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Abstract

We extend to càdlàg weak Dirichlet processes the C0,1-functional Itô-Dupire’s formula of Bouchard,

Loeper and Tan (2021). In particular, we provide sufficient conditions under which a C0,1-functional

transformation of a special weak Dirichlet process remains a special weak Dirichlet process. As opposed

to Bandini and Russo (2018) who considered the Markovian setting, our approach is not based on the

approximation of the functional by smooth ones, which turns out not to be available in the path-

dependent case. We simply use a small-jumps cutting argument.

1 Introduction

Let X = X0 + M + A be a càdlàg semimartingale where M = M c + Md is a local martingale and A is
adapted and of bounded variations. Let µX denotes its jump measure and νX its compensator. Then,
given a C1,2 function F : [0, T ]×Rd → R, the Itô’s formula ensures that (F (t,Xt))t∈[0,T ] is a semimartingale
with decomposition

F (t,Xt) = F (0, X0)+

∫ t

0
∇xF (s,Xs−)dMs

+

∫
]0,t]×Rd

(F (s,Xs− + x)− F (s,Xs−)− x · ∇xF (s,Xs−))(µX − νX)(ds, dx)

+ ΓFt

where

ΓFt =

∫ t

0
∂tF (s,Xs)ds+

∫ t

0
∇xF (s,Xs−)dAs +

1

2

∑
1≤i,j≤d

∫ t

0
∇2
xixjF (s,Xs−)d

[
Xi, Xj

]c
s
.

If we assume furthermore that F (·, X·) is a local martingale, then ΓF ≡ 0, and this formula only uses
the first derivative in space of F and should be valid even if F is only C0,1. In the Markovian setting,
we know from [1, 9] that it is indeed true for càdlàg weak Dirichlet processes, even when F (·, X·) is not
a local martingale, in which case ΓF turns out to be an orthogonal process, which is even predictable if
X is special. In [4], the authors provide an extension of this result to the path-dependent case under the
condition that X has continuous path. Naturally, it uses the notion of Dupire’s derivative, see [12, 8].

∗CEREMADE, Université Paris-Dauphine, PSL, CNRS. bouchard@ceremade.dauphine.fr.
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Such a decomposition appears to be a powerful tool in particular for using verification arguments
in optimal control problems, for which obtaining a C1,2-type regularity for the value function may be
difficult, if even true. The situation is worse when it comes to considering path-dependent problems, for
which classical derivatives have to be replaced by the notion of Dupire’s derivatives, whose existence and
regularity are difficult to obtain. Versions of the above formula were actually already applied successfully
in [6, 5, 4] in the context of risk hedging, under model uncertainty or in markets with price impacts. See [3]
for an application to BSDEs, or for a class of so-called π-approximate viscosity solutions of fully non-linear
parabolic path-dependent PDEs, for which C0,1-regularity in the sense of Dupire can be obtained.

When, as in [4], X has continuous path, then it is immediate to conclude that ΓF is predictable. Things
are a priori more complex if X has jumps. In this case, the above decomposition into a weak Dirichlet
process is not unique, and the orthogonal process ΓF can contain a purely discontinuous martingale part,
which makes the above decomposition useless for verification arguments. In the Markovian setting, [1]
uses an approximation argument on F to show that it can actually be chosen to be predictable if X
is special. Namely, they construct a sequence of predictable processes (ΓFn)n≥1 obtained by applying
Itô’s formula to smooth approximations (Fn)n≥1 of F , and then show that (ΓFn)n≥1 converges to ΓF .
This argument could not be extended so far to the case where F is path-dependent. The main reason is
that the vertical and horizontal Dupire’s derivatives do not commute, which renders the construction of
smooth (in the sense of Dupire) approximations a completely open problem, see e.g. [19].

In this paper, we follow a different and actually simpler route. First, we observe that the decomposition
can easily be deduced from [4] when X does not have small jumps. Then, we just approximate X by
removing its small jumps, and passing to the limit.

The rest of the paper is organized as follows. We first recall usefull results of the functionnal Itô calculus
and Itô calculus via regularization. Then, we state and demonstrate our version of the functionnal Itô’s
formula for càdlàg special weak Dirichlet processes. We conclude with a typical exemple of application.
Some (essentially known) technical results are collected in the Appendix for completeness.

2 Notations and definitions

All over this paper, we fix a time horizon T > 0 and let (Ω,F , (Ft)t∈[0,T ],P) be a stochastic basis, i.e. a
filtered probability space such that the filtration (Ft)t∈[0,T ] is right continuous.

2.1 Skorokhod space and path-dependent functionnals

Let D([0, T ]) be the set of càdlàg paths on [0, T ] taking values in Rd and Θ := [0, T ] × D([0, T ]). For
(t, x) ∈ Θ, we define the (optional-) stopped path xt∧ ∈ D([0, T ]) by xt∧ := x1[0,t[ + xt1[t,T ] and its

predictable version x−t∧ ∈ D([0, T ]) by x−t∧ := x1[0,t[ + xt−1[t,T ]. For (t, x) ∈ Θ and y ∈ Rd, we also define
the trajectory x⊕t y by x1[0,t[ + (xt + y)1[t,T ] and the trajectory x �t y by x1[0,t[ + y1[t,T ].

We define on Θ the pseudo-distance dΘ((t, x), (t′, x′)) = |t′ − t| + ||x′t′∧ − xt∧||, where ||·|| denotes the
uniform norm on D([0, T ]). Considering the quotient space (Θ,∼) defined by (t, x) ∼ (t′, x′) whenever
t = t′ and xt∧ = x′t∧, (Θ, dΘ) is a complete metric space.

