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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)

Spirit of this talk

What I will do : review the main streams of literature on optimal control for
optimal liquidation and present some more recent tools that could be more
used.

What for ? : to give an idea of all the potential uses of optimal control to
design smart and relevant strategies or at least to obtain an idea of what it
should look like.

What I will not do : quote all the papers in this very fast growing field, nor
enter in the details of all the models I will mention.

In short : I will essentially only say what can be done by using available tools
from optimal control.

If you are interested, the references are given at the end of these slides.
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Optimal book liquidation

The Almgren and Chriss framework for aggressive strategies

Outline

Optimal book liquidation
The Almgren and Chriss framework for aggressive strategies
Controlling the intensity of order matching : non-aggressive strategies
Towards a control of liquidation robots

Searching for the good market
In a nutshell..

Pricing problems
Inverse versus direct approach
Pricing under uncertainty or with adverse player

Optimization under risk constraint
Coming back to what we know....

Perspectives
Last slide...
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

The Almgren and Chriss framework for aggressive strategies

A simple model for book liquidation : Almgren and Chriss (2001)

● Q stocks to liquidate.
● In discrete time : tn ∶= nιN with ιN ∶= T /N.
● Price dynamics with market impact

Stn = Stn−1 + σι
1
2
Nξtn − ιNg(∆qtn /ιN)

where
▸ ∆qtn = qtn − qtn−1 is the number of stocks sold between tn−1 and tn,
▸ (ξtn)n are iid with mean 0 and variance 1.
▸ g is the permanent impact function
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

The Almgren and Chriss framework for aggressive strategies

A simple model for book liquidation

● Terminal liquidation gain with qtN = Q

V q
T = QS0 +

N

∑
n=1

(σι
1
2
Nξtn − ιNg(∆qtn))

N

∑
k=n+1

∆qtk

−
N

∑
n=1

∆qtnh(∆qtn /ιN)

where h stands for the temporary impact.

● The shortfall du to volatility and market impacts is

QS0 −V q
T =

N

∑
n=1

(−σι
1
2
Nξtn + ιNg(∆qtn))

N

∑
k=n+1

∆qtk

+
N

∑
n=1

∆qtnh(∆qtn /ιN)
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

The Almgren and Chriss framework for aggressive strategies

Mean variance criteria and explicit resolution

● If one restricts to deterministic strategies, one can compute explicitly
E [QS0 −V q

T ] and Var [QS0 −V q
T ] and try to solve

min
q∶qtN =Q

(E [QS0 −V q
T ] + λVar [QS0 −V q

T ]) .

● In Almgren and Chriss, this is done for a specific linear setting

h(∆qtn /ιN) = εsign(∆qtn) +
η

ιN
∆qtn and g(∆qtn) = γ∆qtn

● Because of the dynamics and the criteria, adapted (random) strategies would
provide the same result.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

The Almgren and Chriss framework for aggressive strategies

General comments

▸ Simple and meaningful optimal strategy computed explicitly.

▸ Discrete time setting : How can we compute an optimal time grid ? What
about being detected by the other participants ?

▸ Market volume ? Intraday volatility moves ?
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

The Almgren and Chriss framework for aggressive strategies

Possible extension
Continuous time versions of the same model :

▸ Forsyth et al. (2011 and 2012), and Gatheral and Schied (2011) study the
continuous time setting with prices given by GBM or ABM.

▸ Again it is explicit : for the same reason than in discrete time.
▸ Both use proxies of variance (mean quadratic variation) or of VaR
(expected cost + proxy of time average VaR).

▸ LOB shape more taken into account in Alfonsi, Fruth and Schied (2010),
and in Obizhaeva and Wang (2012) : still enough simple to be explicit.

One can use general optimal control techniques to study more general settings.
This is done via an impulse control approach in e.g. Kharroubi and Pham
(2010).

▸ Less explicit but can solve pdes and find the optimal control out of it.
▸ More time consuming but :

▸ Provides a general idea of the optimal intervention frontiers.
▸ What are the important parameters.
▸ Can compute abacus / compress the information computed off-line once for
all.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

Controlling the intensity of order matching : non-aggressive strategies

Motivation and main idea
● Motivation :

▸ Usually follow an Almgren and Chriss type strategy and then try to
optimize the real passage of order to the LOB : only focus on aggressive
orders.

▸ Passive orders represents most of orders passed by trading algorithms.
▸ Take immediately into account the risk of passive orders not being
executed in the global strategy.

● Proposed in parallel by Guéant, Lehalle and Tapia (2012) and Bayraktar and
Ludkovski (2012).

● Main idea :

▸ Propose continuously an ask quote : Sa
t = St + δ

a
t .

