1$ and

$$dX_{s} = \sigma_{s} dW_{s}^{\mathbb{P}}, \ \sigma_{s} \in [\underline{\sigma}, \overline{\sigma}], \ s \in [0, T], \ \mathbb{P}\text{-a.s.}$$
(1)

□ Dual formulation :

 $\mathrm{v}(t,\mathrm{x}) := \sup_{\mathbb{P}\in\mathcal{P}(t,\mathrm{x})} \mathbb{E}^{\mathbb{P}}[g(X)] = \text{ robust super-hedging price}$

where $\mathcal{P}(t, \mathbf{x}) := \{\mathbb{P} \ : \mathbb{P}[X_{t \wedge} = \mathbf{x}_{t \wedge}] = 1, \text{ and } (1) \text{ holds on } [t, T] \}.$

Let us consider a payoff function of the form

$$g(X) = g_{\circ}\left(X_{T}, \int_{0}^{T} X_{t} dA_{t}\right), g_{\circ} \in C^{1+\alpha}(\mathbb{R}).$$

 \Box Uncertainty modeled by $\mathcal{P}_0 : \mathbb{P}$ such that $\mathbb{P}[X_0 = x_0] = 1$ and

$$dX_{s} = \sigma_{s} dW_{s}^{\mathbb{P}}, \ \sigma_{s} \in [\underline{\sigma}, \overline{\sigma}], \ s \in [0, T], \ \mathbb{P}\text{-a.s.}$$
(1)

□ Dual formulation :

 $\mathrm{v}(t,\mathrm{x}) := \sup_{\mathbb{P}\in\mathcal{P}(t,\mathrm{x})} \mathbb{E}^{\mathbb{P}}[g(X)] = \text{ robust super-hedging price}$

where $\mathcal{P}(t, \mathbf{x}) := \{ \mathbb{P} : \mathbb{P}[X_{t\wedge} = \mathbf{x}_{t\wedge}] = 1, \text{ and } (1) \text{ holds on } [t, T] \}.$ \Rightarrow is not $\mathbb{C}^{1,2}$ a priori but may be $\mathbb{C}^{0,1+\alpha}$ since g is.

(ロ)、

If it is $\mathbb{C}^{0,1+\alpha}$, then on can find the hedging strategy (and prove duality) by applying this version of Itô-Dupire's Lemma.

Theorem [B., Loeper and Tan [2]] : Let X be a semimatingale, $v \in \mathbb{C}^{0,1}$ such that v and $\nabla_x v$ are locally uniformly continuous and $[\cdots]$. Then,

$$\mathbf{v}(t,X) = \mathbf{v}(0,X) + \int_0^t \nabla_{\mathbf{x}} \mathbf{v}(s,X) dX_s + \Gamma_t, \quad t \in [0,T],$$

where Γ is a continuous orthogonal process, if and only if

$$\frac{1}{\varepsilon}\int_{0}^{\cdot} \{v(s+\varepsilon,X)-v(s+\varepsilon,X_{s\wedge}\oplus_{s+\varepsilon}(X_{s+\varepsilon}-X_s))\}\{N_{s+\varepsilon}-N_s\}ds \xrightarrow[\varepsilon\downarrow 0]{}, \text{ u.c.p.}$$

for all (bounded) continuous martingale N.

Remark : Compare with Bandini and Russo (17) and Gozzi and Russo (06). Here

$$[X,Y]_t = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^t (X_{s+\varepsilon} - X_s) (Y_{s+\varepsilon} - Y_s) ds$$

Remark : The above condition holds as soon as for some $L \in BV$:

$$|\mathbf{v}(t,\mathbf{x}) - \mathbf{v}(t,\mathbf{x}')| \leq C \int_0^t |\mathbf{x}_s - \mathbf{x}'_s| dL_s.$$

 \Box Similar result for càdlàg processes (B. and Vallet [5]).

 $\hfill\square$ It remains to show that the candidate solution to the PPDE

$$-\partial_t \mathbf{v} - \sup_{\sigma \in [\underline{\sigma}, \overline{\sigma}]} \frac{\sigma^2}{2} \nabla_{\mathbf{x}}^2 \mathbf{v} = \mathbf{0}, \ \mathbf{v}(T, \cdot) = g$$

is $\mathbb{C}^{0,1}$ with locally uniformly continuous vertical Dupire's derivative.

Approximate viscosity solutions of PPDEs (A tool for regularity)

$$-\partial_t \varphi(t, \mathbf{x}) - F(t, \mathbf{x}, \varphi(t, \mathbf{x}), \nabla_\mathbf{x} \varphi(t, \mathbf{x}), \nabla^2_\mathbf{x} \varphi(t, \mathbf{x})) = \mathbf{0}, \ \varphi(T, \cdot) = g$$

B., Loeper and Tan [10].

Related works : Ekren, Touzi and Zhang (16), Ren, Touzi and Zhang (17), Ekren and Zhang (16), Cosso and Russo (19), Jianjun Zhou (21).

Definition of solutions by approximation

 \Box Let $\pi = (\pi^n)_n$, with $\pi^n = (t_i^n)_{0 \le i \le n}$, be an increasing sequence of time grids. Set

$$\bar{\mathbf{x}}^{n} := \sum_{i=0}^{n-1} \mathbf{x}_{t_{i}^{n}} \mathbf{1}_{[t_{i}^{n}, t_{i+1}^{n})} + \mathbf{x}_{t_{n}^{n}} \mathbf{1}_{[T]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition of solutions by approximation

 \Box Let $\pi = (\pi^n)_n$, with $\pi^n = (t_i^n)_{0 \le i \le n}$, be an increasing sequence of time grids. Set

$$\bar{\mathbf{x}}^{n} := \sum_{i=0}^{n-1} \mathbf{x}_{t_{i}^{n}} \mathbf{1}_{[t_{i}^{n}, t_{i+1}^{n})} + \mathbf{x}_{t_{n}^{n}} \mathbf{1}_{\{T\}}$$

 \Box We say that a continuous function v^n is a π^n -viscosity solution of

$$-\partial_t arphi(t,\mathrm{x}) - F(t,\mathrm{x},arphi(t,\mathrm{x}),
abla_\mathrm{x}arphi(t,\mathrm{x}),
abla_\mathrm{x}^2 arphi(t,\mathrm{x})) = 0 \; orall \; t < T$$

if it is of the form

$$\sum_{i=0}^{n-1} \mathbf{1}_{[t_i^n,t_{i+1}^n)} v_i^n(t,\bar{\mathbf{x}}_{\wedge t_i^n}^n,x)$$

Definition of solutions by approximation

 \Box Let $\pi = (\pi^n)_n$, with $\pi^n = (t_i^n)_{0 \le i \le n}$, be an increasing sequence of time grids. Set

$$\bar{\mathbf{x}}^{n} := \sum_{i=0}^{n-1} \mathbf{x}_{t_{i}^{n}} \mathbf{1}_{[t_{i}^{n}, t_{i+1}^{n})} + \mathbf{x}_{t_{n}^{n}} \mathbf{1}_{\{T\}}$$