We say that F : Θ → R is non-anticipative if F (t, x) = F (t, xt∧) ∀(t, x) ∈ Θ. A non anticipative
function F : Θ → R is said continuous if it is continuous for (Θ, dΘ). The set of continuous non-
anticipative maps on Θ will be denoted C(Θ). We say that F is locally uniformly continuous if, for all
K > 0, there exists a modulus of continuity δK(F, ·) (i.e. a non-negative and non-decreasing function
defined on R+ that is continuous at 0 and vanishes at 0) such that

|F (t, x)− F (t, x′)| ≤ δK(F, dΘ((t, x), (t′, x′))) (1)

for all (t, x), (t′, x′) ∈ Θ with ‖x‖ ∨ ‖x′‖ ≤ K.
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A functionnal F : Θ→ R is said to be locally bounded if

sup
t∈[0,T ], ||x||≤K

|F (t, x)| < +∞, ∀K ∈ R+ .

We denote by Cu,bloc(Θ) the set of non anticipative, locally uniformly continuous and locally bounded
functionnals.

We can now define the notion of differentiability for path-dependent functionals following the one
introduced by Dupire in [12]: a non-anticipative function F : Θ→ R is said to be vertically differentiable
at (t, x) ∈ Θ if y ∈ Rd 7→ F (t, x ⊕t y) is differentiable at 0. In this case, we denote by ∇xF (t, x)
this differential. We denote by C0,1(Θ) the collection of non-anticipative functions F such that ∇xF is
well-defined and continuous on Θ.

In this paper, for all path-dependent functionnal F defined on Θ and (t, x) ∈ Θ, we will use the
notations

Ft(x) := F (t, x) and Ft(x
−) := Ft(x

−
t∧).

2.1.1 Itô’s calculus via regularization and weak Dirichlet processes

Let us recall here some definitions and facts on the Itô calculus via regularization developped by Russo
and Vallois [16, 17, 18]. See also Bandini and Russo [1] for the case of càdlàg processes. For the rest of
the paper u.c.p. means uniform convergence in probability.

Definition 2.1. (i) Let X be a real valued càdlàg process, and H be a process with paths in L1([0, T ])

a.s. The forward integral of H w.r.t. X is defined by∫ t

0
Hs d

−Xs := lim
ε↘0

1

ε

∫ t

0
Hs

(
X(s+ε)∧t −Xs

)
ds, t ≥ 0,

whenever the limit exists in the sense of u.c.p.

We naturally extend the definition of the forward integral for two Rd-valued processes X and H such that

Xi is càdlàg and H i has paths in L1([0, T ]) for all i = 1 . . . d by∫ t

0
Hs d

−Xs =

d∑
i=1

∫ t

0
H i
s d
−Xi

s, t ≥ 0,

whenever all those integrals exist.

(ii) Let X and Y be two real valued càdlàg processes. The quadratic covariation [X,Y ] is defined by

[X,Y ]t := lim
ε↘0

1

ε

∫ t

0
(X(s+ε)∧t −Xs)(Y(s+ε)∧t − Ys)ds, t ≥ 0,

whenever the limit exists in the sense of u.c.p.

In the following, we will use the notation [X,Y ]ucpε,t := 1
ε

∫ t
0 (X(s+ε)∧t −Xs)(Y(s+ε)∧t − Ys)ds.

We naturally define the quadratic covariation matrix ([X,Y ]i,j)1≤i,j≤d for two Rd-valued càdlàg processes

X and Y by, for all 1 ≤ i, j ≤ d,

[X,Y ]i,jt = [Xi, Y j ]t, t ≥ 0,

whenever [Xi, Y j ] is well defined for all 1 ≤ i, j ≤ d.

(iii) We say that a Rd-valued càdlàg process X has finite quadratic variation, if its quadratic variation,

defined by [X] := [X,X], exists and is finite a.s.
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Remark 2.2. When X is a (càdlàg) semimartingale and H is a càdlàg adapted process,
∫ t

0 Hs d
−Xs

coincides with the usual Itô’s integral
∫ t

0 Hs−dXs. When X and Y are two semimartingales, [X,Y ]

coincides with the usual bracket.

Definition 2.3. (i) We say that an adapted process A is orthogonal if [A,N ] = 0 for any continuous local

martingale N .

(ii) An adapted process X is called a (resp. special) weak Dirichlet process if it has a decomposition of the

form X = X0 +M +A, where M is a local martingale and A is an (resp. predictable) orthogonal process,

such that M0 = A0 = 0.

Remark 2.4. (i) An adapted process with finite variation is orthogonal. Consequently, a semimartingale

is in particular a weak Dirichlet process.

(ii) Any purely discontinuous local martingale is orthogonal by Remark 2.2.

(iv) An orthogonal process has not necessarily finite variations. For example, any deterministic process

(with possibly infinite variation) is orthogonal.

(iv) The decomposition X = X0 +M +A for a càdlàg weak Dirichlet process X is not unique in general.

Indeed, we can always displace a purely discontinuous martingale part in the orthogonal part. However,

this decomposition is unique if X is special.

3 The Itô-Dupire’s formula for C0,1-functionals

In [4], the authors require an assumption relating the regularity of the path of X and of the functional F ,
Assumption (A) below. When X has continuous path, it turns out be equivalent to the decomposition (5)
below. In our setting, we shall apply it to an approximation of X obtained by removing its small jumps,
see Remark 3.6 below.

Assumption (A). Let F : Θ → R be a non-anticipative functional and Y be a càdlàg process. We say

that the couple (F, Y ) satisfies Assumption (A) if

1

ε

∫ ·
0

(Fs+ε(Y )− Fs+ε(Ys∧ �s+ε Ys+ε))(Ns+ε −Ns)ds −→
ε→0

0 u.c.p. (2)

for all continuous martingale N .

