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Introduction and notations

These lecture notes have been written as a support for the lecture on stochastic control

of the master program Masef of Paris Dauphine.

Our aim is to explain how to relate the value function associated to a stochastic control

problem to a well suited PDE. This allows, at least, to approximate it numerically, and,

in good cases, to retrieve the optimal control through the explicit resolution of the PDE

and a verification argument.

The main tool for deriving the PDE is the dynamic programming principle. It essentially

relates the value function at time t to its expected value a time t + h for h > 0. The

link between the PDE and the control problem is then obtained through an application

of Itô’s Lemma on a small time interval.

We shall first discuss this approach in the case where the stochastic process is not

controlled, i.e. we just compute an expectation. This corresponds to the well-known

Feynman-Kac formula. This first chapter is crucial in the sense that all the fundamental

tools will be presented here.

We first derive the PDE under suitable smoothness assumptions and then explain how

to construct a verification argument. We also discuss the question of the uniqueness of

the solution.

All this is done under the assumption that the value function (or the solution of the

PDE) is at least C1,2. This is not the case in general and one has in general to rely

on a weak notion of solution. Here, we discuss the notion of viscosity solutions which

has become very popular in finance. We show how to prove that the value function is a

viscosity solution of the associated PDE and explain how to derive a uniqueness result

for viscosity solutions through a comparison theorem.

We then repeat these arguments for various control problems in standard form with

finite or infinite time horizon. We also discuss some specific control problems leading to
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PDEs with free boundary (optimal stopping, optimal switching and optimal dividend

payment) and present a direct approach for solving a general class of stochastic target

problems for which the dynamic programming principle takes a very particular form. We

finally discuss the stochastic maximum principle which is an extension of the Pontryagin

principle in deterministic control.

These different analysis are carried out in different settings in order to introduce various

techniques and are illustrated by examples of application in finance and insurance.

Notations:

Any element x ∈ Rd will be identified to a column vector with i-th component xi and

Euclidean norm ‖x‖. The scalar product is denoted by 〈·, ·〉. The set of d × d (resp.

symmetric) matrices is denoted by Md (resp. Sd), the superscript ∗ stands for transposi-

tion, Aj is the j-th column of A. The norm ‖ · ‖ on Md is the Euclidean norm obtained

when Md is identified to Rd×d. For a smooth map ψ : (t, y) ∈ R+ × Rd 7→ ψ(t, y), we

denote by Dψ (resp. D2ψ) its partial gradient (resp. Hessian) with respect to y. When

it depends on more variables, we use the more explicit notations Dy, Dyy, etc... We

denote by B(Rd) the Borel tribe associated to Rd. For a set B ⊂ Rd, B̄ and ∂B stands

for its closure and boundary. The open ball of center x and radius η > 0 is denoted by

B(x, η).

We always work on a complete probability space (Ω,F ,P) endowed with a right-continuous

filtration F = (Ft)t≥0, which satisfies the usual assumptions. On this space, we shall

consider:

- a Rd-market point process µ with predictable intensity kernel µ̃ of the form µ̃t(dz) =

λtΦ(dz) where Φ is a probability distribution on Rd and λ a bounded Lipschitz-continuous

map from R+ into R+. We note µ̄ = µ− µ̃ the compensated jump measure.

- a d-dimensional Brownian motion W , independent of µ.

Basic properties of Itô’s integral and random measures are presented in the Appendix.
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Chapter 1

Conditional expectations and the

Feynman-Kac Formula

In this Chapter, we consider a family of processes (Xt,x)(t,x)∈R+×Rd defined by the SDEs :

X(v) = x+

∫ v

t
b (X(s)) ds+

∫ v

t
σ (X(s)) dW (s) +

∫ v

t

∫
Rd
β (X(s−), z)µ(dz, ds) .

(1.0.1)

Note that the coefficients may actually depend on time by choosing it in such a way that

X1(t) = t. We could also choose them so that the effective dimension of X is different

from Rd.
Our aim is to characterize value functions of the form

v(t, x) := E
[
Et,x(T )g(Xt,x(T )) +

∫ T

t
Et,x(s)f(Xt,x(s))ds

]
(t, x) ∈ [0, T ]× Rd ,

(1.0.2)

where Et,x(s) := e−
∫ s
t ρ(Xt,x(v))dv , as solutions of PDEs of the form

Lv + f = ρv (1.0.3)

on [0, T )×Rd with the boundary condition v(T, ·) = g. Here, L is the Dynkin operator

associated to X:

Lϕ(t, x) :=
∂

∂t
ϕ(t, x) + 〈b(x), Dϕ(t, x)〉+

1

2
Tr
[
σσ∗(x)D2ϕ(t, x)

]
+

∫
Rd

(ϕ(t, x+ β(x, z))− ϕ(t, x))λtΦ(dz) .

This allows at least to compute v numerically by using standard PDE solvers. In par-

ticular cases, we shall see that (1.0.3) can be solved explicitly, thus providing a closed

form formula for v.
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1 Markov property and formal derivation

Before turning to the technical proof, let us briefly justify this relation. Under the

Lipschitz continuity assumptions that will be imposed in the next section, it is well

known that the process Xt,x is a strong Markov process. In particular, for all stopping

times τ ≥ t P− a.s. and h ≥ 0

P [Xt,x(τ + h) ∈ A | Fτ ] = P [Xt,x(τ + h) ∈ A | Xt,x(τ)] P− a.s. (1.1.1)

Moreover, for all continuous and bounded function g

E [g(Xt,x(τ + h)) | Xt,x(τ)] = ϕ(τ,Xt,x(τ); g, h) P− a.s. (1.1.2)

where

ϕ(s, y; g, h) = E [g(Xs,y(s+ h))] .

Since Xt,x is right-continuous, this also implies that for all T ≥ 0

E [g(Xt,x(T )) | Xt,x(τ)] 1T≥τ = ϕ̃(τ,Xt,x(τ); g, T )1T≥τ P− a.s. (1.1.3)

where for s ≤ T

ϕ̃(s, y; g, T ) = E [g(Xs,y(T ))] .

See [21] for more details. Under the same Lipschitz continuity assumptions, (1.0.1)

admits a unique solution, even if we replace (t, x) by (θ, ξ) where θ is a stopping time

and ξ a Fθ-measurable Rd-valued random variable. It follows that the family X satisfies

the flow property

Xt,x = Xθ,Xt,x(θ) on [θ,∞) P− a.s. (1.1.4)

for all stopping times θ ≥ t P− a.s.

For simplicity, let us for the moment assume that ρ, g and f are bounded. Then, the

process Z defined by

Z(t) := E
[
E0,x(T )g(X0,x(T )) +

∫ T

0
E0,x(s)f(X0,x(s))ds | Ft

]
t ∈ [0, T ]

is well defined and is a martingale. But, it follows from the flow property (1.1.4) and

(1.1.1)-(1.1.2)-(1.1.3) that

Z(t) = E0,x(t)v(t,X0,x(t)) +

∫ t

0
E0,x(s)f(X0,x(s))ds P− a.s. (1.1.5)
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Thus, the right-hand side term is a martingale. Since by Itô’s Lemma, see the Appendix,

its dynamics has the form

dZ(s) = E0,x(s) ((Lv + f)(s,X0,x(s))− (ρv)(s,X0,x(s))) ds+(· · · ) dW (s)+(· · · ) µ̄(dz, ds)

we see that (Lv + f)(s,X0,x(s)) − (ρv)(s,X0,x(s)) must be equal to 0. This formally

leads to (1.0.3).

The rest of this chapter is dedicated to the technical justification of this argument. After

having derived some standard controls on Xt,x and a dynamic programming principle of

the form (1.1.5), we first show that v solves (1.0.3) whenever it is C1,2. It is completed

by a Comparison Theorem which implies that there is at most one solution to (1.0.3)

satisfying the boundary condition ϕ(T, ·) = g, in a suitable class of functions. We then

provide a verification argument, i.e. we show that if ϕ is a sufficiently regular solution

of (1.0.3) satisfying the boundary condition ϕ(T, ·) = g then ϕ = v. This result is here

essentially a consequence of the Comparison Theorem but this approach will be useful

when we will study control problems. Finally, we study the case where v is not smooth

(possibly even not continuous). In this case, we still characterize v as the (unique)

solution of (1.0.3) but in the sense of viscosity solutions.

2 Assumptions on the coefficients and a-priori estimates

on the SDE

From now on, we shall always assume that the coefficients satisfy, for some L > 0,

‖β (x, z) ‖ ≤ L (1 + ‖x‖)

‖β (x, z)− β (y, z) ‖ ≤ L‖y − x‖

‖b (x) ‖+ ‖σ (x) ‖ ≤ L (1 + ‖x‖) (1.2.1)

‖b (x)− b (y) ‖+ ‖σ (x)− σ (y) ‖ ≤ L‖y − x‖

for all (x, y, z) ∈ (Rd)2 × Rd, so that existence and uniqueness of a solution to (1.0.1)

is guaranteed. Existence follows from a standard fixed point procedure, and uniqueness

from estimates similar to the one presented in the next proposition.

Proposition 1.2.1 Fix T > 0 and p ≥ 2. Then, there is C > 0 such that, for all
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(t, x, y) ∈ [0, T )× (Rd)2 and h ∈ [0, T − t],

E

[
sup
t≤s≤T

‖Xt,x(s)‖p
]
≤ C (1 + ‖x‖)p

E

[
sup

t≤s≤t+h
‖Xt,x(s)− x‖p

]
≤ C h

p
2 (1 + ‖x‖p)

E

[
sup

t+h≤s≤T
‖Xt,x(s)−Xt+h,x(s)‖p

]
≤ C h

p
2 (1 + ‖x‖p)

E

[
sup
t≤s≤T

‖Xt,x(s)−Xt,y(s)‖p
]
≤ C ‖x− y‖p .

Proof. We denote by C > 0 a generic constant whose value may change from line to

line but which does not depend on x, y or t. Using Jensen’s inequality, Proposition A.1.1

and Proposition A.2.3 in the Appendix, we first observe that, for t ≤ s ≤ T ,

E
[

sup
t≤u≤s

‖Xt,x(u)‖p
]
≤ C E

[
‖x‖p +

∫ s

t
‖b (Xt,x(v))‖p dv +

(∫ s

t
‖σ (Xt,x(v))‖2 dv

) p
2

]

+ C E
[∫ s

t

∫
Rd
‖β (Xt,x(v), z)‖p λvΦ(dz)dv

]
≤ C E

[
‖x‖p +

∫ s

t
(‖b (Xt,x(v))‖p + ‖σ (Xt,x(v))‖p) dv

]
+ C E

[∫ s

t

∫
Rd
‖β (Xt,x(v), z)‖p λvΦ(dz)dv

]
.

In view of (1.2.1), this shows that

E
[

sup
t≤u≤s

‖Xt,x(u)‖p
]
≤ C E

[
1 + ‖x‖p +

∫ s

t
sup
t≤u≤v

‖Xt,x(u)‖p dv
]

+ C E
[∫ s

t

∫
Rd

(
1 + sup

t≤u≤v
‖Xt,x(u)‖p

)
λvΦ(dz)dv

]
.

Since λ is bounded, the first assertion is a consequence of Gronwall’s Lemma, see Lemma

1.2.1 below.

By the same arguments, we obtain, for t ≤ s ≤ t+ h,

E
[

sup
t≤u≤s

‖Xt,x(u)− x‖p
]
≤ C E

[
h
p
2 +

∫ t+h

t
sup
t≤u≤v

‖Xt,x(u)‖p dv
]

+ C E
[∫ t+h

t

∫
Rd

(
1 + sup

t≤u≤v
‖Xt,x(u)‖p

)
λvΦ(dz)dv

]
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and deduce the second assertion by using the first one. The two last estimates are ob-

tained by similar arguments. 2

We now state the lemma which was used in the above proof.

Lemma 1.2.1 (Gronwall’s Lemma) Fix T > 0. Let g be a non-negative measurable real

map such that

g(t) ≤ α(t) + κ

∫ t

0
g(s)ds ∀ t ∈ [0, T ],

where κ ≥ 0 and α : [0, T ] 7→ R is integrable. Then,

g(t) ≤ α(t) + κ

∫ t

0
α(s)eκ(t−s)ds ∀ t ∈ [0, T ].

In the following, we shall also assume that

(i) ρ is bounded from below,

(ii) g and f have at most polynomial growth,

(iii) ρ, g and f are continuous.

In view of Proposition 1.2.1, this ensures that the value function v is well defined.

3 Feynman-Kac formula in the regular case

3.1 Derivation of the PDE in the regular case

Our first result relates the value function v at time t in terms of its value at some future

time. In terms of processes, it corresponds to (1.1.5). In stochastic control, this kind of

equation is called dynamic programming equation and is here a simple consequence of

(1.1.1)-(1.1.2)-(1.1.3)-(1.1.4).

Proposition 1.3.2 Let θ be a stopping time such that θ ∈ [t, T ] P − a.s. and Xt,x is

bounded on [t, θ]. Then,

v(t, x) = E
[
Et,x(θ)v(θ,Xt,x(θ)) +

∫ θ

t
Et,x(s)f(Xt,x(s))ds

]
. (1.3.1)

Proof. For ease of notations, we only consider the case where f = 0. By the flow

property of X, the usual tower property and (1.1.1), we have

v(t, x) = E
[
Et,x(θ)E

[
Eθ,Xt,x(θ)(T )g(Xθ,Xt,x(θ)(T )) | Fθ

]]
= E

[
Et,x(θ)E

[
Eθ,Xt,x(θ)(T )g(Xθ,Xt,x(θ)(T )) | Xt,x(θ)

]]
.
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It then follows from (1.1.3) that

E
[
Eθ,Xt,x(θ)(T )g(Xθ,Xt,x(θ)(T )) | Xt,x(θ)

]
= v(θ,Xt,x(θ)) P− a.s.

2

Using the above proposition, we can now relate v with a suitable PDE in the case where

it is smooth enough.

Theorem 1.3.1 (Feynman-Kac) Assume that v is continuous on [0, T ] × Rd and v ∈
C1,2([0, T )×Rd). Then, v is a solution on [0, T )×Rd of (1.0.3) and satisfies the boundary

condition limt↗T v(t, x) = g(x) on Rd.

Proof. The boundary condition is a consequence of the continuity assumption on v.

It remains to show that v solves (1.0.3).

We now fix (t, x) ∈ [0, T )×Rd. Let θ be the first time when (s,Xt,x(s))s≥t exits a given

bounded open neighborhood of (t, x). Set θh = θ∧ (t+h) for h > 0 small. Using (1.3.1),

Itô’s Lemma, Corollary A.2.1, (A.1.1), we deduce that

0 = E

[
1

h

∫ θh

t
Et,x(s) ((Lv + f)(s,Xt,x(s))− (ρv)(s,Xt,x(s))) ds

]
.

Now, we observe that Proposition 1.2.1 implies that, after possibly passing to a subse-

quence, supt≤s≤t+h ‖Xt,x(s) − x‖ → 0 P − a.s. as h → 0. Moreover, θ > 0 P − a.s. so

that (θh − t)/h→ 1. Using the mean value theorem and the continuity of Lv + f − ρv,

we then deduce that, after possibly passing to a subsequence,

1

h

∫ θh

t
Et,x(s) ((Lv + f)(s,Xt,x(s))− (ρv)(s,Xt,x(s))) ds

→ (Lv + f)(t, x)− (ρv)(t, x) P− a.s.

as h→ 0. The required result is then obtained by applying the dominated convergence

theorem. 2

In order to complete the proof, it remains to show that v is the unique solution of (1.0.3)

satisfying the boundary condition limt↗T v(t, x) = g(x) on Rd. To this purpose, we first

state a comparison principle also called maximum principle.

Theorem 1.3.2 (Comparison principle) Assume that U and V are continuous on [0, T ]×
Rd and C1,2 on [0, T )× Rd. Assume further that, on [0, T )× Rd,

LU + f ≤ ρU and LV + f ≥ ρV (1.3.2)
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and that U(T, x) ≥ V (T, x) on Rd. Finally assume that U and V have polynomial

growth. Then, U ≥ V on [0, T ]× Rd.

Remark 1.3.1 When U and V satisfy (1.3.2), we say that U is a super-solution and

that V is a sub-solution of (1.0.3).

Remark 1.3.2 The above theorem can be restated as follows. If U and V are C0([0, T ]×
Rd) ∩ C1,2([0, T )×Rd) super- and sub-solutions of (1.3.2) on [0, T )×Rd, then the max

of V −U can only be attained on the boundary {T}×Rd. This explains why the above

comparison theorem is also called the Maximum Principle.

Remark 1.3.3 If we set Ũ(t, x) = eκtU(t, x) and Ṽ (t, x) = eκtV (t, x) then

LŨ + f̃ ≤ (ρ+ κ)Ũ and LṼ + f̃ ≥ (ρ+ κ)Ṽ

where f̃(t, x) = eκtf(x). After possibly replacing (U, V ) by (Ũ , Ṽ ) and taking κ > ρ−,

we can always assume that ρ > 0.

Proof. In view of Remark 1.3.3, we may assume that ρ > 0. Assume now that

for some (t0, x0) ∈ [0, T ] × Rd we have U(t0, x0) < V (t0, x0). We shall show that

this leads to a contradiction. Fix ε > 0, κ > 0 and p an integer greater that 1 such

that lim sup‖x‖→∞ supt≤T (|U(t, x)| + |V (t, x)|)/(1 + ‖x‖p) = 0. Then, there is (t̂, x̂) ∈
[0, T ]× Rd such that, for ε small enough,

0 < V (t̂, x̂)− U(t̂, x̂)− φ(t̂, x̂) = max
(t,x)∈[0,T ]×Rd

(V (t, x)− U(t, x)− φ(t, x)) ,

where

φ(t, x) := εe−κt(1 + ‖x‖2p) .

Since U ≥ V on {T} × Rd, we must have t̂ < T . Moreover, the one and second order

conditions of optimality imply

(∂tV,DV )(t̂, x̂) = (∂tU + ∂tφ,DU +Dφ)(t̂, x̂)

and

D2V (t̂, x̂) ≤ (D2U +D2φ)(t̂, x̂)
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in the sense of matrices. Combined with (1.3.2) and the fact that (V − U − φ)(t̂, x̂ +

β(t̂, x̂, ·)) ≤ (V − U − φ)(t̂, x̂), this leads to

ρ(V − U)(t̂, x̂) ≤ L(V − U)(t̂, x̂)

≤ ∂tφ(t̂, x̂) + 〈b(x̂), Dφ(t̂, x̂)〉+ Tr
[
σσ∗(x)D2φ(t̂, x̂)

]
+

∫
Rd

(
(V − U)(t̂, x̂+ β(t̂, x̂, z))− (V − U)(t̂, x̂)

)
λt̂Φ(dz)

≤ Lφ(t̂, x̂) .

Since b, σ and β have polynomial growth, we can choose κ > 0 sufficiently large so that

the term in the last bracket is (strictly) negative. This contradicts (V − U)(t̂, x̂) > 0

since ρ > 0. 2

Remark 1.3.4 In the above proof, the penalization term φ is introduced only to ensure

that the max is attained. If we were working on a bounded domain, instead of Rd, this

term would not be necessary.

Corollary 1.3.1 Assume that v is C1,2([0, T ) × Rd) ∩ C0([0, T ] × Rd), then it is the

unique C1,2([0, T )×Rd)∩C0([0, T ]×Rd) solution of (1.0.3) satisfying v(T, ·) = g in the

class of solutions with polynomial growth.

Proof. Since f and g have polynomial growth and ρ is bounded from below, we deduce

from the estimates of Proposition 1.2.1 that v polynomial growth too. The result then

follows from Theorems 1.3.1 and 1.3.2. 2

3.2 Verification theorem

In practice, the regularity assumptions of the above theorem are very difficult to check

and we have to rely on a weaker definition of solutions, like viscosity solutions (see e.g.

[7] and [6]), or to use a verification theorem which essentially consists in showing that,

if a smooth solution of (1.0.3) exists, then it coincides with v.

Theorem 1.3.3 (Verification) Assume that there exists a C1,2([0, T ) × Rd) solution ϕ

to (1.0.3) with polynomial growth such that

lim
t↗T,x′→x

ϕ(t, x′) = g(x) on Rd . (1.3.3)

Then, v = ϕ.
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Proof. Given n ≥ 1, set

θn := inf{s ≥ t : ‖Xt,x(s)‖ ≥ n} .

Note that (1.2.1) implies that Xt,x is bounded on [t, θ ∧ T ]. By Itô’s Lemma, Corollary

A.2.1, (A.1.1) and the fact that ϕ solves (1.0.3), we obtain

ϕ(t, x) = E
[
Et,x(θn ∧ T )ϕ(θn ∧ T,Xt,x(θn ∧ T )) +

∫ θn∧T

t
Et,x(s)f(Xt,x(s))ds

]
(1.3.4)

for each n. Now, observe that θn →∞ as n→∞. In view of (1.3.3), this implies that

Et,x(θn ∧ T )ϕ(θn ∧ T,Xt,x(θn ∧ T )) +

∫ θn∧T

t
Et,x(s)f(Xt,x(s))ds

−→ Et,x(T )g(Xt,x(T )) +

∫ T

t
Et,x(s)f(Xt,x(s))ds P− a.s.

Using Proposition 1.2.1, we then deduce that ϕ = v by sending n → ∞ in (1.3.4) and

using the dominated convergence theorem. 2

Remark 1.3.5 In the case where σ = 0, then we only need v to be C1 since no second

order term appears in the PDE and in Itô’s Lemma. If X takes values in (0,∞)d then

the PDE has to hold on [0, T )× (0,∞)d and the boundary condition has to be written

on (0,∞)d as well. We shall discuss in Section 5.1 a case where the PDE is satisfied on

a cylindrical set [0, T )×O for some open set O ⊂ Rd. In this case, one has to specify a

boundary condition on [0, T )× ∂O.

4 Viscosity solutions: definitions and derivation of the

PDE in the non-regular case

As explained above, it is in general very difficult to derive some a-priori regularity on v

or on the solutions of (1.0.3). When σ is uniformly elliptic, i.e. there is c > 0 such that

for all ξ ∈ Rd

ξ∗σσ∗ξ ≥ c‖ξ‖2 , (1.4.1)

and the coefficients are smooth enough, general results for PDEs can be used, see e.g.

[13] or [14], but in general a solution of (1.0.3) needs not to be regular.

In this case, we can still characterize v as a solution of (1.0.3) in a weak sense. In these

notes, we present the notion of viscosity solution which has become very popular in

finance. We refer to [2] or [6] for more details.
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4.1 Definition

Let F be an operator from [0, T ]×Rd×R×R×Rd×Sd×R into R where Sd denotes the

set of d-dimensional symmetric matrices. In this chapter, we will be mostly interested

by the case

F (t, x, u, q, p, A, I) = ρ(t, x)u− q − 〈b(t, x), p〉 − 1

2
Tr [σσ∗(x)A]− I − f(x) , (1.4.2)

so that v solves (1.0.3) means

F [v](t, x) := F (t, x, v(t, x), ∂tv(t, x), Dv(t, x), D2v(t, x), I[t, x; v(t, ·); v(t, x)]) = 0

(1.4.3)

on [0, T )× Rd with

I[t, x;ϕ;u] =

∫
Rd

(ϕ(x+ β(x, z))− u)λtΦ(dz) .

We say that F is elliptique if it is non increasing with respect to A ∈ Sd and its last

variable I. This is clearly the case for F defined as in (1.4.2). In the following, F will

always be assumed to be elliptic and non-increasing in its q-variable.

Let us assume for a moment that v is smooth. Let ϕ be C1,2 and (t̂, x̂) ∈ [0, T )×Rd be

a (global) minimum point of v − ϕ on [0, T ] × Rd. After possibly adding a constant to

ϕ, one can always assume that (v − ϕ)(t̂, x̂) = 0. The first and second order optimality

conditions imply

∂tv(t̂, x̂) ≥ ∂tϕ(t̂, x̂), Dv(t̂, x̂) = Dϕ(t̂, x̂) and D2v(t̂, x̂) ≥ D2ϕ(t̂, x̂) .

Since F is elliptic and non-increasing in its q-variable, we deduce that

F (t̂, x̂, ϕ(t̂, x̂), ∂tϕ(t̂, x̂), Dϕ(t̂, x̂), D2ϕ(t̂, x̂), I[t̂, x̂;ϕ(t̂, ·);ϕ(t̂, x̂)]) ≥ 0

whenever

F (t, x, v(t, x), ∂tv(t, x), Dv(t, x), D2v(t, x), I[t, x; v(t, ·); v(t, x)]) = 0 .

Conversely, if (t̂, x̂) is a (global) maximum point of v − ϕ then

F (t̂, x̂, ϕ(t̂, x̂), ∂tϕ(t̂, x̂), Dϕ(t̂, x̂), D2ϕ(t̂, x̂), I[t̂, x̂;ϕ(t̂, ·);ϕ(t̂, x̂)]) ≤ 0 .

This leads to the following notion of viscosity solution.
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Definition 1.4.1 Let F be an elliptic operator as defined as above. We say that a l.s.c.

(resp. u.s.c) function U is a super-solution (resp. sub-solution) of (1.4.3) on [0, T )×Rd

if for all ϕ ∈ C1,2 and (t̂, x̂) ∈ [0, T )×Rd such that 0 = min[0,T ]×Rd(U−ϕ) = (U−ϕ)(t̂, x̂)

(resp. 0 = max[0,T ]×Rd(U − ϕ) = (U − ϕ)(t̂, x̂)), we have:

F (t̂, x̂, ϕ(t̂, x̂), ∂tϕ(t̂, x̂), Dϕ(t̂, x̂), D2ϕ(t̂, x̂), I[t̂, x̂;ϕ(t̂, ·);ϕ(t̂, x̂)]) ≥ 0 ( resp. ≤ 0) .

(1.4.4)

Note that a smooth solution is also a viscosity solution. We shall say that a locally

bounded function is a discontinuous viscosity solution of F = 0 if U∗ and U∗ are respec-

tively super- and sub-solution, where, for (t, x) ∈ [0, T ]× Rd,

U∗(t, x) = lim inf
(s,y)∈[0,T )×Rd→(t,x)

U(s, y) and U∗(t, x) = lim sup
(s,y)∈[0,T )×Rd→(t,x)

U(s, y) . (1.4.5)

If U is continuous, we simply say that it is a viscosity solution.

Remark 1.4.6 If (t̂, x̂) ∈ [0, T )×Rd realize a minimum of U −ϕ then it realize a strict

minimum of U −ϕε where ϕε(t, x) = ϕ(t, x)−ε‖x− x̂‖4−|t− t̂|2 and ε > 0. Moreover, if

ϕε satisfies (1.4.4) at (t̂, x̂) then ϕ satisfies the same equation whenever F is continuous

in its last variable (take the limit ε → 0). In this case, it is clear that the notion of

minimum can be replaced by that of strict minimum. Similarly, we can replace the

notion of maximum by the one of strict maximum in the definition of sub-solutions.

Remark 1.4.7 Assume that F is continuous in its last variable. Let Bη be the ball of

center (t̂, x̂) and radius η > 0. It is clear from the super-solution definition that we can

always assume that ϕ = U∗ on Bc
η if we replace the property ϕ ∈ C1,2 by ϕ ∈ C1,2(Bη/4).

Indeed, let Un be a sequence of smooth functions such that Un ≤ U∗ for each n and

Un → U∗. Let now χ be a smooth non-increasing function such χ(z) = 1 if z > η/4 and

χ(z) = 0 if z < −η/4. Let dη/2 be the algebraic distance to ∂Bη/2 (dη/2 > 0 on Bη/2 and

dη/2 ≤ 0 on Bc
η/2). This function is smooth. We then set ϕnη := ϕ χ◦dη/2+Un(1−χ◦dη/2).

Then, (t̂, x̂) is still a minimum point for U∗ − ϕnη and (U∗ − ϕnη )(t̂, x̂) = 0. We can then

apply the definition to (t̂, x̂, ϕnη ). By sending n → ∞, this shows that (1.4.4) holds for

ϕη := ϕ χ ◦ dη/2 + U∗(1− χ ◦ dη/2) which is smooth in Bη/4 and satisfies ϕ = U∗ on Bc
η.

Remark 1.4.8 Observe that, in the discontinuous viscosity solutions approach, there

is no need to prove the a-priori continuity of the value function since we work directly

with the l.s.c. and u.s.c. envelope of the value function v. The continuity will actually

be a consequence of the maximum principle (see Theorem 1.4.2 below) which, under

suitable conditions, implies that v∗ ≥ v∗ and thus v∗ = v∗ = v is continuous (at least

inside the domain, with continuous extension at the boundary).
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4.2 PDE derivation

We can now characterize v as a discontinuous viscosity solution of (1.0.3).

Theorem 1.4.1 The value function v is a discontinuous viscosity solution on [0, T )×Rd

of (1.0.3). Moreover, v∗(T, ·) ≥ g and v∗(T, ·) ≤ g on Rd.

Proof. We only prove the super-solution property of v∗ and the fact that v∗(T, ·) ≥ g.

The proof of the other assertions is symmetric. Let (tn, xn)n≥1 be a sequence of [0, T )×Rd

such that (tn, xn, v(tn, xn)) → (t̂, x̂, v∗(t̂, x̂)). We first assume that t̂ = T . In this case,

we deduce from Proposition 1.2.1 and a dominated convergence argument that

v∗(t̂, x̂) = lim
n

E
[
Etn,xn(T )g(Xtn,xn(T )) +

∫ T

tn

Etn,xn(s)f(Xtn,xn(s))ds

]
= E

[
lim
n

(
Etn,xn(T )g(Xtn,xn(T )) +

∫ T

tn

Etn,xn(s)f(Xtn,xn(s))ds

)]
= g(T, x̂) .