 \Box We say that a continuous function v^n is a π^n -viscosity solution of

$$-\partial_t arphi(t,\mathrm{x}) - F(t,\mathrm{x},arphi(t,\mathrm{x}),
abla_\mathrm{x}arphi(t,\mathrm{x}),
abla_\mathrm{x}^2 arphi(t,\mathrm{x})) = 0 \; orall \; t < T$$

if it is of the form

$$\sum_{i=0}^{n-1} \mathbf{1}_{[t_i^n,t_{i+1}^n)} v_i^n(t,\bar{\mathbf{x}}_{\wedge t_i^n}^n,x)$$

in which each $v_i^n(\cdot, \bar{\mathbf{x}}^n_{\wedge t_i^n}, \cdot)$ is a viscosity solution on $\mathbb{R}^d \times [t_i^n, t_{i+1}^n)$ of

$$-\partial_{t}v_{i}^{n}(t,\bar{x}_{\wedge t_{i}^{n}}^{n},x) - F(t,\bar{x}_{\wedge t_{i}^{n}}^{n},v_{i}^{n}(t,\bar{x}_{\wedge t_{i}^{n}}^{n},x), Dv_{i}^{n}(t,\bar{x}_{\wedge t_{i}^{n}}^{n},x), D^{2}v_{i}^{n}(t,\bar{x}_{\wedge t_{i}^{n}}^{n},x)) = 0$$

$$v_{i}^{n}(t_{i+1}^{n}-,\bar{x}_{\wedge t_{i}^{n}}^{n},x) = v_{i+1}^{n}(t_{i+1}^{n},\bar{x}_{\wedge t_{i}^{n}}^{n}1_{[0,t_{i+1}^{n}]} + 1_{\{t_{i+1}^{n}\}}x,x)$$

□ Example : Think about replacing

$$\mathrm{v}(t,\mathrm{x}) := \sup_{\mathbb{P}\in\mathcal{P}(t,\mathrm{x})} \mathbb{E}^{\mathbb{P}}[g(X)]$$

by

$$v^n(t, \bar{\mathbf{x}}^n) := \sup_{\mathbb{P}\in\mathcal{P}(t, \bar{\mathbf{x}}^n)} \mathbb{E}^{\mathbb{P}}[g(\bar{X}^n_{t^n_0}, \dots, \bar{X}^n_{t^n_n})].$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

□ Example : Think about replacing

$$\mathrm{v}(t,\mathrm{x}) := \sup_{\mathbb{P}\in\mathcal{P}(t,\mathrm{x})} \mathbb{E}^{\mathbb{P}}[g(X)]$$

by

$$\mathbf{v}^n(t, \bar{\mathbf{x}}^n) := \sup_{\mathbb{P}\in\mathcal{P}(t, \bar{\mathbf{x}}^n)} \mathbb{E}^{\mathbb{P}}\left[g(\bar{X}^n_{t^n_0}, \dots, \bar{X}^n_{t^n_n})\right].$$

(i) If $t \in [t_i^n, t_{i+1}^n)$, then $(\bar{X}_{t_0^n}^n, \cdots, \bar{X}_{t_i^n}^n)$ is known (and is a parameter for the period [t, T])

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

□ Example : Think about replacing

$$\mathrm{v}(t,\mathrm{x}) := \sup_{\mathbb{P}\in\mathcal{P}(t,\mathrm{x})} \mathbb{E}^{\mathbb{P}}[g(X)]$$

by

$$\mathbf{v}^n(t, \bar{\mathbf{x}}^n) := \sup_{\mathbb{P} \in \mathcal{P}(t, \bar{\mathbf{x}}^n)} \mathbb{E}^{\mathbb{P}} \left[g(\bar{X}^n_{t^n_0}, \dots, \bar{X}^n_{t^n_n}) \right].$$

- (i) If $t \in [t_i^n, t_{i+1}^n)$, then $(\bar{X}_{t_0^n}^n, \dots, \bar{X}_{t_i^n}^n)$ is known (and is a parameter for the period [t, T])
- (ii) At the boundary $t = t_{i+1}^n$, the value $\bar{X}_{t_{i+1}^n}^n$ is also frozen, and serves as a starting point for \bar{X}^n on the period $[t_{i+1}^n, t_{i+2}^n)$.

Example : Think about replacing

$$\mathrm{v}(t,\mathrm{x}) := \sup_{\mathbb{P}\in\mathcal{P}(t,\mathrm{x})} \mathbb{E}^{\mathbb{P}}[g(X)]$$

by

$$\mathbf{v}^n(t, \bar{\mathbf{x}}^n) := \sup_{\mathbb{P} \in \mathcal{P}(t, \bar{\mathbf{x}}^n)} \mathbb{E}^{\mathbb{P}} \left[g(\bar{X}^n_{t^n_0}, \dots, \bar{X}^n_{t^n_n}) \right].$$

- (i) If $t \in [t_i^n, t_{i+1}^n)$, then $(\bar{X}_{t_0^n}^n, \dots, \bar{X}_{t_i^n}^n)$ is known (and is a parameter for the period [t, T])
- (ii) At the boundary $t = t_{i+1}^n$, the value $\bar{X}_{t_{i+1}^n}^n$ is also frozen, and serves as a starting point for \bar{X}^n on the period $[t_{i+1}^n, t_{i+2}^n)$.

(iii) Ends up with a sequence of backward PDEs on : $[t_{n-1}^n, T)$, $[t_{n-2}^n, t_{n-1}^n)$, and so on.

 \Box We say that v is a π -approximate-viscosity solution on D([0, T]) of

$$-\partial_t v(t,x) - F(t,x,v(t,x),
abla_x v(t,x),
abla_x^2 v(t,x)) = 0$$
, $t < T$

with terminal condition

$$v(T, \cdot) = g$$

if $v^n(t, \mathbf{x}, \mathbf{x}_t) \to \mathbf{v}(t, \mathbf{x})$ for all $(t, \mathbf{x}) \in [0, T] \times D([0, T])$ where $(v^n)_n$ is the sequence defined as above with

$$v^{n}(t_{n}^{n},\mathbf{x},x) = g(\bar{\mathbf{x}}^{n}\mathbf{1}_{[0,t_{n}^{n})} + \mathbf{1}_{\{t_{n}^{n}\}}x)$$

 \Box We say that v is a π -approximate-viscosity solution on D([0, T]) of

$$-\partial_t v(t,x) - F(t,x,v(t,x),
abla_x v(t,x),
abla_x^2 v(t,x)) = 0, \ t < T$$

with terminal condition

$$v(T, \cdot) = g$$

if $v^n(t, x, x_t) \to v(t, x)$ for all $(t, x) \in [0, T] \times D([0, T])$ where $(v^n)_n$ is the sequence defined as above with

$$v^{n}(t_{n}^{n},\mathbf{x},x) = g(\bar{\mathbf{x}}^{n}\mathbf{1}_{[0,t_{n}^{n})} + \mathbf{1}_{\{t_{n}^{n}\}}x)$$

 \Box Typical examples : Semi-linear PPDEs or HJB equations.

 \Rightarrow In both cases, amounts to replacing X by \bar{X}^n in the coefficients and payoff.

But we also want to consider general non-linear parabolic PPDEs.