Remark 3.1. First note that the left-hand side of (2) is always 0 when F is Markov, i.e. F (t, x) = F (t, x′)

whenever xt = x′t. Second, the above also holds if we assume that, for all x ∈ D([0, T ]), s ∈ [0, T ] and

ε ∈ [0, T − s], ∣∣Fs+ε(x)− Fs+ε(xs∧ �s+ε xs+ε)
∣∣ ≤ ∫

(s,s+ε)
φ
(
x, |xu− − xs|

)
dbu(x),

where φ : D([0, T ]) × R+ −→ R satisfies sup|y|≤K φ(x, y) < ∞, limy↘0 φ(x, y) = φ(x, 0) = 0 for all

x ∈ D([0, T ]) and K > 0, and b maps D([0, T ]) into the space BV+ of non-decreasing bounded variation

processes. This follows from the same arguments as in [4, Proposition 2.11]. In particular, (2) is satisfied

if F is Fréchet differentiable in the sense of Clark [7], see [4, Example 2.12].

We are now ready to state our decomposition result. From now on, we fix a càdlàg special weak
Dirichlet process

X = X0 +M +A. (3)
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Here, M = M c+Md where M c and Md denote its continuous and purely discontinuous martingale parts,
and A is a predictable orthogonal process (recall that the decomposition is unique in this case, see Remark
2.4). We denote by µX the jump measure of X, and by νX its compensator. If

∑
0≤s≤T |∆As| < +∞ a.s.,

then one can define the continuous part of X by

Xc = X −Md −
∑
s≤·

∆As.

Theorem 3.2. Let X be as in (3) and assume that

[X]T +
∑

0≤s≤T
|∆As| < +∞ a.s. (4)

Let F ∈ C0,1(Θ) be such that F and ∇xF are both in Cu,bloc(Θ) and such that t ∈ [0, T ] 7→ ∇xFt(X
−) admits

right-limits a.s. Assume further that (F,Z⊕τ (Xc−Xc
τ )) satisfies Assumption (A) for every càdlàg process

Z and stopping time τ such that τ ≤ T a.s.

Then, (Ft(X))t∈[0,T ] is a special weak Dirichlet process with decomposition

Ft(X) = F0(X)+

∫ t

0
∇xFs(X

−)dMs

+

∫
]0,t]×Rd

(Fs(X
− ⊕s x)− Fs(X−)− x∇xFs(X

−))(µX − νX)(ds, dx)

+ ΓFt , ∀t ∈ [0, T ] , (5)

where ΓF is an orthogonal and predictable process.

Before to provide the proof of this result, let us make several comments.

Remark 3.3. All the terms in (5) are well defined. In particular,∫
]0,·]×Rd

(Fs(X
− ⊕s x)− Fs(X−))1{|x|≤1}(µ

X − νX)(ds, dx)∫
]0,·]×Rd

x∇xFs(X
−)1{|x|≤1}(µ

X − νX)(ds, dx)

are purely discontinuous local martingales. See Lemma A.1 below.

Remark 3.4. If X is a semimartingale, then (4) holds.

Remark 3.5. Let (εn)n∈N ⊂ (0, 1)N be a decreasing sequence of positive real numbers converging to 0.

Using (4), we can define Zn := Y n +
∑

s≤·∆As1|∆As|<εn where Y n := x1{|x|<εn} ∗ (µX − νX) is a purely

discontinuous local martingale (see [15, Theorem II.2.34]). Then, Zn is an orthogonal special semi-

martingale with jumps not larger than εn, namely |∆Znt | < εn ∀t ∈ [0, T ] a.s., such that Xn := X − Zn

only has jumps larger than εn. Moreover, ||Zn||+ [Zn]T →0 a.s as n→∞.

Remark 3.6. For simplicity of exposition of our main result, we assumed that (F,Z⊕τ (Xc−Xc
τ )) satisfies

Assumption (A) for every càdlàg process Z and stopping time τ such that τ ≤ T a.s. In the proof, we

shall actually only use the fact that (F,Xn ⊕τ (Xc −Xc
τ )) satisfies Assumption (A) for all stopping time

τ corresponding to a jump time of Xn, for all n ≥ 1.
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Proof of Theorem 3.2. 1. The fact that the decomposition (5) holds with ΓF orthogonal, but not neces-

sarily predictable, follows from the same arguments as in [1, 4], see Proposition A.2 in the Appendix. We

therefore just have to show that ΓF is predictable.

2. Let (εn, X
n, Y n, Zn)n∈N be as in Remark 3.5. Fix n ∈ N and let (τnk )k∈N be the sequence of stopping

times corresponding to the jumps of X larger or equal to εn, namely τn0 = 0 and τnk+1 = inf{s > τnk
s.t. |∆Xs| ≥ εn}. These are the jump times of Xn. Then, Kn := min{k ∈ N s.t. τnk ∧ T = T} is finite

a.s. and, for t ∈ [0, T ],

Ft(X
n)− F0(Xn) =

Kn−1∑
k=0

Fτnk+1∧t(X
n)− Fτnk ∧t(X

n)

=
Kn−1∑
k=0

[
Fτnk+1∧t(X

n)− Fτnk+1∧t(X
n−)−∆Xn

τnk+1∧t
∇xFτnk+1∧t(X

n−)

+ Fτnk+1∧t(X
n−)− Fτnk ∧t(X

n) + ∆Xn
τnk+1∧t

∇xFτnk+1∧t(X
n−)
]

=R1,n
t +R2,n

t +R3,n
t

where

R1,n
t =

∫
]0,t]×Rd

(Fs(X
n− ⊕s x)− Fs(Xn−)− x∇xFs(X

n−))1{|x|>1}µ
X(ds, dx)

+

∫
]0,t]×Rd

(Fs(X
n− ⊕s x)− Fs(Xn−))1{εn≤|x|≤1}(µ

X − νX)(ds, dx)

−
∫

]0,t]×Rd
x∇xFs(X

n−)1{εn≤|x|≤1}(µ
X − νX)(ds, dx)

R2,n
t =

Kn−1∑
k=0

[
Fτnk+1∧t(X

n−)− Fτnk ∧t(X
n) + ∆Mn

τnk+1∧t
∇xFτnk+1∧t(X

n−)
]

R3,n
t =

∫
]0,t]×Rd

(Fs(X
n− ⊕s x)− Fs(Xn−)− x∇xFs(X

n−))1{εn≤|x|≤1}ν
X(ds, dx)

+
Kn−1∑
k=0

∆Anτnk+1∧t
∇xFτnk+1

(Xn−),

in which Mn and An denote respectively the martingale and the bounded variation part of Xn. By

hypothesis, for all k = 0, . . . ,Kn − 1, the couple (F,Xn ⊕τnk (Xc − Xc
τnk

)) satisfies Assumption (A).