We now assume that t̂ < T . Let ϕ ∈ C1,2 be such that 0 = min[0,T ]×Rd(v∗ − ϕ) =

(v∗ − ϕ)(t̂, x̂). We proceed by contradiction, i.e. we assume that for some η > 0

ρϕ(t̂, x̂)− Lϕ(t̂, x̂)− f(x̂) < −2η

and show that this contradicts (1.3.1). Indeed, if the above inequality holds at (t̂, x̂),

then

ρϕ(t, x)− Lϕ(t, x)− f(x) ≤ 0

on a neighborhood of (t̂, x̂) of the form B := B(t̂, r)×B(x̂, r), r ∈ (t̂, T − t̂), containing,

without loss of generality, the sequence (tn, xn)n. By Remark 1.4.6, we can then assume,

after possibly changing the value of η, that

v ≥ v∗ ≥ ϕ+ η on ∂pB

where ∂pB is the parabolic boundary of B, i.e. (B(t̂, r)×∂B(x̂, r))∪ ({t̂+ r}× B̄(x̂, r)).

We can also assume that it holds on

B̃ := {(t, x+ β(x, z)) : (t, x, z) ∈ B × Rd and x+ β(x, z)) /∈ B(x̂, r))}

which is also bounded thanks to the linear growth assumption on β.
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Let θn be the first exit time of (t,Xtn,xn(t))t≥tn from B. By Itô’s Lemma applied to ϕ

and the above inequalities, we then obtain

ϕ(tn, xn) = E [Etn,xn(θn)ϕ(θn, Xtn,xn(θ))]

− E
[∫ θn

tn

Etn,xn(s) (Lϕ(s,Xtn,xn(s))− ρϕ(s,Xtn,xn(s))) ds

]
≤ E

[
Etn,xn(θn) (v(θn, Xtn,xn(θ))− η) +

∫ θn

tn

Etn,xn(s)f(Xtn,xn(s))ds

]
.

Since Xtn,xn is uniformly bounded on [tn, θn], uniformly in n, and ρ is continuous, we

can then find ε > 0, independent of n, such that

ϕ(tn, xn) ≤ −εη + E
[
Etn,xn(θn)v(θn, Xtn,xn(θ)) +

∫ θn

tn

Etn,xn(s)f(Xtn,xn(s)ds

]
.

Since ϕ(tn, xn)→ ϕ(t̂, x̂) = v∗(t̂, x̂) and v(tn, xn)→ v∗(t̂, x̂), we deduce that for n large

enough

v(tn, xn) < E
[
Etn,xn(θn)v(θn, Xtn,xn(θ)) +

∫ θn

tn

Etn,xn(s)f(Xtn,xn(s)ds

]
,

which contradicts (1.3.1). 2

Remark 1.4.9 The introduction of the sequence (tn, xn)n≥1 is only used in order to

approximate v∗ by v on which the dynamic programming principle is stated. Obviously,

this approximation argument is not required if v is already l.s.c.

Remark 1.4.10 If g is not continuous, similar arguments as above show that v∗(T, ·) ≥
g∗ and v∗(T, ·) ≤ g∗

4.3 Comparison principle

An equivalent definition of viscosity solutions

In order to complete the characterization of v, it remains to show that it is the unique

solution of (1.0.3) satisfying the boundary condition v(T, ·) = g. For this purpose, we

need an alternative definition of viscosity solutions in terms of super- et subjets.

Note first that if U is l.s.c., ϕ ∈ C1,2 and (t̂, x̂) ∈ [0, T ) × Rd is such that 0 =

min[0,T ]×Rd(U − ϕ) = (U − ϕ)(t̂, x̂) then a second order Taylor expansion implies

U(t, x) ≥ U(t̂, x̂) + ϕ(t, x)− ϕ(t̂, x̂)

= U(t̂, x̂) + ∂tϕ(t̂, x̂)(t− t̂)

+ 〈Dϕ(t̂, x̂), x− x̂〉+
1

2
〈D2ϕ(t̂, x̂)(x− x̂), x− x̂〉+ o(|t− t̂|+ ‖x− x̂‖2) .
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This naturally leads to the notion of subjet defined as the set P−U(t̂, x̂) of points

(q, p, A) ∈ R× Rd × Sd satisfying

U(t, x) ≥ U(t̂, x̂) + q(t− t̂) + 〈p, x− x̂〉+
1

2
〈A(x− x̂), x− x̂〉+ o(|t− t̂|+ ‖x− x̂‖2) .

We define similarly the superjet P+U(t̂, x̂) as the collection of points (q, p, A) ∈ R ×
Rd × Sd such that

U(t, x) ≤ U(t̂, x̂) + q(t− t̂) + 〈p, x− x̂〉+
1

2
〈A(x− x̂), x− x̂〉+ o(|t− t̂|+ ‖x− x̂‖2) .

For technical reasons related to Ishii’s Lemma, see below, we will also need to con-

sider the “limit” super- and subjets. More precisely, we define P̄+U(t̂, x̂) as the set of

points (q, p, A) ∈ R × Rd × Sd for which there exists a sequence (tn, xn, qn, pn, An)n of

[0, T )×Rd×P+U(tn, xn) satisfying (tn, xn, U(tn, xn), qn, pn, An)→ (t̂, x̂, U(t̂, x̂), q, p, A).

The set P̄−U(t̂, x̂) is defined similarly.

We can now state the alternative definition of viscosity solutions.

Lemma 1.4.2 Assume that F is continuous. A l.s.c. (resp. u.s.c.) function U is

a super-solution (resp. sub-solution) of (1.4.3) on [0, T ) × Rd if and only if for all

(t̂, x̂) ∈ [0, T )× Rd and all (q̂, p̂, Â) ∈ P̄−U(t̂, x̂) (resp. P̄+U(t̂, x̂) )

F (t̂, x̂, U(t̂, x̂), q̂, p̂, Â, I[t̂, x̂;U(t̂, ·), U(t̂, x̂)]) ≥ 0 ( resp. ≤ 0) . (1.4.6)

Proof. We only consider the super-solution property. It is clear that the definition of

the Lemma implies the Definition 1.4.1. Indeed, if (t̂, x̂) ∈ [0, T )× Rd is a minimum of

U − ϕ then (∂tϕ,Dϕ,D
2ϕ)(t̂, x̂) ∈ P̄−U(t̂, x̂). It follows that

F (t̂, x̂, U(t̂, x̂), q̂, p̂, Â, I[t̂, x̂;U(t̂, ·);U(t̂, x̂)]) ≥ 0

with (q̂, p̂, Â) = (∂tϕ,Dϕ,D
2ϕ)(t̂, x̂). Since U ≥ ϕ, I is non-decreasing in its third

argument and F is elliptic, this implies the required result.

We now prove the converse implication. Fix (t̂, x̂) ∈ [0, T )×Rd and (q̂, p̂, Â) ∈ P̄−U(t̂, x̂).

It is clear that, if (q̂, p̂, Â) ∈ P−U(t̂, x̂), then we can find ϕ locally C1,2 such that

(q̂, p̂, Â) = (∂tϕ,Dϕ,D
2ϕ)(t̂, x̂), ϕ = U at (t̂, x̂) and U ≥ ϕ (see e.g. [7] page 225 for an

example of construction). We then have

F (t̂, x̂, U(t̂, x̂), q̂, p̂, Â, I[t̂, x̂;ϕ(t̂, ·);U(t̂, x̂)]) ≥ 0 .

By Remark 1.4.7, we can also assume that ϕ = U outside a neighborhood of radius

η > 0. By taking the limit when η → 0, we then get

F (t̂, x̂, U(t̂, x̂), q̂, p̂, Â, I[t̂, x̂;U(t̂, ·);U(t̂, x̂)]) ≥ 0 .

The extension to (q̂, p̂, Â) ∈ P̄−U(t̂, x̂) is immediate since F is continuous. 2
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Ishii’s Lemma and Comparison Theorem

The last ingredient to prove a comparison theorem is the so-called Ishii’s Lemma.

Lemma 1.4.3 (Ishii’s Lemma) Let U (resp. V ) be a l.s.c. super-solution (resp. u.s.c.

subsolution) of (1.4.3) on [0, T )× Rd. Assume that F is continuous and satisfies

F (t, x, u, q, p, A, I) = F (t, x, u, 0, p, A, I)− q

for all (t, x, u, q, p, A, I) ∈ [0, T )×Rd×R×R×Rd×Sd×R. Let φ ∈ C1,2,2([0, T ]×Rd×Rd)
and (t̂, x̂, ŷ) ∈ (0, T )× Rd × Rd be such that

W (t, x, y) := V (t, x)− U(t, y)− φ(t, x, y) ≤ W (t̂, x̂, ŷ) ∀ (t, x, y) ∈ [0, T )× Rd × Rd .

Then, for all η > 0, there is (q1, p1, A1) ∈ P̄+V (t̂, x̂) and (q2, p2, A2) ∈ P̄−U(t̂, ŷ) such

that

q1 − q2 = ∂tφ(t̂, x̂, ŷ) , (p1, p2) = (Dxφ,−Dyφ)(t̂, x̂, ŷ)

and (
A1 0

0 −A2

)
≤ D(x,y)φ(t̂, x̂, ŷ) + η

(
D(x,y)φ(t̂, x̂, ŷ)

)2
.

Proof. The proof is technical and long, we refer to [6] for details. 2

Remark 1.4.11 Let F be as in Lemma 1.4.3. Let U be a viscosity supersolution of

F [ϕ] = 0 on [0, T )× Rd. Set Ũ(t, x) := U(t, x) + ε
t for some ε > 0. If (t̂, x̂) reaches the

infimum of Ũ−ϕ̃ over (0, T )×Rd for some smooth function ϕ̃, such that (Ũ−ϕ̃)(t̂, x̂) = 0,

then it also reaches a minimum of U−ϕ with ϕ(t, x) := ϕ̃(t, x)− ε
t . Thus, F [ϕ](t̂, x̂) ≥ 0.

If F is also also non-decreasing in its u-argument, then

0 ≤ F (t̂, x̂, ϕ̃(t̂, x̂)− ε

t̂
, 0, Dϕ̃(t̂, x̂), D2ϕ̃(t̂, x̂), I[t̂, x̂; ϕ̃(t̂, ·); ϕ̃(t̂, x̂)])− ∂tϕ̃(t̂, x̂)− ε

t̂2

≤ F (t̂, x̂, ϕ̃(t̂, x̂), Dϕ̃(t̂, x̂), D2ϕ̃(t̂, x̂), I[t̂, x̂; ϕ̃(t̂, ·); ϕ̃(t̂, x̂)])− ∂tϕ̃(t̂, x̂).

Hence, Ũ is still a supersolution, but we know that t̂ > 0 since limt↓0 Ũ(t, ·) = +∞.

If V is a subsolution of F [ϕ] = 0 on [0, T )×Rd, then saying that sup(0,T )×Rd(V −U) > 0

is the same as saying that sup(0,T )×Rd(V − Ũ) > 0, upon choosing ε > 0 small enough.

The latter is also the same as saying that sup[0,T )×Rd(V − U) > 0 upon considering the

same PDE on [−1, T ].
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We now prove the expected comparison theorem also called maximum principle.

Theorem 1.4.2 (Comparison) Let U (resp. V ) be a l.s.c. super-solution (resp. u.s.c.

subsolution) with polynomial growth of (1.0.3) on [0, T ) × Rd. If U ≥ V on {T} × Rd,
then U ≥ V on [0, T )× Rd.

Proof. By the same arguments as in Remark 1.3.3, we can assume that ρ > 0. Assume

now that there is some point (t0, x0) ∈ [0, T ] × Rd such that U(t0, x0) < V (t0, x0). We

shall prove that it leads to a contradiction. Let ε > 0, κ > 0 and p an integer greater

than 1 be such that lim sup‖x‖→∞ supt≤T (|U(t, x)| + |V (t, x)|)/(1 + ‖x‖p) = 0. Then

there exists (t̂, x̂) ∈ [0, T ]× Rd such that

0 < V (t̂, x̂)− U(t̂, x̂)− φ(t̂, x̂, x̂) = max
(t,x)∈[0,T ]×Rd

(V (t, x)− U(t, x)− φ(t, x, x)) ,

where

φ(t, x, y) := εe−κt(1 + ‖x‖2p + ‖y‖2p)

and ε is chosen small enough. Since U ≥ V on {T} × Rd, it is clear that t̂ < T . By the

arguments of Remark 1.4.11, we can restrict to the case where t̂ > 0.

For all n ≥ 1, we can also find (tn, xn, yn) ∈ [0, T ]× Rd × Rd such that

0 < Γn(tn, xn, yn) = max
(t,x,y)∈[0,T ]×Rd×Rd

Γn(t, x, y) (1.4.7)

where

Γn(t, x, y) := V (t, x)− U(t, y)− φ(t, x, y)− n‖x− y‖2

− (|t− t̂|2 + ‖x− x̂‖4) .

It is easily checked that, after possibly passing to a subsequence,

(tn, xn, yn,Γn(tn, xn, yn))→ (t̂, x̂, x̂,Γ0(t̂, x̂, x̂)) and n‖xn − yn‖2 → 0 . (1.4.8)

Moreover, Ishii’s Lemma implies that for all η > 0, we can find (qn1 , p
n
1 , A

n
1 ) ∈ P̄+V (tn, xn)

and (qn2 , p
n
2 , A

n
2 ) ∈ P̄−U(tn, yn) such that

qn1 − qn2 = ∂tϕn(tn, xn, yn) , (p1, p2) = (Dxϕn,−Dyϕn)(tn, xn, yn)

and (
An1 0

0 −An2

)
≤ D2

(x,y)ϕn(tn, xn, yn) + η
(
D2

(x,y)ϕn(tn, xn, yn)
)2

.
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where

ϕn(t, x, y) := φ(t, x, y) + n‖x− y‖2 + |t− t̂|2 + ‖x− x̂‖4 .

In order to obtain the required contradiction, it now suffices to appeal to Lemma 1.4.2

and to argue as in the proof of Theorem 1.3.2. By (1.4.8), we obtain that for all η > 0

ρ(V − U)(t̂, x̂) ≤ εn + ηCn + Lφ(t̂, x̂, x̂)

where εn → 0 is independent of η and Cn does neither depend of η. By sending η → 0,

we deduce that

ρ(V − U)(t̂, x̂) ≤ εn + Lφ(t̂, x̂, x̂) .

For κ > 0 big enough so that the second term in the right-hand side is strictly negative

and n large enough, we get ρ(V − U)(t̂, x̂) < 0. This contradicts the fact that (V −
U)(t̂, x̂) > 0 since ρ is assumed to be (strictly) positive. 2

Corollary 1.4.2 The value function v is continuous and is the unique viscosity solution

on [0, T )×Rd of (1.0.3) satisfying lims↑T, y→x v(s, y) = g(x) in the class of discontinuous

viscosity solutions with polynomial growth.

Proof. Recall that since f and g have polynomial growth and ρ is bounded from below,

the estimates of Proposition 1.2.1 imply that v has polynomial growth too. The above

assertion is then a consequence of Theorem 1.4.1 and Theorem 1.4.2. 2

5 Examples of application

5.1 Plain Vanilla and Barrier options in a local volatility model

Let us consider the following financial market composed by one non-risky asset with

instantaneous constant interest rate ρ > 0 and d risky asset whose dynamics under the

risk neutral probability measure (here P) is given by

dXt,x(s) = Xt,x(s)ρds+ diag[Xt,x(s)]σ(Xt,x(s))dW (s) , s ≥ t ≥ 0 .

Here, x ∈ (0,∞)d, diag[x] denotes the element of Md whose i-th diagonal argument is

given by xi, and we assume that the map x 7→ diag[x]σ(x) is Lipschitz.
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Plain Vanilla options

Given a payoff function g, the price at time t of the European random claim g(Xt,x(T ))

is given by:

v(t, x) := E
[
e−ρ(T−t)g(Xt,x(T ))

]
.

If g is continuous with polynomial growth, then it follows from the same arguments as

those used to prove Theorem 1.4.1 that it is a discontinuous viscosity solution of

ρϕ− ∂

∂t
ϕ(t, x)− ρ〈x,Dϕ(t, x)〉 − 1

2
Tr
[
diag[x]σσ∗(x)diag[x]D2ϕ(t, x)

]
= 0 (1.5.1)

on [0, T ) × (0,∞)d with the terminal condition lims↑T, y→x v(s, y) = g(x) on (0,∞)d.

However, we can not apply directly the argument of the proof of Theorem 1.4.2 because

the domain in the space variable is not closed. In particular, there is no reason why the

max in (1.4.7) should be attained on [0, T ]× (0,∞)2d and not on [0, T ]× [0,∞)2d.

In order to avoid this problem, we could specify a boundary condition. This is pos-

sible when d = 1. In this case, standard estimates implies that lim(s,y)→(t,0) v(s, y) =

e−ρ(T−t)g(0) on [0, T ]. This provides uniqueness in the class of solutions satisfying this

additional boundary condition: since x̂ can not be equal to 0, it follows that, after pos-

sibly passing to a subsequence xn, yn > 0, recall (1.4.8), and the remaining arguments

can be applied.

For d ≥ 2, this is much more difficult. An other way to adapt the proof of Theorem

1.4.2 is to start with a point (t̂c, x̂c) satisfying

0 < V (t̂c, x̂c)− U(t̂c, x̂c)−

(
εe−κt̂c(1 + 2‖x̂c‖2p) + c

d∑
i=1

(x̂ic)
−2

)

= max
(t,x)∈[0,T ]×(0,∞)d

(
V (t, x)− U(t, x)− εe−κt(1 + 2‖x‖2p)− 2c

d∑
i=1

(xi)−2

)
,

for some c > 0. In this case, x̂c ∈ (0,∞)d. We can then repeat the argument of the

proof of Theorem 1.4.2. The only difference is that we have to take the limit c → 0

to conclude and control the additional term (which is easy once we have observed that

limc→0 c
∑d

i=1(x̂ic)
−2 = 0).

Barrier options

In the case of Barrier options, the payoff is typically of the form g(Xt,x(T ))1T≤τt,x where

τt,x := inf{s ≥ t : Xt,x(s) /∈ O} for some given open subset O ⊂ (0,∞)d.
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Here again, one can easily adapt the proof of Theorem 1.4.1 to show that the price

v(t, x) := E
[
e−ρ(T−t)g(Xt,x(T ))1T≤τt,x

]
is a discontinuous viscosity solution of (1.5.1) on [0, T )×O with the terminal condition

v(T−, ·) = g on (0,∞)d. It remains to specify a boundary condition on [0, T ) × ∂O.

From now on, we define v∗ and v∗ as in (1.4.5) except that we take the limit over

y ∈ O. For a smooth test function ϕ and (t̂, x̂) ∈ [0, T )× ∂O such that (v∗ − ϕ)(t̂, x̂) =

min[0,T ]×Ō(v∗ − ϕ)(t, x), we can then show that, at (t̂, x̂) ∈ [0, T )× ∂O,

max

{
ϕ , ρϕ− ∂

∂t
ϕ− ρ〈x̂, Dϕ〉 − 1

2
Tr
[
diag[x̂]σσ∗diag[x̂]D2ϕ

]}
≥ 0

by adapting the arguments used to prove Theorem 1.4.1. Similarly, for a smooth test

function ϕ and (t̂, x̂) ∈ [0, T ) × ∂O such that (v∗ − ϕ)(t̂, x̂) = max[0,T ]×Ō(v∗ − ϕ)(t, x),

we must have, at (t̂, x̂),

min

{
ϕ , ρϕ− ∂

∂t
ϕ− ρ〈x̂, Dϕ〉 − 1

2
Tr
[
diag[x̂]σσ∗diag[x̂]D2ϕ

]}
≤ 0 .

Let us now assume that the algebraic distance d to ∂O is C2 (d > 0 on O, d < 0 on Oc

and d = 0 on ∂O). Then, if ϕ is a test function at (t̂, x̂) for v∗, then so is ϕ− (d− d2/ε)

for ε > 0 in the sense that (t̂, x̂) is still a local minimum point. Applying the above

characterization, we obtain that, if ϕ(t̂, x̂) < 0, then, at (t̂, x̂)

0 ≤ ρϕ− ∂

∂t
ϕ− ρ〈x̂, Dϕ〉 − 1

2
Tr
[
diag[x̂]σσ∗diag[x̂]D2ϕ

]
+ ρ〈x,Dd− 2dDd/ε〉+

1

2
Tr
[
diag[x̂]σσ∗diag[x̂](D2d(1− 2d/ε)− 2Dd⊗Dd/ε)

]
= ρϕ− ∂

∂t
ϕ− ρ〈x̂, Dϕ〉 − 1

2
Tr
[
diag[x̂]σσ∗diag[x̂]D2ϕ

]
+ ρ〈x̂, Dd〉+

1

2
Tr
[
diag[x̂]σσ∗diag[x̂](D2d− 2Dd⊗Dd/ε)

]
.

If moreover, the non-characteristic boundary condition

∃ c > 0 s.t. ‖Dddiag[x]σ‖ ≥ c on ∂O , (1.5.2)

holds, then we obtain a contradiction by sending ε → 0 in the above inequality. This

shows that v∗(t̂, x̂) = ϕ(t̂, x̂) ≥ 0. We can similarly show that v∗(t̂, x̂) ≤ 0 which provides

the required boundary condition whenever (1.5.2) holds.
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5.2 The Lundberg model in insurance

In the Lundberg model the evolution of the reserve X of the insurance company is given

by

X(t) = x+ pt−
∫ t

0
zµ(dz, ds) ,

where p is the premium rate and µ models the arrival of sinisters.

A reinsurance rule can be described as a map

R : Rd × U 7→ Rd

which to a size of claim z and a level of reinsurance u ∈ U ⊂ Rd associate a retention

level, i.e. the part which is not reinsured.

Two typical examples are:

- Proportional reinsurance: U = [0, 1], R(z, u) = (1− u)z.

- Excess of Loss reinsurance: U = R+, R(z, u) = min{z , u}1z−u≤L + L1z−u>L where

L > 0 stands for the maximum amount of claims insured by the reinsurance company.

To a reinsurance rule, we can associate a reinsurance premium function q which depends

on the level of reinsurance.

The evolution of the reserve in the Lundberg model with reinsurance is:

X(t) = x+

∫ t

0
(p− q(νs)) ds−

∫ t

0
R(z, νs)µ(dz, ds) ,

where ν is a U -valued predictable process which models the evolution in time of the level

of retention.

Evaluation of reinsurance premiums

We take d = 1 and assume that the level of reinsurance ν is constant, equal to u ∈ U .

Then, the part of the claim paid by the reinsurance company up to time T is:∫ T

0
(z −R(z, u))µ(dz, ds) .

If the reinsurance premium is paid once for all at time 0 for all the period [0, T ], then

the fair premium is:

v(0, 0) := E
[∫ T

0
(z −R(z, u))µ(dz, ds)

]
.
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The associated PDE is

∂

∂t
v(t, x) +

∫
Rd

(v(t, x+ (z −R(z, u)))− v(t, x))λtΦ(dz) = 0 on [0, T )× R+

with the boundary condition

v(T, x) = x .

If we look for a solution in the form v(t, x) = x+ f(t), for some smooth function f , we

obtain

∂

∂t
f(t) + λtE [Z1 −R(Z1, u)] = 0

which implies

v(t, x) = x+ E [Z1 −R(Z1, u)]

∫ T

t
λsds ,

where Z1 has the distribution Φ.

Risk evaluation

We now compute the level of remaining risk for the insurance company. It is defined as

v(0, 0) := E
[
V

(∫ T

0
R(z, u)µ(dz, ds)

)]
for some increasing convex function V .

The associated PDE is

∂

∂t
v(t, x) +

∫
Rd

(v(t, x+R(z, u))− v(t, x))λtΦ(dz) = 0 on [0, T )× R+

with the boundary condition

v(T, x) = V (x) .

In the special case where V (x) = eηx, we can look for a solution in the form v(t, x) =

eηxf(t), for some smooth function f . We obtain

∂

∂t
f(t) + λtE

[
eηR(Z1,u) − 1

]
= 0

which implies

v(t, x) = eηxE
[
eηR(Z1,u) − 1

] ∫ T

t
λsds .
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Chapter 2

Hamilton-Jacobi-Bellman

equations and control problems in

standard form

1 Controlled diffusions: definition and a-priori estimates

We now consider the case where the process X is controlled. The set of controls U is

defined as the set of all locally bounded square integrable predictable processes ν =

{νt, t ≥ 0} valued in a given subset U of Rd.

Given a control process ν ∈ U , t ≥ 0 and x ∈ Rd, we define the controlled process Xν
t,x

as the solution on [t,∞) of the stochastic differential system :

X(v) = x+

∫ v

t
b (X(s), νs) ds+

∫ v

t
σ (X(s), νs) dW (s)

+

∫ v

t

∫
Rd
β (X(s−), νs, z)µ(dz, ds) . (2.1.1)

In the rest of this chapter, we shall always assume that there is some L > 0 such that

‖β (x, u, z) ‖ ≤ L (1 + ‖x‖+ ‖u‖)

‖β (x, u, z)− β (y, v, z) ‖ ≤ L (‖y − x‖+ ‖u− v‖)

‖b (x, u) ‖+ ‖σ (x, u) ‖ ≤ L (1 + ‖x‖+ ‖u‖) (2.1.2)

‖b (x, u)− b (y, v) ‖+ ‖σ (x, u)− σ (y, v) ‖ ≤ L (‖y − x‖+ ‖u− v‖)

for all (x, y, u, v, z) ∈ (Rd)2×U2×Rd. These conditions ensure the existence of a unique

solution to (2.1.1) which, in particular, has the flow property (1.1.4).
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By the same arguments as those used to prove Proposition 1.2.1, we can also obtain the

following a-priori controls on Xν .

Proposition 2.1.3 Fix ν, ν̃ ∈ U and T > 0. Then, for all p ≥ 1, there is C > 0 such

that, for all (t, x, y) ∈ [0, T )× (Rd)2 and h ∈ [0, T − t],

E

[
sup
t≤s≤T

‖Xν
t,x(s)‖p

]
≤ C (1 + ‖x‖p + E

[∫ T

t
‖νs‖pds

]
)

E

[
sup

t≤s≤t+h
‖Xν

t,x(s)− x‖p
]
≤ C

(
h
p
2 (1 + ‖x‖p) + E

[∫ t+h

t
‖νs‖pds

])

E

[
sup
t≤s≤T

‖Xν
t,x(s)−Xν

t,y(s)‖p
]
≤ C ‖x− y‖p

E

[
sup
t≤s≤T

‖Xν
t,x(s)−X ν̃

t,x(s)‖p
]
≤ C E

[∫ T

t
‖νs − ν̃s‖pds

]
.

2 Optimal control with finite time horizon

In this section, we focus on stochastic control problem in standard form with a finite

(and fixed) time horizon T > 0. We first study a general control problem and then

discuss in more details some applications in insurance.

The aim of the controller is to maximize the quantity

J(t, x; ν) := E
[
Eνt,x(T )g(Xν

t,x(T )) +

∫ T

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
over the set of controls U . Here, g, f and ρ are locally Lipschtiz, ρ is bounded from

below, g and f have at most polynomial growth, uniformly in ν.

The function J is called the gain function. In minimization problem, we call it the cost

function.

The associated value function is:

v(t, x) := sup
ν∈Ut

J(t, x; ν)

where Ut denotes the set of controls in U which are independent of Ft.

The aim of this section is to characterize v in terms of the Hamilton-Jacobi-Bellman

equation

Hv = ρv (2.2.1)
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where

Hϕ(t, x) := sup
u∈U

(Luϕ(t, x) + f(x, u))

and, for a smooth function ϕ and u ∈ U ,

Luϕ(t, x) :=
∂

∂t
ϕ(t, x) + 〈b(x, u), Dϕ(t, x)〉+

1

2
Tr
[
σσ∗(x, u)D2ϕ(t, x)

]
+

∫
Rd

(ϕ(t, x+ β(x, u, z))− ϕ(t, x))λtΦ(dz) .

This relation will be obtained by using essentially the same arguments as in Chapter 1.

We shall first prove a dynamic programming principle, see (2.2.3) below. It will imply

that, for all ν ∈ U , the process Zν defined by

Zν(t) := Eν0,x(t)v(t,Xν
0,x(t)) +

∫ t

0
Eν0,x(s)f(Xν

0,x(s), νs)ds , t ≥ 0 , (2.2.2)

is a super-martingale. Since its dynamics is given by

dZ(s) = Eν0,x(s)
(
(Lνsv + f)(s,Xν

0,x(s))− (ρv)(s,Xν
0,x(s), νs)

)
ds

+ (· · · ) dW (s) + (· · · ) µ̄(dz, ds) ,

we must have (Lνsv + f)(s,Xν
0,x(s))− (ρv)(s,Xν

0,x(s), νs) ≤ 0 which formally leads to

sup
u∈U

(Luϕ(t, x) + f(x, u)) ≤ ρv .

Moreover, if for some ν̂, Z ν̂ is a martingale, then ν̂ should be the optimal control in

(2.2.3) and should satisfy

(Lν̂sv + f)(s,X ν̂
0,x(s), ν̂s) = (ρv)(s,X ν̂

0,x(s)) ,

thus leading to (2.2.1).