Existence, comparison, stability

 $\hfill\square$ We focus on the case where

$$F(t, \mathbf{x}, r, p, q) = H(t, \mathbf{x}, r, p, q) + \rho(t, \mathbf{x})r + b(t, \mathbf{x})p + \frac{1}{2}\sigma^{2}(t, \mathbf{x})q$$

where all the coefficients are continuous and Lipschitz/uniformly continuous in space $[\cdots]$ + standard assumptions to have comparison and existence of a viscosity solution with linear growth in finite dimension (for the $F(\cdot, \bar{\mathbf{x}}^n_{\wedge t^n_i}, \cdot))$.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Existence, comparison, stability

 $\hfill\square$ We focus on the case where

$$F(t, \mathbf{x}, r, p, q) = H(t, \mathbf{x}, r, p, q) + \rho(t, \mathbf{x})r + b(t, \mathbf{x})p + \frac{1}{2}\sigma^{2}(t, \mathbf{x})q$$

where all the coefficients are continuous and Lipschitz/uniformly continuous in space $[\cdots]$ + standard assumptions to have comparison and existence of a viscosity solution with linear growth in finite dimension (for the $F(\cdot, \bar{\mathbf{x}}^n_{\wedge t^n_i}, \cdot))$.

Theorem : Let g be uniformly continuous, then \exists a unique π -approximate viscosity solution v on D([0, T]).
$\hfill\square$ We focus on the case where

$$F(t, \mathbf{x}, r, p, q) = H(t, \mathbf{x}, r, p, q) + \rho(t, \mathbf{x})r + b(t, \mathbf{x})p + \frac{1}{2}\sigma^{2}(t, \mathbf{x})q$$

where all the coefficients are continuous and Lipschitz/uniformly continuous in space $[\cdots]$ + standard assumptions to have comparison and existence of a viscosity solution with linear growth in finite dimension (for the $F(\cdot, \bar{\mathbf{x}}^n_{\wedge t^n_i}, \cdot))$.

Theorem : Let g be uniformly continuous, then \exists a unique π -approximate viscosity solution v on D([0, T]). Moreover,

• It is locally uniformly continuous.

 $\hfill\square$ We focus on the case where

$$F(t, \mathbf{x}, r, p, q) = H(t, \mathbf{x}, r, p, q) + \rho(t, \mathbf{x})r + b(t, \mathbf{x})p + \frac{1}{2}\sigma^{2}(t, \mathbf{x})q$$

where all the coefficients are continuous and Lipschitz/uniformly continuous in space $[\cdots]$ + standard assumptions to have comparison and existence of a viscosity solution with linear growth in finite dimension (for the $F(\cdot, \bar{\mathbf{x}}^n_{\wedge t^n_i}, \cdot))$.

Theorem : Let g be uniformly continuous, then \exists a unique π -approximate viscosity solution v on D([0, T]). Moreover,

- It is locally uniformly continuous.
- If π' is another increasing sequence of time grids and if v' is the π' -approximate viscosity solution, then v' = v.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

 $\hfill\square$ We focus on the case where

$$F(t, \mathbf{x}, r, p, q) = H(t, \mathbf{x}, r, p, q) + \rho(t, \mathbf{x})r + b(t, \mathbf{x})p + \frac{1}{2}\sigma^{2}(t, \mathbf{x})q$$

where all the coefficients are continuous and Lipschitz/uniformly continuous in space $[\cdots]$ + standard assumptions to have comparison and existence of a viscosity solution with linear growth in finite dimension (for the $F(\cdot, \bar{\mathbf{x}}^n_{\wedge t^n_i}, \cdot))$.

Theorem : Let g be uniformly continuous, then \exists a unique π -approximate viscosity solution v on D([0, T]). Moreover,

- It is locally uniformly continuous.
- If π' is another increasing sequence of time grids and if v' is the π' -approximate viscosity solution, then v' = v.

Proposition : Comparison and stability holds in the class of solutions.

 $\hfill\square$ We focus on the case where

$$F(t, \mathbf{x}, r, p, q) = H(t, \mathbf{x}, r, p, q) + \rho(t, \mathbf{x})r + b(t, \mathbf{x})p + \frac{1}{2}\sigma^{2}(t, \mathbf{x})q$$

where all the coefficients are continuous and Lipschitz/uniformly continuous in space $[\cdots]$ + standard assumptions to have comparison and existence of a viscosity solution with linear growth in finite dimension (for the $F(\cdot, \bar{\mathbf{x}}^n_{\wedge t^n_i}, \cdot))$.

Theorem : Let g be uniformly continuous, then \exists a unique π -approximate viscosity solution v on D([0, T]). Moreover,

- It is locally uniformly continuous.
- If π' is another increasing sequence of time grids and if v' is the π' -approximate viscosity solution, then v' = v.

Proposition : Comparison and stability holds in the class of solutions.

Remark: We have precise estimates on the approximation error $|v^n(t, x, x_t) - v(t, x)|$ (depending on the regul. of x).

Regularity in the fully non-linear case

Recall that

$$- \partial_t v_i^n(t, \bar{\mathbf{x}}_{\wedge t_i^n}^n, x) - F(t, \bar{\mathbf{x}}_{\wedge t_i^n}^n, v_i^n(t, \bar{\mathbf{x}}_{\wedge t_i^n}^n, x), Dv_i^n(t, \bar{\mathbf{x}}_{\wedge t_i^n}^n, x), D^2 v_i^n(t, \bar{\mathbf{x}}_{\wedge t_i^n}^n, x)) = 0$$

$$v_i^n(t_{i+1}^n, \bar{\mathbf{x}}_{\wedge t_i^n}^n, x) = v_{i+1}^n(t_{i+1}^n, \bar{\mathbf{x}}_{\wedge t_i^n}^n \mathbf{1}_{[0, t_{i+1}^n]} + \mathbf{1}_{\{t_{i+1}^n\}} x, x)$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

$$g(\mathbf{x}) = g_{\circ} \Big(\int_0^T \mathbf{x}_t dA_t \Big),$$

where $g_{\circ} \in C^{1+\alpha}(\mathbb{R})$ is bounded, and A is BV with at most finitely many jumps on [0, T].

$$g(\mathbf{x}) = g_{\circ} \Big(\int_0^T \mathbf{x}_t dA_t \Big),$$

where $g_{\circ} \in C^{1+\alpha}(\mathbb{R})$ is bounded, and A is BV with at most finitely many jumps on [0, T].

□ Two cases

(a) Either $\alpha \in (0,1)$ and $F(t, x, y, z, \gamma) = F_1(t)y + F_2(t)z + F_3(t, \gamma)$,

$$g(\mathbf{x}) = g_{\circ} \Big(\int_{0}^{T} \mathbf{x}_{t} dA_{t} \Big),$$

where $g_{\circ} \in C^{1+\alpha}(\mathbb{R})$ is bounded, and A is BV with at most finitely many jumps on [0, T].