Moreover, by definition of Xn and (τnk )k∈N, Xn �τnk+1
Xn
τnk+1−

is continuous on
[
τnk , τ

n
k+1

]
and coincides

with Xn⊕τnk (Xc−Xc
τnk

) on
[
0, τnk+1

]
. By Proposition A.2, we can then find an adapted orthogonal process

ΓF,n,k such that

Ft(X
n �τnk+1

Xn
τnk+1−

)− Fτnk (Xn) =

∫ t

τnk

∇xFs(X
n−)dM c

s + ΓF,n,kt − ΓF,n,kτnk
∀t ∈

[
τnk , τ

n
k+1

]
(6)

in which we used that Xn and X have the same continuous martingale part. By continuity of F and

the path of Xn�τnk+1
Xn
τnk+1−

on
[
τnk , τ

n
k+1

]
, we see from the above that ΓF,n,k is continuous on

[
τnk , τ

n
k+1

]
.

Then,

R2,n
t =

Kn−1∑
k=0

∫ τnk+1∧t

τnk ∧t
∇xFs(X

n−)dM c
s + ΓF,n,kτnk+1∧t

− ΓF,n,kτnk ∧t
+ ∆Mn

τnk+1∧t
∇xFτnk+1∧t(X

n−)

=

∫ t

0
∇xFs(X

n−)dMn
s +

Kn−1∑
k=0

ΓF,n,kτnk+1∧t
− ΓF,n,kτnk ∧t

.
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Let us define

ΓF,nt = R3,n
t +

Kn−1∑
k=0

ΓF,n,kτnk+1∧t
− ΓF,n,kτnk ∧t

, t ≤ T.

It follows from the above that ΓF,n is predictable as a sum of predictable processes.

3. Let us now show that∫ ·
0
∇xFs(X

n−)dMn
s →

∫ ·
0
∇xFs(X

−)dMs u.c.p. (7)

on [0, T ]. We have ∫ t

0
∇xFs(X

n−)dMn
s =

∫ t

0
∇xFs(X

n−)dMs −
∫ t

0
∇xFs(X

n−)dY n
s

Since Y n is a purely discontinuous martingale such that ||Y n|| → 0 a.s. and ∇xF is locally bounded, we

can assume, up to using a localizing sequence, that (∇xF (Xn−), Y n, [Y n])n is uniformly bounded by a

constant C. Then, since ||Xn −X|| → 0 a.s. and ∇xF is continuous, we deduce from [15, Theorem I.4.31]

that ∫ ·
0
∇xFs(X

n−)dMs →
∫ ·

0
∇xFs(X

−)dMs u.c.p.

on [0, T ]. Moreover,

E

[
sup
t∈[0,T ]

|
∫ t

0
∇xFs(X

n−)dY n
s |2
]
≤ 4E

[∫ T

0
(∇xFs(X

n−))2d [Y n]s

]
≤ 4C2E [[Y n]T ]

in which the last term tends to 0 as n goes to +∞, by dominated convergence. This proves (7).

Similarly, by applying Lemma 3.7 below, we deduce that R1,n converges u.c.p. on [0, T ] to

t ∈ [0, T ] 7→
∫

]0,t]×Rd
(Fs(X

− ⊕s x)− Fs(X−)− x∇xFs(X
−))1{|x|>1}µ

X(ds, dx)

+

∫
]0,t]×Rd

(Fs(X
− ⊕s x)− Fs(X−))1{|x|≤1}(µ

X − νX)(ds, dx)

−
∫

]0,t]×Rd
x∇xFs(X

−)1{|x|≤1}(µ
X − νX)(ds, dx).

Finally, since ||Xn−X|| → 0 a.s., we have ||F·(Xn)−F·(X)|| → 0 a.s. by local uniform continuity of F .

4. Combining steps 1. to 3. above, we obtain that the sequence of predictable processes (ΓF,n)n∈N converges

to ΓF u.c.p., which implies that ΓF is predictable, and concludes the proof.

We conclude this section with the proof of the technical lemma that was used in the proof of Theorem
3.2. We borrow the standard notations A +

loc and G 2
loc(µ

X) from [15, Section I.3.a., Section II.1.d.].

Lemma 3.7. Let (εn, X
n, Y n, Zn)n∈N be as in the proof of Theorem 3.2.

Define Hn
s (x) = (Fs(X

n− ⊕s x) − Fs(Xn−) − x∇xFs(X
n−))1{εn≤|x|≤1} for (s, x) ∈ [0, T ] × Rd. Then,

Hn
s (x) ∗ (µX − νX) is a sequence of purely discontinuous local martingales that converges to

t 7→
∫

]0,t]×Rd(Fs(X
− ⊕s x)− Fs(X−)− x∇xFs(X

−))1{|x|≤1}(µ
X − νX)(ds, dx) u.c.p.
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Proof. Let us define

V 1,n
s (x) = (Fs(X

− ⊕s x)− Fs(Xn− ⊕s x) + Fs(X
n−)− Fs(X−) + x∇xFs(X

n−)− x∇xFs(X
−))1{εn≤|x|≤1}

V 2,n
s (x) = (Fs(X

− ⊕s x)− Fs(X−)− x∇xFs(X
−))1{|x|<εn}

for (s, x) ∈ [0, T ]× Rd. By linearity, it suffices to show that Ii,n := V i,n ∗ (µX − νX) converge to 0 u.c.p.,

for i = 1, 2.