From the technical point of view, we first prove the dynamic programming principle

which justifies the above super-martingale property for Z. Then, we show that v solves

(2.2.1) in the classical sense if it is C1,2, in the viscosity sense otherwise. The proof of a

uniqueness result for (2.2.1) is left to the reader. Then, we prove a verification theorem.

When the solution of (2.2.1) with the boundary condition ϕ(T, ·) = g can be computed

explicitly (and is sufficiently nice), this allows to retrieve the optimal control associated

to v.
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2.1 Dynamic programming

We first prove the so-called dynamic programming principle:

v(t, x) = sup
ν∈Ut

E
[
Eνt,x(θ)v(θ,Xν

t,x(θ)) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
(2.2.3)

which, as in the non-controlled case, is the key ingredient to relate control problems to

PDEs, compare with Proposition 1.3.2.

Interpretation

Its interpretation is the following. First note that the strong Markov and flow properties

of Xν imply that

v(t, x) = sup
ν∈U

E
[
Eνt,x(θ)J(θ,Xν

t,x(θ); ν) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

Let U(θ, ν) denotes the set of controls of U which coincides with ν on [0, θ), then (2.2.3)

can be interpreted as

v(t, x) = sup
ν∈U

E

[
Eνt,x(θ)

(
ess sup

ν̃∈U(θ,ν)
J(θ,Xν

t,x(θ); ν̃)

)
+

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

Here, ess sup
ν̃∈U(θ,ν)

J(θ,Xν
t,x(θ); ν̃) denotes the smallest random variables which dominates

the family
{
J(θ,Xν

t,x(θ); ν̃), ν̃ ∈ U(θ, ν)
}

and should be interpreted as a sup1.

Thus, (2.2.3) means that the optimization problem can be split in two parts, i.e. there

is no difference between:

1. Looking directly for an optimal control on the whole time interval [t, T ].

2. First, searching for an optimal control starting from time θ, given the value of Xν
t,x at

time θ, i.e. compute ν̃(θ,Xν
t,x(θ)) that maximizes J(θ,Xν

t,x(θ); ·). Second, maximizing

over ν the quantity

E
[
Eνt,x(θ)J(θ,Xν

t,x(θ); ν̃(θ,Xν
t,x(θ)) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

Morally speaking, if ν̂ maximizes the last quantity, then the control ν̂1[t,θ)+ν̃(θ,X ν̂
t,x(θ))1[θ,T ]

should be the optimal control on [t, T ] associated to v(t, x).

1The reason why we have to consider this notion of esssup is that the sup may not be well defined as

a random variable, see [16]
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Rigorous proof

In the following, we denote by Ut,b the subset of elements of Ut which are bounded in

L∞ and by UKt,b the subset of the elements bounded by K, K ≥ 1. We omit the subscript

t if the controls are allowed to depend on Ft. We first show that we can restrict to

elements of Ut,b to compute the value function. This will allow us to work with the

family {J(t, x; ν), ν ∈ UKt,b} instead of {J(t, x; ν), ν ∈ Ut}. The main advantage is that

the elements of the first family are continuous in (t, x) uniformly in the control parameter.

This point will be essential in the proof of the dynamic programming principle.

Proposition 2.2.4 For all (t, x) ∈ [0, T )× Rd,

v(t, x) = sup
ν∈Ut,b

J(t, x; ν) = sup
K
vK(t, x)

where

vK(t, x) := sup
ν∈UKt,b

J(t, x; ν) .

Proof. Clearly, v(t, x) ≥ supν∈Ut,b J(t, x; ν). Given some ν ∈ Ut, set νK = ν∧(−K)∨K.

By dominated convergence,

lim
K→∞

E
[∫ T

t
‖νs − νKs ‖2ds

]
= 0 .

By Proposition 1.2.1, this implies that

lim
K→∞

sup
t≤s≤T

E
[
‖Xν

t,x(s)−XνK

t,x (s)‖2
]

= 0 .

Since f− and g− have at most polynomial growth, Fatou’s Lemma and the dominated

convergence theorem show that

lim inf
K→∞

E
[
EνKt,x (T )g(XνK

t,x (T )) +

∫ T

t
EνKt,x (s)f(XνK

t,x (s), νKs )ds

]
≥ J(t, x; ν)

which proves that v(t, x) ≤ supK supν∈UKt,b
J(t, x; ν). 2

Proposition 2.2.5 For all K ≥ 1 and compact set Θ ⊂ [0, T ]×Rd, there is a real map

εK,Θ such that εK,Θ(r)→ 0 as r → 0 for which:

sup
ν∈UKb

|J(t, x; ν)− J(s, y; ν)| ≤ εK,Θ(|s− t|+ ‖x− y‖) for all (s, y, t, x) ∈ Θ2 .

The value function vK is locally uniformly continuous, v−K has at most polynomial growth

and v is lower-semicontinuous.
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Proof. The first assertion is a consequence of the estimates of Proposition 2.1.3 and

the assumptions on ρ, f and g. Indeed, since they are locally Lipschitz with polynomial

growth, Proposition 2.1.3 shows that, for each N , there is CN > 0, C > 0 and p ≥ 1,

independent on N , such that (if s ≥ t)

sup
ν∈UKb

|J(t, x; ν)− J(s, y; ν)|

≤ CN

(
|s− t|

1
2 (1 + ‖x‖) + ‖x− y‖+ |s− t|K

)
+ C(1 + ‖x‖+ ‖y‖+K)p P

[
sup
t≤u≤T

min{‖Xν
t,x(u)‖ ; ‖Xν

s,y(u ∨ s)‖} ≥ N

]
≤ CN

(
|s− t|

1
2 (1 + ‖x‖) + ‖x− y‖+ |s− t|K

)
+ C(1 + ‖x‖+ ‖y‖+K)p+1/N .

Similar estimates shows that J(·; ν)− has polynomial growth for each ν ∈ Ub. Since

vK(t, x) = supν∈UKt,b
J(t, x; ν) and v(t, x) = supK vK(t, x), by Proposition 2.2.4, the

lower semi-continuity of v and the polynomial growth of v−K follow. 2

We now turn to the proof of (2.2.3).

Theorem 2.2.1 For all (t, x) ∈ [0, T )×Rd and all family of stopping times {θν , ν ∈ U}
with values in [t, T ], we have

v(t, x) = sup
ν∈Ut

E
[
Eνt,x(θν)v(θν , Xν

t,x(θν) +

∫ θν

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

Proof. For ease of notations, we omit the dependence of θ with respect to ν.

1. Since a control ν has to be a measurable function of the Brownian motion W , one

easily checks that for P-almost each ω ∈ Ω, on can find ν̃ω ∈ Uθ(ω) such that

E
[
Eνt,x(T )g(Xν

t,x(T )) +
∫ T
t E

ν
t,x(s)f(Xν

t,x(s), νs)ds | Fθ
]

(ω)

=

Eνt,x(θ)(ω)J(θ(ω), Xν
t,x(θ)(ω); ν̃ω) +

∫ θ(ω)
t Eνt,x(s)(ω)f(Xν

t,x(s)(ω), νs(ω))ds .

Since J ≤ v, this shows that

v(t, x) ≤ sup
ν∈Ut

E
[
Eνt,x(θ)v(θ,Xν

t,x(θ) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

2. We now prove the converse inequality. In view of Proposition 2.2.4 and the arguments

used in its proof it suffices to prove the result for vK , K ≥ 1, and then to pass to the
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limit. Fix ν ∈ UKb , (t0, x0) ∈ [0, T ) × Rd, a ball B0 of radius r centered on (t0, x0) and

fix a compact set Θ ⊃ B0 such that

{(t, x+ β(x, u, z)) : (t, x, u, z) ∈ B0 ×A× Rd} ⊂ Θ ⊂ [0, T ]× Rd , (2.2.4)

recall (2.1.2). Let (Bn)n≥1 be a partition of Θ and (tn, xn)n≥1 be a sequence such that

(tn, xn) ∈ Bn for each n ≥ 1. By definition, for each n ≥ 1, we can find νn ∈ UKtn,b such

that

J(tn, xn; νn) ≥ vK(tn, xn)− ε , (2.2.5)

where ε > 0 is a fix parameter. Moreover, by uniform continuity of vK and J(·; ν) for

ν ∈ UKb on Θ, see Proposition 2.2.5, we can choose (Bn, tn, xn)n≥1 in such a way that

Bn = [tn − r, tn]×B(xn, r), for some r > 0, and

|vK(·)− vK(tn, xn)|+ |J(·; νn)− J(tn, xn; νn)| ≤ ε on Bn , (2.2.6)

Let us now define

ϑ := inf
{
s ∈ [t0, T ] : (s,Xν

t0,x0(s)) /∈ B0

}
∧ θ

where θ is a given stopping time with values in [t0, T ]. For ν ∈ UKt0,b, we define ν̄ ∈ UKb
by

ν̄t := νt1t<ϑ + 1t≥ϑ

∑
n≥1

νnt 1{(ϑ,Xν
t0,x0

(ϑ))∈Bn}

 .

It follows from (2.2.4), (2.2.5), (2.2.6) and the fact that νn is independent of Ftn that,

for all ν ∈ UKt0,b,

J(t0, x0; ν̄)

≥ E
[
E ν̄t0,x0(ϑ)J(ϑ,X ν̄

t0,x0(ϑ); ν̄) +

∫ ϑ

t
E ν̄t0,x0(s)f(X ν̄

t0,x0(s), ν̄s)ds

]
≥ E

[∑
n

{
Eνt0,x0(ϑ)J(tn, xn; νn)− %ε+

∫ ϑ

t
Eνt0,x0(s)f(Xν

t0,x0(s), νs)ds

}
1(ϑ,Xν

t0,x0
(ϑ))∈Bn

]

≥ E

[∑
n

{
Eνt0,x0(ϑ)vK(tn, xn)− 2%ε+

∫ ϑ

t
Eνt0,x0(s)f(Xν

t0,x0(s), νs)ds

}
1(ϑ,Xν

t0,x0
(ϑ))∈Bn

]

≥ E
[
Eνt0,x0(ϑ)vK(ϑ,Xν

t0,x0(ϑ)) +

∫ ϑ

t
Eνt0,x0(s)f(Xν

t0,x0(s), νs)ds

]
− 3%ε
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where % is a bounded parameter depending on the bound on ρ− and T . By arbitrariness

of ε > 0, this shows that

vK(t0, x0) ≥ E
[
Eνt0,x0(ϑ)vK(ϑ,Xν

t0,x0(ϑ)) +

∫ ϑ

t
Eνt0,x0(s)f(Xν

t0,x0(s), νs)ds

]
. (2.2.7)

Letting r go to infinity in the definition of B0 and using Proposition 2.1.3 again, we

deduce from the above inequality, the lower semi-continuity of vK and the polynomial

growth of v−K , see Proposition 2.2.5, that

vK(t0, x0) ≥ E
[
Eνt0,x0(θ)vK(θ,Xν

t0,x0(θ)) +

∫ θ

t
Eνt0,x0(s)f(Xν

t0,x0(s), νs)ds

]
.

2

Remark 2.2.12 We refer to [4] for an easy proof of a weak version of the dynamic

programming principle which pertains to consider much more general settings.

2.2 Direct derivation of the Hamilton-Jacobi-Bellman equations

We can now show that, if v is smooth enough, then it solves the Hamilton-Jacobi-Bellman

equation (2.2.1).

Theorem 2.2.2 Assume that v is continuous on [0, T ]×Rd and v ∈ C1,2([0, T )×Rd).
Then, v is a solution on [0, T ) × Rd of (2.2.1) and satisfies the boundary condition

limt↗T v(t, x) = g(x) on Rd.

Proof. Fix (t, x) ∈ [0, T )× Rd and assume that Hv(t, x) 6= ρ(t, x)v(t, x).

1. We assume that Hv(t, x) > ρ(t, x)v(t, x) and work toward a contradiction. Fix u ∈ U
such that Luv(t, x)+f(x, u) > ρ(t, x)v(t, x). By continuity of the involved functions, we

can assume that

Luv + f(·, u) > ρv (2.2.8)

on a compact neighborhood V ⊂ [0, T )×Rd of (t, x). Set ν = u, a constant control of U ,

and let θ be the first exit time of (s,Xν
t,x(s)) from V . Observe that (θ,Xν

t,x(θ−)) ∈ V .

Using Itô’s Lemma, Corollary A.2.1, (A.1.1) and the fact that Eνt,x(s), Dϕ(s,Xν
t,x(s−)),

σ(s,Xν
t,x(s−)) and ϕ(s,Xν

t,x(s−) +β(s,Xν
t,x(s−), νs, ·))−ϕ(s,Xν

t,x(s−)) are bounded on

[t, θ], recall (1.2.1), we observe that

E
[
Eνt,x(θ)v(θ,Xν

t,x(θ)) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), u)ds

]
= v(t, x) + E

[∫ θ

t
Eνt,x(s)

(
Luv(s,Xν

t,x(s))− (ρv)(s,Xν
t,x(s)) + f(Xν

t,x(s), u))
)
ds

]
.
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In view of (2.2.8), this contradicts Theorem 2.2.1.

2. We now assume that Hv(t, x) < ρ(t, x)v(t, x). This implies that

Hv < ρv

on a neighborhood V of (t, x) of radius r > 0. Moreover, for r small enough, we must

have

Hw ≤ ρw on V ,

with w(s, y) = v(s, y) + (s− t) + ‖x− y‖2. Given ν ∈ Ut, let θ be the first exit time of

(s,Xν
t,x(s)) from V . Using Itô’s Lemma and the above inequality, we obtain

E
[
Eνt,x(θ)w(θ,Xν

t,x(θ)) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
= w(t, x) + E

[∫ θ

t
Eνt,x(s)

(
Lνsw(s,Xν

t,x(s))− (ρw)(s,Xν
t,x(s)) + f(Xν

t,x(s), νs))
)
ds

]
≤ v(t, x)

for some C > 0. By definition of w and θ, it follows that, for some C ′, C
′′
> 0,

v(t, x) ≥ C ′E
[
(θ − t) + ‖Xν

t,x(θ)− x‖2
]

+ E
[
Eνt,x(θ)v(θ,Xν

t,x(θ)) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
≥ C

′′
+ E

[
Eνt,x(θ)v(θ,Xν

t,x(θ)) +

∫ θ

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

By arbitrariness of ν, this contradicts Theorem 2.2.1. 2

In the case where v may not be smooth, it can still be characterize as a solution of

(2.2.1) in the viscosity sense.

Theorem 2.2.3 The value function v is a discontinuous viscosity solution of (2.2.1) on

[0, T )× Rd. Moreover, v∗(T, x) ≥ g(x) and v∗(T, x) ≤ g(x) on Rd.

Proof. The viscosity property inside the domain can be easily obtained by combining

the arguments used in the proofs of Theorem 1.4.1 and Theorem 2.2.2. Since g is

continuous, and, ρ, g and f have polynomial growth the property v∗(T, x) ≥ g(x) follows

from Theorem 2.2.1, the estimates of Proposition 2.1.3 and the dominated convergence
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Theorem. It remains to prove that v∗(T, x) ≤ g(x) on Rd. We argue by contradiction

and assume that there is x0 ∈ Rd such that

(v∗ − g)(T, x0) =: 2ε > 0 .

Let (tk, xk)n≥1 be a sequence in [0, T ]× Rd satisfying

(tk, xk) −→ (T, x0) and v(tk, xk) −→ v∗(T, x0) as k −→∞ . (2.2.9)

We can then find a sequence of smooth functions (ϕn)n≥0 on [0, T ] × Rd such that

ϕn(T, x0)→ v∗(T, x0), and

ϕn − g ≥ ε (2.2.10)

on some neighborhoodBn of (T, x0). After possibly passing to a subsequence of (tk, xk)k≥1,

we can then assume that it holds on Bk
n := [tk, T ]×B(xk, δ

k
n) for some sufficiently small

δkn ∈ (0, 1] such that Bk
n ⊂ Bn. Since v∗ is locally bounded, there is some ζ > 0 such

that |v∗| ≤ ζ on Bn. We can then assume that ϕn ≥ −2ζ on Bn. Let us define ϕ̃nk by

ϕ̃nk(t, x) := ϕn(t, x) + 4ζ|x− xk|2/(δkn)2 +
√
T − t ,

and observe that

(v∗ − ϕ̃nk)(t, x) ≤ −ζ < 0 for (t, x) ∈ [tk, T ]× ∂B(xk, δ
k
n) . (2.2.11)

Since (∂/∂t)(
√
T − t)→ −∞ as t→ T , we can choose tk large enough in front of δkn and

the derivatives of ϕn to ensure that

(H− ρ)ϕ̃nk ≤ 0 on Bk
n . (2.2.12)

It then suffices to argue as in the proof of Theorem 2.2.2 to obtain for some C > 0

ϕ̃nk(tk, xk) ≥ E
[
Eνtk,xk(θ)ϕ̃nk(θ,Xν

tk,xk
(θ)) +

∫ θ

tk

Eνtk,xk(s)f(Xν
tk,xk

(s), νs)ds

]
≥ C(ε ∧ ζ) + E

[
Eνtk,xk(θ)v(θ,Xν

tk,xk
(θ)) +

∫ θ

tk

Eνtk,xk(s)f(Xν
tk,xk

(s), νs)ds

]
which contradicts Theorem 2.2.1 for k and n large enough so that |ϕ̃nk(tk, xk)−v(tk, xk)| ≤
C(ε ∧ ζ)/2. 2

Remark 2.2.13 (Comparison theorem) A comparison theorem can be easily ob-

tained for (2.2.1) by arguing as in the proof of Theorem 1.4.2 in the case where U is

compact. We leave the proof to the reader as an exercise.
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2.3 Verification theorem

As for the Feynman-Kac representation, we can also state a verification result. In good

cases, it allows to exhibit an optimal control strategy of the form (ν̂s)s≥0 as defined

below. Such a control is called a Markovian control because its value at time s depends

only on (s,X(s)).

Theorem 2.2.4 (Verification) Assume that there exists a C1,2([0, T ) × Rd) solution ϕ

to (2.2.1) such that

lim inf
t↗T,x′→x

ϕ(t, x′) ≥ g(x) on Rd (2.2.13)

and ϕ− has polynomial growth. Assume further that

1. There is a measurable map û : [0, T ) × Rd 7→ U such that Hϕ = Lûϕ + f(·, û) on

[0, T )× Rd.
2. For all initial conditions (t, x) ∈ [0, T ) × Rd, there is a solution to (2.1.1) with ν̂

defined by ν̂s := û(s,X ν̂
t,x(s)).

3. Given (t, x) ∈ [0, T ) × Rd, there is an increasing sequence of stopping times (θn)n

such that X ν̂
t,x is bounded on [t, θn], θn → T P− a.s. and

E
[
E ν̂t,x(θn)ϕ(θn, X

ν̂
t,x(θn)) +

∫ θn

t
E ν̂t,x(s)f(X ν̂

t,x(s), ν̂s)ds

]
→ E

[
E ν̂t,x(T )g(X ν̂

t,x(T )) +

∫ T

t
E ν̂t,x(s)f(X ν̂

t,x(s), ν̂s)ds

]
as n goes to ∞.

Then, v = ϕ.

Proof. By Itô’s Lemma, Corollary A.2.1, (A.1.1), the fact that ϕ solves (2.2.1) and the

assumptions 1, 2 and 3 of the Theorem, we obtain

ϕ(t, x) = E
[
E ν̂t,x(θn)ϕ(θn, X

ν̂
t,x(θn)) +

∫ θn

t
E ν̂t,x(s)f(X ν̂

t,x(s), ν̂s)ds

]
for each n. Using assumption 3, we then deduce that

ϕ(t, x) = E
[
E ν̂t,x(T )g(X ν̂

t,x(T )) +

∫ T

t
E ν̂t,x(s)f(X ν̂

t,x(s), ν̂s)ds

]
by sending n to ∞. This shows that ϕ(t, x) ≤ v(t, x). We now prove the converse

inequality. Fix ν ∈ Ub, let τn be the first time where ‖Xν
t,x(s)‖ ≥ n and set θn := T ∧ τn.
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By the same arguments as in the proof of Theorem 2.2.2, we obtain that

E
[
Eνt,x(θn)ϕ(θn, X

ν
t,x(θn)) +

∫ θn

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
= ϕ(t, x) + E

[∫ θn

t
Eνt,x(s)

(
Lνsϕ(s,Xν

t,x(s))− (ρϕ)(s,Xν
t,x(s)) + f(Xν

t,x(s), νs))
)
ds

]
≤ ϕ(t, x) .

Since ν is bounded, ϕ− has polynomial growth and τn → ∞, we deduce from the first

estimate of Proposition 1.2.1, the boundedness of ρ− and the boundary condition (2.2.13)

that

lim inf
n→∞

E
[
Eνt,x(θn)ϕ(θn, X

ν
t,x(θn)) +

∫ θn

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
≥ E

[
Eνt,x(T )g(Xν

t,x(T )) +

∫ T

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
.

In view of Proposition 2.2.4, this shows that ϕ(t, x) ≥ v(t, x). 2

Remark 2.2.14 If û is Lipschitz continuous, then the condition 2. is satisfied. More-

over, a direct extension of the arguments used in the proof of Proposition 1.2.1 shows

that

sup
t≤s≤T

E
[
‖X ν̂

t,x(s)‖2
] 1

2 ≤ C (1 + ‖x‖)

for some C > 0 independent of x. Let τn be the first time where ‖X ν̂
t,x(s)‖ ≥ n and

set θn := T ∧ τn. If ϕ as polynomial growth, the dominated convergence theorem then

implies that

E
[
Eνt,x(θn)ϕ(θn, X

ν̂
t,x(θn)) +

∫ θn

t
E ν̂t,x(s)f(X ν̂

t,x(s), ν̂s)ds

]
→ E

[
g(X ν̂

t,x(T )) +

∫ T

t
E ν̂t,x(s)f(X ν̂

t,x(s), ν̂s)ds

]
as n goes to ∞

if limt↗T,x′→x ϕ(t, x′) = g(x) on Rd.

Remark 2.2.15 Observe that the process Z ν̂ defined as in (2.2.2) for the optimal

control exhibited in the previous Theorem is a martingale, while Zν is only a super-

martingale for any other admissible control. This corroborates the interpretation given

in introduction of this chapter. We refer to [11] for a proof of this phenomenon is general

(non Markovian) control problems.
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3 Examples of applications in optimal control with finite

time horizon (exercices)

3.1 Super-replication under portfolio constraints

Let (Ω,F ,P) be a probability space supporting a one dimensional Brownian motion W .

We denote by F = (Ft)t≤T the natural filtration generated by W , satisfying the usual

assumptions, where T > 0 is a fixed time horizon.

We consider a financial market model where the risk free interest rate is zero and the

dynamics of the stock price, under the risk neutral measure P, is given by the process

Xt,x solution of

X(s) = x+

∫ s

t
X(r)σ(X(r))dWr , t ≤ s ≤ T

where x ∈ (0,∞) and σ : (0,∞) 7→ (0,∞) is continuous, bounded, with bounded inverse

σ−1 := 1/σ. We also assume that x ∈ (0,∞) 7→ xσ(x) is uniformly Lipschitz.

Fix A ⊂ R. We denote by A the set of predictable processes φ with values in A such

that ∫ T

t
|φs|2ds <∞ P− a.s. ∀ t ≤ T .

Given (t, x, v) ∈ [0, T ]× (0,∞)× R+ and φ ∈ A, we define V φ
t,x,v as

V φ
t,x,v(s) = v +

∫ s

t
φrV

φ
t,x,v(r)σ(Xt,x(r))dWr , t ≤ s ≤ T .

1. Give a financial interpretation of V φ
t,x,v and φ ∈ A.

2. Set

A∗ :=

{
ξ ∈ R : δ(ξ) := sup

a∈A
〈ξ, a〉 <∞

}
We denote by A∗ the set of progressively measurable processes ν with values in A∗

for which there exists C > 0, which may depend on ν, such that sups≤T |νs| ≤ C

P− a.s. Given ν ∈ A∗ and (t, x, y) ∈ [0, T )× (0,∞)× (0,∞), we define Y ν
t,x,y by

Y ν
t,x,y(s) := ye−

∫ s
t δ(νr)dr−

1
2

∫ s
t |σ(Xt,x(r))−1νr|2dr+

∫ s
t σ(Xt,x(r))−1νrdWr , s ∈ [t, T ] .

(a) What can we say on δ(ξ)− 〈ξ, a〉 when a ∈ A and ξ ∈ A∗ ?

(b) Sow that E
[
sups∈[t,T ]

(
|Y ν
t,x,y(s)|q + |Xt,x(s)|q

)]
<∞ for all (t, x, y) ∈ [0, T )×

(0,∞)× (0,∞), ν ∈ A∗ and q ∈ N.
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(c) Show that, for all (t, x, v, y) ∈ [0, T )×(0,∞)×R+×(0,∞) and (ν, φ) ∈ A∗×A,

the process V φ
t,x,vY

ν
t,x,y is a non-negative local super-martingale.

(d) Deduce that, for all (t, x, v, y) ∈ [0, T ) × (0,∞) × R+ × (0,∞) and (ν, φ) ∈
A∗ ×A, the process V φ

t,x,vY
ν
t,x,y is a super-martingale.

3. Let g be a map R 7→ R+, which is lower semi-continuous with linear growth.

(a) Show that if φ ∈ A is is such that V φ
t,x,v(T ) ≥ g(Xt,x(T )) P − a.s., then

v ≥ p(t, x, 1) where the function p is defined by

p(t, x, y) := sup
ν∈A∗

J(t, x, y; ν) where J(t, x, y; ν) := E
[
Y ν
t,x,y(T )g(Xt,x(T ))

]
,

for all (t, x, y) ∈ [0, T ]× (0,∞)× (0,∞).

(b) Deduce that

p̂(t, x) := inf
{
v ∈ R+ : ∃ φ ∈ A s.t. V φ

t,x,v(T ) ≥ g(Xt,x(T )) P− a.s.
}
≥ p̄(t, x) ≥ 0

where p̄(t, x) := p(t, x, 1).

4. In the following, we admit that

p(t, x, y) ≥ sup
ν∈A∗

E
[
p(θ,Xt,x(θ), Y ν

t,x,y(θ))
]
,

for all (t, x, y) ∈ [0, T ] × (0,∞) × (0,∞) and all stopping time θ with values in

[t, T ].

(a) Show that p is a viscosity supersolution on [0, T )× (0,∞)× (0,∞) of

0 = −LXϕ(t, x, y)

+ inf
u∈A∗

(
yδ(u)

∂

∂y
ϕ(t, x, y)− 1

2
|yσ−1(x)ν|2 ∂

2

∂y2
ϕ(t, x, y)− uxy ∂2

∂x∂y
ϕ(t, x, y)

)
where LX is the Dynkin operator associated to X.

(b) Show that if ϕ̄ ∈ C1,2 and (t0, x0) ∈ [0, T ]× (0,∞) satisfy min[0,T ]×(0,∞)(p̄−
ϕ̄) = (p̄ − ϕ̄)(t0, x0) = 0 then ϕ defined as ϕ(t, x, y) = yϕ̄(t, x) satisfies

min[0,T ]×(0,∞)×(0,∞)(p− ϕ) = (p− ϕ)(t0, x0, y0) = 0 for all y0 > 0.

(c) Deduce that p̄ is a viscosity supersolution on [0, T )× (0,∞) of

inf
u∈A∗

(
−yLX ϕ̄(t, x) + yδ(u)ϕ̄(t, x)− uxy ∂

∂x
ϕ̄(t, x)

)
= 0

for all y > 0.
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(d) Deduce that p̄ is a viscosity supersolution on [0, T )× (0,∞) of

min

{
−LX ϕ̄(t, x) , inf

u∈A∗1

(
δ(u)ϕ̄(t, x)− ux ∂

∂x
ϕ̄(t, x)

)}
= 0

where A∗1 := {ξ ∈ A∗ : |ξ| = 1} .

5. We now study the boundary condition at t = T .

(a) Let x0 ∈ (0,∞) and (tn, xn)n≥1 ⊂ [0, T ) × (0,∞) be such that (tn, xn) →
(T, x0) and

p̄(tn, xn)→ lim inf
(t′, x′)→ (T, x0)

(t′, x′) ∈ [0, T )× (0,∞)

p̄(t′, x′) =: p̄(T−, x0) .

By considering the sequence of controls

νn :=
1

T − tn
u1[tn,T ] , n ≥ 1 ,

for u ∈ A∗, and by using an appropriate Girsanov transformation, show that

p̄(T−, x0) ≥ ĝ(x0) := sup
u∈A∗

e−δ(u)g(xeu) ≥ 0 .

(b) From now on, we assume that ĝ is differentiable on (0,∞).

i. By using the fact thatA∗ is a convex cone, show that ĝ(x) ≥ e−λδ(ε)ĝ(xeλε)

for all ε ∈ A∗, λ > 0 and x > 0.

ii. Deduce that δ(u)ĝ(x)− ux ∂
∂x ĝ(x) ≥ 0 for all x > 0 and u ∈ A∗.

6. From now on, we assume that there exists a function with linear growth w ∈
C1,2([0, T )× (0,∞)) ∩ C0,0([0, T ]× (0,∞)) solution of

−LXw = 0 sur [0, T )× (0,∞) and w(T, ·) = ĝ sur (0,∞) .