Two cases

- (a) Either $\alpha \in (0,1)$ and $F(t, x, y, z, \gamma) = F_1(t)y + F_2(t)z + F_3(t, \gamma)$,
- (b) Or $\alpha = 1$ and $F(t, x, y, z, \gamma) = F_1(t, y, \gamma) + F_2(t)z$ with $y \in \mathbb{R} \mapsto F_1(t, y, \gamma) \in C^1$ with bounded and Lipschitz first order derivative, uniformly in $\gamma \in \mathbb{R}$ and $t \leq T$.

$$g(\mathbf{x}) = g_{\circ} \Big(\int_{0}^{T} \mathbf{x}_{t} dA_{t} \Big),$$

where $g_{\circ} \in C^{1+\alpha}(\mathbb{R})$ is bounded, and A is BV with at most finitely many jumps on [0, T].

Two cases

- (a) Either $\alpha \in (0,1)$ and $F(t, x, y, z, \gamma) = F_1(t)y + F_2(t)z + F_3(t, \gamma)$,
- (b) Or $\alpha = 1$ and $F(t, x, y, z, \gamma) = F_1(t, y, \gamma) + F_2(t)z$ with $y \in \mathbb{R} \mapsto F_1(t, y, \gamma) \in C^1$ with bounded and Lipschitz first order derivative, uniformly in $\gamma \in \mathbb{R}$ and $t \leq T$.

 \Box In any case $\gamma \mapsto F(\cdot, \gamma)$ is concave or $d \leq 2$.

$$g(\mathbf{x}) = g_{\circ} \Big(\int_0^T \mathbf{x}_t dA_t \Big),$$

where $g_{\circ} \in C^{1+\alpha}(\mathbb{R})$ is bounded, and A is BV with at most finitely many jumps on [0, T].

Two cases

- (a) Either $\alpha \in (0,1)$ and $F(t, x, y, z, \gamma) = F_1(t)y + F_2(t)z + F_3(t, \gamma)$,
- (b) Or $\alpha = 1$ and $F(t, x, y, z, \gamma) = F_1(t, y, \gamma) + F_2(t)z$ with $y \in \mathbb{R} \mapsto F_1(t, y, \gamma) \in C^1$ with bounded and Lipschitz first order derivative, uniformly in $\gamma \in \mathbb{R}$ and $t \leq T$.

 $\Box \text{ In any case } \gamma \mapsto F(\cdot, \gamma) \text{ is concave or } d \leq 2.$

Theorem : $\nabla_x v$ is well-defined and locally uniformly continuous.

Remark : In the semi-linear case F = F(t, x, y, z), only needs $C^{1+\alpha}$ (in the Fréchet sense with respect to the path) : just differentiate the corresponding BSDE...

Regularization in the uniformly elliptic case (Bouchard and Tan [11])

We focus on the linear case (with d = 1) and consider

$$-\partial_t \mathbf{v}(t,\mathbf{x}) - \mu_t(\mathbf{x}) \nabla_{\mathbf{x}} \mathbf{v}(t,\mathbf{x}) - \frac{1}{2} \sigma_t(\mathbf{x})^2 \nabla_{\mathbf{x}}^2 \mathbf{v}(t,\mathbf{x}) = \mathbf{0}, \ \mathbf{v}(T,\cdot) = g$$

with

$$(\mu_t, \sigma_t)(\mathbf{x}) = (\mu_t, \sigma_t)(\mathbf{x}_t, \int_0^t \mathbf{x}_s dA_s) \text{ and } g(\mathbf{x}) = g(\mathbf{x}_T, \int_0^T \mathbf{x}_s dA_s),$$

in which

 μ and σ^2 are Hölder (bounded), $\sigma^2 \ge \underline{\mathfrak{a}} > 0$ and g measurable (bounded).

Relation with degenerate equations

 \Box If A was absolutely continuous, this would amount to looking for regularity for the degenerate PDE

$$-\partial_t \varphi(t,x) - x^1 \dot{A}_t \partial_{x^2} \varphi(t,x) - \mu_t(x) \partial_{x^1} \varphi(t,x) - \frac{1}{2} \sigma_t(x)^2 \partial_{x^1,x^1}^2 \varphi(t,x) = 0$$

in which derivatives are taken in the traditional sense and

$$(t,x) := (t, \mathbf{x}_t, \int_0^t \mathbf{x}_s \dot{A}_s ds), \ \varphi(t,x) := \mathbf{v}(t,\mathbf{x}).$$

Compare with : M. Di Francesco and A. Pascucci (05), V. Konakov, S. Menozzi and S. Molchanov (10).

Relation with degenerate equations

 \Box If A was absolutely continuous, this would amount to looking for regularity for the degenerate PDE

$$-\partial_t \varphi(t,x) - x^1 \dot{A}_t \partial_{x^2} \varphi(t,x) - \mu_t(x) \partial_{x^1} \varphi(t,x) - \frac{1}{2} \sigma_t(x)^2 \partial_{x^1,x^1}^2 \varphi(t,x) = 0$$

in which derivatives are taken in the traditional sense and

$$(t,x) := (t, \mathbf{x}_t, \int_0^t \mathbf{x}_s \dot{A}_s ds), \ \varphi(t,x) := \mathbf{v}(t,\mathbf{x}).$$

Compare with : M. Di Francesco and A. Pascucci (05), V. Konakov, S. Menozzi and S. Molchanov (10).

 $\Rightarrow \text{ In general } \partial_t \varphi \text{ and } \partial_{x^2} \varphi \text{ are not well defined }! \text{ Even if } \partial^2_{x^1,x^1} \varphi \text{ is, due to the regularizing effect of the noise }.$

Relation with degenerate equations

 \Box If A was absolutely continuous, this would amount to looking for regularity for the degenerate PDE

$$-\partial_t \varphi(t,x) - x^1 \dot{A}_t \partial_{x^2} \varphi(t,x) - \mu_t(x) \partial_{x^1} \varphi(t,x) - \frac{1}{2} \sigma_t(x)^2 \partial_{x^1,x^1}^2 \varphi(t,x) = 0$$

in which derivatives are taken in the traditional sense and

$$(t,x) := (t, \mathbf{x}_t, \int_0^t \mathbf{x}_s \dot{A}_s ds), \ \varphi(t,x) := \mathbf{v}(t,\mathbf{x}).$$

Compare with : M. Di Francesco and A. Pascucci (05), V. Konakov, S. Menozzi and S. Molchanov (10).