We recall that any càglàd process is locally bounded. Furthermore, since X is càdlàg and has finite

quadratic variation, we have
∑

s∈[0,T ]|∆Xs|2 < +∞ a.s. by [1, Lemma 2.10]. We also recall that (Zn)n∈N

is uniformly locally bounded, see Remark 3.5. Consider the càdlàg process E := (Xt−,
∑

s<t|∆Xs|2)t≥0

and let (Sm)m∈N be a localization sequence such that for all m ∈ N the processes ((Zn, E)·∧Sm1Sm>0)n∈N

are uniformly bounded in n. It suffices to show that (V i,n ∗ (µX − νX))·∧S converge to 0 u.c.p. for a fixed

S = Sm, i = 1, 2. Let C be such that ‖E·∧S‖ ∨ ‖Zn·∧S‖ ≤ C for all n a.s. Then,

E
[
(|V 2,n|2 ∗ νX)T∧S

]
= E

[∫
]0,T∧S]×Rd

|(Fs(X− ⊕s x)− Fs(X−)− x∇xFs(X
−))1{|x|<εn}|

2µX(ds, dx)

]

= E

 ∑
s≤T∧S

0<|∆Xs|<εn

|(Fs(X)− Fs(X−)−∆Xs∇xFs(X
−))|2



= E

 ∑
s≤T∧S

0<|∆Xs|<εn

|∆Xs|2 |
∫ 1

0
{∇xFs(X

− ⊕s λ∆Xs)−∇xF (X−)}dλ|2



≤ δ2
C+1(∇xF, εn)E

 ∑
s∈]0,T∧S[

0<|∆Xs|<εn

|∆Xs|21S>0 + |∆XT∧S |21S>01|∆XT∧S |≤1


≤ δ2

C+1(∇xF, εn)(C + 1) (8)

where δ·(∇xF, ·) denotes the modulus of continuity of ∇xF defined in (1). In the same way,

E
[
(|V 1,n|2 ∗ νX)T∧S

]
= E

 ∑
s≤T∧S

0<|∆Xs|≤1

|∆Xs|2 |
∫ 1

0
{∇xFs(X

− ⊕s λ∆Xs)−∇xF (Xn− ⊕s λ∆Xs)}dλ+∇xF (Xn−)−∇xF (X−)|2


≤ 4(C + 1)E[δ2

C+1(∇xF, ‖Zn‖[0,S∧T ])] (9)

where ‖x‖[0,t] = sups∈[0,t]|xs| for all (t, x) ∈ Θ.

Thus, for i = 1, 2, V i,n belongs to G 2
loc(µ

X) by [2, Lemma 2.4], and Ii,n·∧S is a purely discontinuous square

integrable martingale by [14, Theorem 11.21]. Also, by [14, 3) of Theorem 11.21],we have[
Ii,n
]
t∧S =

∫
]0,t∧S]×Rd

|V i,n
s (x)|2νX(ds, dx)−

∑
0<s≤t∧S

|V̂ i,n
s |2 ≤

∫
]0,t∧S]×Rd

|V i,n
s (x)|2νX(ds, dx) (10)

where V̂ i,n
s =

∫
Rd V

i,n
s (x)ν({s} , dx), for i = 1, 2.

Hence, we can apply Doob’s maximal inequality to the square integrable martingale Ii,n·∧S , i = 1, 2, and
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then use (8), (9) and (10) to obtain that, for any α > 0,

P( sup
t∈[0,T ]

|I2,n
t∧S | ≥ α) ≤ 1

α2
E
[
|I2,n
T∧S |

2
]
≤ 1

α2
E

[∫
]0,T∧S]×Rd

|V 2,n
s (x)|2νX(ds, dx)

]
≤ 1

α2
δ2
C+1(∇xF, εn)(C + 1),

P( sup
t∈[0,T ]

|I1,n
t∧S | ≥ α) ≤ 1

α2
E

[∫
]0,T∧S]×Rd

|V 1,n
s (x)|2νX(ds, dx)

]
≤ 4

α2
E[δ2

C+1(∇xF, ‖Zn‖[0,S∧T ])](C + 1).

The right-hand side terms tend to 0 as n→∞ (by Remark 3.5 and dominated convergence for the second

one), which concludes the proof.

4 A toy example of application

To illustrate our main result, we now provide a simple toy example of application. We keep it as simple as
possible. Semilinear and fully-non linear problems have been studied in [4, 3] in the context of continuous
path processes and can also be extended to our setting.

We fix d = 1. Let W be a standard Brownian motion and N be a compound Poisson process with
compensator νtdt, for some predictable (t, ω) ∈ [0, T ]×Ω 7→ νt(ω, ·) taking values in the set of probability
measures on R. Given (t, x) ∈ Θ, we define Xt,x by

Xt,x
s = xt∧s +At∨s −At +

∫ t∨s

t
σsdWs +

∫
]s,t∨s]×Rd

γs(y)N(ds, dy), s ≤ T, (11)

where σ is predictable and bounded, γ is P⊗B(R)-mesurable1 and bounded, and A is a càdlàg, bounded,
and with bounded variations predictable process.

We then consider a bounded C1+α(R)-map g : R → R, for some α ∈ (0, 1], with bounded derivative,
and a right-continuous measure µ with bounded total variation on [0, T ] and at most a finite number of
atoms {0 ≤ t1 ≤ · · · ≤ tn ≤ T} which are deterministic. We define

v : (t, x) ∈ Θ 7→ E[g(

∫ T

0
Xt,x
s µ(ds))].

The following is nothing but a version of the celebrated Clark’s formula, see [7], which we retrieve here
as a consequence of Theorem 3.2.