(a) Under the assumption that p̄ ∈ C1,2([0, T ) × (0,∞)), show that p̄ ≥ w on

[0, T ]× (0,∞).

(b) Explain briefly why p̄ ≥ w even if p̄ 6∈ C1,2([0, T )× (0,∞)) . We shall assume

from now on that the above inequality hold.

7. We now assume that σ does not depend on x and we simply write σ = σ(x). We

also assume that A is of the form [−m,M ] where M,m ≥ 0.

(a) Compute δ in this case.
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(b) Show by a verification argument that w(t, x) = E [ĝ(Xt,x(T ))] for all (t, x) ∈
[0, T ]× (0,∞).

(c) Under the assumption that ∂
∂x ĝ is uniformly bounded, show that

∂

∂x
w(t, x) = E

[
∂

∂x
ĝ(Xt,x(T ))Xt,1(T )

]
,

for all (t, x) ∈ [0, T )× (0,∞).

(d) Deduce that δ(u)w(t, x)−ux ∂
∂xw(t, x) ≥ 0 for all u ∈ A∗ and (t, x) ∈ [0, T )×

(0,∞).

(e) By also assuming that w > 0 sur [0, T )×(0,∞), deduce that (x ∂
∂xw(t, x))/w(t, x) ∈

[−m,M ] for all (t, x) ∈ [0, T )× (0,∞).

(f) Show that, if∫ T

t
|Xt,x(s)

∂

∂x
w(s,Xt,x(s)))|2/w(s,Xt,x(s))2ds <∞ P− a.s.

for all (t, x) ∈ [0, T )× (0,∞), then w ≥ p̂.

(g) Conclude that, in this case, w = p̂ = p̄.

3.2 Super-hedging with unbounded stochastic volatility (Exercise in

French)

Le but de cet exercice est de caractériser, déterminer un prix de sur-réplication d’un

actif financier risqué dans un modèle à volatlité stochastique non-bornée. Pour se faire,

nous allons introduire un problème de contrôle stochastique et l’étudier. Nous allons no-

tamment dériver une équation aux dérivées partielles via un principe de programmation

dynamique ad hoc. Commençons par introduire le problème et les notations.

On se place sur une espace de probabilité (Ω,F ,P) muni de la filtration (Ft)t≥0 satis-

faisant les conditions habituelles. On se donne un horizon de temps T > 0. On considère

un marché financier constitué d’un actif sans risque, de taux d’intérêt nul r = 0, et d’un

actif risqué X dont la dynamique est donnée par le modèle à volatilité stochatique :

dX(t) = σ(Y (t))dWt , X(0) = x0 ∈ R , dY (t) = ηdt+ γdW̄t , Y (0) = y0 ∈ R (2.3.1)

où η ∈ R, γ > 0 et σ : R 7→ R+ est une fonction continue uniformément Lipschitz,

W et W̄ sont deux mouvements browniens indépendants. Soit g une fonction continue,

bornée. On s’intéresse au problème de sur-réplication de l’option de payoff g(X(T ))
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lorsque l’on ne peut acheter et vendre que l’actif financier X. Le prix de sur-réplication

est donné par

p(0, x0, y0) = sup
Q∈M(S)

EQ [g(X(T ))] (2.3.2)

oùM(S) est l’ensemble des mesures de probabilité sous lesquelles X est une martingale.

Afin d’étudier ce problème par les techniques de contrôle stochastique, on commence

par étendre la définition des dynamiques de X et Y à des conditions initiales (t, x, y) ∈
[0, T ]× R× R quelconques. Par la suite, on note (Xt,x,y, Yt,y) la solution de (2.3.1) sur

[t, T ] vérifiant la condition initiale (Xt,x,y(t), Yt,y(t)) = (x, y).

On note U (reps. Ut) l’ensemble des processus ν progressivement mesurables (resp.

indépendants de Ft) à valeurs réelles tels qu’il existe une constante C > 0 pour laquelle

|νt| ≤ C pour tout t ≥ 0 P−a.s. Etant donnés ν ∈ U et (t, h) ∈ [0, T ]× (0,∞), on définit

Hν
t,h par

Hν
t,h(r) := h exp

(
−1

2

∫ r

t
|νs|2ds+

∫ r

t
νsdW̄s

)
, r ∈ [t, T ] .

On considère finalement la fonction coût J suivante

J(t, x, y, h; ν) := E
[
Hν
t,h(T )g(Xt,x,y(T ))

]
et on lui associe alors la fonction valeur v suivante

v(t, x, y, h) := sup
ν∈Ut

J(t, x, y, h; ν) .

Partie I : fonction valeur et programmation dynamique

1. Etant donnés (t, x, y, h) ∈ [0, T ]×R×R× (0,∞) et ν ∈ U , montrer que Xt,x,yH
ν
t,h

est une martingale sur [t, T ] sous P.

2. Déduire de la question précédente que

p(0, x0, y0) ≥ v(0, x0, y0, 1) (2.3.3)

3. Montrer que, pour tout ν ∈ U et tout ensemble borné B ⊂ [0, T ]×R×R× (0,∞),

il existe une constante K > 0 telle que, pour tout (ti, xi, yi, hi)i=1,2 ⊂ B vérifiant
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t2 ≥ t1, on a

E
[
|Hν

t2,h2(T )/Hν
t1,h1(T )− 1|2

]
≤ K((h2/h1 − 1)2 + |t1 − t2|) ,

E

[
sup

s∈[t1,t2]
|Yt1,y1(s)− y1|2

]
≤ K(|t1 − t2|) ,

E

[
sup

s∈[t2,T ]
|Yt1,y1(s)− Yt2,y2(s)|2

]
≤ K(|y1 − y2|2 + |t1 − t2|) ,

E
[
|Xt1,x1,y1(T )−Xt2,x2,y2(T )|2

]
≤ K(|t1 − t2|+ |x1 − x2|2 + |y1 − y2|2) .

4. En déduire que J(·; ν) est semi-continue inférieurement sur [0, T ]×R×R×(0,∞) à

ν ∈ U fixé (on rappelle que g est bornée). Que peut-on en déduire sur la régularité

de v ?

5. Justifier (sans rentrer dans les détails) que pour tout (t0, x0, y0, h0) ∈ [0, T ]×R×
R × (0,∞) et pour toute fonction ϕ ∈ C2 telle que (v − ϕ)(t0, x0, y0, h0) = 0 et

v ≥ ϕ sur [t0, T ]× R× R× (0,∞), on a

v(t0, x0, y0, h0) ≥ E
[
ϕ
(
τ,Xt0,x0,y0(τ), Yt0,y0(τ), Hν

t0,y0,h0(τ)
)]

(2.3.4)

pour tout ν ∈ U et tout temps d’arrêt τ à valeurs dans [t0, T ].

Dans la suite du problème, on note

w∗(t, x, y) := lim inf
(t′,x′,y′)→(t,x,y), t′<T

w(t′, x′, y′) , (t, x, y) ∈ [0, T ]× R× R .

6. On note w := v(·, 1). Montrer que v(·, h) = hw pour tout h > 0, que w est

semi-continue inférieurement sur [0, T )× R× R et que

w∗(T, x, y) ≥ g(x) . (2.3.5)

Partie II: dérivation d’une équation aux dérivées partielles

Dans cette partie, il s’agit de montrer que la fonction w∗ ne dépend pas de y. Pour cela,

on va montrer que ∂w∗
∂y = 0 au sens des solutions de viscosité.

7. Déduire de l’inégalité de programmation dynamique (2.3.4) sur v et d’une trans-

formation de Girsanov astucieuse que w∗ est sur-solution de viscosité de l’équation

inf
u∈R

(
− ∂

∂t
− 1

2
σ(y)2 ∂

2

∂x2
− u ∂

∂y
− 1

2
γ2 ∂

2

∂y2

)
ϕ(t, x, y) ≥ 0 sur [0, T )× R× R ,

ϕ(T, ·) ≥ g sur R× R .
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8. En déduire que w∗ est sur-solution de viscosité de− ∂
∂yϕ(t, x, y) ≥ 0 et ∂

∂yϕ(t, x, y) ≥
0 sur [0, T )× R× R.

Le but est maintenant de montrer que si l’on fixe t0 et x0, alors la fonction y 7→
w∗(t0, x0, y) est une solution de viscosité de − ∂

∂yϕ(y) ≥ 0 et ∂
∂yϕ(y) ≥ 0 sur R.

9. Soit (t0, x0) ∈ [0, T )×R, ϕ ∈ C2, une fonction bornée de R dans R, et y0 ∈ R tels

que w∗(t0, x0, y0)−ϕ(y0) = 0 et w∗(t0, x0, y)−ϕ(y) ≥ 0 pour tout y ∈ R. A n ≥ 1

fixé on associe la fonction ϕn définie par ϕn(t, x, y) := ϕ(y) − n(|t − t0|2 + |x −
x0|4)− |y − y0|4.

(a) Montrer que w∗ est bornée et qu’il existe (tn, xn, yn) ∈ [0, T ]×R×R atteignant

le minimum de w∗ − ϕn.

(b) En utilisant l’inégalité

(w∗(tn, xn, ·)−ϕ)(yn)+n(|tn−t0|2+|xn−x0|4)+|yn−y0|4 ≤ (w∗(t0, x0, ·)−ϕ)(y0)

montrer que (tn, xn) → (t0, x0), et que (yn, n(|tn − t0|2 + |xn − x0|4)) →
(y∞,m) ∈ R× R+ quand n→∞, quite à passer à une sous-suite.

(c) Que peut-on dire sur lim infn→∞(w∗(tn, xn, ·)− ϕ)(yn) ?

(d) En déduire que (w∗(t0, x0, ·) − ϕ)(y0) ≤ (w∗(t0, x0, ·) − ϕ)(y∞) + m + |y∞ −
y0|4 ≤ (w∗(t0, x0, ·)− ϕ)(y0).

(e) En déduire que y∞ = y0 et m = 0.

10. Déduire des deux questions précédentes que, à (t0, x0) ∈ [0, T ) × R, l’application

y 7→ w∗(t0, x0, y) est sur-solution de viscosité de − ∂
∂yϕ(y) ≥ 0 et ∂

∂yϕ(y) ≥ 0 sur

R.

11. Supposons que w∗ est dérivable. Montrer que w∗ est alors indépendante de la

variable y.

Partie III : identification du prix de sur-réplication

12. On écrit maintenant w∗(t, x) en omettant l’argument y (voir partie II). Montrer

que w∗ est sur-solution de viscosité de l’équation(
− ∂

∂t
− 1

2
σ(y)2 ∂

2

∂x2

)
ϕ(t, x) ≥ 0 sur [0, T )× R , ϕ(T, ·) ≥ g sur R× R .
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13. On suppose à partir de maintenant que supy∈R σ
2(y) = ∞ et infy∈R σ

2(y) = 0.

Montrer que si w∗ est régulière alors elle est concave en x et décroissante en temps

sur [0, T )× R.

14. A partir de maintenant, on admet que w∗ est concave en x et décroissante en temps

sur [0, T ) × R. Montrer que w∗ ≥ ĝ sur [0, T ] × R où ĝ et la plus petite fonction

concave qui majore g.

15. En utilisant (2.3.2), montrer que p(0, x0, y0) ≤ ĝ(x0) et en déduire que p(0, x0, y0) =

ĝ(x0).

3.3 Calibration of local volatility surface

Let 0 < σ < σ̄ be two real constants. We denote by A (resp. At) the set of predictable

processes σ taking values in [σ, σ̄] (resp. independants de Ft). Given (t, x) ∈ [0, T ] ×
(0,∞) and σ ∈ A, we denote by Xσ

t,x the solution of

X(s) = x+

∫ s

t
X(r)σrdWr , t ≤ s ≤ T . (2.3.6)

We observe on the market the prices pi of plain vanilla options of payoff gi(S(Ti)),

i ∈ I := {1, . . . , imax}. The functions gi are assumed to be Lipschitz and bounded,

T0 := 0 < T1 < T2 < . . . < Timax = T are the maturities, S is the underlying stock price

process with initial value at 0 given by x0 > 0.

We want to model S as a diffusion of type Xσ satisfying (2.3.6) so as to calibrate the

prices of the options on the market data pi, i ∈ I.

Following Avellaneda, Friedman, Holmes and Samperi (1997)2, we compute σ as the

solution of the problem :

sup
λ∈Rimax

inf
σ∈At

[(
imax∑
i=1

λiE
[
gi(X

σ
t,x(Ti))− pi

])
+ E

[∫ T

0
η(σ2

s)ds

]]
where η : R+ → R+ is a given convex function.

Given λ ∈ Rimax , we define on [0, T ]× (0,∞)

v(t, x) := inf
σ∈At

E

[∫ T

t
η(σ2

s)ds+

imax∑
i=1

1t<Tiλigi(X
σ
t,x(Ti))

]
(2.3.7)

the associated value function.
2M. Avellaneda, C. Friedman, R. Holmes and D. Samperi (1997). Calibrating volatility surfaces

via relative-entropy minimization. Appl. Math. Finance, 4(1), 37-64. We refer to this paper for a

description of the full methodology.
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1. A-priori estimates :

(a) Justify the existence of a solution to (2.3.6) for all σ ∈ A.

(b) Show that there exists C > 0 such that, for all (t, x) ∈ [0, T ] × (0,∞) and

σ ∈ A,

E

[
sup
s∈[t,T ]

|Xσ(s)|2
]
≤ C

(
1 + x2

)
.

(c) Show that there exists C > 0 such that, for all (t, x) ∈ [0, T ]× (0,∞), σ ∈ A,

and h > 0 satisfying t+ h ≤ T , we have

E

[
sup

s∈[t,t+h]
|Xσ(s)− x|2

]
≤ C

(
1 + x2

)
h .

(d) Let B be a compact subset of (0,∞). Show that there exists C(B) > 0 such

that, for all (t1, x1), (t2, x2) ∈ [0, T ]×B satisfying t1 ≤ t2 and σ ∈ A,

E

[
sup

s∈[t2,T ]
|Xσ

t1,x1(s)−Xσ
t2,x2(s)|2

]
≤ C(B)

(
|x1 − x2|2 + |t1 − t2|

)
.

(e) Let B be a compact subset of (0,∞). Show that there exists C(B) > 0 such

that, for all (t1, x1), (t2, x2) ∈ [0, T ] × B satisfying Ti ≤ t1 ≤ t2 < Ti+1 for

some i ∈ I, we have

|v(t1, x1)− v(t2, x2)| ≤ C(B)
(
|x1 − x2|2 + |t1 − t2|

) 1
2 .

(Hint : use an argument of the type infa f(b, a)− infa f(c, a) ≤ supa(f(b, a)−
f(c, a)).)

2. Dynamic programming :

(a) Show that for (t, x) ∈ [0, T )× (0,∞) and 0 < h ≤ T − t we have

v(t, x) = inf
σ∈At

E

[∫ t+h

t
η(σ2

s)ds+

imax∑
i=1

1t<Ti≤t+hλigi(X
σ
t,x(Ti))

+E[

∫ T

t+h
η(σ2

s)ds+

imax∑
i=1

1t+h<Tiλigi(X
σ
t+h,Xσ(t+h)(Ti)) | Ft+h]

]
.

(b) Deduce by a formal argument that

v(t, x) = inf
σ∈At

E

[
v(t+ h,Xσ(t+ h)) +

∫ t+h

t
η(σ2

s)ds+

imax∑
i=1

1t<Ti≤t+hλigi(X
σ
t,x(Ti))

]
.

(2.3.8)
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3. H.-J.-B. equation : We now assume that v ∈ C1,2
b (D) whereD :=

⋃imax−1
i=0 [Ti, Ti+1)×

(0,∞).

(a) By considering the case where σ is constant, deduce from (2.3.8) that

sup
σ∈[σ,σ̄]

(
−Lσv(t, x)− η(σ2)

)
≤ 0

for all (t, x) ∈ D. Here, for a real σ and (t, x) ∈ D, we use the notation

Lσv(t, x) :=
∂

∂t
v(t, x) +

1

2
σ2x2 ∂

2

∂x2
v(t, x) .

(b) We assume that the inf in (2.3.8) is achieved by a Markovian control σs =

σ̃(s,Xσ
t,x(s)) where σ̃ is C1

b . Deduce from (2.3.8) that

sup
σ∈[σ,σ̄]

(
−Lσv(t, x)− η(σ2)

)
≥ 0 .

(c) Show that limt↑Ti v(t, x) ≤ v(Ti, x) + λigi(x), for all i ≤ imax and x ∈ (0,∞).

(d) What should the terminal condition as t ↑ Ti look like ?

(e) We now assume that η is strictly convex, C1 on (σ, σ̄) and such that η′(σ+) =

−∞ and η′(σ̄−) = +∞. We also admit that v solves on D

sup
σ∈[σ,σ̄]

(
−Lσv(t, x)− η(σ2)

)
= 0 . (2.3.9)

Show that v solves on D

− ∂

∂t
v(t, x)− Φ

(
1

2
x2 ∂

2

∂x2
v(t, x)

)
= 0 .

where

Φ(y) := inf
z∈(σ2,σ̄2)

(zy + η(z)) .

Admitting that Φ′ is the inverse of−η′, show that the sup in (2.3.9) is achieved

by

σ̂(t, x) := Φ′
(
x2 ∂

2

∂x2
v(t, x)

)
.

4. Verification argument : We now assume that η is strictly convex, C1 on (σ, σ̄)

and such that η′(σ+) = −∞ and η′(σ̄−) = +∞. We also assume that there

exists ϕ ∈ C1,2
b (D) which solves (2.3.9) on D and satisfies limt↑Ti,x′→x ϕ(t, x′) =

ϕ(Ti, x) + λigi(x), for all i ≤ imax and x ∈ (0,∞).
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(a) Show that (2.3.6) admits a solution, X̂t,x, if we replace σr by σ̂(r,X(r)) in

(2.3.6).

(b) Deduce that ϕ ≥ v.

(c) Show that ϕ ≤ v.

(d) What can we say on the solution of the control problem (2.3.7) ?

5. Numerical resolution: Assume that you have a software which can solve equa-

tions of the form (2.3.9). How can you use it to estimate v and σ̂ (explain how to

treat the boundary conditions at Ti, i ∈ I) ?

3.4 Optimal Importance sampling

Let (Ω,F ,P) be a probability space supporting a one-dimensional Brownian motion W .

We denote by F = (Ft)t≤T the completed natural filtration induced by W , where T > 0.

Let Xt,x be the solution

X(s) = x+

∫ s

t
σ(X(r))dWr , t ≤ s ≤ T

where x ∈ R, t ∈ [0, T ] and σ is Lipschitz and satisfies infx∈R σ(x) =: σ̄ > 0.

We consider the optimal importance sampling problem for the Monte-Carlo computation

of

m(t, x) := E [g(Xt,x(T ))] ,

where g is continuous and bounded.

The idea consists in introduction a family of density processes {Hν
t,x, ν ∈ U} defined by

Hν
t,x(s) := 1 +

∫ s

t

νr
σ(Xt,x(r))

Hν
t,x(r)dWr , t ≤ s ≤ T ,

where U is the set of progressively measurable processes ν with values in [−M,M ], where

M > 0 is a fixed constant. We then observe that

m(t, x) = Eν
[
g(Xt,x(T ))/Hν

t,x(T )
]

(2.3.10)

where Eν is the expectation under Qν defined as

dQν/dP = Hν
t,x(T ). (2.3.11)

We then look for ν̂ ∈ U such that

Varν̂
[
g(Xt,x(T ))/H ν̂

t,x(T )
]

= inf
ν∈U

Varν
[
g(Xt,x(T ))/Hν

t,x(T )
]

=: w(t, x) , (2.3.12)
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where Varν denotes the variance under Qν . We finally replace the standard Monte-Carlo

estimator of E [g(Xt,x(T ))] by the one associated to Eν̂
[
g(Xt,x(T ))/H ν̂

t,x(T )
]
, obtained

by sampling g(Xt,x(T ))/H ν̂
t,x(T ) under Qν̂ .

The aim of the above question is to treat problem (2.3.12) by stochastic control technics.

1. Show that Qν is actually a probability measure equivalent to P and that (2.3.10)

holds true, for ν ∈ U .

2. Show that the problem defined in the right-hand side of (2.3.12) is equivalent to

v(t, x) := inf
ν∈U

Eν
[(
g(Xt,x(T ))/Hν

t,x(T )
)2]

.

and that

v(t, x) = w(t, x) +m(t, x)2 . (2.3.13)

In the following, we set

J(t, x; ν) := Eν
[(
g(Xt,x(T ))/Hν

t,x(T )
)2]

, (t, x) ∈ [0, T ]× R ,

and we admit that v is continuous on [0, T )× R.

3. Show that

J(t, x; ν) = E
[
g(Xt,x(T ))2/Hν

t,x(T )
]
.

4. Let ν1, ν2 ∈ U , (t, x) ∈ [0, T ] × R et τ ∈ T[t,T ], where T[t,T ] denotes the set of

stopping times with values in [t, T ].

(a) Show that ν := ν11[0,τ) + ν21[τ,T ] ∈ U .

(b) Show that

J(t, x; ν) = E
[
E
[
g(Xτ,Xt,x(τ)(T ))2/Hν2

τ,Xt,x(τ)(T ) | Fτ
]
/Hν1

t,x(τ)
]
.

(c) Deduce by a formal argument that

v(t, x) ≥ inf
ν∈U

E
[
v(τ,Xt,x(τ))/Hν

t,x(τ)
]
.

(d) We assume that there exists a measurable map φ : [0, T ]× R 7→ U such that

v(θ, ξ) = E
[
g(Xθ,ξ(T ))2/H

φ(θ,ξ)
θ,ξ (T ) | Fθ

]
P− a.s.

for all θ ∈ T[0,T ] and all real valued Fθ-mesurable random variable ξ. Deduce

that

v(t, x) ≤ inf
ν∈U

E
[
v(τ,Xt,x(τ))/Hν

t,x(τ)
]
.
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From now on, we admit that v is continuous and satisfies

v(t, x) = inf
ν∈U

E
[
v(τ,Xt,x(τ))/Hν

t,x(τ)
]

(2.3.14)

for (t, x) ∈ [0, T ] × R and τ ∈ T[t,T ]. We denote, for ϕ ∈ C1,2([0, T ] × R), u ∈ R
and (t, x) ∈ [0, T ]× R,

Luϕ(t, x) :=
∂

∂t
ϕ(t, x)− u ∂

∂x
ϕ(t, x) +

1

2
σ(x)2 ∂

2

∂x2
ϕ(t, x) + (u/σ(x))2ϕ(t, x) .

5. By considering controls of the form ν ≡ u with u ∈ [−M,M ], deduce from (2.3.14)

that v is a viscosity subsolution on [0, T )× R of

− inf
u∈[−M,M ]

Luϕ = 0 . (2.3.15)

6. Let (t0, x0) ∈ [0, T ) × R and ϕ ∈ C1,2([0, T ] × R) be such that (t0, x0) achieves a

strict local minimum of v − ϕ and (v − ϕ)(t0, x0) = 0.

(a) Show that the assertion− infu∈[−M,M ] Luϕ(t0, x0) < 0 leads to a contradiction

to (2.3.14).

(b) Deduce that v is a viscosity supersolution on [0, T )× R of (2.3.15).

7. We now study the terminal condition at T .

(a) Deduce from (2.3.13) that lim inft′↑T,x′→x v(t′, x′) ≥ g(x)2 for all x ∈ R.

(b) Show that v(t, x) ≤ E
[
g(Xt,x(T ))2

]
for all (t, x) ∈ [0, T ]× R.

(c) Deduce that lim supt′↑T,x′→x v(t′, x′) = lim inft′↑T,x′→x v(t′, x′) = v(T, x) =

g(x)2 for all x ∈ R.

8. State a verification theorem for the above problem.

3.5 Optimal insurance

Let us consider the problem of a financial agent whose wealth is submitted to some

exogenous risks, seen as accidents. The times arrival of the accidents are described by

a Poisson process N of intensity λ > 0. If X is his wealth just before the sinister, its

size is δX where δ ∈ (0, 1) is a fixed constant. To protect himself against the exogenous

risk, he can buy an insurance at a level u ∈ U := [0, 1]. If a sinister arrives at time t and

his level of protection is u then his wealth is diminished by (1− u)δX(t−). To obtain a
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protection u at time t, he has to pay a premium puX (paid continuously), with p > 0 a

fixed parameter.

To sum up, we assume that the wealth process Xν
t,x evolves on [t, T ] according to

Xν
t,x(s) = x−

∫ s

t
pνvXt,x(v)dv −

∫ s

t
δ(1− νv)Xt,x(v−)dNv .

Observe that, by Itô’s Lemma,

Xν
t,x(s) = xe−

∫ s
t pνvdv

Nt∏
k=1

(1− δ(1− νTk)) (2.3.16)

where Tk denote the time of the k-th jump of N .

The aim of the agent is to maximize the utility of his terminal wealth

v(t, x) := sup
ν∈Ut

E
[
V (Xν

t,x(T )
]

where V is a concave increasing function defined on (0,∞).

In this case, the Hamilton-Jacobi-Bellman equation reads:

∂

∂t
v(t, x) + max

u∈[0,1]
{−upxDv(t, x) + λ (v(t, x(1− (1− u)δ))− v(t, x))} = 0 (2.3.17)

a. Power utility: We first consider the case where V (x) = xγ with γ ∈ (0, 1).

We try to find a solution to (2.3.17) satisfying the terminal condition limt↗T,x′→x v(t, x′) =

xγ . In view of (2.3.16), we have v(t, x) = xγv(t, 1). Thus, it is natural to look for a

solution of the form xγϕ(t) with ϕ a smooth function. In this case, (2.3.17) reduces to

xγ
∂

∂t
ϕ(t) + xγϕ(t) max

u∈[0,1]
{−γup+ λ ((1− (1− u)δ)γ − 1)} = 0

so that ϕ must satisfies

∂

∂t
ϕ(t) + ϕ(t)m(û) = 0

where û maximizes over u ∈ [0, 1] the quantity

m(u) := −γup+ λ ((1− (1− u)δ)γ − 1) .

Since we must have ϕ(T ) = 1, this implies that

ϕ(t) = e(T−t)m(û) .
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The arguments used in the proof of Theorem 2.2.4 shows that the optimal control is

constant and equal to û and that the value function v is actually given by xγe(T−t)m(û).

b. Log utility: We now take V (x) = ln(x) and look for a solution of the form

ln(x) + ϕ(t) with ϕ a smooth function. In this case, (2.3.17) reduces to

∂

∂t
ϕ(t) + max

u∈[0,1]
{−γup+ λ ln(1− (1− u)δ)} = 0

so that

ϕ(t) = (T − t)m(û)

where û maximizes over u ∈ [0, 1] the quantity

m(u) := −γup+ λ ln(1− (1− u)δ) .

3.6 Optimal reinsurance with exponential utility

We now consider the problem of an insurance company. It receives premiums at a rate

p. The times arrival of the sinisters are described by a Poisson process N of intensity

λ > 0 and each sinister as a constant size δ. The company can reinsure a proportion

u ∈ [0, 1] of these risks against the payment of a premium uq with q ≥ p. The dynamic

of the wealth is

Xν
t,x(s) = x+

∫ s

t
(p− νvq) dv −

∫ s

t
δ(1− νv)dNv .

We consider the exponential utility maximization problem:

v(t, x) := sup
ν∈Ut

E
[
−e−ηXν

t,x(T )
]
, η > 0 .

The associated Hamilton-Jacobi-Bellman equation is

∂

∂t
v(t, x) + max

u∈[0,1]
{(p− uq)Dv(t, x) + λ (v(t, x− (1− u)δ)− v(t, x))} = 0

and it is natural to look for a solution of the form −e−ηxϕ(t), for a smooth function ϕ

satisfying ϕ(T ) = 1. This implies that

∂

∂t
ϕ(t) + ϕ(t)m(û) = 0

where û maximizes the quantity

m(u) := η(p− uq) + λ
(

1− eη(1−u)δ
)
.

Thus, we must have

ϕ(t) = e(T−t)m(û) .
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3.7 Optimal reinsurance with possible investments in a financial asset

We consider the previous model except that we now assume that the company can invest

on a financial market which consists in two assets: a risk free asset which provides a

constant instantaneous rate of return r > 0, and a risky asset S which evolves as in the

Black and Scholes model:

St = S0e
(µ−σ2/2)t+σWt .

The amount of money invested in the risky asset is described by a predictable process

φ satisfying

E
[∫ T

0
|φs|2ds

]
<∞ .

The remaining part of the wealth is invested in the non-risky asset.

The dynamics of the wealth is given by

Xφ,ν
t,x (s) = x+

∫ s

t
φv
dSv
Sv

+

∫ s

t

{
(Xφ,ν

t,x (s)− φv)r + p− νvq
}
dv −

∫ s

t
δ(1− νv)dNv .

The aim of the company is to maximize

J(t, x;φ, ν) := E
[
−e−ηX

φ,ν
t,x (T )

]
.

The associated Hamilton-Jacobi-Bellman equation is

0 =
∂

∂t
v(t, x) + sup

φ∈R

{
(xr + φ(µ− r))Dv(t, x) +

1

2
φ2σ2D2v(t, x)

}
+ max

u∈[0,1]
{(p− uq)Dv(t, x) + λ (v(t, x− (1− u)δ)− v(t, x))} .