 $\Rightarrow \text{ In general } \partial_t \varphi \text{ and } \partial_{x^2} \varphi \text{ are not well defined }! \text{ Even if } \partial^2_{x^1,x^1} \varphi \text{ is, due to the regularizing effect of the noise }.$

□ Still all can be well-defined if we appeal to the notion of Dupire's derivative :

$$\partial_t \varphi(t,x) + x^1 A_t \partial_{x^2} \varphi(t,x) =$$
horizontal derivative $\partial_t v$ of $v !$

Change of variables

 $\hfill\square$ Another way to look at the PPDE is to make the change of variables

$$(t,x) = (t, \mathbf{x}_t, \mathbf{x}_t A_t - \int_0^t \mathbf{x}_s dA_s) = (t, \mathbf{x}_t, \int_0^t A_s d\mathbf{x}_s)$$

which leads to

$$-\partial_t \varphi(t,x) - \mu_t(x)(1,A_t) D\varphi(t,x) - \frac{\sigma_t^2(x)}{2} \operatorname{Tr}[\Sigma_t^A D^2 \varphi(t,x)] = 0$$

with

$$\Sigma^{\mathcal{A}}_t := \left(egin{array}{cc} 1 & \mathcal{A}_t \ \mathcal{A}_t & \mathcal{A}_t^2 \end{array}
ight).$$

Change of variables

 \Box Another way to look at the PPDE is to make the change of variables

$$(t,x) = (t, \mathbf{x}_t, \mathbf{x}_t A_t - \int_0^t \mathbf{x}_s dA_s) = (t, \mathbf{x}_t, \int_0^t A_s d\mathbf{x}_s)$$

which leads to

$$-\partial_t \varphi(t,x) - \mu_t(x)(1,A_t) D\varphi(t,x) - \frac{\sigma_t^2(x)}{2} \mathrm{Tr}[\Sigma_t^A D^2 \varphi(t,x)] = 0$$

with

$$\Sigma_t^A := \left(egin{array}{cc} 1 & A_t \ A_t & A_t^2 \end{array}
ight).$$

 \Rightarrow Again $\partial_t \varphi$ and $\partial_{x^2} \varphi$ are not well defined in general (unless coefficients are smooth). But this opens the door to the use of the parametrix approach.

Parametrix

 \Box Given (t, y), look for the transition density

$$(s,x) \in [0,t] imes \mathbb{R}^2 \mapsto ar{f}_y(s,x;t,y)$$

associated to the dynamics with frozen coefficients and zero drift

$$-\partial_t \varphi(s,x) - \underbrace{\frac{\sigma_t^2(y)}{2} \operatorname{Tr}[\Sigma_s^A D^2 \varphi(s,x)]}_{L_y \varphi(s,x)} = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Parametrix

 \Box Given (t, y), look for the transition density

$$(s,x) \in [0,t] imes \mathbb{R}^2 \mapsto ar{f}_y(s,x;t,y)$$

associated to the dynamics with frozen coefficients and zero drift

$$-\partial_t \varphi(s,x) - \underbrace{\frac{\sigma_t^2(y)}{2} \operatorname{Tr}[\Sigma_s^A D^2 \varphi(s,x)]}_{L_y \varphi(s,x)} = 0 \ .$$

It is a Gaussian density

$$\bar{f}_{y}(s,x;t,y) = \frac{1}{2\pi |\Sigma_{s,t}(y)|^{\frac{1}{2}}} e^{-\frac{1}{2}(y-x)^{\top} \Sigma_{s,t}(y)^{-1}(y-x)}$$

where

$$\Sigma_{s,t}(y) := \sigma_t(y)^2 \begin{pmatrix} (t-s) & A_{s,t}^{(1)} \\ A_{s,t}^{(1)} & A_{s,t}^{(2)} \end{pmatrix} \text{ with } A_{s,t}^{(p)} := \int_s^t (A_r - A_s)^p dr, \ p \in \{1,2\}$$

Link with the original density

🗆 Let

$$(s,x) \in [0,t] imes \mathbb{R}^2 \mapsto ar{f}(s,x;t,y)$$

be the density for the original dynamics (without freezing the coefficients and with a drift), assuming it exists and is smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Link with the original density

Let

$$(s,x) \in [0,t] \times \mathbb{R}^2 \mapsto \overline{f}(s,x;t,y)$$

be the density for the original dynamics (without freezing the coefficients and with a drift), assuming it exists and is smooth.

With $S_{s,t} := [s, t] \times \mathbb{R}^2$ and $L\varphi(t, x) := L_x \varphi(t, x) + \mu_t(x)(1, A_t) D\varphi(t, x)$:

Link with the original density

Let

$$(s,x) \in [0,t] imes \mathbb{R}^2 \mapsto ar{f}(s,x;t,y)$$

be the density for the original dynamics (without freezing the coefficients and with a drift), assuming it exists and is smooth.

With
$$S_{s,t} := [s,t] \times \mathbb{R}^2$$
 and
 $L\varphi(t,x) := L_x \varphi(t,x) + \mu_t(x)(1,A_t)D\varphi(t,x) :$
 $\overline{f}(s,x;t,y) - \overline{f_y}(s,x;t,y)$
 $= \int_{S_{s,t}} \partial_r \left[\overline{f}(s,x;r,z)\overline{f_y}(r,z;t,y)\right] drdz$
 $= \int_{S_{s,t}} (-L^*\overline{f}(s,x;r,z))\overline{f_y}(r,z;t,y) - \overline{f}(s,x;r,z)L_y\overline{f_y}(r,z;t,y)drdz$
 $= \int_{S_{s,t}} (L - L_y)\overline{f_y}(r,z;t,y)\overline{f}(s,x;r,z)drdz.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

□ This leads to

$$\bar{f}(s,x;t,y) = \bar{f}_y(s,x;t,y) + \int_{S_{s,t}} \bar{f}_y(s,x;r,z)\bar{\Phi}(r,z;t,y)drdz$$

with $ar{\Phi}(r,z;t,y) := \sum_{k\geq 1}ar{\Delta}_k(r,z;t,y)$ where

$$\bar{\Delta}_1(s,x;t,y) := (L-L_y)\bar{f}_y(s,x;t,y)$$
$$\bar{\Delta}_{k+1}(s,x;t,y) := \int_{S_{s,t}} (L-L_z)\bar{f}_z(s,x;r,z)\bar{\Delta}_k(r,z;t,y)drdz$$

 \Rightarrow Remains to check that the sum converges...

 \Box This leads to

$$\bar{f}(s,x;t,y) = \bar{f}_y(s,x;t,y) + \int_{S_{s,t}} \bar{f}_y(s,x;r,z)\bar{\Phi}(r,z;t,y)drdz$$

with $\bar{\Phi}(r,z;t,y) := \sum_{k\geq 1} \bar{\Delta}_k(r,z;t,y)$ where

$$\begin{split} \bar{\Delta}_1(s,x;t,y) &:= (L-L_y)\bar{f}_y(s,x;t,y) \\ \bar{\Delta}_{k+1}(s,x;t,y) &:= \int_{S_{s,t}} (L-L_z)\bar{f}_z(s,x;r,z)\bar{\Delta}_k(r,z;t,y) drdz \end{split}$$

 \Rightarrow Remains to check that the sum converges...

□ Formally,

$$D_x \overline{f}(s,x;t,y) = D_x \overline{f}_y(s,x;t,y) + \int_{S_{s,t}} D_x \overline{f}_y(s,x;r,z) \overline{\Phi}(r,z;t,y) drdz$$

in which $(s, x) \mapsto \overline{f}_y(s, x; t, y)$ is smooth !

 \Rightarrow Remains to estimate the derivatives and check that they are integrable...