Proposition 4.1. Let the above conditions hold and set X := X0,x for some x ∈ D([0, T ]). Then, v

admits a vertical derivative

∇xv : (t′, x′) ∈ Θ 7→ E[∇g(

∫ T

0
Xt′,x′
s µ(ds))µ([t′, T ])],

and there exists an orthogonal and predictable process Γ such that Γ0 = 0 and

g(

∫ T

0
Xsµ(ds)) =v(0, x) +

∫ T

0
∇xv(s,X)σsdWs

+
∑
s≤T

(v(s,X)− v(s,X−))−
∫ T

0

∫
R
(v(s,X− ⊕s y)− v(s,X−))νs(dy)λsds+ ΓT .

If moreover v(·, X) is a martingale, then Γ ≡ 0. It is in particular the case if A, σ, γ, λ and t ∈ [0, T ] 7→ νt
are deterministic.

1We use the standard notations P (resp. B(R)) for the predictable sigma-field (resp. the Borel sigma-field).
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Proof. 1. We first assume that µ does no have atoms. How to treat the general case will be discussed in

step 3. First note that, for (t, x) ∈ Θ and y ∈ R,∣∣∣∣v(t, x⊕t y)− v(t, x)− E[∇g(

∫ T

0
Xt,x
s µ(ds))µ([t, T ])]y

∣∣∣∣ ≤ CE[{|µ|([t, T ])|y|}1+α]

for some C > 0. Since |µ| is bounded, this implies that

∇xv(t, x) = E[∇g(

∫ T

0
Xt,x
s µ(ds))µ([t, T ])].

Clearly, v and ∇xv are locally uniformly bounded since g, ∇g and |µ| are bounded.

2. Note that (v, Z) satisfies assumption (A) for all càdlàg process Z by Remark 3.1. We now prove

that v and ∇xv are locally uniformly continuous. Fix (t, x), (t′, x′) ∈ Θ with t′ ≥ t. Then, by standard

estimates based on our boundedness assumptions,

E[

∫ T

0
|Xt,x

s −Xt′,x′
s |µ(ds)] ≤C(||xt∧ − x′t′∧||+

√
t′ − t)

for some C > 0 that does not depend on (t, x) and (t′, x′). Given the above and the fact that g is Lipschitz

and C1+α(R), this implies that

|v(t′, x′)− v(t, x)| ≤ C(||xt∧ − x′t′∧||+ (t′ − t)
1
2 ) (12)

|∇xv(t′, x′)−∇xv(t, x)| ≤ C(||xt∧ − x′t′∧||α + (t′ − t)
α
2 + µ([t, t′])) (13)

for some C > 0 that does not depend on (t, x) and (t′, x′).

3. In the general case where µ has a finite number of atoms {0 ≤ t1 ≤ · · · ≤ tn ≤ T}, then (12)-(13)

shows that v and ∇xv are locally uniformly bounded and locally uniformly continuous on each closed and

convex interval of ∪ni=0[ti, ti+1), with the convention that t0 = 0 and tn+1 = T . Moreover, (12) also shows

that v(·, X−) admit right-limits, for all X := X0,x for some x ∈ D([0, T ]). Then, one can apply Theorem

3.2 on intervals of the form [ti, t] with ti ≤ t < ti+1 and 0 ≤ i ≤ n. Since, like X, v(·, X) is a.s. continuous

at ti+1, this implies that

v(t ∧ ti+1, X) =v(ti, X) +

∫ t∧ti+1

ti

∇xv(s,X)dM c
s

+
∑

s≤t∧ti+1

(v(s,X)− v(s,X−))−
∫ t∧ti+1

0

∫
R
(v(s,X− ⊕s y)− v(s,X−))νs(dy)λsds

+ Γt∧ti+1 − Γti , t ∈ [ti, ti+1],

in which M c is the continuous martingale part of X and Γ is predictable and orthogonal.

4. In the case where A, σ, γ, λ and t ∈ [0, T ] 7→ νt are deterministic, then one easily checks that

v(·, X) is a martingale. If the later holds, then Γ ≡ 0 by uniqueness of the martingale decomposition.

A Appendix

We first state a technical result whose proof is very close to the first part of the proof of Lemma 3.7.
Again, we borrow the standard notations A +

loc and G 2
loc(µ

X) from [15, Section I.3.a., Section II.1.d.].
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Lemma A.1. Let F ∈ C0,1(Θ) be such that ∇xF is locally bounded and let X be a càdlàg process such

that
∑

s≤T |∆Xs|2 < +∞ a.s. Then,

V := |(Fs(X ⊕s x)− Fs(X−))1{|x|≤1}|2 ∗ µX ∈ A +
loc

W := |x∇xFs(X
−)1{|x|≤1}|2 ∗ µX ∈ A +

loc

In particular, ((Fs(X ⊕s x) − Fs(X−))1{|x|≤1}) ∗ (µX − νX) and (x∇xFs(X
−)1{|x|≤1}) ∗ (µX − νX) are

well-defined purely discontinuous local martingales.

Proof. The fact that both processes are increasing is trivial. We next argue as in the proof of Lemma 3.7.

Set Y := (Xt−,
∑

s<t|∆Xs|2)t≥0 and let (Sm)m∈N be a localization sequence such that (Y·∧Sm1Sm>0)m∈N

is a sequence of bounded processes. We fix S = Sm for some m and C s.t. |Yt∧S | ≤ C ∀t ≤ T a.s.

Then,

E [Wt∧S ] = E

[∫
]0,t∧S]×R

|x∇xFs(X
−)1{|x|≤1}|2µX(ds, dx)

]

≤ sup
s∈[0,T ], ||x||≤C

|∇xFs(x)|2 E

 ∑
s∈]0,t∧S[

0<|∆Xs|≤1

|∆Xs|21S>0 + |∆XS |21S>01|∆XS |≤1


≤ sup

s∈[0,T ], ||x||≤C
|∇xFs(x)|2 (C + 1).