Here again, we look for a solution of exponential type in x. To take into account the

return of the non-risky asset, we look for v in the form −f(t)e−ηxe
r(T−t)

. In this case,

we must have:

0 = − ∂

∂t
f(t)/f(t) + sup

φ∈R

{
ηφ(µ− r)er(T−t) − η2 1

2
φ2σ2e2r(T−t)

}
+ max

u∈[0,1]

{
η(p− uq)er(T−t) + λ

(
1− eη(1−u)er(T−t)

)}
.

The sup over φ is attained by

φ̂ :=
µ− r
ησ2

e−r(T−t)

so that f must satisfy

0 = − ∂

∂t
f(t)/f(t) +

1

2

(µ− r)2

σ2
+mt(û(t))

where û(t) maximizes

mt(u) :=
{
η(p− uq)er(T−t) + λ

(
1− eη(1−u)er(T−t)

)}
.

54



4 Optimal control with infinite time horizon

We come back to the framework of Section 1 except that we assume that λ does not

depend on the time variable t.

Our aim is to maximize the functional

J(t, x; ν) := E
[∫ ∞

t
Eνt,x(s)f(Xν

t,x(s), νs)ds

]
x ∈ Rd

We now assume that f and ρ are non-negative continuous functions. This ensures that

the expectation is well defined, taking possibly the value +∞. We can therefore define

the value function

v(t, x) := sup
ν∈Ut

J(t, x; ν) .

Clearly, v does not depend on t and it is equivalent to consider the problem

v(x) := sup
ν∈U

J(x; ν) ,

where

J(x; ν) := E
[∫ ∞

0
Eνx (s)f(Xν

x(s), νs)ds

]
x ∈ Rd

with (Xν
x , Eνx ) := (Xν

0,x, Eν0,x).

We shall follow the steps of Section 2. The only difference is that we shall derive an

elliptic equation (time independent) without terminal condition (since there is no time

horizon). In practice, the terminal condition has to be replaced by an analysis of the

behavior of the value function v as t→∞.

4.1 Dynamic programming and Hamilton-Jacobi-Bellman equation

We start with the dynamic programming principle.

Proposition 2.4.6 Assume that for each ν ∈ U , J(·; ν) is finite and continuous, and

that v is locally bounded. Then, for all uniformly bounded family of stopping times

{θν , ν ∈ U},

v(x) = sup
ν∈U

E
[
Eνx (θν)v(Xν

x(θν)) +

∫ θν

0
Eνx (s)f(Xν

x(s), νs)ds

]
.
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Proof. This follows from similar arguments as in the proof of Theorem 2.2.1. 2

As in the finite horizon case, this leads to the derivation of an Hamilton-Jacobi-Bellman

equation. As in Section 2.2, we use the notations

Luϕ(x) := 〈b(x, u), Dϕ(x)〉+
1

2
Tr
[
σσ∗(x, u)D2ϕ(x)

]
+

∫
Rd

(ϕ(x+ β(x, u, z))− ϕ(x))λΦ(dz)

and

Hϕ(x) := sup
u∈U

(Luϕ(x) + f(x, u)) .

Proposition 2.4.7 Let the conditions of Proposition 2.4.6 hold. Assume further that v

is C2. Then, it satisfies

Hv = ρv . (2.4.1)

Proof. Given a constant control ν = u, u ∈ U , we deduce from Proposition 2.4.6 that

v(x) ≥ E
[
Eνx (θ)v(Xν

x(θ)) +

∫ θ

0
Eνx (s)f(Xν

x(s), νs)ds

]
for all stopping time θ. Then, the arguments used in the proof of Theorem 1.3.1 implies

that

0 ≥ Luv(x) + f(x, u)− ρ(x)v(x) .

It remains to show that

Hv(x) ≥ ρ(x)v(x) .

Assume to the contrary that

Hv(x) < ρ(x)v(x) .

Then, the same arguments as in the second part of the proof of Theorem 2.2.2 leads to

a contradiction to Proposition 2.4.6. 2

In the case where v may not be smooth, it can still be characterize as a solution in the

viscosity sense, we leave the proof to the reader, see the previous section.

We now turn to the verification argument.
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Proposition 2.4.8 (Verification) Assume that there exists a C2 locally bounded func-

tion ϕ satisfying (2.4.1). Assume further that

1. There is a measurable map û : Rd 7→ U such that Hϕ = Lûϕ+ f(·, û) on Rd.
2. For all initial conditions x ∈ Rd, there is a solution to (2.1.1) starting at t = 0 with

ν̂ defined by ν̂s := û(X ν̂
x(s)).

3. For all (x, ν) ∈ Rd × U , there is an increasing sequence of stopping times (θn)n such

that Xν
x is bounded on [0, θn], θn →∞ P− a.s. and

E [Eνx (θn)ϕ(Xν
x(θn))]→ 0 as n goes to ∞.

Then, v = ϕ.

Proof. By Itô’s Lemma, Corollary A.2.1, (A.1.1), the fact that ϕ solves (2.4.1) and the

assumptions 1., 2. and 3., we obtain

ϕ(x) = E
[
E ν̂x (θn)ϕ(X ν̂

x(θn)) +

∫ θn

0
E ν̂x (s)f(X ν̂

x(s), ν̂s)ds

]
for each n, where (θn)n is associated to ν̂. Using assumption 3, we then deduce that

ϕ(x) = E
[∫ ∞

0
E ν̂x (s)f(X ν̂

x(s), ν̂s)ds

]
by sending n to∞ and using the monotone convergence theorem, recall that f ≥ 0. This

shows that ϕ(x) ≤ v(x). We now prove the converse inequality. Fix ν ∈ U , let (θn)n be

the sequence associated to ν. By the same arguments as in the proof of Theorem 2.2.2,

we obtain that

E
[
Eνx (θn)ϕ(Xν

x(θn)) +

∫ θn

0
Eνx (s)f(Xν

t,x(s), νs)ds

]
= ϕ(x) + E

[∫ θn

0
Eνx (s) (Lνsϕ(Xν

x(s))− (ρϕ)(Xν
x(s)) + f(Xν

x(s), νs))) ds

]
≤ ϕ(x) .

Using the assumption 3. and sending n→∞ leads to

E
[∫ ∞

0
Eνx (s)f(Xν

t,x(s), νs)ds

]
≤ ϕ(x) .

Since ν is arbitrary, this implies that v(x) ≤ ϕ(x). 2

Remark 2.4.16 As in the finite time horizon case, the value function can be charac-

terize as a discontinuous viscosity solution of Hv = ρv and a comparison result can be

established, under suitable growth assumptions. We leave this to the reader.
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4.2 Application to the optimal investment with random time horizon

Let us consider the problem of Section 3.7 where the dynamics of the wealth is given by

Xφ,ν
x (t) = x+

∫ t

0
φs
dSs
Ss

+

∫ t

0

{
(Xφ,ν

x (s)− φs)r + p− νsq
}
ds−

∫ t

0
δ(1− νs)dNs

with

St = S0e
(µ−σ2/2)t+σWt .

Instead of fixing a time horizon, we now consider the problem of an investor who wants

to maximize the expected value of his wealth at his death time τ . We assume that τ is

independent of (W,N) and admits an exponential distribution of parameter κ. We take

the utility of exponential type. In this case, one can show that

J(x;φ, ν) := E
[
−e−ηX

φ,ν
x (τ)

]
= E

[∫ ∞
0

κe−κt
{
−e−ηX

φ,ν
x (t)

}
dt

]
.

i.e. the original problem is equivalent to an optimal control problem in infinite horizon.

The value function is given by

v(x) := sup
(φ,ν)∈U

E
[∫ ∞

0
κe−κt

{
−e−ηX

φ,ν
x (t)

}
dt

]
,

where U is the set of predictable processes (ν, φ) with values in [0, 1]× R satisfying∫ t

0
|φs|2ds <∞ , t ≥ 0

and

E
[∫ ∞

0
κe−κte−ηX

φ,ν
x (t)dt

]
<∞ , lim

t→∞
E
[
e−κte−ηX

φ,ν
x (t)dt

]
= 0 , (2.4.2)

The associated Hamilton-Jacobi-Bellman equation is

κv = −e−ηx + sup
φ∈R

{
(xr + φ(µ− r))Dv(t, x) +

1

2
φ2σ2D2v(x)

}
+ max

u∈[0,1]
{(p− uq)Dv(x) + λ (v(x− (1− u)δ)− v(x))} (2.4.3)

In the case where r = 0, it is natural to search a solution of the form −be−ηx, b > 0,

which leads to

−κb = −1 + sup
φ∈R

{
ηbφµ− 1

2
φ2bη2σ2

}
+ max
u∈[0,1]

{
ηb(p− uq) + bλ

(
1− eη(1−u)δ

)}
.

58



The sup over φ is attained by

φ̂ :=
µ

ησ2

so that b must satisfy

b = b̂ :=

(
κ+

1

2

µ2

σ2
+m(û)

)−1

,

where û maximizes over u

m(u) :=
{
η(p− uq) + λ

(
1− eη(1−u)δ

)}
.

We now provide the verification argument in the case where b̂ > 0. This condition is

satisfied in particular if p = q. We then set ψ(x) := −b̂e−ηx.

Using Itô’s Lemma, a localization argument and the fact that ψ satisfies (2.4.3), we first

observe that for any (φ, π) ∈ U

E
[
e−κtψ(Xφ,ν

x (t)) +

∫ t

0
κe−κs

{
−e−ηX

φ,ν
x (s)

}
ds

]
≤ ψ(x)

Using (2.4.2), the particular form of ψ and sending t→∞, we obtain

E
[∫ ∞

0
κe−κs

{
−e−ηX

φ,ν
x (s)

}
ds

]
≤ ψ(x) .

On the other hand, the same arguments shows that for (φ, ν) := (φ̂, û)

E
[
e−κtψ(X φ̂,û

x (t)) +

∫ t

0
κe−κs

{
−e−ηX

φ̂,û
x (s)

}
ds

]
= ψ(x) ,

and, if (φ̂, û) satisfies (2.4.2),

E
[∫ ∞

0
κe−κs

{
−e−ηX

φ̂,û
x (s)

}
ds

]
= ψ(x) .

Thus, it remains to check the admissibility condition. We have

X φ̂,û
x (t) = x+

µ

ησ2
(µt+ σWt) + (p− ûq)t− δ(1− û)Nt

so that

E
[
e−ηX

φ̂,û
x (t)

]
= e−ηxe

−ηt
(
µ2

2σ2
+p−ûq

)
eλt(e

ηδ(1−û)−1) = e−ηxe
−t
(
µ2

2σ2
+m(û)

)
.

Thus, the admissibility of the candidate to be the optimal strategy reads

κ > −
(
µ2

2σ2
+m(û)

)
⇔ b̂ > 0 .

Thus ψ = v and the optimal strategy is given by (φ̂, û).
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4.3 Optimization of the survival probability

We consider the same model as in Section 3.7 except that:

1. There is no reinsurance.

2. The non risky rate of return r is equal to 0.

3. The size of each claim has a bounded density f on (0,∞).

4. We want to maximize the survival probability: J(x;φ) := P
[
Xφ
x (t) ≥ 0 ∀ t ≥ 0

]
.

The dynamics of the wealth is given by

Xφ
x (t) = x+

∫ t

0
φs
dSs
Ss

+ pt−
∫ t

0
zµ(dz, dt)

where µ admits λf(z)dz as predictable kernel intensity and

St = S0e
(µ−σ2/2)t+σWt ,

where W a standard Brownian motion. Here, φ belongs to the set U of predictable

processes satisfying ∫ t

0
|φs|2ds <∞ , t ≥ 0 .

We assume that λ, σ > 0.

The value function is: v(x) = supφ∈U J(x;φ).

Observing that, for all stopping time θ,

E
[
1{Xφ

x (t)≥0 ∀ t≥0}

]
= E

[
1{Xφ

x (t)≥0 ∀ t∈[0,θ]}1{Xφ
x (t)≥0 ∀ t∈[θ,∞)}

]
,

= E

[
1{Xφ

x (t)≥0 ∀ t∈[0,θ]}E

[
1{Xφ

X
φ
x (θ)

(θ+t)≥0 ∀ t≥0} | X
φ
x (θ)

]]
we end up, formally, with the dynamic programming equation:

v(x) = sup
φ∈U

E
[
1{Xφ

x (t)≥0 ∀ t∈[0,θ]}v(Xφ
x (θ))

]
.

Thus, still formally, v is associated to the PDE on (0,∞):

0 = sup
φ∈R

{
φµDv(x) +

1

2
φ2σ2D2v(x)

}
+

{
pDv(x) + λ

∫ ∞
0

(v(x− z)− v(x))f(z)dz

}
(2.4.4)

with v = 0 on R−. Direct computation shows that the optimal φ in the above equation

should be given by

φ̂(x) = − µDv(x)

σ2D2v(x)
,
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which leads to the equation

0 = pDv(t, x)− 1

2

µ2Dv(t, x)2

σ2D2v(t, x)
+ λ

∫ ∞
0

(v(x− z)− v(x))f(z)dz . (2.4.5)

Moreover, one could expect to have v(∞) = 1.

In [8], it is actually shown that there exists a solution ψ ∈ C2((0,∞)) ∩ C1([0,∞)) to

(2.4.5) which is positive, strictly increasing and strictly concave on [0,∞) and satisfies

ψ = 0 on R−. In the case where 1−Φ is integrable, then it is bounded. In this case, we

can choose it to satisfy ψ(∞) = 1 by a simple normalization.

We now show that, if existence holds for

X̂x(t) = x+

∫ t

0
φ̂(X̂x(t−))

dSs
Ss

+ pt−
∫ t

0
zµ(dz, dt)

with φ̂(x) := −µDv(x)/(σ2D2v(x)), then ψ = v and the optimal strategy is given by

(φ̂(X̂x(t−))t≥0.

Let φ be a given strategy and let τ be the first time Xφ
x goes below 0. By dominated

convergence, the fact that ψ satisfies (2.4.4), Itô’s Lemma and a localization argument,

we obtain

E
[

lim
t→∞

ψ(Xφ
x (t ∧ τ))

]
= lim

t→∞
E
[
ψ(Xφ

x (t ∧ τ))
]
≤ ψ(x) .

But, on {τ = ∞} one can show that limt→∞X
φ̂
x (t) = ∞. Since ψ = 0 on R−, this

implies that

ψ(x) ≥ P [τ =∞] .

Now, let τ̂ be the first time X̂x goes below 0. By the same arguments as above, one

obtains

E
[
ψ( lim

t→∞
X̂x(t ∧ τ))

]
= lim

t→∞
E
[
ψ(X̂x(t ∧ τ))

]
= ψ(x)

where limt→∞ X̂x(t) =∞ on {τ =∞}. Thus,

ψ(x) = P [τ̂ =∞] .
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Chapter 3

Free boundary problems

1 Optimal stopping

In this section, we study an optimal stopping problem. Namely, given X defined as in

Chapter 1, we want to optimize

E
[
Et,x(τ)g(Xt,x(τ)) +

∫ τ

t
Et,x(s)f(Xt,x(s))ds

]
for τ running in the set Tt of stopping times with values in [t, T ], that are independent

of Ft. This problem naturally appears in finance in the computation of American option

prices, see e.g. [3].

As in the previous chapters, we denote by v the associated value function:

v(t, x) := sup
τ∈Tt

E
[
Et,x(τ)g(Xt,x(τ)) +

∫ τ

t
Et,x(s)f(Xt,x(s))ds

]
.

The aim of this chapter is to relate v to the PDE in variational form

min {ρϕ− Lϕ− f , ϕ− g} = 0 , (3.1.1)

in the viscosity sense. Note that, formally, the PDE ρϕ−Lϕ− f = 0 is satisfied on the

domain C := {(t, x) ∈ [0, T )×Rd : v(t, x) > g(t, x)} with the boundary condition v = g

on the parabolic boundary of C. Since this boundary is not know, we call this problem

a free boundary problem.

As in control problems in standard form, this formulation has a nice probabilistic inter-

pretation. Let us define

Z(t) := Eν0,x(t)v(t,Xν
0,x(t)) +

∫ t

0
Eν0,x(s)f(Xν

0,x(s))ds , t ≥ 0 .
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The PDE (3.1.1) means that this process is a super-martingale [0, T ] and a martin-

gale on [0, τ̂ ] where τ̂ is the first time s for which v(s,X0,x(s)) = g(s,X0,x(s)) or

v(s,X0,x(s−)) = g(s,X0,x(s−)). We refer to [11] for a general analysis of optimal stop-

ping problems.

For sake of simplicity, for the remaining of this Chapter, we assume that g and f are

Lipschitz continuous with Lipschitz constant L > 0, that ρ is constant and g ≥ 0.

1.1 Continuity of the value function

We first prove that the value function v is continuous. This is due to the Lipschitz

continuity of f and g. A similar analysis could be carried out in the previous Chapters.

Lemma 3.1.4 There is a constant C > 0 such that for all (t1, t2, x1, x2) ∈ [0, T ]2×(Rd)2

we have

|v(t1, x1)− v(t2, x2)| ≤ C
(

(1 + ‖x‖)|t1 − t2|
1
2 + ‖x1 − x2‖

)
.

Proof. Without loss of generality we can take t1 ≤ t2. Since ρ is constant, we have

v(ti, xi) = sup
τ∈Tti

E
[
Eti,xi(τ)g(Xti,xi(τ)) +

∫ τ

ti

Eti,xi(s)f(Xti,xi(s))ds

]
= eρtiw(ti, xi) , i = 1, 2 ,

with

w(t, x) := sup
τ∈Tt

E
[
e−ρτg(Xt,x(τ) +

∫ τ

t
e−ρsf(Xt,x(s))ds

]
.

Thus, it suffices to prove the result for w. Since g ≥ 0, Tt2 ⊂ Tt1 and τ ∨ t2 ∈ Tt2 if

τ ∈ Tt1 , we have

0 ≤ w(t1, x1)− w(t2, x1)

≤ sup
τ∈Tt1

E
[
e−ρτg(Xt1,x1(τ))− e−ρ(τ∨t2)g(Xt2,x1(τ ∨ t2)) +

∫ τ∧t2

t1

e−ρs|f(Xt1,x1(s))|ds
]

+ sup
τ∈Tt1

E
[∫ τ∨t2

t2

e−ρs|f(Xt1,x1(s))− f(Xt2,x1(s))|ds
]
.

In view of Proposition 1.2.1, the Lipschitz continuity assumption on g and f implies

that

|w(t1, x1)− w(t2, x1)| ≤ C(1 + ‖x1‖)|t1 − t2|
1
2 .
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Similarly,

|w(t1, x1)− w(t1, x2)| ≤ sup
τ∈Tt1

E
[
e−ρτ |g(Xt1,x1(τ))− g(Xt1,x2(τ))|

]
+ sup

τ∈Tt1
E
[∫ τ

t1

e−ρs|f(Xt1,x1(s))− f(Xt1,x2(s))|ds
]

≤ C‖x1 − x2‖ .

2

1.2 Dynamic programming and viscosity property

As in the previous chapters, we shall appeal to the dynamic programming principle

which takes here the following form.

Lemma 3.1.5 (Dynamic programming) Fix (t, x) ∈ [0, T ] × Rd. For all [t, T ]-valued

stopping time θ, we have

v(t, x) = sup
τ∈Tt

E
[
e−ρ(θ−t)v(θ,Xt,x(θ))1θ≤τ + e−ρ(τ−t)g(Xt,x(τ))1θ>τ +

∫ θ∧τ

t
e−ρ(s−t)f(Xt,x(s))ds

]
.

Proof. It suffices to adapt the arguments used to prove Theorem 2.2.1. 2

We can now prove that v is a viscosity solution of (3.1.1).

Theorem 3.1.1 The function v is a viscosity solution of (3.1.1) and satisfies limt→T v(t, ·) =

g on Rd.

Proof. The super-solution property is clear. First, v ≥ g by construction. Second,

Lemma 3.1.5 implies that

v(t, x) ≥ E
[
e−ρ(θ−t)v(θ,Xt,x(θ)) +

∫ θ

t
e−ρ(s−t)f(Xt,x(s))ds

]
for all θ ∈ Tt (take τ = θ). It thus suffices to repeat the arguments of the proof of

supersolution property of Theorem 1.4.1 . As for the subsolution property, we have to

prove that for (t̂, x̂) ∈ [0, T )×Rd and a smooth function ϕ such that 0 = max(v−ϕ) =

(v − ϕ)(t̂, x̂), we have

ρϕ(t̂, x̂)− Lϕ(t̂, x̂)− f(x̂) ≤ 0 if v(t̂, x̂) > g(x̂) .

We can argue by contradiction and assume that

ρϕ(t̂, x̂)− Lϕ(t̂, x̂)− f(x̂) > 0 while v(t̂, x̂) > g(x̂) .
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Then, by choosing a suitable stopping time θ ∈ Tt̂ as done in the proof of Theorem 1.4.1,

we can find η > 0 such that for all s ∈ [t̂, θ]

ρϕ(Xt̂,x̂(s))− Lϕ(s,Xt̂,x̂(s))− f(Xt̂,x̂(s)) ≥ η and v(s,Xt̂,x̂(s))− g(Xt̂,x̂(s)) ≥ η

while (v − ϕ)(θ,Xt̂,x̂(θ)) ≤ −η. By Itô’s Lemma, this implies that, for all τ ∈ Tt̂,

ϕ(t̂, x̂) ≥ E
[
e−ρ(θ−t̂)ϕ(θ,Xt̂,x̂(θ))1θ≤τ + e−ρ(τ−t̂)(g(Xt̂,x̂(τ)) + η)1θ>τ

]
+ E

[∫ θ∧τ

t̂
e−ρ(s−t̂)f(Xt̂,x̂(s))ds

]
≥ E

[
e−ρ(θ−t̂)(v(θ,Xt̂,x̂(θ)) + η)1θ≤τ + e−ρ(τ−t̂)(g(Xt̂,x̂(τ)) + η)1θ>τ

]
+ E

[∫ θ∧τ

t̂
e−ρ(s−t̂)f(Xt̂,x̂(s))ds

]
.

This contradicts Lemma 3.1.5. 2

In order to complete this characterization, we now provide a comparison result.

Theorem 3.1.2 Let U (resp. V ) be a l.s.c. super-solution (resp. u.s.c. sub-solution)

with polynomial growth of (3.1.1) on [0, T ) × Rd. If U ≥ V on {T} × Rd, then U ≥ V

on [0, T )× Rd.

Proof. We only explain how to adapt the proof of Theorem 1.4.2 from which we take

the notations. The only difference appears if (tn, xn) is such that V (tn, xn) ≤ g(xn).

But, in this case, since U(tn, yn) ≥ g(xn), we obtain that U(tn, xn) ≥ V (tn, xn) which

contradicts (1.4.7). 2

1.3 Construction of the optimal stopping strategy: formal derivation

in the smooth case

For sake of simplicity, we only consider the case where there is no jumps, i.e. β = 0.

Assume that v is C1,2 on the set C := {(t, x) ∈ [0, T ] × Rd : v(t, x) > g(x)} and is

continuous on [0, T ]×Rd. Assume further that is solves (3.1.1) on C and satisfies v = g

on Cc := ([0, T ]× Rd) \ C. We assume that the distance function d to Cc is well defined

and is continuous. We fix the initial conditions (0, x0), with (0, x0) ∈ C, and write X

for X0,x0 . Let τε := inf{s ≥ 0 : d(s,X(s)) ≤ ε}. Then, it follows from the fact that v

solves (3.1.1) on C that

v(0, x0) = E
[
v(τ ε, X(τ ε)) +

∫ τε

0
f(X(s))ds

]
.
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Since τ ε → τ0 P − a.s. as ε → 0, by continuity of the path of X, we deduce from the

continuity of v and the fact that v = g on Cc that

v(0, x0) = E

[
g(X(τ0)) +

∫ τ0

0
f(X(s))ds

]
.

It follows that τ0 = inf{s ≥ 0 : (s,Xs) ∈ Cc} is an optimal stopping strategy. The

domain C is therefore called the continuity region, it is the region where it is never

optimal to stop.

2 Optimal switching problems

In this section, we consider a diffusion whose coefficients may take different values, called

regimes, depending on the value taken by an underlying control. More precisely, in the

i-th regime, the drift is given by b(·, i) and the volatility by σ(·, i). The aim of the

controller is to manage the different regimes of the process in order to maximize a mean

gain.

2.1 Definitions

We first define a set of possible regimes E = {0, . . . , κ}. Given the initial regime e0 ∈ E,

we say that an adapted process ξ is a regime control with initial condition e0 ∈ E if it

takes the form

ξt = e01[0,τ1) +
∑
i≥1

Ei1τi≤t<τi+1 , t ≤ T ,

where (τi)i≥1 is a sequence of (strictly) increasing stopping times such that τi → ∞
P− a.s., and (Ei)i≥1 is a sequence of random variables with values in E such that Ei is

Fτi-measurable for all i ≥ 1. We denote by (τ ξi )i≥1 the associates sequence of stopping

times.

The controlled process Xξ
t,x is defined as the solution of:

Xt,x(s) = x+

∫ s

t
b(Xt,x(u), ξ(u))du+

∫ t

0
σ(Xt,x(u), ξ(u))dWs (3.2.1)

+
∑
τξi ≤t

β(Xt,x(τ ξi −), ξ(τ ξi −), ξ(τ ξi )) .

Here, we do not introduce exogenous jumps in the dynamics of X. However, X may

jump when we pass from a regime to another one.
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As in the preceding chapters, we assume that b, σ (resp. β) are uniformly Lipschitz on

Rd × [0, κ] (resp. Rd × [0, κ]2). We also assume that there is Ψ defined on E2 such that

sup
x∈Rd

|β(x, i, j)| ∨ 1 ≤ Ψ(i, j) for all i, j ∈ E . (3.2.2)

We say that a control ξ is admissible if

E

|∑
τξi ≤T

Ψ(ξ
τξi −

, ξ
τξi

)|2p̄

 < ∞ , (3.2.3)

for some fixed p̄ ≥ 1, and we denote by S0(e0) the set of admissible controls with initial

condition ξ0 = e0.

The aim of the controller is to maximize the mean of

Πt,x(ξ) := g(Xξ
t,x(T ), ξ(T )) +

∫ T

0
f(Xξ

t,x(s), ξs)ds−
∑
τξi ≤T

c
(
Xξ
t,x(τ ξi −), ξ

τξi −
, ξ
τξi

)
(3.2.4)

where g, f and c are locally Lipschitz functions such that

sup
(x,i,j)∈Rd×E2

|g(x, i)|+ |f(x, i)|+ |c(x, i, j)|
1 + |x|p̄

< ∞ (3.2.5)

and

sup
x∈Rd

c(x, i, j)+ ≤ Ψ(i, j) for all i, j ∈ E . (3.2.6)

The associated value function is defined as

v(t, x, e) := sup
ξ∈S0(e0)

E [ Π(ξ) ] . (3.2.7)

We shall always assume that

β(·, e, e) = 0 and c(·, e, e) = 1 for all e ∈ E . (3.2.8)

This allows to avoid strategies ξ for which P[∃ i ≥ 1 s.t. τ ξi ≤ T and ξ
τξi −

= ξ
τξi

] > 0

which makes no sense.

The aim of this Section is to prove that the value function solves on [0, T )× Rd × E

min {−Lϕ , Gϕ} = 0 (3.2.9)
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where

Geϕ(t, x, e) := min
j∈E\{e}

(ϕ(t, x, e)− ϕ(t, x+ β(x, e, j), j) + c(x, e, j)) ,

and

Leϕ :=
∂

∂t
ϕ+ 〈b(·, e), Dϕ〉+

1

2
Tr
[
σσ∗(·, e)D2ϕ

]
+ f(·, e) ,

with the boundary condition on {T} × Rd × E

min {ϕ(T, x, e)− g(x, e) , Geϕ(T, x, e)} = 0 . (3.2.10)

Note that, formally, this shows that v(·, e) solves the free boundary problem

min {−Lev(t, x, e) , v(t, x, e)−Ψe(t, x)} = 0

where

Ψe(t, x) := max
j∈E\{e}

(v(t, x+ β(x, e, j), j)− c(x, e, j)) . (3.2.11)

This problem is therefore very close from the optimal control problem of the previous

section. The main difficulty here comes from the fact that the boundary is related to

each v(·, j), j 6= e, which also solve free boundary problems which boundaries depend

on v(·, e).

2.2 Dynamic programming

Some useful qualitative properties

We start with a Remark on the controlled process.

Remark 3.2.17 It follows from the admissibility condition (3.2.3) and similar argu-

ments as the one used to prove Proposition 1.2.1 that

E

[
sup
t≤s≤T

‖Xξ
t,x(s)‖2p̄

]
<∞ .

Moreover, if card{i ≥ 1 : t < τ ξi ≤ T} ≤ K for some K > 0, then

E

[
sup
t≤s≤T

‖Xξ
t,x(s)‖p

]
≤ CpK(1 + ‖x‖p) ,

where the constant CpK > 0 depends only on b, σ, β, T , K and p ≥ 1.

68



We first derive some useful properties for the functional

J(t, x, ξ) := E

g(X
(t,x),ξ
T , ξT ) +

∫ T

t
f(X(t,x),ξ

s , ξs)ds−
∑

t<τξi ≤T

c

(
X

(t,x),ξ

τξi −
, ξ
τξi −

, ξ
τξi

)
defined for (t, x) ∈ [0, T ]× Rd and ξ ∈ S0. For t1 ≤ t2 ≤ T , we set

Iξt1,t2 := card{i ≥ 1 : t1 < τ ξi ≤ t2} ,

and we denote by Sb0 the set of elements ξ ∈ S0 such that Iξ0,T is essentially bounded.