Existence of a transition density

 $\hfill\square$ It requires structural conditions, which are just enough to obtain the correct estimates. Define

$$\begin{split} m_{s,t}^{(1)} &:= \frac{1}{t-s} \int_{s}^{t} A_{r} dr \\ m_{s,t}^{(2)} &:= \frac{1}{t-s} \int_{s}^{t} (A_{r} - m_{s,t}^{(1)})^{2} dr \text{ and } m_{s,t}^{(2)} &:= \frac{1}{t-s} \int_{s}^{t} (A_{r} - A_{s})^{2} dr. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Existence of a transition density

 $\hfill\square$ It requires structural conditions, which are just enough to obtain the correct estimates. Define

$$\begin{split} m_{s,t}^{(1)} &:= \frac{1}{t-s} \int_{s}^{t} A_{r} dr \\ m_{s,t}^{(2)} &:= \frac{1}{t-s} \int_{s}^{t} (A_{r} - m_{s,t}^{(1)})^{2} dr \text{ and } m_{s,t}^{(2)} &:= \frac{1}{t-s} \int_{s}^{t} (A_{r} - A_{s})^{2} dr. \end{split}$$

 $\Box \text{ Assumption}: \exists \ (\beta_i)_{0 \leq i \leq 4} \in \mathbb{R}^5_+ \text{ and } C > 0 \text{ s.t., } \forall \ 0 \leq s < t \leq T,$

$$egin{aligned} &rac{1}{C}(t-s)^{-eta_1} \leq rac{m_{s,t}^{(2)}}{m_{s,t}^{(2)}} \leq C(t-s)^{-eta_0}, \ &rac{1}{C}(t-s)^{-eta_2} \leq rac{1}{m_{s,t}^{(2)}} \leq C(t-s)^{-eta_3}. \ &|A_t-A_s| \leq C(t-s)^{eta_4}. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

□ **Assumption** : We have

$$\beta'_1 := \beta_1 - \beta_0 > -1, \quad \beta'_2 := \beta_2 - \beta_0 > -1,$$

and \exists ($\mathfrak{a}, \overline{\mathfrak{a}}$) $\in \mathbb{R}^2$, $\mathfrak{b} \in \mathbb{R}$, C > 0 and $\alpha > 0$ s.t.

$$\begin{aligned} |\mu| &\leq \mathfrak{b}, \quad \mathbf{0} < \underline{\mathfrak{a}} \leq \sigma^2 \leq \overline{\mathfrak{a}}, \\ \left| \sigma_s(x) - \sigma_t(y) \right| &\leq C \left(|t - s|^\alpha + \left| \mathbf{w}_{s,t}(x, y) \right|^{\frac{2\alpha}{1+\beta_1'}} + \left| \mathbf{w}_{s,t}(x, y) \right|^{\frac{2\alpha}{1+\beta_2'}} \right) \\ \left| \mu_t(x) - \mu_t(y) \right| &\leq C \left(\left| x_1 - y_1 \right|^{\frac{2\alpha}{1+\beta_1'}} + \left| x_2 - y_2 \right|^{\frac{2\alpha}{1+\beta_2'}} \right), \end{aligned}$$

with

$$\mathbf{w}_{s,t}(x,y) := x - \begin{pmatrix} 1 & 0 \\ -(A_t - A_s) & 1 \end{pmatrix} y.$$

□ Assumption : We have

$$\beta'_1 := \beta_1 - \beta_0 > -1, \quad \beta'_2 := \beta_2 - \beta_0 > -1,$$

and \exists ($\mathfrak{a}, \overline{\mathfrak{a}}$) $\in \mathbb{R}^2$, $\mathfrak{b} \in \mathbb{R}$, C > 0 and $\alpha > 0$ s.t.

$$\begin{aligned} |\mu| &\leq \mathfrak{b}, \quad \mathbf{0} < \mathfrak{a} \leq \sigma^2 \leq \overline{\mathfrak{a}}, \\ |\sigma_s(x) - \sigma_t(y)| &\leq C \Big(|t - s|^\alpha + |\mathbf{w}_{s,t}(x,y)|^{\frac{2\alpha}{1+\beta_1'}} + |\mathbf{w}_{s,t}(x,y)|^{\frac{2\alpha}{1+\beta_2'}} \Big) \\ |\mu_t(x) - \mu_t(y)| &\leq C \Big(|x_1 - y_1|^{\frac{2\alpha}{1+\beta_1'}} + |x_2 - y_2|^{\frac{2\alpha}{1+\beta_2'}} \Big), \end{aligned}$$

with

$$\mathbf{w}_{s,t}(x,y) := x - \begin{pmatrix} 1 & 0 \\ -(A_t - A_s) & 1 \end{pmatrix} y.$$

 \Box **Remark** : can also impose standard Hölder continuity conditions on σ (slightly more complex to handle).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us now assume that

$$\kappa_{\mathbf{0}} := \frac{1-\beta_{\mathbf{0}}}{2} \wedge (\alpha-\beta_{\mathbf{0}}) > \mathbf{0}.$$

 \Box **Proposition :** $\bar{\Phi}$ is well-defined as well as

$$\bar{f}(s,x;t,y)=\bar{f}_y(s,x;t,y)+\int_{S_{s,t}}\bar{f}_y(s,x;r,z)\bar{\Phi}(r,z;t,y)drdz$$

Let us now assume that

$$\kappa_0 := \frac{1-\beta_0}{2} \wedge (\alpha-\beta_0) > 0.$$

 \Box **Proposition :** $\bar{\Phi}$ is well-defined as well as

$$\bar{f}(s,x;t,y) = \bar{f}_y(s,x;t,y) + \int_{S_{s,t}} \bar{f}_y(s,x;r,z)\bar{\Phi}(r,z;t,y)drdz.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \Box This is however not enough for \overline{f} to be even C^1 in x...

Back to the original variables

 \Box To obtain more regularity, we need to come back to the original variables (and think in terms of Dupire's derivatives) :

$$(t, \mathbf{x}_t, \int_0^t \mathbf{x}_s dA_s) = \left(t, \Gamma_t(\mathbf{x}_t, \mathbf{x}_t A_t - \int_0^t \mathbf{x}_s dA_s)\right)$$

with

$$\mathsf{\Gamma}_t = \left(\begin{array}{cc} 1 & 0 \\ A_t & -1 \end{array} \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Back to the original variables

 \Box To obtain more regularity, we need to come back to the original variables (and think in terms of Dupire's derivatives) :

$$(t, \mathbf{x}_t, \int_0^t \mathbf{x}_s dA_s) = \left(t, \Gamma_t(\mathbf{x}_t, \mathbf{x}_t A_t - \int_0^t \mathbf{x}_s dA_s)\right)$$

with

$$\mathbf{\bar{t}}_t = \left(egin{array}{cc} 1 & 0 \ A_t & -1 \end{array}
ight).$$

 $\hfill\square$ The corresponding density is

$$f(s,x;t,y)=\bar{f}(s,\Gamma_s x;t,\Gamma_t y),$$

which we write as

$$\mathbf{f}(s,\mathbf{x};t,y):=f(s,(\mathbf{x}_s,\int_0^s\mathbf{x}_r dA_r);t,y).$$

$\mathbb{C}^{0,1}\text{-}\mathsf{regularity}$ in the sense of Dupire

We now also assume that

$$(1 - \beta_0) \wedge (\frac{1}{2} + \alpha - \frac{3}{2}\beta_0) > 0.$$

We now also assume that

$$(1-eta_0)\wedge (rac{1}{2}+lpha-rac{3}{2}eta_0) > 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 \Box Theorem : $(s, \mathbf{x}) \in [0, t) \times C([0, t]) \mapsto f(s, \mathbf{x}; t, y)$ is $\mathbb{C}^{0,1}$

We now also assume that

$$(1-eta_0)\wedge (rac{1}{2}+lpha-rac{3}{2}eta_0) > 0.$$

□ **Theorem** : $(s, x) \in [0, t) \times C([0, t]) \mapsto f(s, x; t, y)$ is $\mathbb{C}^{0,1}$ and, for all (bounded) $g : x \mapsto g(x_T, \int_0^T x_s dA_s)$, the map

$$(s,\mathbf{x}) \in [0,T] \times C([0,T]) \mapsto \mathbf{v}(s,\mathbf{x}) := \int_{\mathbb{R}^2} \mathbf{f}(s,\mathbf{x};T,y) g(y) dy$$

is $\mathbb{C}^{0,1}([0, T))$.