The last term is finite since ∇xF is locally bounded. Similarly,

E [Vt∧S ] = E

[∫
]0,t∧S]×Rd

|(Fs(X ⊕s x)− Fs(X−))1{|x|≤1}|2µX(ds, dx)

]

= E

 ∑
s∈]0,t∧S]

0<|∆Xs|≤1

|(Fs(X)− Fs(X−)|2



= E

 ∑
s∈]0,t∧S]

0<|∆Xs|≤1

|∆Xs|2 |
∫ 1

0
∇xFs(X− ⊕s λ∆Xs)dλ|2



≤ sup
s∈[0,T ], ||x||≤M

|∇xFs(x)|2 E

 ∑
s∈]0,t∧S[

0<|∆Xs|≤1

|∆Xs|21S>0 + |∆XS |21S>01|∆XS |≤1


≤ sup

s∈[0,T ], ||x||≤C
|∇xFs(x)|2 (C + 1).

Thus, V and W belong to A +
loc.

We conclude that ((Fs(X ⊕s x)−Fs(X−))1{|x|≤1}) ∗ (µX − νX) and (x∇xFs(X
−)1{|x|≤1}) ∗ (µX − νX)

are well-defined square integrable purely discontinuous locale martingales by [14, Theorem 11.21] since

their integrands belong to G 2
loc(µ

X) by [2, Lemma 2.4].

The next result follows from the same arguments as in [1, 4]. At the difference of Theorem 3.2, it does
not assert that ΓF is predictable. We provide its proof for completeness.
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Proposition A.2. Let X = X0 +M+A be a càdlàg weak Dirichlet process with finite quadratic variation.

Let µX be its jump measure and νX its compensator.

Let F : Θ → R be C0,1, such that F and ∇xF are both in Cu,bloc(Θ), and such that s 7→ ∇xFs(X
−)

admits right-limits a.s. Then, (Ft(X))t∈[0,T ] is a weak Dirichlet process with decomposition

Ft(X) = F0(X)+

∫ t

0
∇xFs(X

−)dMs

+

∫
]0,t]×Rd

(Fs(X
− ⊕s x)− Fs(X−)− x∇xFs(X

−))1{|x|>1}µ
X(ds, dx)

+

∫
]0,t]×Rd

(Fs(X
− ⊕s x)− Fs(X−))1{|x|≤1}(µ

X − νX)(ds, dx)

−
∫

]0,t]×Rd
x∇xFs(X

−)1{|x|≤1}(µ
X − νX)(ds, dx)

+ ΓFt , ∀t ∈ [0, T ] ,

where ΓF is an orthogonal process, if and only if (F,X) satisfies Assumption (A).

Proof. For the rest of the proof, we denote by δ·(F, ·) and δ·(∇xF, ·) the modulus of continuity of F and

∇xF , see (1).

Let N be a continuous local martingale. Our aim is to show that
[
ΓF , N

]
≡ 0, in which

ΓFt = Ft(X)− F0(X)−
∫ t

0
∇xFs(X

−)dMs

−
∫

]0,t]×R
(Fs(X ⊕s x)− Fs(X−)− x∇xFs(X

−))1{|x|>1}µ
X(ds, dx)

−
∫

]0,t]×R
(Fs(X ⊕s x)− Fs(X−))1{|x|≤1}(µ

X − νX)(ds, dx)

+

∫
]0,t]×R

x∇xFs(X
−)1{|x|≤1}(µ

X − νX)(ds, dx), t ≤ T. (14)

Note that
∑

s≤T |∆Xs|2 < +∞ a.s., since X has finite quadratic variation, see [1, Lemma 2.10.]. Then,

by Lemma A.1 and the definition of a purely discontinuous local martingale, the two last terms of (14)

are orthogonal, hence their quadratic covariation with N equals 0.

On the orher hand, since X is a càdlàg process, it has finitely many jumps larger or equal to 1, a.s.

Hence
∫

]0,·]×Rd(Fs(X⊕sx)−Fs(X−)−x∇xFs(X
−))1{|x|>1}µ

X(ds, dx) is a bounded variation process and,

by Remark 2.2, its quadratic covariation with N also equals 0. Moreover, by Remark 2.2,[∫ ·
0
∇xFs(X

−)dMs, N

]
t

=

∫ t

0
∇xFs(X

−)d [M,N ]s .

Thus, by bilinearity of the quadratic covariation, we only have to show that

[F·(X), N ]t =

∫ t

0
∇xFs(X

−)d [M,N ]s

which by continuity of N and [1, Proposition A.3] is equivalent to

Iεt :=
1

ε

∫ t

0
(Fs+ε(X)− Fs(X))(Ns+ε −Ns)ds −→

ε→0

∫ t

0
∇xFs(X

−)d [M,N ]s u.c.p.
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We have

Iεt = Iε,1t + Iε,2t

where

Iε,1t =
1

ε

∫ t

0
(Fs+ε(Xs∧ �s+ε Xs+ε)− Fs(X))(Ns+ε −Ns)ds

Iε,2t =
1

ε

∫ t

0
(Fs+ε(X)− Fs+ε(Xs∧ �s+ε Xs+ε))(Ns+ε −Ns)ds.

If we show that Iε,1 −→
ε→0

∫ ·
0∇xFs(X

−)d [M,N ]s u.c.p., then Iε −→
ε→0

0 u.c.p. if and only if Iε,2 −→
ε→0

0 u.c.p.,

which would provide the required result.