We set Sbt (e) := St(e) ∩ Sb0.

Lemma 3.2.6 Fix (t, x, e) ∈ [0, T )× Rd × E. Then,

(i) For all ξ ∈ Sb0, J(·, ξ) is jointly continuous in x and right-continuous in t. If ξ is

such that P
[
τ ξi = t

]
= 0 for all i ≥ 1, then J(·, ξ) is continuous at (t, x).

(ii) sup
ξ∈Sbt (e)

J(t, x, ξ) = v(t, x, e).

(iii) v(·, e) is lower semicontinuous.

Proof. (i) We start with the first assertion. Fix ξ ∈ Sb0, t1 ≤ t2, x1, x2 ∈ Rd and write

(X1, X2) for (X(t1,x1),ξ, X(t2,x2),ξ). We define the sequence

ϑi+1 := inf{s > ϑi : ξs 6= ξs−} for i ≥ 0 , with ϑ0 = t2 .

Standard computations based on Burkholder-Davis-Gundy’s inequality, Gronwall’s Lemma

and the Lipschitz continuity of b, a, β shows that

E

[
sup

t2≤s≤ϑi+1∧T
|X1

s −X2
s |2p̄

]
≤ C E

[
sup

t2≤s≤ϑi∧T
|X1

s −X2
s |2p̄

]
i ≥ 0 ,

where C > 0 denotes a generic constant which may change from line to line. Since Iξ0,T
is essentially bounded and ϑ0 = t2, we deduce that

E

[
sup

t2≤s≤T
|X1

s −X2
s |2p̄

]
≤ C E

[
|X1

t2 − x2|2p̄
]
, (3.2.12)

where, by Remark 3.2.17 and (3.2.2),

E
[

sup
t1≤s≤t2

|X1
s − x1|2p̄

]
≤ C

(
|t2 − t1|2p̄ + E

[
|Iξt1,t2 |

2p̄
])

. (3.2.13)
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We now fix (t, x) ∈ [0, T ]× Rd and a sequence (tn, xn)n≥1 such that tn ↓ t and xn → x,

we write X and Xn for X(t,x),ξ and X(tn,xn),ξ. In view of (3.2.12)-(3.2.13), we can find

a subsequence such that supt∨tn≤s≤T |X
n
s −Xs| → 0 P − a.s. Moreover, if follows from

Remark 3.2.17 that E

[
sup

tn≤s≤T
|Xn

s |2p̄
]

is bounded, uniformly in n ≥ 1. Recalling the

growth condition (3.2.5) and the fact that Iξ0,T is bounded, we deduce that

lim inf
n→∞

J(tn, xn, ξ) ≥ J(t, x, ξ)− lim sup
n→∞

E

| ∑
t∧tn<τξi ≤t∨tn

Ψ(ξ
τξi −

, ξ
τξi

)|

 = J(t, x, ξ) .

We obtain similarly that lim supn→∞ J(tn, xn, ξ) ≤ J(t, x, ξ). In the case where the

control ξ satisfies P
[
τ ξi = t

]
= 0 for all i ≥ 1, the term E

[
|
∑

t∧tn<τξi ≤t∨tn
Ψ(ξ

τξi −
, ξ
τξi

)|
]

goes to 0 even if tn approximate t from the left. The above argument can then be

repeated without modification for any sequence (tn, xn)n such that tn → t and xn → x.

(ii) Fix ξ ∈ S0 and let ξk ∈ Sb0 be defined by ξkt = ξ
t∧τξk

, k ≥ 1. Arguing as in Remark

3.2.17, we obtain that

sup
k≥1

E

[
sup
t≤s≤T

|X(t,x),ξk

s |2p̄
]
<∞ . (3.2.14)

Moreover, it follows from a similar induction argument as above that

E

 sup
t≤s≤t∨τξi

|X(t,x),ξk

s −X(t,x),ξ
s |2

 −→ 0 for all i ≥ 1 .

After possibly passing to a subsequence, we can then assume that

sup
t≤s≤t∨τξi

|X(t,x),ξk

s −X(t,x),ξ
s | −→ 0 P− a.s. ∀ i ≥ 1 .

In view of (3.2.14), we deduce from (3.2.5), (3.2.3), (3.2.6) and the continuity of g, f and

c that

lim inf
k→∞

J(t, x, ξk) ≥ J(t, x, ξ) .

This proves (ii).

(iii) By using a continuity argument as in (ii) above, we can restrict to ξ such that

P
[
τ ξi = t

]
= 0 for all i ≥ 1 in the definition of v(t, x). The last assertion is then an

immediate consequence of (i) and (ii). 2

We conclude this section with an easy result which will also be useful in the following.
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Proposition 3.2.9 v− has polynomial growth.

Proof. This is an easy consequence of (3.2.5) since a constant control is admissible. 2

Dynamic programming principle

We now turn to the proof of the dynamic programming principle.

Remark 3.2.18 The inequality

v(t, x, e) ≤ sup
ξ∈St(e)

E

v(θξ, Xξ
t,x(θξ), ξθξ) +

∫ θξ

t
f(Xξ

t,x(s), ξs)ds−
∑

t<τξi ≤θξ
c
(
Xξ
t,x(τ ξi −), ξ

τξi −
, ξ
τξi

)
for all family of [t, T ]-valued stopping times {θξ, ξ ∈ S0}, follows from the Markov feature

of our model.

Thus it suffices to prove the following Lemma.

Lemma 3.2.7 Fix (t, x, e) ∈ [0, T ] × Rd × E. For all [t, T ]-valued stopping time θ and

ξ ∈ St(e), we have

v(t, x, e) ≥ E

v(θ,Xξ
t,x(θ), ξθ) +

∫ θ

t
f(Xξ

t,x(s), ξs)ds−
∑

t<τξi ≤θ

c
(
Xξ
t,x(τ ξi −), ξ

τξi −
, ξ
τξi

) .

Proof. In view of the previous results, it suffices to adapt the proof of Theorem 2.2.1.

2

2.3 PDE characterization

Definition of viscosity solutions

In this section, we adapt the notion of viscosity solutions introduced in Chapter 1 to

our context.

Definition 3.2.2 We say that a lower-semicontinuous (resp. upper-semicontinuous)

function U on [0, T )×Rd×E is a viscosity super-solution (resp. subsolution) of (3.2.9)

if, for all e ∈ E, ϕ ∈ C1,2([0, T ]× Rd) and all (t, x) ∈ [0, T )× Rd which realizes a local

minimum (resp. maximum) of U(·, e)− ϕ, we have

min {−Leϕ(t, x) , GeU(t, x, e)} ≥ 0 (resp ≤ 0) .
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We say that a locally bounded function w is a discontinuous viscosity solution of (3.2.9)

if w∗ (resp. w∗) is a super-solution (resp. subsolution) of (3.2.9) where

w∗(t, x, e) := lim sup
(t′,x′)→(t,x), t′<T

w(t′, x′, e)

w∗(t, x, e) := lim inf
(t′,x′)→(t,x), t′<T

w(t′, x′, e) , (t, x, e) ∈ [0, T ]× Rd × E .

To complete this characterization, we need to provide a suitable boundary condition. In

general, we can not expect to have v(T−, ·) = g, and we need to consider the relaxed

boundary condition given by the equation (3.2.10).

Definition 3.2.3 We say that a locally bounded map w satisfies the boundary condition

(3.2.10) if w∗(T, ·) (resp. w∗(T, ·)) is a super-solution (resp. subsolution) of (3.2.10).

Here the terms super-solution and subsolution are taken in the classical sense.

If w is a discontinuous viscosity solution of (3.2.9) and satisfies the boundary condition

(3.2.10), we just say that w is a (discontinuous) viscosity solution of (3.2.9)-(3.2.10).

We define similarly the notion of super and subsolution of (3.2.9)-(3.2.10).

Viscosity properties

We now provide the characterization of v as a viscosity solution of (3.2.9)-(3.2.10).

Proposition 3.2.10 The function v∗ is a viscosity super-solution of (3.2.9)-(3.2.10).

Proof. Fix (t0, x0, e0) ∈ [0, T ]×Rd×E and let (tk, xk)k≥1 be a sequence in [0, T )×Rd

such that

(tk, xk) −→ (t0, x0) and v(tk, xk, e0) −→ v∗(t0, x0, e0) as k −→∞ .

Given ξk ∈ Stk(e0) to be chosen later, we write Xk and τki for Xξk

tk,xk
and τ ξ

k

i .

1. We first assume that t0 = T . By taking ξk = e0 ∈ Stk(e0), we deduce from the

definition of v that

v(tk, xk, e0) ≥ E
[
g(Xk

T , e0) +

∫ T

tk

f(Xk
s , e0)ds

]
.

Using standard estimates on Xk, we deduce from our continuity and growth assumptions

on f, g that

v∗(T, x0, e0) ≥ lim inf
k→∞

E
[(
g(Xk

T , e0) +

∫ T

tk

f(Xk
s , e0)ds

)]
= g(x0, e0) .
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We now fix j ∈ E, set τk := (T + tk)/2 and ξk := (e01t<τk + j1t≥τk)t≤T ∈ Stk(e0). By

Lemma 3.2.7

v(tk, xk, e0) ≥ E
[
v∗

(
τk, X

k
τk− + β(Xk

τk−, e0, j), j
)

+

∫ τk

tk

f(Xk
s , e0)ds− c(Xk

τk−, e0, j)

]
.

Sending k →∞, using Proposition 3.2.9 and standard estimates shows that

v∗(T, x0, e0) ≥ v∗ (T, x0 + β(x0, e0, j), j)− c(x0, e0, j) .

2. We now fix t0 < T . By considering the sequence of controls ξk = (e01t<τk +

j1τk≤t)t≤T ∈ Stk(e0) where τk := tk + k−1, j ∈ E, using Lemma 3.2.7 and arguing as

above, we obtain

v∗(t0, x0, e0) = lim
k→∞

v(tk, xk, e0) ≥ v∗ (t0, x0 + β(x0, e0, j), j)− c(x0, e0, j) .

The fact that v∗ is a super-solution of −Lϕ = 0 is obtained by considering constant

control processes, Lemma 3.2.7 and similar arguments as in the proof of Theorem 1.4.1.

2

Proposition 3.2.11 The function v∗ is a viscosity subsolution of (3.2.9)-(3.2.10).

Proof. 1. We first consider the viscosity property. We argue by contradiction. Fix

(t0, x0, e0) ∈ [0, T )× Rd × E and ϕ ∈ C2
b ([0, T ]× Rd) such that

0 = (v∗(·, e0)− ϕ)(t0, x0) = max
[0,T ]×Rd

(v∗(·, e0)− ϕ)

and assume that

min {−Le0ϕ(t0, x0) , Ge0v∗(t0, x0, e0)} =: 2ε > 0 .

Since ϕ(t0, x0) = v∗(t0, x0, e0), it follows from the upper-semicontinuity of v∗ that we

can find δ ∈ (0, T − t0) for which

min

{
−Le0ϕ , min

j∈E\{e0}
(ϕ− v∗(·, ·+ β(·, e0, j), j) + c(·, e0, j))

}
≥ ε > 0 (3.2.15)

on B := B(t0, δ) × B(x0, δ). Observe that we can assume, without loss of generality,

that (t0, x0) achieves a strict local maximum so that

sup
∂pB((t0,x0),δ)

(v∗(·, e0)− ϕ) =: −ζ < 0 , (3.2.16)
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where ∂pB = [t0, t0 + δ]× ∂B(x0, δ)∪ {t0 + δ} ×B(x0, δ). Let (tk, xk)k≥1 be a sequence

in [0, T )× Rd satisfying

(tk, xk) −→ (t0, x0) and v(tk, xk, e0) −→ v∗(t0, x0, e0) as k −→∞

so that

v(tk, xk, e0)− ϕ(tk, xk) −→ 0 as k −→∞ . (3.2.17)

Let ξk be a k−1-optimal control for v(tk, xk, e0), i.e. such that v(tk, xk, e0) is bounded

from above by

E

g(Xk
T , ξ(T )) +

∫ T

tk

f(Xk
s , ξ

k
s )ds−

∑
tk<τ

k
i ≤T

c
(
Xk
τki −

, ξk
τki −

, ξk
τki

)+ k−1

where Xk denotes Xξk

tk,xk
and τki stands for τ ξ

k

i . Set ϑk := inf{s > tk : ξk 6= e0},
θk := inf{s ≥ tk : (s,Xk

s ) /∈ B} ∧ ϑk and Ek := ξk
θk

. By taking the conditional

expectation with respect to Fθk in the above expression and using the Markov property

of (Xk, ξk), we get

v(tk, xk, e0) ≤ E
[
v
(
θk, Xk

θk− + β(Xk
θk−, e0, Ek), Ek

)]
(3.2.18)

+ E

[∫ θk

tk

f(Xk
s , e0)ds− c

(
Xk
θki −

, e0, Ek
)

1θk=ϑk

]
+ k−1 ,

recall that β(·, e, e) = 0 for e ∈ E. On the other hand, applying Itô’s Lemma to ϕ and

using (3.2.15) and (3.2.16) leads to

ϕ(tk, xk) ≥ E

[
ϕ
(
θk, Xk

θk−

)
+

∫ θk

tk

f(Xk
s , e0)ds

]
≥ E

[
v∗
(
θk, Xk

θk− + β(Xk
θk−, e0, Ek), Ek

)]
+ E

[∫ θk

tk

f(Xk
s , e0)ds− c

(
Xk
θk−, e0, Ek

)
1θk=ϑk

]
+ ε ∧ ζ .

In view of (3.2.17) and (3.2.18), this leads to a contradiction for k large enough.

2. It remains to show that

min {(v∗ − g)(T, x0, e0) , Ge0v∗(T, x0, e0)} ≤ 0 . (3.2.19)

We argue by contradiction and assume that

min {(v∗ − g)(T, x0, e0) , Ge0v∗(T, x0, e0)} =: 2ε > 0 .
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Let (tk, xk)k≥1 be a sequence in [0, T ]× Rd satisfying

(tk, xk) −→ (t0, x0) and v(tk, xk, e0) −→ v∗(t0, x0, e0) as k −→∞ . (3.2.20)

Under the above assumption, we can find a sequence of smooth functions (ϕn)n≥0 on

[0, T ]× Rd such that ϕn → v∗(·, e0) uniformly on compact sets and

min

{
ϕn − g(·, e0) , min

j∈E\{e0}
(ϕn − v∗(·, ·+ β(·, e0, j), j) + c(·, e0, j))

}
≥ ε (3.2.21)

on some neighborhoodBn of (T, x0). After possibly passing to a subsequence of (tk, xk)k≥1,

we can then assume that it holds on Bk
n := [tk, T ]×B(xk, δ

k
n) for some sufficiently small

δkn ∈ (0, 1] such that Bk
n ⊂ Bn. Since v∗ is locally bounded, there is some ζ > 0 such

that |v∗| ≤ ζ on Bn. We can then assume that ϕn ≥ −2ζ on Bn. Let us define ϕ̃nk by

ϕ̃nk(t, x) := ϕn(t, x) + 4ζ|x− xk|2/(δkn)2 +
√
T − t ,

and observe that

(v∗(·, e0)− ϕ̃nk)(t, x) ≤ −ζ < 0 for (t, x) ∈ [tk, T ]× ∂B(xk, δ
k
n) . (3.2.22)

Since (∂/∂t)(
√
T − t)→ −∞ as t→ T , we can choose tk large enough in front of δkn and

the derivatives of ϕn to ensure that

−Le0ϕ̃nk ≥ 0 on Bk
n . (3.2.23)

Let Xk, ξk and ϑk be defined as in Step 1 and set θkn := inf{s ≥ tk : (s,Xk
s ) /∈ Bk

n}∧ϑk.
Using Itô’s Lemma on ϕ̃nk together with (3.2.21), (3.2.22) and (3.2.23), we obtain that

ϕ̃nk(tk, xk) ≥ E
[(
v∗
(
θk, Xk

θkn−
+ β(Xk

θkn−
, e0, Ek), Ek

)
− c

(
Xk
θkn−

, e0, Ek
))

1ϑk≤θkn

]
+ E

[(
v∗
(
θk, Xk

θkn
, e0

)
1θkn<T + g

(
Xk
T , e0

)
1θkn=T

)
1θkn<ϑk

]
+ E

[∫ θkn

tk

f(Xk
s , e0)ds

]
+ ε ∧ ζ .

Since v(T, ·) = g, (3.2.18) implies that

ϕn(tk, xk) +
√
T − tk = ϕ̃nk(tk, xk) ≥ v(tk, xk, e0) + ε ∧ ζ − k−1 .

We then obtain a contradiction by sending k → ∞ and taking n large enough, recall

(3.2.20). 2
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2.4 A comparison result

In this section, we prove a comparison principle for (3.2.9)-(3.2.10) under the additional

assumptions

H1 : For some integer γ ≥ 1, v+ satisfies the growth condition

sup
(t,x,e)∈[0,T ]×Rd×E

|w(t, x, e)|/(1 + |x|γ) < ∞ . (3.2.24)

H2 : There is a function Λ on Rd × E satisfying

(i) Λ(·, e) ∈ C2(Rd) for all e ∈ E,

(ii) b′DΛ + 1
2Tr

[
σσ∗D2Λ

]
≤ %Λ on Rd × E, for some % > 0,

(iii) GeΛ(x, e) ≥ q(x) on Rd × E for some continuous function q > 0 on Rd,
(iv) Λ ≥ g+ ,

(v) Λ(x, e)/|x|γ →∞ as |x| → ∞ for all e ∈ E.

We shall provide below some conditions on the coefficients under which this assumptions

hold.

Proposition 3.2.12 Assume that H2 holds. Let U (resp. V ) be a lower-semicontinuous

(resp. upper-semicontinuous) viscosity super-solution (resp. subsolution) of (3.2.9)-

(3.2.10) such that V + and U− satisfies the growth condition (3.2.24). Then, U ≥ V

on [0, T ]× Rd × E.

Proof. 1. As usual, we shall argue by contradiction. We assume that sup[0,T ]×Rd×E(V −
U) > 0. Recalling the definition of Λ and % in H2, it follows from the growth condition

on V − U that for λ ∈ (0, 1) small enough there is some (t0, x0, e0) ∈ [0, T ] × Rd × E
such that

max
[0,T ]×Rd×E

(Ṽ − W̃ ) = (Ṽ − W̃ )(t0, x0, e0) =: η > 0 (3.2.25)

where, for a map w on [0, T ] × Rd × E, we write w̃(t, x, e) for e%tw(t, x, e), and W̃ :=

(1−λ)Ũ +λΛ̃. Let us define G̃e and G̃ as Ge and G with c̃ in place of c and observe that

Ũ and Ṽ are super and sub-solutions on [0, T ]× Rd × E of

min
{
%ϕ− Lϕ , G̃ϕ

}
= 0 (3.2.26)

and satisfy the boundary condition

min
{
ϕ− g̃ , G̃ϕ

}
= 0 . (3.2.27)
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2. For (t, x, y, e) ∈ [0, T ]× Rd × Rd × E and n ≥ 1, we set

Γ(t, x, y, e) := Ṽ (t, x, e)− W̃ (t, y, e)

Θn(t, x, y, e) := Γ(t, x, y, e)−
(
n|x− y|2γ + |x− x0|2γ+2 + |t− t0|2 + |e− e0|

)
.

By the growth assumption on V and U again, there is (tn, xn, yn, en) ∈ [0, T ]×Rd×Rd×E
such that

max
[0,T ]×Rd×Rd×E

Θn = Θn(tn, xn, yn, en) .

Since

Γ(tn, xn, yn, en) ≥ Θn(tn, xn, yn, en) ≥ (Ṽ − W̃ )(t0, x0, e0) ,

it follows from the growth assumption on V and U , (v) of H2, (3.2.25) and the upper-

semicontinuity of Γ that, up to a subsequence,

(tn, xn, yn, en)→ (t0, x0, x0, e0) (3.2.28)

n|xn − yn|2γ + |tn − t0|2 + |en − e0| → 0 (3.2.29)

Γ(tn, xn, yn, en)→ Γ(t0, x0, x0, e0) . (3.2.30)

3. We first assume that, up to a subsequence,

G̃en Ṽ (tn, xn, en) ≤ 0 for all n ≥ 1 .

Then, it follows from the super-solution property of Ũ and (iii) of H2 that, for some

jn ∈ E /∈ {en},

Γ(tn, xn, yn, en) ≤ Γ (tn, xn + β(xn, en, jn), yn + β(yn, en, jn), jn)

+ c̃(yn, en, jn)− c̃(xn, en, jn)− λq̃(yn) .

Observe that jn → j0 ∈ E \ {e0}, up to a subsequence. Using (3.2.28) and (3.2.30), we

then deduce from the upper-semicontinuity of Γ, (iii) of H2 and the continuity of c̃ that

Γ(t0, x0, x0, e0) < Γ(t0, x0, x0, e0) + λq̃(x0)

≤ Γ (t0, x0 + β(x0, e0, j0), x0 + β(x0, e0, j0), j0) ,

which contradicts the definition of (t0, x0, e0) in (3.2.25).

4. We now show that there is a subsequence such that tn < T for all n ≥ 1. If not,

we can assume that tn = T and it follows from the boundary condition (3.2.27) and the
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above argument that Ṽ (tn, xn, en) ≤ g̃(xn, en) for all n ≥ 1, up to a subsequence. Since,

by step 1 and (iv) of H2, W̃ (tn, yn, en) ≥ g̃(yn, en), it follows that Γ(tn, xn, yn, en) ≤
g̃(xn, en)− g̃(yn, en). Using (3.2.28), (3.2.30) and the continuity of g, we then obtain a

contradiction to (3.2.25).

5. In view of the previous arguments, we may assume that

tn < T and G̃en Ṽ (tn, xn, en) > 0 for all n ≥ 1 .

Using Ishii’s Lemma, Remark 1.4.11, and following standard arguments, we deduce from

the viscosity property of Ũ , Ṽ , (ii) of H2 and the Lipschitz continuity assumptions on

b, a and f that

%Γ(tn, xn, yn, en) ≤ O
(
n|xn − yn|2γ + |xn − yn|+ |xn − x0|

)
.

In view of (3.2.28), (3.2.29), (3.2.30), this implies that %Γ(t0, x0, x0, e0) ≤ 0 which con-

tradicts (3.2.25). 2

Some sufficient conditions for H1 and H2

Our general assumptions H1 and H2 hold under various different conditions on the

coefficients. In this section, we provide some of them.

In the following, C > 0 is a generic constant which depends only on T, κ and b, σ, β, f, g

and c.

a. The growth condition H1

Observe that, when c ≥ 0 and f+ + g+ is bounded, then v is trivially bounded from

above so that H1 is satisfied. We now consider a case where g is upper-bounded by an

affine map.

Proposition 3.2.13 Assume that there exists real constants C1, C2 > 0 and some η ∈
Rd such that

g(x, e) ≤ C1 + 〈η, x〉 for all (x, e) ∈ Rd × E , [〈η, b〉+ f ]+ ≤ C2 and 〈η, β〉 − c ≤ 0 .

Then, v+ has polynomial growth.

A similar result can be obtained under weaker conditions on c and g whenever b, σ, f are

bounded and (3.2.10) admits a C2
b solution. This follows from the more general result

stated in the following proposition.
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Proposition 3.2.14 Assume that there exists a super-solution w to (3.2.10) satisfying

(3.2.24) such that w(·, e) ∈ C2(Rd) for each e and (Lw)+ + |Dw∗σ| is uniformly bounded.

Then, v+ satisfies (3.2.24).

Proof. Fix (t, x, e) ∈ [0, T ] × Rd × E and ξ ∈ St(e). We write X for Xξ
(t,x) and τi for

τ ξi . Using Itô’s Lemma and the super-solution property of w, we obtain that

w(X(T ), ξ(T )) +

∫ T

t
f(X(s), ξs)ds−

∑
t<τi≤T

c (X(τi−), ξ(τi−), ξτi)

= w(x, e) +

∫ T

t
Lw(X(s), ξs)ds+

∫ T

t
Dw(X(s), ξs)

∗σ(X(s), ξs)dWs

+
∑

t<τi≤T
[w(X(τi−) + β(X(τi−), ξ(τi−), ξτi), ξτi)− w(X(τi−), ξ(τi−))]

−
∑

t<τi≤T
c (X(τi−), ξ(τi−), ξ(τi))

≤ w(x, e) +

∫ T

t
Lw(X(s), ξs)ds+

∫ T

t
Dw(X(s), ξs)

∗σ(X(s), ξs)dWs .

Since Lw+ and |Dw∗σ| are uniformly bounded by some C > 0 and g ≤ w we deduce

that the expectation in the definition of v is bounded by w(x, e) + TC, uniformly in

ξ ∈ St(e). 2

We conclude this section with a last condition which pertains for unbounded coefficients

but imposes a restriction on the support of β and the sign of c.

Proposition 3.2.15 Assume that

c ≥ 0 and β = 0 on
(
{x ∈ Rd : |x| ≥ K} × E2

)
, (3.2.31)

for some K > 0. Then v+ satisfies the growth condition (3.2.24) with γ := p̄.

Proof. For ease of notations, we write X for Xξ
t,x and τi for τ ξi . It follows from the

assumption c ≥ 0 and (3.2.5) that

E

g(X(T ), ξ(T )) +

∫ T

t
f(X(s), ξ(s))ds−

∑
t<τi≤T

c (X(τi−), ξ(τi−), ξ(τi))


≤ C(1 + sup

t≤s≤T
E
[
|X(s)|p̄

]
) .

Thus, it suffices to show that

sup
t≤s≤T

E
[
|X(s)|p̄

]
≤ C(1 + |x|p̄) .
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Since β is uniformly Lipschitz, it follows from its support condition that is it bounded

by some constant K ′ > 0. Fix K” := K + K ′ + |x|. Let us introduce the sequence of

stopping times (ϑi)i≥1 by ϑ1 = inf{s ≥ t : |X(s)| ≥ 2K”} and for i ≥ 1

ϑ2i := inf{s ≥ ϑ2i−1 : |X(s)| ≤ K”} , ϑ2i+1 := inf{s ≥ ϑ2i : |X(s)| ≥ 2K”} .

It follows from (3.2.31) that |Xϑ2i+1
| = 2K”. Fix s ∈ [t, T ] and set Ais := {ϑ2i−1 ≤ s <

ϑ2i}, As := ∪i≥1A
i
s and Bs,i

u := {ϑ2i−1 ≤ u ≤ s < ϑ2i}. Then

X(s)1As =
∑
i≥1

(
Xϑ2i−1

1Ais +

∫ s

t
1
Bs,iu

b(Xu, ξu)du+

∫ s

t
1
Bs,iu

σ(Xu, ξu)dWu

)
,

and it follows from the Lipschitz continuity of b and a that

E
[
|X(s)1As |2p̄

]
≤ C

1 + (K”)2p̄ +

∫ s

t
E

∑
i≥1

1
Bs,iu
|Xu|2p̄

 du
 .

Since Bs,i
u ⊂ B̃u := {|Xu| ≥ K”} and B̃s ⊂ As ∪ {|X(s)| ≤ 2K”}, we get

E
[
|X(s)1B̃s |

2p̄
]
≤ C

(
1 + (K”)2p̄ +

∫ s

t
E
[
1B̃u |Xu|2p̄

]
du

)
.

It then follows from Gronwall’s Lemma that

E
[
|X(s)|2p̄

]
≤ (K”)2p̄ + E

[
|X(s)1B̃s |

2p̄
]
≤ C(1 + (K”)2p̄) .

Since K” = K +K ′ + |x|, this leads to the required result. 2

b. The strict super-solution condition H2

We now provide a general condition under which H2 holds.

Proposition 3.2.16 Fix some integer γ ≥ p̄. Assume that there is a sequence of real

numbers (di)i∈E and some α > 0 such that

−α < |x+ β(x, i, j)|2γ − |x|2γ for all (x, i, j) ∈ Rd × E2

η := min
i,j∈E

inf
x∈Rd

di − dj + c(x, i, j)

|x+ β(x, i, j)|2γ − |x|2γ + α
> 0 .

Then, assumption H2 holds for γ.

Proof. We set Λ(t, x, e) := (d + η|x|2γ + de) for some d > 0 large enough so that

Λ ≥ g+, recall (3.2.5). A straightforward computation shows that (iii) of H2 is satisfied

with q ≡ αη. Clearly, (i) and (v) hold too. Finally, it follows from the linear growth

assumption on b and a that (ii) holds for a sufficiently large parameter %. 2
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Remark 3.2.19 (i) If c ≥ ε for some ε > 0 and β satisfies the support condition of

Proposition 3.2.15, then the conditions of Proposition 3.2.16 trivially hold with di = 0

for all i ∈ E and α large enough.

(ii) In the case where β ≡ 0 and c satisfies a strict triangular condition

c(x, i, j) + c(x, j, k) > c(x, i, k) for all x ∈ Rd , i, j, k ∈ E . (3.2.32)

When c does not depend on x, they show that the sequence (di)i∈E defined by

di = min
j∈E\{i}

c(x, i, j) (3.2.33)

satisfies di − dj + c(x, i, j) > 0. It follows that if c is independent of x, satisfies (3.2.32)

and β satisfies the support condition of Proposition 3.2.15, or more generally the first

condition of Proposition 3.2.16, then the second condition of this proposition holds too

with (di)i∈E defined as in (3.2.33) and α large enough.