We now also assume that

$$(1 - \beta_0) \wedge (\frac{1}{2} + \alpha - \frac{3}{2}\beta_0) > 0.$$

□ **Theorem** : $(s, x) \in [0, t) \times C([0, t]) \mapsto f(s, x; t, y)$ is $\mathbb{C}^{0,1}$ and, for all (bounded) $g : x \mapsto g(x_T, \int_0^T x_s dA_s)$, the map

$$(s,\mathbf{x}) \in [0,T] \times C([0,T]) \mapsto \mathbf{v}(s,\mathbf{x}) := \int_{\mathbb{R}^2} \mathbf{f}(s,\mathbf{x};T,y) g(y) dy$$

is $\mathbb{C}^{0,1}([0, T))$. If moreover

$$X_t = X_0 + \int_0^t \mu_s(X_s, I_s) ds + \int_0^t \sigma_t(X_s, I_s) dW_s, \quad I_t = \int_0^t X_s dA_s,$$

admits a unique (strong Markov) weak solution, then ${\rm f}$ is the transition density of (X,I)

We now also assume that

$$(1 - \beta_0) \wedge (\frac{1}{2} + \alpha - \frac{3}{2}\beta_0) > 0.$$

□ **Theorem** : $(s, x) \in [0, t) \times C([0, t]) \mapsto f(s, x; t, y)$ is $\mathbb{C}^{0,1}$ and, for all (bounded) $g : x \mapsto g(x_T, \int_0^T x_s dA_s)$, the map

$$(s,\mathbf{x}) \in [0,T] \times C([0,T]) \mapsto \mathbf{v}(s,\mathbf{x}) := \int_{\mathbb{R}^2} \mathbf{f}(s,\mathbf{x};T,y) g(y) dy$$

is $\mathbb{C}^{0,1}([0, T))$. If moreover

$$X_t = X_0 + \int_0^t \mu_s(X_s, I_s) ds + \int_0^t \sigma_t(X_s, I_s) dW_s, \quad I_t = \int_0^t X_s dA_s,$$

admits a unique (strong Markov) weak solution, then f is the transition density of (X, I) and (under additional technical conditions)

$$\mathbf{v}(t,X) = \mathbf{v}(0,X) + \int_0^t \nabla_{\mathbf{x}} \mathbf{v}(s,X) \sigma_s(X) dW_s.$$
$\mathbb{C}^{1,2}\text{-}\mathsf{regularity}$ in the sense of Dupire

We finally also assume that $\exists \alpha_{\Phi} > 0$ s.t.

$$\begin{split} 0 < \alpha_{\Phi} < \kappa_{0} \wedge \hat{\alpha}_{\Phi} \wedge \min_{i=1,2} \frac{1+\beta_{i}'}{2}, & \text{with } \hat{\alpha}_{\Phi} := \frac{1}{2} - \beta_{0} - \frac{\widehat{\Delta\beta}}{2} - \frac{(\beta_{0} + 1 - 2\alpha)^{+}}{2}, \\ \text{where } \widehat{\Delta\beta} := \max\left\{\beta_{0} - \beta_{1}, \beta_{3} - \beta_{2}\right\}, \text{ and} \\ & \min\left(\frac{2\beta_{4} + 1 + \beta_{1}'}{1 + \beta_{2}'}, 1\right) \min\{\alpha_{\Phi}, \alpha\} - \beta_{0} > 0. \end{split}$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

$\mathbb{C}^{1,2}$ -regularity in the sense of Dupire

We finally also assume that $\exists \alpha_{\Phi} > 0$ s.t.

$$\begin{split} 0 < \alpha_{\Phi} < \kappa_{0} \wedge \hat{\alpha}_{\Phi} \wedge \min_{i=1,2} \frac{1+\beta'_{i}}{2}, & \text{with } \hat{\alpha}_{\Phi} := \frac{1}{2} - \beta_{0} - \frac{\widehat{\Delta\beta}}{2} - \frac{(\beta_{0} + 1 - 2\alpha)^{+}}{2}, \\ \text{where } \widehat{\Delta\beta} := \max\left\{\beta_{0} - \beta_{1}, \beta_{3} - \beta_{2}\right\}, \text{ and} \\ & \min\left(\frac{2\beta_{4} + 1 + \beta'_{1}}{1 + \beta'_{2}}, 1\right) \min\{\alpha_{\Phi}, \alpha\} - \beta_{0} > 0. \end{split}$$

□ Theorem : The SDE

$$X_t = X_0 + \int_0^t \mu_s(X_s, I_s) ds + \int_0^t \sigma_t(X_s, I_s) dW_s, \quad I_t = \int_0^t X_s dA_s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

admits a unique weak solution that is a strong Markov process.

$\mathbb{C}^{1,2}$ -regularity in the sense of Dupire

We finally also assume that $\exists \alpha_{\Phi} > 0$ s.t.

$$\begin{split} 0 < \alpha_{\Phi} < \kappa_{0} \wedge \hat{\alpha}_{\Phi} \wedge \min_{i=1,2} \frac{1+\beta_{i}'}{2}, & \text{with } \hat{\alpha}_{\Phi} := \frac{1}{2} - \beta_{0} - \frac{\widehat{\Delta\beta}}{2} - \frac{(\beta_{0} + 1 - 2\alpha)^{+}}{2}, \\ \text{where } \widehat{\Delta\beta} := \max\left\{\beta_{0} - \beta_{1}, \beta_{3} - \beta_{2}\right\}, \text{ and} \\ & \min\left(\frac{2\beta_{4} + 1 + \beta_{1}'}{1 + \beta_{2}'}, 1\right) \min\{\alpha_{\Phi}, \alpha\} - \beta_{0} > 0. \end{split}$$

□ Theorem : The SDE

$$X_t = X_0 + \int_0^t \mu_s(X_s, I_s) ds + \int_0^t \sigma_t(X_s, I_s) dW_s, \quad I_t = \int_0^t X_s dA_s$$

admits a unique weak solution that is a strong Markov process. f is its transition density and $(s, x) \in [0, t) \times C([0, t]) \mapsto f(s, x; t, y)$ is $\mathbb{C}^{1,2}$.