▸ The number of sold shares evolves according to a jump process Na with
jumps of size 1.

▸ The intensity of Na at t is λ(δa
t ) ∶= λ0e−kδat .

▸ If δa
t = 0, the time to be executed is exponentially distributed with

parameter λ0.
▸ The greater δa

t is, the longer one has to wait.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

Controlling the intensity of order matching : non-aggressive strategies

Explicit resolution

● In Guéant, Lehalle and Tapia (2010) :
▸ The reference price S is an ABM.
▸ The aim is to maximize an exponential utility function.
▸ The HJB equation drops down to a simple system of linear ODEs.
▸ Given the solution of the system of ODEs, the optimal strategy is explicit.

● In Bayraktar and Ludkovski (2012) :
▸ The reference price S is just a martingale.
▸ The aim is to maximize an expectation.
▸ The solution is explicit.

Other works are dealing with similar but more complex models : one can only
obtain HJB equations that have to be solved numerically or analyzed for small
inventory expansion (e.g. Avellaneda and Stoikov 2008, and Guilbaud and
Pham 2012).
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

Towards a control of liquidation robots

Motivation

● Motivation :
▸ Once a liquidation strategy is determined, orders are usually executed by
trading robots.

▸ Trading robots are optimized according to a given criteria.
▸ The trader chooses the robot according to market conditions.
▸ The different slices are executed by different robots, with different sets of
parameters.

▸ How can one optimize this use given a set of parameterized robots ?

● Bouchard, Lehalle and Dang (2011) propose to write down the associated
optimal control problem.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimal book liquidation

Towards a control of liquidation robots

Main idea

● Optimal control of robots :

▸ Consider all robots as one.
▸ For a value x of the parameter, the robot has a dynamics :

dRx
t = µ(x , ⋅)dt + σ(x , ⋅)dWt + β(x , ⋅)dNx

t

▸ At (stopping) times τk , launch a robot with parameter ξτk for a period
δk ≥ δ > 0.

▸ At τk + δk decide to wait a bit or to launch immediately an other robot
with parameter ξτk+1 for a period δk+1, and so on...

● Numerical resolution :

▸ This is a relatively standard impulse control problem.
▸ Leads to HJB equations which can be solved numerically.
▸ Can deduce an abacus on how/when/how long to launch robots within a
given strategy.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Searching for the good market

In a nutshell..

Searching for the good market : a stochastic algorithm approach

● Works around Laruelle, Lehalle and Pagès : test the different markets to know
which one will be the most efficient given the strategy one has in mind.

Previous talk....
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Pricing problems

Inverse versus direct approach

An example of un-hedgeable derivative

● Guaranteed VWAP :
▸ Offer a protection against execution price.
▸ Payoff= [ Guaranteed mean price − Effective mean price ]

+.
▸ Usually the Guaranteed mean price is computed as a proportion κ of the
mean price observed on the market on the relevant time period.

▸ A perfect hedge is obviously not possible !
▸ What is the price of the guarantee ?
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Pricing problems

Inverse versus direct approach

The inverse problem point of view
● The abstract model :

▸ φ = liquidation strategy.
▸ V φ

T the mean price obtained at T when following φ.
▸ Mφ

T the mean price observed for the period [0,T ] (taking into account
price impact).

● Risk minimization problem :

▸ If the guarantee is sold at a unit price/share p, the terminal loss/unit is
[κMT −V φ

T − p]+

▸ Fix ` a loss function (depending on the number of shares to liquidate).
▸ One tries to minimize

v(p) ∶= min
φ

E [` ([κMφ
T −V φ

T − p]+)] .

▸ Given a threshold γ on the risk, compute the price

p̂(γ) ∶= inf{p ∶ v(p) ≤ γ}.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Pricing problems

Inverse versus direct approach

A direct approach
● Assume a Markovian structure : X t,x,φ drives the markets (prices, volumes,
volatility, etc...), Mt,x,φ

T ∶= M(X t,x,φ
T ) and V t,x,p,φ.

● Define

p̂(t, x , γ) ∶= inf{p ∶ ∃ φ s.t. E [` ([κM(X t,x,φ
T ) −Y t,x,p,φ

T ]
+
)] ≤ γ}.

● It can be made time consistent (Bouchard, Elie and Touzi 2009) :
p̂(t, x , γ) is the minimal value of p s.t. ∃ (φ,α) for which

` ([κM(X t,x,φ
T ) −V t,x,p,φ

T ]
+
) ≤ Γt,γ,α

T ∶= γ + ∫
T

t
αsdWs .

⇒ This is a stochastic target problem in the terminology of Soner and Touzi.