2.5 Verification argument: formal derivation

We now explain formally how to prove a verification theorem for the PDE (3.2.9) with

the boundary condition (3.2.10). Assume that there is a family of smooth functions

{ϕ(·, e) , e ∈ E} which solves (3.2.9) with the boundary condition (3.2.10). We let Ψe

be defined as in (3.2.11) and call ĵ(t, x, e) its argmax. We fix the initial data (0, x0)

and the initial regime e0. We write X̂ for X ξ̂
0,x0

where ξ̂ is associated to the sequence of

stopping times and switches defined by

τ̂1 := inf{s > 0 : ϕ(s, X̂(s), e0) = Ψe0(s, X̂(s))}

Ê1 := ĵ(τ̂1, X̂(τ̂1−), e0)

. . . = . . .

τ̂i+1 := inf{s > τ̂i : ϕ(s, X̂(s), Êi) = ΨÊi(s, X̂(s))}

Êi+1 := ĵ(τ̂i+1, X̂(τ̂i+1−), Êi) . (3.2.34)

Now observe that (3.2.9) and Itô’s Lemma imply that

ϕ(τ̂i, X̂(τi), Êi) = E
[
ϕ(τ̂i+1−, X̂(τ̂i+1−), Êi) +

∫ τ̂i+1

τ̂i

f(X̂(s), ξ̂s)ds

]
= E

[
ϕ(τ̂i+1, X̂(τ̂i+1), Êi+1) +

∫ τ̂i+1

τ̂i

f(X̂(s), ξ̂s)ds

]
− E

[
c
(
X̂(τ̂i+1−), ξ̂τ̂i+1−, ξ̂τ̂i+1

)]
.
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If we now assume that ϕ(T, ·) = g and that τ̂i →∞ as i →∞, we deduce by summing

up over i in the previous equation that, up to integrability conditions to be specified,

ϕ(0, x0, e0) = E

g(X̂(T ), ξ̂T ) +

∫ T

0
f(X̂(s), ξ̂s)ds−

∑
τ̂i≤T

c
(
X̂(τ̂i−), ξ̂τ̂i−, ξ̂τ̂i

) .

This implies that ϕ ≤ v. On the other hand, the same argument but for an arbitrary

admissible strategy ξ associated to a sequence (τi, Ei)i≥1 leads to

ϕ(τi, X
ξ(τi), Ei) ≥ E

[
ϕ(τi+1−, Xξ(τi+1−), Ei) +

∫ τi+1

τi

f(Xξ(s), ξs)ds

]
≥ E

[
ϕ(τi+1, X

ξ(τi+1), Ei+1) +

∫ τi+1

τi

f(Xξ(s), ξs)ds

]
− E

[
c
(
Xξ(τi+1−), ξτi+1−, ξτi+1

)]
which implies ϕ ≥ v by arbitrariness of ξ. It follows that ϕ = v and that the optimal

switching strategy is given by (3.2.34).

3 An example of impulse control problem: Partial hedging

with constant transaction costs (exercise)

Let us consider the Black-Scholes financial model where the underlying stock is modeled

as the solution Xt,x of

X(s) = x+

∫ s

t
X(r)µdr +

∫ s

t
X(r)σdWr , t ≤ s ≤ T

where x > 0, µ ∈ R et σ > 0. For sake of simplicity the risk neutral interest rate is set to

0, i.e. r = 0. We assume that each transaction is subject to a constant transaction cost

c > 0 which does not depend on the size of the transaction. A portfolio strategy is defined

as a sequence of increasing stopping times (τn)n≥1 and amount of exchanges (δn)n≥1 such

that δn is Fτn-measurable. We denote by Aad the set of sequences ν := ((τn)n≥1, (δn)n≥1)

that satisfies the above properties and such that E
[
(
∑

n≥1(|δn|+ c)1τn∈[0,T ])
2
]
< ∞.

Given an initial amount of money y invested in the risky asset at time t, we denote by

Y ν
t,y(s) the amount of money invested in the risky asset at time s ≥ t 1 :

Y ν
t,y(s) = y +

∫ s

t

Y ν
t,y(r)

Xt,x(r)
dXt,x(r) +

∑
n≥1

δn1τn∈(t,s] .

1We should write Y (r−) in the integral by since X has continuous paths and Y only a finite number

of jumps, this does not change anything.
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If z is the amount invested in the non-risky asset at time t, we denote by Zνt,z(s) this

amount at time s ≥ t :

Zνt,z(s) := z −
∑
n≥1

(δn + c)1τn∈(t,s] .

Our aim is to characterize

v(t, x, y, z) := inf
ν∈Aad

J(t, x, y, z; ν)

where

J(t, x, y, z; ν) := E
[([

Zνt,z(T ) + Y ν
t,y(T )− g(Xt,x(T ))

]−)2
]
.

Here, [·]− denotes the negative part and g is a continuous function with linear growth 2.

1. Fix ν ∈ Aad. Give a bound in terms of y and ν but independent of T for

E
[
|Y ν
t,y(T )|2

]
.

2. Show that J is finite for all ν ∈ Aad.

3. Show that 0 ≤ v < ∞. In the following, we shall admit that v has quadratic

growth.

4. Show that for any stopping time θ with values in [t, T ]

v(t, x, y, z) ≥ inf
ν∈Aad

E
[
v
(
θ,Xt,x(θ), Y ν

t,y(θ), Z
ν
t,z(θ)

)]
.

5. Explain why, for any stopping time θ with values in [t, T ], we should have

v(t, x, y, z) ≤ inf
ν∈Aad

E
[
v
(
θ,Xt,x(θ), Y ν

t,y(θ), Z
ν
t,z(θ)

)]
.

6. By considering a particular form of strategies, show that

v(t, x, y, z) ≤ inf
δ∈R

v∗(t, x, y + δ, z − (δ + c)1δ 6=0)

where v∗ is the upper-semicontinuous envelop of v.

2Note that Zνt,z(T ) + Y ν
t,y(T ) is the liquidative value of the portfolio at T , up to the payment of the

transaction costs due to the final transfer, if required.

83



7. Show that, if v is C2, then it satisfies [0, T )× (0,∞)× R2

−Lv ≤ 0 (3.3.1)

where

Lv(t, x, y, z) := ∂tv(t, x, y, z) + xµDxv(t, x, y, z) +
1

2
x2σ2Dxxv(t, x, y, z)

+ yµDyv(t, x, y, z) +
1

2
y2σ2Dyyv(t, x, y, z) + yxσ2Dxyv(t, x, y, z) .

8. Explain how to adapt the argument to show that v is only a viscosity subsolution

of (3.3.1) in the case where it is only upper-semicontinuous.

9. Fix (t, x, y, z) ∈ [0, T )× (0,∞)×R2 et ν ∈ Aad such that
∑

n≥1 1τn=t = 0 P− a.s.

Show that J(·; ν) is upper-semicontinuous at (t, x, y, z). Deduce that v is upper-

semicontinuous on [0, T )× (0,∞)× R2.

10. Deduce that v is a viscosity subsolution on [0, T )× (0,∞)× R2 of

max

{
−Lv(t, x, y, z) , sup

δ∈R
(v(t, x, y, z)− v(t, x, y + δ, z − (δ + c)1δ 6=0))

}
≤ 0 .

11. Show that lim supt↑T,(x′,y′,z′)→(x,y,z) v(t, x′, y′, z′) ≤
(
[z + y − g(x)]−

)2
.

12. If v is continuous on [0, T )× (0,∞)×R2, should it be a viscosity super-solution of

max

{
−Lv(t, x, y, z) , sup

δ∈R
(v(t, x, y, z)− v(t, x, y + δ, z − (δ + c)1δ 6=0))

}
≥ 0 ?

Briefly explain why.

13. What can we say if there exists a smooth solution V on [0, T )× (0,∞)×R2 to the

equation

max

{
−LV (t, x, y, z) , sup

δ∈R
(V (t, x, y, z)− V (t, x, y + δ, z − (δ + c)1δ 6=0))

}
= 0

such that limt↑T,(x′,y′,z′)→(x,y,z) V (t, x′, y′, z′) =
(
[z + y − g(x)]−

)2
. Explain how to

construct an optimal control in this case.
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4 A singular control problem: dividend payment optimiza-

tion

In this section, we consider the problem of a large insurance company whose aim is to

maximize the discounted cumulated amount of dividend paid up to bankruptcy and can

reinsure part of its portfolio. This leads to a singular control problem where part of

the control is defined as a bounded variation process. We shall see that in this case the

associated PDE is of variational form as in the two previous chapters.

4.1 Problem formulation

We follow the approach of, e.g., [26] and [9] which consists in approximating the evolution

of the reserve process X (before paiment of dividends) by the diffusion

Xπ,0
x (t) = x+

∫ t

0
γπsds+

∫ t

0
πsκdW

1
s +

∫ t

0
Xπ,0
x (s)µds+

∫ t

0
Xπ,0
x (s)σdW 2

s

where W 1 and W 2 are two independent Brownian motions, γ, κ, µ > 0, σ ≥ 0.

The term γπsds+πsκdW
1
s corresponds to the approximation of the instantaneous evolu-

tion of the wealth due the received premiums and the paid claims for a level of retention

πs with values in [ū, 1] in the Cramer-Lundberg model. Here, ū ∈ [0, 1] denotes the

minimal level of retention. In the case where ū = 1, then no reinsurance is possible.

The term Xπ,0
s µds+Xπ,0

s σdW 2
s is due to the investment of the reserve in a risky asset

S which evolves as in the Black and Scholes model according to

dSt/St = µdt+ σdW 2
t .

The payment of dividends is modeled by a continuous non-decreasing adapted process

L, satisfying L0− = 0: Lt is the total amount of dividends paid up to time t.

In case where dividends are paid, the reserve evolves according to:

Xπ,L
x (t) = x+

∫ t

0
γπsds+

∫ t

0
πsκdW

1
s +

∫ t

0
Xπ,L
x (s)µds+

∫ t

0
Xπ,L
x (s)σdW 2

s − Lt .

We denote by U the set of adapted processes ν = (π, L) satisfying the above properties

and such that Xν
x ≥ 0 P − a.s. We note πν and Lν the controls associated to ν, if not

clearly given by the context.

The aim of the company is to maximize over ν ∈ U

J(x; ν) := E
[∫ τν

0
e−ctdLνt

]
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where c > 0 is a fixed parameter and τνx is the first time Xν
x reaches 0, this is the

bankruptcy time.

We define

v(x) := sup
ν∈U

J(x; ν) .

Remark 3.4.20 1. If ū = 0, µ > c and x > 0 then v(x) =∞. To see this is suffices to

consider the strategy ν = (π, L) defined by

π = 0 and dLt =
1

2
(µ− c)Xν

xdt .

2. The map x ≥ 0 7→ v(x) is concave. Indeed, for λ ∈ [0, 1], xi ≥ 0 and νi =

(πi, Li) ∈ U , i = 1, 2, we can set (x, ν) = λ(x1, ν1) + (1− λ)(x2, ν2), which implies that

Xν
x = λXν1

x1 +(1−λ)Xν2
x2 , τx = max{τx1 , τx2} and J(x; ν) ≥ λJ(x1; ν1)+(1−λ)J(x2; ν2).

4.2 Dynamic programming and Hamilton-Jacobi-Bellman equation with

free boundary

In this section, we relate the value function v to a suitable PDE in variational form. We

start with the dynamic programming principle.

Proposition 3.4.17 For all x ≥ 0 and all uniformly bounded family of stopping times

{θν , ν ∈ U}

v(x) = sup
ν∈U

E
[∫ θν∧τνx

0
e−ctdLνt + e−cθ

ν
v(Xν

x(θν))1θν≤τνx

]
Proof. The proof uses similar arguments as the one used in the proof of Theorem 2.2.1.

2

We now derive the associated PDE. We restrict to the case where v is smooth enough

but a similar analysis can be lead with the notion of viscosity solutions.

Proposition 3.4.18 If v ∈ C2, then it satisfies

min

{
min
u∈[ū,1]

(
cv − (uγ + xµ)Dv − 1

2
(u2κ2 + x2σ2)D2v

)
, Dv − 1

}
= 0 on (0,∞) .

(3.4.1)

Proof. 1. Let ν = (π, L) be of the form π = u for some constant u and Lt = `(t ∧ τνx ),

` ≥ 0. Fix h > 0, let θ be the first time when Xν
x ≥ K for some K > 2x and set
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θh = θ ∧ h. Then, Proposition 3.4.17 and Itô’s Lemma imply:

v(x) ≥ v(x) + E

[∫ θh∧τνx

0
e−ct`dt

]

+ E

[
1θh<τνx

∫ θh∧τνx

0
e−cs(uγ +Xν

x(s)µ− `)Dv(Xν
x(s))ds

]

+ E

[
1θh<τνx

∫ θh∧τνx

0
e−cs

(
1

2
(u2κ2 + (Xν

x(s))2σ2)D2v(Xν
x(s))− cv(Xν

x(s))

)
ds

]
.

It follows that

0 ≥ lim
h→0

{
E

[
h−1

∫ θh∧τνx

0
e−cs`ds

]

+ E

[
1θh<τνxh

−1

∫ θh∧τνx

0
e−cs(uγ +Xν

x(s)µ− `)Dv(Xν
x(s))ds

]

+ E

[
1θh<τνxh

−1

∫ θh∧τνx

0
e−cs

(
1

2
(u2κ2 + (Xν

x(s))2σ2)D2v(Xν
x(s))− cv(Xν

x(s))

)
ds

]}
.

Since τνx ∧ θ > 0, we have (θh ∧ τνx )/h→ 1 P− a.s., by the mean value theorem and the

dominated convergence theorem, we then deduce that

0 ≥ E
[

lim
h→0

h−1

∫ h

0
e−cs`ds

]
+ E

[
lim
h→0

h−1

∫ h

0
e−cs(uγ +Xν

x(s)µ− `)Dv(Xν
x(s))ds

]
+ E

[
lim
h→0

h−1

∫ h

0
e−cs

(
1

2
(u2κ2 + (Xν

x(s))2σ2)D2v(Xν
x(s))− cv(Xν

x(s))

)
ds

]
= `+ (uγ + xµ− `)Dv(x) +

1

2
(u2κ2 + x2σ2)D2v(x)− cv(x) .

Since ` ≥ 0 is arbitrary, we must have (1−Dv) ≤ 0 and

min
u∈[ū,1]

(
cv(x)− (uγ + xµ)Dv(x)− 1

2
(u2κ2 + x2σ2)D2v(x)

)
≥ 0 .

2. It remains to show that one of the two terms is equal to 0. Assume that for some

x > 0

min

{
min
u∈[ū,1]

(
cv(x)− (uγ + xµ)Dv(x)− 1

2
(u2κ2 + x2σ2)D2v(x)

)
, Dv(x)− 1

}
> 0 .

Then, there is a neighborhood B of x of radius r ∈ (0, x/2) such that, for some ε > 0,

min

{
min
u∈[ū,1]

(
cw(y)− (uγ + yµ)Dw(y)− 1

2
(u2κ2 + y2σ2)D2w(y)

)
, Dw(y)− 1

}
≥ ε
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for all y ∈ B where w(y) = v(y) + ‖x − y‖2. Fix ν = (π, L) ∈ U and let θ be the first

time when ‖Xν
x(t)− x‖ ≥ r/2 or t ≥ r/2. Observe that θ ≤ τνx P− a.s. By Itô’s Lemma

and the above inequality, we have

E
[
e−c θw(Xν

x(θ)) +

∫ θ

0
e−csdLs

]
= w(x) + E

[∫ θ

0
e−cs(1−Dw(Xν

x(s)))dLs

]
+E

[∫ θ

0
e−cs(πsγ +Xν

x(s)µ)Dw(Xν
x(s))ds

]
+E

[∫ θ

0
e−cs

(
1

2
(π2
sκ

2 + (Xν
x(s))2σ2)D2w(Xν

x(s))− cw(Xν
x(s))

)
ds

]
≤ w(x)− εCE

[(
1

c
(1− e−cθ) + e−cθLθ

)]
for some C > 0. By definition of θ and w, this implies that

v(x) ≥ E
[
e−c θv(Xν

x(θ)) +

∫ θ

0
e−csdLs

]
+ εE

[
r1‖Xν

x (θ)−x‖=r/21θ<r/2 +
C

c
(1− e−cθ)1θ=r/2

]
≥ E

[
e−c θv(Xν

x(θ)) +

∫ θ

0
e−csdLs

]
+ η

for some η > 0. Recalling that θ ≤ τνx P− a.s., this contradicts Proposition 3.4.17. 2

4.3 Verification theorem

We now explain how to construct a verification argument. Contrary to what was done

in the above sections, we shall now allow for a jump of L at the initial time.

Proposition 3.4.19 Assume that there exists a concave function w ∈ C2((0,∞)) sat-

isfying (3.4.1) and a constant b∗ > 0 such that w(0) = 0 and

On 0 < x < b∗ we have min
u∈[ū,1]

(
cw − (uγ + xµ)Dw − 1

2
(u2κ2 + x2σ2)D2w

)
= 0 .

On x ≥ b∗ we have Dw = 1 . (3.4.2)

Assume further that for all ν ∈ U and x > 0

lim
t→∞

e−ctE
[
Xν
x(t)1τνx=∞

]
= 0 . (3.4.3)
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Then, w = v. Moreover, if

û = argmin[ū,1]

(
cw − (uγ + xµ)Dw − 1

2
(u2κ2 + x2σ2)D2w

)
,

then the optimal strategy associated to the initial condition x is given by ν̂ = (π̂, L̂ +

(x− b∗)+) where π̂ = û(X ν̂
x) and (X ν̂

x , L̂) is the solution of the Skorokhod problem
X ν̂
x(t) = x ∧ b∗ +

∫ t
0 γû(X ν̂

x(s))ds+
∫ t

0 û(X ν̂
x(s))κdW 1

s +
∫ t

0 X
ν̂
x(s)µds

+
∫ t

0 X
ν̂
x(s)σdW 2

s − L̂t
X ν̂
x(t) ∈ (0, b∗]

L̂t =
∫ t

0 1{X ν̂
x (s)=b∗}dL̂s .

Proof. 1. We first prove that

w(x) = J(x; ν̂)

with ν̂ defined as in the Proposition. It follows from the result of [15] that the above

Skorokhod problem has a continuous solution (X ν̂
x , L̂). By Itô’s formula, (3.4.2) and the

condition w(0) = 0, we have

E
[
e−c(t∧τ

ν̂
x )w(X ν̂

x(t ∧ τ ν̂x ))
]

= w(x)− E

[∫ t∧τ ν̂x

0
e−csDw(X ν̂

x(s))dL̂s

]
− (x− b∗)+ .

Since Dw(b∗) = 1, it follows from the definition of L̂ that

E
[
e−c(t∧τ

ν̂
x )w(X ν̂

x(t ∧ τ ν̂x ))
]

= w(x)− E

[∫ t∧τ ν̂x

0
e−csdL̂s

]
.

Since w(X π̂,L̂
x ) is bounded by continuity of w and the bound on X π̂,L̂

x , sending t → ∞
leads to the required result.

2. We now prove that w(x) ≥ J(x; ν) for all ν ∈ U . Fix ν = (π, L) ∈ U . By the same

arguments as in 2. of the proof of Proposition 3.4.18, we observe that

E
[
e−c t∧τ

ν
xw(Xν

x(t ∧ τνx )) +

∫ t∧τνx

0
e−csdLs

]
≤ w(x) .

Since w is concave, bounded at 0 and Dw = 1 for x > b∗, the condition (3.4.3) implies

that

lim
t→∞

E
[
e−c t∧τ

ν
xw(Xν

x(t ∧ τνx ))
]

= 0 ,

which leads to the required result. 2
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Chapter 4

Stochastic target problems

A general stochastic target problem consists in finding the set of initial conditions z

such that there exists a control process ν, belonging to a well defined set of admissible

controls, for which a given controlled process Zνt,z(T ) reaches a given target, say for

example a Borel subset of Rd+1.

In this Chapter, we consider the case where Zνt,z = (Xν
t,x, Y

ν
t,x,y), where X is Rd-valued

and Y is R-valued. We address the problem of finding the minimal initial data y such that

Y ν
t,y,x(T ) ≥ g(Xν

t,x(T )) for some admissible control ν, where g is a Rd 7→ R measurable

function.

Note that this corresponds to a generalization of the usual super-hedging problem in

finance where Y corresponds to the wealth process, X the risky assets and g the payoff

of a plain Vanilla option, see [3].

1 The Model

We now assume that the set U in which the admissible controls take values is compact

and convex. The controlled process Zνt,z = (Xν
t,x, Y

ν
t,z) is defined as the solution on [t, T ]

of the stochastic differential system :

dX(s) = ρ (X(s), ν(s)) ds+ α∗ (X(s), ν(s)) dW (s)

+

∫
Rd
β (X(s−), ν(s), σ)µ(dσ, ds)

dY (s) = r (Z(s), ν(s)) ds+ a∗ (Z(s), ν(s)) dW (s)

+

∫
Rd
b (Z(s−), ν(s), σ)µ(dσ, ds)

Z(t) = (x, y) (4.1.1)
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where ρ, α, β, r, b and a are continuous with respect to (t, ν, σ) ∈ [0, T ] × U × Rd,
Lipschitz in t, Lipschitz and polynomialy growing in the variable z, uniformly in the

variables (ν, σ), and bounded with respect to σ. This guarantees existence and unique-

ness of a strong solution Zνt,z to the stochastic differential system (4.1.1) for each control

process ν ∈ U .

Let g : Rd −→ R be a measurable function. Our stochastic target problem is :

v(t, x) := inf Γ(t, x)

where

Γ(t, x) :=
{
y ∈ R : ∃ ν ∈ U , Y ν

t,x,y(T ) ≥ g
(
Xν
t,x(T )

) }
.

Assume that the infimum in the definition of v is attained and let y = v(t, x). Then,

we can find some ν ∈ U such that Y ν
t,x,y(T ) ≥ g

(
Xν
t,x(T )

)
. Hence, if we start with y′

> y, we should be able to find some ν ′ ∈ U such that Y ν′
t,x,y′(T ) ≥ g

(
Xν′
t,x(T )

)
. If this

property does not hold (which can be the case in a jump diffusion model) we are not

able to characterize the set Γ(t, x) by its lower bound v(t, x).

Hence we assume that, for all (t, x, y, y′) ∈ [0, T ] × Rd × R × R,

y′ ≥ y and y ∈ Γ(t, x) =⇒ y′ ∈ Γ(t, x) .

By standard comparison arguments for stochastic differential equations, it will hold in

particular if b is independent of y (see e.g. [21]). It will also hold in most financial

applications as soon as there is a non-risky asset.

Under the above assumption, for each [0, T ]-valued stopping time θ and control ν ∈ U ,

v(θ,Xν
t,x(θ)) corresponds to the minimal condition, when starting at time θ, such that

the stochastic target can be reached at time T . This means that, if v is finite, given y

> v(t, x), we can find a control ν such that Y ν
t,x,y(θ) ≥ v(θ,Xν

t,x(θ)) for any [0, T ]-valued

stopping time θ (see Proposition 4.2.20 below). Assume that v is smooth and denote

by Dv the gradient of v with respect to x. Applying Itô’s Lemma to v shows that the

only way to control the Brownian part of Y ν
t,x,y(·) − v(·, Xν

t,x(·)) is to define ν(·) in a

Markovian way by ν(·) = ψ
(
·, Xν

t,x(·), Y ν
t,x,y(·), Dv(·, Xν

t,x(·))
)

where, for all (t, x, y) ∈
[0, T ] × Rd × R,

ψ(t, x, y, ·) is the inverse of the mapping ν 7→ α−1(t, x, ν)a(t, x, y, ν).

Hence, we assume that, either, α is invertible and ψ is well defined, or, a = α = 0.

91



2 Dynamic programming

In order to characterize the value function as a viscosity solution of a suitable PDE,

we need a dynamic programming principle. For stochastic target problems, it reads as

follows.

Proposition 4.2.20 Fix (t, x) ∈ [0, T ]× Rd.
(DP1) Let y ∈ R and ν ∈ U be such that Y ν

t,x,y(T ) ≥ g
(
Xν
t,x(T )

)
. Then, for all stopping

time θ ≥ t, we have :

Y ν
t,x,y(θ) ≥ v

(
θ,Xν

t,x(θ)
)
.

(DP2) Set y < v(t, x) and let θ ≥ t be an arbitrary stopping time. Then, for all ν ∈ U :

P
[
Y ν
t,x,y(θ) > v

(
θ,Xν

t,x(θ)
)]
< 1 .

Proof. The rigorous proof can be found in [25]. We only sketch the main argument.

The assertion (DP1) is essentially a consequence of the fact that Zνt,z(T ) = Zνθ,Zνt,z(θ)(T )

and the very definition of v. As for (DP2), we observe that (formally), if Y ν
t,x,y−η(θ) >

v
(
θ,Xν

t,x(θ)
)
P− a.s., then there must be a control ν̃ such that Z ν̃θ,Zνt,z(θ)(T ) reaches the

epigraph of g P − a.s.. Thus, setting ν̄ = ν1[0,θ) + ν̃1[θ,T ], we get Z ν̄t,z(T ) reaches the

epigraph of g P− a.s. which contradicts the fact that y < v(t, x). 2

The interpretation of (DP1) and (DP2) is very natural. If y > u, then there should be a

control such that the target can be reached. Thus, at any intermediate time θ, we are in

position to find a control on [θ, T ] such that we can reach the target at T . This exactly

means that Y ν
t,x,y(θ) ≥ v

(
θ,Xν

t,x(θ)
)
. Conversely, if y < u then there is no control such

that the target can be reached for sure. But if Y ν
t,x,y(θ) > v

(
θ,Xν

t,x(θ)
)
P − a.s., then

there is a control such that starting from Y ν
t,x,y(θ) the target can be reached for sure.

This leads to a contradiction.

3 PDE characterization in the mixed diffusion case

In this section, we assume that ψ is well defined (see the previous section) and that U

is convex. We introduce the support function δU of the closed convex set U :

δU (ζ) := sup
ν∈U
〈ζ, ν〉 , ζ ∈ Rd ,

and Ũ1 the restriction to the unit sphere of the effective domain of δU :

Ũ1 :=
{
ζ ∈ Rd , ‖ζ‖ = 1 , δU (ζ) ∈ Rd

}
.
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Clearly, Ũ1 is equal to the unit sphere of Rd. We use this notation since part of our

results holds without the compacity assumption on U .

Notice that U and Int(U) may be characterized in terms of Ũ1 :

ν ∈ U ⇐⇒ χU (ν) ≥ 0 and ν ∈ Int(U)⇐⇒ χU (ν) > 0 ,

where

χU (ν) := inf
ζ∈Ũ1

(δU (ζ)− 〈ζ, ν〉) .

Remark 4.3.21 The mapping ν ∈ U 7→ χU (ν) is continuous. This follows from the

compactness of Ũ1.

Given a smooth function ϕ on [0, T ]× Rd, ν ∈ U and σ ∈ Rd, we define the operators :

Lνϕ(t, x) := r(x, ϕ(t, x), ν)− ∂ϕ

∂t
(t, x)− ρ(x, ν)∗Dϕ(t, x)

−1

2
Trace

(
D2ϕ(t, x)α∗(x, ν)α(x, ν)

)
Gν,σϕ(t, x) := b(x, ϕ(t, x), ν, σ)− ϕ (x+ β(x, ν, σ)) + ϕ (t, x)

T νϕ(t, x) := min

{
inf
σ∈Rd

Gν,σϕ(t, x) ; χU (ν)

}
Hνϕ(t, x) := min {Lνϕ(t, x) ; T νϕ(t, x)}

where Dϕ and D2ϕ denote respectively the gradient and the Hessian matrix of ϕ with

respect to x. We also define :

Ĝσϕ(t, x) := Gν,σϕ(t, x) for ν = ψ(t, x, ϕ(t, x), Dϕ(t, x)) ,

T̂ ϕ(t, x) := T νϕ(t, x) for ν = ψ(t, x, ϕ(t, x), Dϕ(t, x)) ,

Ĥϕ(t, x) := Hνϕ(t, x) for ν = ψ(t, x, ϕ(t, x), Dϕ(t, x)) ,

and we naturally extend all these operators to functions that are independent of t by

replacing t by T in the definition of ν.

In the following, we shall assume that the support of Φ is Rd. We can always reduce to

this case, after possibly changing β and b.

3.1 Viscosity property inside the domain

Theorem 4.3.1 Assume that v∗ and v∗ are finite. Then, the value function v is a

discontinuous viscosity solution on (0, T )× Rd of :

Ĥϕ(t, x) = 0 . (4.3.1)
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Proof. We shall only prove the sub-solution property. The super-solution property can

be proved similarly by appealing to (DP1) instead of (DP2). Let ϕ ∈ C2([0, T ] × Rd)
and (t0, x0) be a strict global maximizer of v∗ − ϕ. Without loss of generality, we may

assume that (v∗ − ϕ)(t0, x0) = 0.

We argue by contradiction. Set y0 := ϕ(t0, x0), z0 := (x0, y0), and assume that

2ε := Ĥϕ(t0, x0) > 0 .