Let us decompose Iε,1 in

Iε,1t = Iε,11
t + Iε,12

t + Iε,13
t + Iε,14

t

where

Iε,11
t =

1

ε

∫ t

0

∫ 1

0
(∇xFs+ε(Xs∧ ⊕s+ε λ(Xs+ε −Xs))−∇xFs+ε(Xs∧))dλ (Xs+ε −Xs)(Ns+ε −Ns)ds

Iε,12
t =

1

ε

∫ t

0
(∇xFs+ε(Xs∧)−∇xFs(X))(Xs+ε −Xs)(Ns+ε −Ns)ds

Iε,13
t =

1

ε

∫ t

0
∇xFs(X)(Xs+ε −Xs)(Ns+ε −Ns)ds

Iε,14
t =

1

ε

∫ t

0
(Fs+ε(Xs∧)− Fs(X))(Ns+ε −Ns)ds.

Since ∇xF is in Cu,bloc(Θ), we have

|Iε,12
t | ≤ δ||X||(∇xF, ε)

√
[N,N ]ucpε,t [X,X]ucpε,t .

Since N is a local martingale, N has finite quadratic variation by Remark 2.2. Then, [N,N ]ucpε −→
ε→0

[N,N ]

and [X,X]ucpε −→
ε→0

[X,X] u.c.p. Hence, the right-hand side term converges to 0 u.c.p. and thus Iε,12 −→
ε→0

0

u.c.p.

Let us now consider Iε,14:

Iε,14
t =

1

ε

∫ t

0
(Fs+ε(Xs∧)− Fs(X))(Ns+ε −Ns)ds

=
1

ε

∫ t

0
(Fs+ε(Xs∧)− Fs(X))

∫ s+ε

s
dNu ds

=
1

ε

∫ t+ε

0

∫ u

(u−ε)∨0
Fs+ε(Xs∧)− Fs(X)ds dNu

where we used the stochastic Fubini’s Lemma to deduce the last equation. Since F ∈ Cu,bloc(Θ), we have
1
ε |
∫ u

(u−ε)∨0 Fs+ε(Xs∧)− Fs(X)ds| ≤ δ||X||(F, ε) −→
ε→0

0 ∀u ∈ [0, T ] a.s. Then, using [15, Theorem I.4.31], we

conclude that Iε,14 −→
ε→0

0 u.c.p. By using [1, Proposition A.6.], we have Iε,13 −→
ε→0

∫ ·
0∇xFs(X

−)d [M,N ]s

u.c.p. Hence, it remains to show that Iε,11 −→
ε→0

0 u.c.p.

Let (εn)n∈N a sequence of real numbers which tends to 0 and let N be an element of F s.t. P(N c) = 0

and s.t. [N,N ]ucpεn
−→

n→+∞
[N,N ] and [X,X]ucpεn

−→
n→+∞

[X,X] uniformly on N . We fix ω ∈ N for the rest

of the proof (we omit it to alleviate notations).
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Fix an arbitrary γ > 0 and let (ti)i∈N be the jump times of X (depending on this fixed ω).

By [1, Lemma 2.10.], there exists K = K(ω) s.t.
∑∞

i=K+1|∆Xti |2 ≤ γ2.

We define Aεn =
K⋃
i=1

]ti − εn, ti] and Bεn = [0, T ] \Aεn and decompose Iεn,11 as follows:

Iεn,11 = Iεn,11A + Iεn,11B

where

Iεn,11A
t =

K∑
i=1

1

εn

∫ ti

ti−εn
1s∈]0,t]

∫ 1

0
Gεn(s, λ)dλ (Xs+εn −Xs)(Ns+εn −Ns)ds

Iεn,11B
t =

1

εn

∫ t

0
1s∈Bεn

∫ 1

0
Gεn(s, λ)dλ (Xs+εn −Xs)(Ns+εn −Ns)ds

in which

Gεn(s, λ) := ∇xFs+εn(Xs∧ ⊕s+εn λ(Xs+εn −Xs))−∇xFs+εn(Xs∧).

We have

|Iεn,11B
t | ≤ δ||X||(∇xF, sup

i s.t. ti≤T
sup

r,a∈[ti,ti+1[, |r−a|≤εn
|Xr −Xa|)

√
[N,N ]ucpεn,t

[X,X]ucpεn,t

≤ δ||X||(∇xF, 3γ)
√

[N,N ]ucpεn,t
[X,X]ucpεn,t

for n large enough (depending on ω), by [1, Lemma 2.12.] applied successively on the intevals [ti, ti+1] to

the processes Xti �ti+1 Xti+1− for i = 0, . . . ,K − 1 and on [0, t0] and [tK , T ]. Then,

lim sup
n→∞

sup
t∈[0,T ]

|Iεn,11B
t | ≤ δ||X||(∇xF, 3γ)

√
[N,N ]T [X,X]T .

On the other hand, since N is continuous and hence uniformly continuous on [0, T ]), |Ns+εn −Ns| ≤ γ

∀s ∈ [0, T ], for n large enough. Then

sup
t∈[0,T ]

|Iεn,11A
t | ≤

K∑
i=1

1

εn

∫ ti

ti−εn

∫ 1

0
|Gεn(s, λ)|dλ |Xs+εn −Xs||Ns+εn −Ns|ds

≤ γ ×K × 2||X|| × 2 sup
s∈[0,T ], ||x||≤||X||

∇xFs(x).

Hence,

lim sup
n→∞

sup
t∈[0,T ]

|Iεn,11
t | ≤ δ||X||(∇xF, 3γ)

√
[N,N ]T [X,X]T + 4γK||X|| sup

s∈[0,T ], ||x||≤||X||
∇xFs(x)

which allows us to conclude that Iεn,11 −→
n→+∞

0 by arbitrariness of γ > 0.

Since P(N ) = 1, we get Iεn,11 −→
n→+∞

0 uniformly a.s. and thus the convergence holds u.c.p. Since it is

true for all sequence (εn)n∈N that converges to 0, then Iε,11 −→
ε→0

0 u.c.p., which concludes the proof.
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