● PDEs driving the evolution of p̂ can be derived directly !

▸ Avoids the numerical inversion of the previous approach.
▸ Provides a dynamics for Γt,γ,α which amounts for the evolution of the
conditional expected loss.
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Pricing problems

Inverse versus direct approach

A direct approach

● It has been investigated within the framework of Guaranteed VWAP pricing
by Bouchard and Dang (2010).

● Instead of a loss function, one can put several P&L constraints :

P [V t,x,p,φ
T ≥ κM(X t,x,φ

T ) − ci] ≥ qi for i = 1, . . . , I ,

● ... or more generally several constraints (see Bouchard and Vu 2012).
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Pricing problems

Pricing under uncertainty or with adverse player

Outline

Optimal book liquidation
The Almgren and Chriss framework for aggressive strategies
Controlling the intensity of order matching : non-aggressive strategies
Towards a control of liquidation robots

Searching for the good market
In a nutshell..

Pricing problems
Inverse versus direct approach
Pricing under uncertainty or with adverse player

Optimization under risk constraint
Coming back to what we know....

Perspectives
Last slide...
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Pricing problems

Pricing under uncertainty or with adverse player

A game formulation

● The abstract model :
▸ ϑ = adverse control.

▸ Uncertainty : nature chooses in a dynamical way the parameters of the
market (volatility, volume, distribution of times to be executed, etc...).

▸ Aggressive players : other players tries to perturb the market so as to make
profit out of our liquidation strategy.

▸ φ = liquidation strategy : may depend on ϑ but in a non-anticipating way.
▸ V φ[ϑ],ϑ

T the mean price obtained at T when following φ.

▸ Mφ[ϑ],ϑ
T = M(X t,x,φ[ϑ],ϑ

T ) the mean price observed for the period [0,T ].

● The price is now

p̂(t, x , γ) ∶= inf{p ∶ ∃ φ s.t. E [` ([κM(X t,x,φ[ϑ],ϑ
T ) −V t,x,p,φ[ϑ],ϑ

T ]
+
)] ≤ γ ∀ ϑ}.

● Can be made time consistent as in the previous case, PDEs can be derived
(see Bouchard, Moreau and Nutz 2012).
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Optimization under risk constraint

Coming back to what we know....

Outline

Optimal book liquidation
The Almgren and Chriss framework for aggressive strategies
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimization under risk constraint

Coming back to what we know....

Typical problem formulation

● The abstract model :
▸ φ = liquidation strategy.
▸ V t,x,v,φ

T the gain made out of liquidation.
▸ X t,x,φ other market parameters (prices, volumes, volatility, etc...)

● We want to optimise

max{E [U(V t,x,v,φ
T )] , φ s.t. E [R(V t,x,v,φ

T )] ≥ γ}

● Example : Use as a proxy of mean-variance problem

min{E [(V t,x,v,φ
T − γ0)

2
] , φ s.t. E [V t,x,v,φ

T ] ≥ γ0}
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Stochastic Control for Optimal Trading: State of Art and Perspectives (an attempt of)
Optimization under risk constraint

Coming back to what we know....

Reduction to a time consistent optimization problem with path constraint
● Set

$(t, x , γ) ∶= inf {v ∶ ∃ φ s.t. E [R(V t,x,v,φ
T )] ≥ γ}

▸ It falls within the previous framework related to pricing issues.
▸ $ can be computed by solving a PDE.

● Problem reduction as a state constrained problem

max{E [U(V t,x,v,φ
T )] , φ s.t. E [R(V t,x,v,φ

T )] ≥ γ}

=

max{E [U(V t,x,v,φ
T )] , (φ,α) s.t. V t,x,v,φ

s ≥$(s,X t,x,φ
s ,Γt,γ,α

s ) ∀ s ∈ [t,T ]}

⇒ back to a standard optimization problem with state constraints :

▸ Domain given by $ which can be pre-computed.
▸ Leads to standard HJB equations with constraint : numerical resolution in
general.

● First suggested in Bouchard, Elie and Imbert (2009), and then further
developed by Bouchard and Nutz (2012).
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Perspectives

Last slide...

Perspectives

● A lot has been done to build up relevant simple models allowing for explicit
solutions.

● Most problems falls into standard stochastic optimal control or stochastic
target problems.

● Can we do more without relying on numerical procedures ?

● Should we invest on smart numerical procedures / data compression
techniques (abacus) ?

● Do more on uncertainty or models with aggressive players ?

● Optimal control techniques require to postulate some a-priori
laws/distributions : more model free strategies ? (cf previous talk of G. Pagès
and the next talk on Reinforcement Learning by Yuriy Nevmyvaka).
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