$\mathbb{C}^{1,2}$ -regularity in the sense of Dupire

We finally also assume that $\exists \alpha_{\Phi} > 0$ s.t.

$$\begin{split} 0 < \alpha_{\Phi} < \kappa_{0} \wedge \hat{\alpha}_{\Phi} \wedge \min_{i=1,2} \frac{1+\beta'_{i}}{2}, & \text{with } \hat{\alpha}_{\Phi} := \frac{1}{2} - \beta_{0} - \frac{\widehat{\Delta\beta}}{2} - \frac{(\beta_{0} + 1 - 2\alpha)^{+}}{2}, \\ \text{where } \widehat{\Delta\beta} := \max\left\{\beta_{0} - \beta_{1}, \beta_{3} - \beta_{2}\right\}, \text{ and} \\ & \min\left(\frac{2\beta_{4} + 1 + \beta'_{1}}{1 + \beta'_{2}}, 1\right) \min\{\alpha_{\Phi}, \alpha\} - \beta_{0} > 0. \end{split}$$

□ Theorem : The SDE

$$X_t = X_0 + \int_0^t \mu_s(X_s, I_s) ds + \int_0^t \sigma_t(X_s, I_s) dW_s, \quad I_t = \int_0^t X_s dA_s$$

admits a unique weak solution that is a strong Markov process. f is its transition density and $(s, x) \in [0, t) \times C([0, t]) \mapsto f(s, x; t, y)$ is $\mathbb{C}^{1,2}([0, T))$ and solves the PPDE

$$-\partial_t \mathbf{v}(t,\mathbf{x}) - \mu_t(\mathbf{x}) \nabla_{\mathbf{x}} \mathbf{v}(t,\mathbf{x}) - \frac{1}{2} \sigma_t(\mathbf{x})^2 \nabla_{\mathbf{x}}^2 \mathbf{v}(t,\mathbf{x}) = 0, \ \mathbf{v}(T,\cdot) = g.$$

Toy examples

(i) $A_t = \int_0^t \rho(s) ds$, with $\varepsilon \le \rho \le 1/\varepsilon$ a.e. for some $\varepsilon > 0$. \Rightarrow all assumptions are satisfied for $\alpha > 0$.

Toy examples

(i) $A_t = \int_0^t \rho(s) ds$, with $\varepsilon \le \rho \le 1/\varepsilon$ a.e. for some $\varepsilon > 0$. \Rightarrow all assumptions are satisfied for $\alpha > 0$.

(ii) $A_t = t^{\gamma}$ for some $\gamma \in (0, 1)$. \Rightarrow all assumptions are satisfied for $\alpha > 0$.

Toy examples

(i) $A_t = \int_0^t \rho(s) ds$, with $\varepsilon \le \rho \le 1/\varepsilon$ a.e. for some $\varepsilon > 0$. \Rightarrow all assumptions are satisfied for $\alpha > 0$.

(ii) $A_t = t^{\gamma}$ for some $\gamma \in (0, 1)$. \Rightarrow all assumptions are satisfied for $\alpha > 0$.

(iii) $\exists 1 \geq \gamma_1 \geq \gamma_2 > 0$ and $C_1, C_2 > 0$ s.t.

$$C_1|t-s|^{\gamma_1} \leq A_t - A_s \leq C_2|t-s|^{\gamma_2}.$$

 \Rightarrow all assumptions are satisfied for $\gamma_1 - \gamma_2 > 0$ small enough (with respect to α). Typically, $\gamma_1 = 1$ in this case.

Some references

References on Dupire's and C^1 -Itô's calculus

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Elena Bandini and Francesco Russo. Weak dirichlet processes with jumps. Stochastic Processes and their Applications, 127(12) :4139-4189, 2017.
- [2] Bruno Bouchard, Grégoire Loeper and Xiaolu Tan. A C^{0,1}-functional Itô's formula and its applications in mathematical finance. Stochastic Processes and their Applications, 148, 299–323, 2022.
- [3] Bruno Bouchard and Xiaolu Tan. Understanding the dual formulation for the hedging of path-dependent options with price impact. Annals of Applied Probability, 32(3), 1705–1733, 2022.
- [4] Bruno Bouchard and Xiaolu Tan. A quasi-sure optional decomposition and super-hedging result on the Skorokhod space. Finance and Stochastics, 25, 505–528, 2021.
- Bruno Bouchard and Maximilien Vallet.
 Itô-Dupire's formula for C^{0,1}-functionals of càdlàg weak Dirichlet processes. HAL-03368703, 2021.
- [6] Rama Cont and David-Antoine Fournié. Functional itô calculus and stochastic integral representation of martingales. The Annals of Probability, 41(1):109-133, 2013.
- [7] Bruno Dupire.
 Functional Itô calculus.
 Bloomberg Portfolio Research Paper, 04, 2009 -Quantitative finance, 19(5) :721-729, 2019.
- [8] Fausto Gozzi and Francesco Russo. Weak dirichlet processes with a stochastic control perspective. Stochastic Processes and their Applications, 116(11):1563-1583, 2006.
- Yuri F. Saporito. The functional Meyer–Tanaka formula. Stochastics and Dynamics, 18(04) :1850030, 2018.

References on PPDEs

- [10] Bruno Bouchard, Grégoire Loeper and Xiaolu Tan. Approximate viscosity solutions of path-dependent PDEs and Dupire's vertical differentiability. Annals of Applied Probability, to appear.
- [11] Bruno Bouchard and Xiaolu Tan. On the regularity of solutions of some linear parabolic path-dependent PDEs. arXiv preprint arXiv:2310.04308,
- [12] Andrea Cosso and Francesco Russo. Crandall-Lions Viscosity Solutions for Path-Dependent PDEs : The Case of Heat Equation. Bernoulli, 28(1), 481–503, 2022.
- [13] Ibrahim Ekren, Nizar Touzi, and Jianfeng Zhang. Viscosity solutions of fully nonlinear parabolic path dependent PDEs : Part II. Annals of Probability 44(4) : 2507–2553, 2016.
- [14] Ibrahim Ekren and Jianfeng Zhang. Pseudo-markovian viscosity solutions of fully nonlinear degenerate ppdes. Probability, Uncertainty and Quantitative Risk, 1(1) :1-34, 2016.
- [15] Shige Peng and Falei Wang. BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. Science China Mathematics, 59(1), 19-36, 2016.
- [16] Zhenjie Ren, Nizar Touzi, and Jianfeng Zhang. Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent PDEs. SIAM Journal on Mathematical Analysis 49(5): 4093-4116, 2017.
- [17] Jianjun Zhou.

Viscosity Solutions to Second Order Path-Dependent Hamilton-Jacobi-Bellman Equations and Applications. arXiv preprint arXiv :2005.05309, 2020.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

References on the parametrix approach

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

[18] M. Di Francesco, and A. Pascucci.

On a class of degenerate parabolic equations of Kolmogorov type. Applied Mathematics Research eXpress. (3), 77-116, 2005.

- [19] A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, 1964.
- [20] V. Konakov, S. Menozzi, and S. Molchanov. Explicit parametrix and local limit theorems for some degenerate diffusion processes. Annales de l'IHP Probabilités et statistiques, 46(4), 2010.
- [21] E.E. Levi. Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. Circ. Mat. Palermo, 24, 275–317, 1907.

Thank you!

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