Then, from our continuity assumptions, there exists some η > 0 such that for all (t, x) ∈
B0 := B((t0, x0), 2η) and δ ∈ [−η, η] :

Ĥ(ϕ+ δ)(t, x) > ε . (4.3.2)

Let (tn, xn)n≥0 be a sequence such that :

(tn, xn) −→ (t0, x0) and v(tn, xn) −→ v∗(t0, x0)

as n tends to ∞. Set yn := v(tn, xn)− n−1, zn := (xn, yn) and notice that

v(tn, xn)− n−1 − ϕ(tn, xn) tends to 0 as n tends to ∞ . (4.3.3)

Since (tn, zn) −→ (t0, z0), we may assume without loss of generality that (tn, zn) ∈ B1

:= B((t0, z0), η). In order to alleviate the notation, we shall denote :

Zn(.) = (Xn(.), Yn(.)) := Z ν̂ntn,zn(.)

the state process with initial data (tn, zn) and feedback control process ν̂n(·) := ψ(·, Xn(.),

Yn(·), Dϕ(·, Xn(·))) (existence of Zn follows from our Lipschitz and polynomial growth

assumptions on the coefficients of the diffusion uniformly in ν, see Section 2). Notice

that from (4.3.2) and the characterization of U in terms of its support function (see

Section 3)[
(s,Xn(s)) ∈ B0 and |Yn(s)− ϕ(s,Xn(s))| ≤ η

]
=⇒ ν̂n(s) ∈ U . (4.3.4)

Define the stopping times :

θjn := T ∧ inf {s > tn : ∆Zn(s) 6= 0} ,

θdn := T ∧ inf {s > tn : |Yn(s)− ϕ(s,Xn(s))| ≥ η} .

Denote by Zcn the continuous part of Zn. Since θjn is the time of the first jump of Zn,

we have :

Zn(s ∧ θjn ) = Zcn(s ∧ θjn) , s ≥ tn. (4.3.5)
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Finally, define the sequences :

τn := T ∧ inf {s > tn : (s,Xn(s)) 6∈ B0} , θn := τn ∧ θjn ∧ θdn

together with the random sets Jn := {ω ∈ Ω : τn < θjn ∧ θdn}. Notice that from the

definition of θn, (4.3.2) and (4.3.4) for all s ≥ tn,

ν̂n(s ∧ θn ) ∈ U

ε < r (Zn(s ∧ θn ), νn(s ∧ θn )) + Lνn(s∧θn )ϕ (s ∧ θn , Xn(s ∧ θn ))

−r (Xn(s ∧ θn ), ϕ (s ∧ θn , Xn(s ∧ θn )) , νn(s ∧ θn )) (4.3.6)

ε < inf
σ∈Rd

b (Zn(s ∧ θn ), νn(s ∧ θn ), σ)

+Gνn(s∧θn ),σϕ (s ∧ θn , Xn(s ∧ θn ))

−b (Xn(s ∧ θn ), ϕ (s ∧ θn , Xn(s ∧ θn )) , νn(s ∧ θn ), σ) .

By (4.3.5), applying Itô’s Lemma to ϕ on [tn, θn) leads to

ϕ(θn−, Xn(θn−)) = ϕ(tn, xn) +

∫ θn

tn

r(Xc
n(s), ϕ(s,Xc

n(s)), ν̂n(s))ds

−
∫ θn

tn

Lν̂n(s)ϕ(s,Xc
n(s))ds

+Dϕ(s,Xc
n(s))∗α(Xc

n(s), ν̂n(s))dW (s) ,

where by definition of Yn, yn and ν̂n

Yn(θn−) = yn +

∫ θn

tn

r(Zcn(s), ν̂n(s))ds+ a∗(Zcn(s), ν̂n(s))dW (s)

= v(tn, xn)− n−1

+

∫ θn

tn

r(Zcn(s), ν̂n(s))ds+Dϕ(s,Xc
n(s))∗α(Xc

n(s), ν̂n(s))dW (s) .

Then, by a standard comparison result on the dynamics of ϕ(·, Xn(·)) and Yn(·), the

definition of ν̂n, θn and (4.3.6), we obtain :

Yn(θn−)− ϕ(θn−, Xn(θn−)) ≥ v(tn, xn)− 1

n
− ϕ(tn, xn) > −η , (4.3.7)

where the last inequality is obtained by taking some sufficiently large n and using (4.3.3).

We now provide a contradiction to (DP2) at stopping time θn for some large n. We

study separately the case where ω ∈ Jn and the case where ω ∈ J cn .
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Case 1, on Jn: Define

−ζ := sup
(t,x)∈∂pB0

(v∗ − ϕ)(t, x) (4.3.8)

where ∂pB0 stands for the parabolic boundary of B0, i.e. ∂pB0 := [t0 − 2η, t0 + 2η] ×
∂B(x0, 2η) ∪ {t0 + 2η} × B̄(x0, 2η). Since (t0, x0) is a strict global maximizer of v∗−ϕ,

we have ζ > 0.

Recall that on Jn, θjn > θn = τn. Hence, from (4.3.5), Zn(· ∧ θn) is continuous on Jn.

Together with (4.3.7) and the fact that v ≤ v∗, this leads to

[Yn(θn)− v(θn, Xn(θn))] 1IJn = [Yn(τn)− v(τn, Xn(τn))] 1IJn

≥ [ϕ(τn, Xn(τn))− v∗(τn, Xn(τn))

+ v(tn, xn)− n−1 − ϕ(tn, xn)]1IJn .

Since by continuity, (τn, Xn(τn)) ∈ ∂pB0, on Jn, (4.3.8) implies that

[Yn(θn)− v(θn, Xn(θn))] 1IJn ≥
[
ζ + v(tn, xn)− n−1 − ϕ(tn, xn)

]
1IJn .

Using (4.3.3) and assuming that n is large enough, we get :

[Yn(θn)− v(θn, Xn(θn))] 1IJn ≥ (ζ/2)1IJn for some ζ > 0. (4.3.9)

Case 2, on J cn : Recall that on J cn , θn = (θjn ∧ θdn). From the definition of θdn, (4.3.5)

and (4.3.7), we have

[Yn(θn)− ϕ(θn, Xn(θn))] 1IJ cn1I
θdn<θ

j
n

=
[
Y c
n (θdn)− ϕ(θdn, X

c
n(θdn))

]
1IJ cn1I

θdn<θ
j
n

= η1IJ cn1I
θdn<θ

j
n
. (4.3.10)

On the other hand, on J cn ∩ {θdn ≥ θ
j
n}

Yn(θn)− ϕ(θn, Xn(θn))

= Yn(θjn )− ϕ(θjn , Xn(θjn ))

+

∫
Rd
b(Zn(θjn ), ν̂n(θjn ), σ)µ({θjn}, dσ)

+

∫
Rd
G ν̂n(θjn ),σϕ(θjn , Xn(θjn ))µ({θjn}, dσ)

−
∫
Rd
b(Xn(θjn ), ϕ(θjn , Xn(θjn )), ν̂n(θjn ), σ)µ({θjn}, dσ) .
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Using (4.3.6) and (4.3.7), this proves that

[Yn(θn)− ϕ(θn, Xn(θn))] 1IJ cn1I
θdn≥θ

j
n

≥
[
v(tn, xn)− 1

n
− ϕ(tn, xn) + ε

]
1IJ cn1I

θdn≥θ
j
n
.

Finally, by (4.3.3), the fact that v ≤ v∗ ≤ ϕ and (4.3.10), this proves that we can find

some n such that :

[Yn(θn)− v(θn, Xn(θn))] 1IJ cn ≥ (ε/2 ∧ η)1IJ cn (4.3.11)

for some ε > 0 and η > 0. 2

3.2 Boundary condition

The nonlinear PDE reported in the above theorem does not provide a complete char-

acterization of the value function v. To further characterize it, we need to specify the

terminal condition. From the definition of v it is clear that v(T, x) = g(x) but we know

that v may be discontinuous in T . Therefore we introduce :

Ḡ(x) := lim sup
t↑T,x′→x

v(t, x′) and G(x) := lim inf
t↑T,x′→x

v(t, x′) x ∈ Rd.

Observe that the above functions functions may not be smooth. Since the constraint on

the gradient which appears inside the domain through the operator T̂ should propagates

on the boundary, it is natural to consider the equations solved by Ḡ and G in the viscosity

sense.

Theorem 4.3.2 Let the conditions of Theorem 4.3.1 hold. Then, if G is finite, it is a

viscosity super-solution on Rd of

min
{
ϕ(x)− g∗(x) ; T̂ ϕ(x)

}
= 0 , (4.3.12)

and, if Ḡ is finite, it is a viscosity subsolution on Rd of

min
{
ϕ(x)− g∗(x) ; T̂ ϕ(x)

}
= 0 . (4.3.13)

We split the proof in different lemmas.
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Terminal condition for G

Lemma 4.3.8 For all x ∈ Rd, we have G(x) ≥ g∗(x).

Proof. Fix x ∈ Rd and let (tn, xn) be a sequence in (0, T ) × Rd such that v(tn, xn)

tends to G(x) as n tends to ∞. Set yn := v(tn, xn) + n−1. By definition of v(tn, xn),

there exists some control νn ∈ U such that :

Y νn
tn,xn,yn(T ) ≥ g

(
Xνn
tn,xn(T )

)
.

Now, observe that Zνntn,xn,yn(T ) −→ (x,G(x)) P -a.s. as n → ∞ after possibly passing to

a subsequence. Then, sending n → ∞ in the last inequality provides :

G(x) ≥ lim inf
x′→x

g
(
x′
)

= g∗(x) .

2

Lemma 4.3.9 Let x0 ∈ Rd and f ∈ C2(Rd) be such that :

0 = (G− f)(x0) = min
x∈Rd

(G− f)(x) .

Then,

T̂ f (x0) ≥ 0 .

Proof. Let f and x0 be as in the above statement. Let (sn, ξn)n be a sequence in

(0, T )× Rd satisfying :

(sn, ξn) −→ (T, x0) , sn < T and v∗(sn, ξn) −→ G(x0) .

The existence of such a sequence is justified by the fact that we may always replace v

by v∗ in the definition of G. For all n ∈ N and k > 0, we define :

ϕkn(t, x) := f(x)− k

2
‖x− x0‖2 + k

T − t
T − sn

.

Since β is continuous in (t, x, ν), bounded in σ and U is compact, we see that :

η := sup
{
|β(x, σ, ν)| : σ ∈ Rd, ν ∈ U, ‖x− x0‖ ≤ C

}
< ∞ ,

where C > 0 is a given constant. Let B̄0 denote the closed ball of radius η centered at

x0. Notice that for t ∈ [sn, T ], we have 0 ≤ (T − t)(T − sn)−1 ≤ 1, and therefore :

lim
k→0

lim sup
n→∞

sup
(t,x)∈[sn,T ]×B̄0

|ϕkn(t, x)− f(x)| = 0 . (4.3.14)
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Next, let (tkn, x
k
n) be a sequence of local minimizers of v∗−ϕkn on [sn, T ]× B̄0 and set ekn

:= (v∗−ϕkn)(tkn, x
k
n). We shall prove later that, after possibly passing to a subsequence :

for all k > 0 , (tkn, x
k
n) −→ (T, x0) , (4.3.15)

for all k > 0 , tkn < T for sufficiently large n , (4.3.16)

v∗(t
k
n, x

k
n) −→ G(x0) = f(x0) as n→∞ and k → 0 . (4.3.17)

First notice from (4.3.15) and a standard diagonalization argument, that we may assume

that xkn ∈ IntB̄0. Therefore, by (4.3.16), for all k, (tkn, x
k
n) is a sequence of local minimizers

on [sn, T ) × IntB̄0.

Also, notice that from (4.3.14), (4.3.15) and (4.3.17)

for all k > 0 , Dϕkn(tkn, x
k
n) = Df(xkn)− k(xkn − x0)→ Df(x0) , (4.3.18)

and lim
k→0

lim
n→∞

ekn = 0 . (4.3.19)

Hence, for sufficiently large n, using Theorem 4.3.1, (4.3.16) and the fact that (tkn, x
k
n)

is a local minimizer for v∗ − ϕkn, we get,

T̂ (ϕ+ ekn)(tkn, x
k
n) ≥ 0 for all n ∈ N, k > 0 .

The statement of the lemma is then obtained by taking limits as n→∞, then as k → 0,

and using (4.3.14), (4.3.15), (4.3.17), (4.3.18), (4.3.19) as well as the continuity of the

involved functions.

In order to complete the proof, it remains to show that (4.3.15), (4.3.16) and (4.3.17)

hold.

Notice, from the convergence assumption on (sn, ξn), that we can find some large integer

N (independent of k) such that for all n ≥ N and k > 0 :

(v∗ − ϕkn)(sn, ξn) = v∗(sn, ξn)− f(ξn) +
k

2
‖ξn − x0‖ − k ≤ −

k

2
< 0 .

On the other hand, by definition of the test function f ,

(v∗ − ϕkn)(T, x) = G(x)− f(x) +
k

2
‖x− x0‖2 ≥ 0 for all x ∈ Rd .

Comparing the two inequalities and using the definition of (tkn, x
k
n) provides (4.3.16).

For all k > 0, let xk ∈ B̄0 be the limit of some subsequence of (xkn)n. Then by definition

of x0, we have :

0 ≤ (G− f)(xk)− (G− f)(x0)

≤ lim inf
n→∞

(v∗ − ϕkn)(tkn, x
k
n)− (v∗ − ϕkn)(sn, ξn)− k

2
‖xk − x0‖2

+ k
T − tkn
T − sn

− k .
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Since sn ≤ tkn < T , it follows from the definition of (tkn, x
k
n) that :

0 ≤ lim inf
n→∞

(v∗ − ϕkn)(tkn, x
k
n)− (v∗ − ϕkn)(sn, ξn)− k

2
‖xk − x0‖2

≤ −k
2
‖xk − x0‖2 ≤ 0 ,

This proves that we must have xk = x0, and therefore (4.3.15) holds since the convergence

of the sequence (tkn)n to T is trivial. Notice that the two last terms in the previous

inequality tend to 0. This proves that

lim inf
n→∞

(v∗ − ϕkn)(tkn, x
k
n) = 0

which, together with (4.3.14) and (4.3.15), implies (4.3.17), after possibly passing to

some subsequences. 2

Terminal condition for Ḡ

Let f be in C2(Rd) and x0 ∈ Rd be such that

0 = (Ḡ− f)(x0) = max
Rd

(strict)(Ḡ− f) .

We assume that

min
{
f(x0)− g∗(x0) ; T̂ f (x0)

}
> 0 , (4.3.20)

and we work towards a contradiction to (DP2) of Proposition 4.2.20 in the 4th Step of

this proof.

1st Step. Fix some arbitrarily small scalar c > 0 and define on [0, T ] × Rd :

ϕ(t, x) := f(x) + c‖x− x0‖2 + (T − t)
1
2 .

Notice that for all x ∈ Rd :

∂ϕ(t, x)

∂t
−→ −∞ as t −→ T . (4.3.21)

Recall that r, Dϕ, D2ϕ, α and ρ are continuous and therefore locally bounded. Hence,

we may assume by (4.3.21) that for all (t, x, y) in a suitable neighborhood of (T, x0, f(x0))

r(z, ν)− r(x, ϕ(t, x), ν) + Lνϕ(t, x) > 0 for all ν ∈ U . (4.3.22)

Now, notice that β is uniformly bounded in σ on any neighborhood of (T, x0) and that

ϕ(T, x0) = f(x0). Hence, by (4.3.20) and by taking a sufficiently small c, we may assume

that ϕ satisfies :

ϕ(T, x0)− g∗(x0) > 0 and inf
σ∈Rd

Ĝσ(ϕ)(T, x0) > 0 .
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Then, by upper-semicontinuity of g∗, continuity of ϕ, and continuity of b and β uniformly

in σ and ν, there exist some ε > 0 and some η > 0 such that for all (t, x) ∈ B̄0 :=

[T − η, T ]× B̄(x0, η) and δ ∈ [−η, η] :

ϕ(t, x) + δ − g∗(x) > ε and inf
σ∈Rd

Ĝσ(ϕ+ δ)(t, x) > ε .

Finally, by using (4.3.22) and by taking a sufficiently small η, we may assume that for

all (t, x, δ) ∈ B̄0× [−η, η] :

min
{
ϕ(t, x) + δ − g∗(x) ; Ĥ(ϕ+ δ)(t, x)

}
> ε . (4.3.23)

2nd Step. Let (sn, ξn) be a sequence in [T − η/2, T )× B̄(x0, η) ⊂ B̄0 satisfying :

(sn, ξn) −→ (T, x0) , sn < T and v∗(sn, ξn) −→ Ḡ(x0) .

Let (tn, xn) be a maximizer of (v∗−ϕ) on [sn, T ]× B̄(x0, η) ⊂ B̄0. For all n, let (tkn, x
k
n)k

be a subsequence in [sn, T ]× B̄(x0, η) satisfying :

(tkn, x
k
n) −→ (tn, xn) and v(tkn, x

k
n) −→ v∗(tn, xn) .

We shall prove later that

(tn, xn) −→ (T, x0) and v∗(tn, xn) −→ Ḡ(x0) (4.3.24)

and that there exists a subsequence of (tkn, x
k
n)k,n, relabelled (t′n, x

′
n), satisfying :

(t′n, x
′
n)→ (T, x0) and v(t′n, x

′
n)→ Ḡ(x0) , where for all n, t′n < T . (4.3.25)

3rd Step. Consider the sequence (t′n, x
′
n) of the 2nd Step. Set y′n := v(t′n, x

′
n) − n−1,

z′n := (x′n, y
′
n) and notice that

v(t′n, x
′
n)− n−1 − ϕ(t′n, x

′
n) tends to 0 as n tends to ∞ . (4.3.26)

Hence (t′n, z
′
n) −→ (T, x0, f(x0)) and we may assume without loss of generality that

(t′n, x
′
n) ∈ IntB̄0 and that |y′n−ϕ(t′n, x

′
n)| ≤ η for all n. In order to alleviate the notation,

we shall denote :

Zn(.) = (Xn(.), Yn(.)) := Z ν̂ntn,zn(.)

the state process with initial data (t′n, z
′
n) and control process ν̂n(·) := ψ(·, Xn(.), Yn(·),

Dϕ(·, Xn(·))). Recall that by (4.3.25), t′n < T for all n and define the stopping times :

θjn := T ∧ inf
{
s > t′n : ∆Zn(s) 6= 0

}
,

θdn := T ∧ inf
{
s > t′n : |Yn(s)− ϕ(s,Xn(s))| ≥ η

}
τn := T ∧ inf

{
s > t′n : (s,Xc

n(s)) 6∈ B0

}
,

θn := τn ∧ (θjn ∧ θdn) ,
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together with the random sets Jn := {ω ∈ Ω : τn < (θjn ∧ θdn)}. Finally, define

−ζ := sup
x∈∂B̄(x0,η)

(Ḡ− f)(x) .

Since x0 is a strict maximizer and (Ḡ− f)(x0) = 0, we have ζ > 0.

4th Step. We can now prove the required contradiction. Arguing like in the proof of

Theorem 4.3.1 and using (4.3.23) as well as (4.3.26), it is easily checked that we can find

some n such that :

Yn(θ)− v(θn, Xn(θn)) ≥ ζ/21IJn + (ε/2 ∧ η)1IJ cn > 0

and ν̂n(· ∧ θn) ∈ U on [tn, T ] .

Since, y′n < v(t′n, x
′
n) this leads to the required contradiction to (DP2).

5th Step. It remains to prove (4.3.24) and (4.3.25). Clearly, tn → T . Let x̂ ∈ [x0 −
η, x0 + η] be such that xn → x̂, along some subsequence. Then, by definition of f and

x0 :

0 ≥ (Ḡ− f)(x̂)− (Ḡ− f)(x0)

≥ lim sup
n→∞

(v∗ − ϕ)(tn, xn) + c‖x̂− x0‖2 − (v∗ − ϕ)(sn, ξn)

≥ c‖x̂− x0‖2 ≥ 0 ,

where the third inequality is obtained by definition of (tn, xn). Hence, x̂ = x0 and, by

continuity of ϕ, v∗(tn, xn)→ Ḡ(x0). This also proves that

lim
n

lim
k

(tkn, x
k
n) = (T, x0) and lim

n
lim
k
v(tkn, x

k
n) = Ḡ(x0) . (4.3.27)

Now assume that card{(n, k) ∈ N×N : tkn = T} =∞. Since v(T, ·) = g(·), there exists

a subsequence, relabelled (tkn, x
k
n), such that :

lim sup
n

lim sup
k

v(tkn, x
k
n) ≤ g∗(x0) .

Since by assumption g∗(x0) < f(x0) = Ḡ(x0), this leads to a contradiction to (4.3.27).

Hence, card{(n, k) ∈ N×N : tkn = T} <∞, and, using a diagonalization argument, we

can construct a subsequence (t′n, x
′
n)n of (tkn, x

k
n)n,k satisfying (4.3.25). 2
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4 The pure jump model

The proof of Theorem 4.3.1 can be reproduced almost exactly in the case where α = a

= 0, i.e. in the case of a pure jump model.

Theorem 4.4.1 Assume that v∗ and v∗ are finite. Then, the value function v is a

discontinuous viscosity solution on (0, T )× Rd of :

sup
ν∈U

min

{
Lνϕ(t, x) ; inf

σ∈Rd
Gν,σϕ(t, x)

}
= 0 . (4.4.1)

Notice that since α = 0, we have

Lνϕ(t, x) := r(x, ϕ(t, x), ν)− ∂ϕ

∂t
(t, x)− ρ(t, x, ν)∗Dϕ(t, x) .

Theorem 4.4.2 Let the conditions of Theorem 4.4.1 hold and assume that G and Ḡ

are finite. Then :

H∗(G(x)) := min

{
G(x)− g∗(x) ; sup

ν∈U
inf
σ∈Rd

Gν,σG(x)

}
≥ 0 , x ∈ Rd (4.4.2)

H∗(Ḡ(x)) := min

{
Ḡ(x)− g∗(x) ; sup

ν∈U
inf
σ∈Rd

Gν,σḠ(x)

}
≤ 0 , x ∈ Rd . (4.4.3)

In contrast to Theorem 4.3.2, the boundary condition is obtained in the classical sense

(in opposition to the viscosity sense). This comes from the fact that it does not contain

any derivatives term.

In general, we are not able to prove that G = Ḡ, and, even if g is continuous, we

have no general comparison result for continuous functions satisfying both (4.4.2) and

(4.4.3). Nevertheless, the intuition is that if g is continuous and Ḡ = G =: G, then G

should be interpreted as the smallest solution of (4.4.2)-(4.4.3). In this case, and under

mild assumptions, we can construct explicitly a sequence of functions that converge to G.

The existence of a smallest solution for (4.4.2) is easily obtained under (4.4.4) below.

Proposition 4.4.21 Assume that there exists a strictly increasing function h on R such

that for all (x, ν, σ) ∈ Rd × U × Rd, the mapping

y 7−→ y + b(x, y, ν, σ)− h(y) is non-decreasing. (4.4.4)

Assume further that there exists a finite function f satisfying H∗(f) ≥ 0 on Rd.
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Then, there exists a lower-semicontinuous function ` such that H∗(`) ≥ 0 on Rd and

such that ` ≤ f for all function f satisfying H∗(f) ≥ 0 on Rd, i.e. (4.4.2) admits a

smallest solution which is lower-semicontinuous. Moreover, we have H∗(`(x)) = 0 for

all x ∈ Rd.

Remark 4.4.22 (4.4.4) implies in particular that for all finite function f

y 7−→ y + sup
ν∈U

inf
σ∈Rd

b(x, y, ν, σ)− f(x+ β(x, ν, σ))

is strictly increasing. Hence, given (y1, y2) ∈ R2 and a finite function f such that

y1 + sup
ν∈U

inf
σ∈Rd

b(x, y1, ν, σ)− f(x+ β(x, ν, σ)) ≥ 0

y2 + sup
ν∈U

inf
σ∈Rd

b(x, y2, ν, σ)− f(x+ β(x, ν, σ)) ≤ 0,

(4.4.4) implies that y1 ≥ y2. Moreover, if such y1 and y2 exist, by using the continuity

of b in y, uniformly in (ν, σ), we can find some y (which is unique) such that

y + sup
ν∈U

inf
σ∈Rd

b(x, y, ν, σ)− f(x+ β(x, ν, σ)) = 0 .

We now provide sufficient conditions under which we can explicitly characterize the

boundary condition. The assumptions of the following proposition are quite strong but

it gives the intuition for the general case.

Proposition 4.4.22 Let the conditions of Theorem 4.4.2 hold. Assume that g is con-

tinuous and that there exists a continuous smallest solution ` of (4.4.2). Assume further

that there exist a neighborhood V of T and a classical super-solution w of (4.4.1) on V

× Rd such that, for all x ∈ Rd, limt↑T, x′→xw(t, x′) = w(T, x) = `(x) and for all (t, x)

∈ V × Rd

y 7→ y + sup
ν∈U

inf
σ∈Rd

b(x, y, ν, σ)− w(t, x+ β(x, ν, σ)) is strictly increasing. (4.4.5)

Then, G = Ḡ = `.

Remark 4.4.23 If we combine the conditions of Propositions 4.4.21 and 4.4.22, we

obtain that G = Ḡ = ` where ` is the solution of H∗(`) = 0.

Proof. Fix (t, x) ∈ V × Rd and set z := (x, y) where y := w(t, x). w satisfies on V ×
Rd :

sup
ν∈U

min

{
Lνw(t, x) ; inf

σ∈Rd
Gν,σw(t, x)

}
≥ 0 , (4.4.6)
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Define for all n ∈ N \ {0}, the sequence of stopping times :

θ1 := T ∧ inf
{
s > t : ∆Zνt,z(s) 6= 0

}
θn+1 := T ∧ inf

{
s > θn : ∆Zνt,z(s) 6= 0

}
,

where the control process ν is defined in a Markovian way as ν(·) := ν̂(·, Xν
t,x(·)) and

ν̂(t, x) is the argmax in (4.4.6) for all (t, x) ∈ V × Rd. Using (4.4.6), the fact that

y = w(t, x) and standard comparison results for stochastic differential equations, we

get that Y ν
t,z(θ1 ) ≥ w(θ1 , X

ν
t,x(θ1 )). By (4.4.5) and (4.4.6) again we obtain that

Y ν
t,z(θ1) ≥ w(θ1, X

ν
t,x(θ1)). Using a recursive argument, we get that, for all i ≥ 1,

Y ν
t,z(θi) ≥ w(θi, X

ν
t,x(θi)). This proves that : Y ν

t,z(T ) ≥ w(T,Xν
t,x(T )) ≥ `(Xν

t,x(T )) ≥
g(Xν

t,x(T )). Hence, by definition of v, for all (t, x) ∈ V × Rd, w(t, x) ≥ v(t, x) and `(x)

= limt↑T,x′→xw(t, x′) ≥ lim supt↑T,x′→x v(t, x) = Ḡ(x) ≥ G(x), where the last inequality

is obtained by definition. The result is finally obtained by noticing that, by definition

of ` and Theorem 4.4.2, G ≥ `. 2

Finally, we give some conditions under which we can easily prove the continuity of the

smallest solution of (4.4.2).

Proposition 4.4.23 Under the conditions of Proposition 4.4.21, if g is uniformly con-

tinuous and b and β are independent of (x, y), then the smallest solution ` of (4.4.2) is

uniformly continuous.

5 Applications

In this section, we will always assume that the standing assumptions of this Chapter

hold except when the contrary is explicitly specified.

5.1 Optimal insurance and self-protection strategies

We denote by U the set of all IF -predictable processes ν = {ν(t), 0 ≤ t ≤ T} valued in

U := U1 × [0, 1], where U1 is defined below. Fix z := (t, x, y) ∈ [0, T ]× (0,∞)×R. We

assume that the dynamics of Y ν,z and Xν,z are given by

dY ν
s = Y ν

s rds− c(ν1
s )ds− π(ν2

s , X
ν
s )ds−

∫
Rd

(1− ν2
s )b(Xν

s , σ)µ(dσ, ds)

dXν
s = ν1

sds

together with the initial condition (Xν,z
t , Y ν,z

t ) = (x, y).
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Remark 4.5.24 This dynamics is derived from that of Section 2 by setting ρ(t, x, ν) =

ν1, r(x, y, ν) = ry − c(ν1) − π(ν2, x), α = a = β = 0 and b(x, y, ν, σ) = −(1−ν2)b(x, σ).

The economic interpretation of the above model is the following. Consider the problem

of an agent who wants to protect part of his wealth from a depreciation due to a random

event modeled by a point process associated with the mark-space Rd and the random

measure µ.

He has the choice between insurance and self-protection. The level of self-protection is

modeled by the controlled process Xν . The nonnegative insurance premium π is paid

continuously and depends on the level of insurance ν2 ∈ [0, 1] and self-protection Xν .

We suppose that π, defined on [0, 1] × [0,∞), is Lipschitz continuous, nondecreasing

with respect to its first variable and non-increasing with respect to its second variable.

We assume that the level of loss b is decreasing with x, that there exists a level x̂ ∈ R+

such that, for all x ≥ x̂, b(x, ·) = 0 and that b(x, σ) > 0 for all x < x̂ and σ ∈ Rd.
The wealth of the agent Y ν may be invested in a non-risky asset with instantaneous

appreciation rate r > 0. Y ν is used to pay the insurance premium, the non insured

losses (1− ν2)b(Xν , ·) and to invest in order to increase the level of self-protection Xν .

The instantaneous level of investment is modeled by the U1-valued control process ν1,

where U1 = [0, ν̄1] (with ν̄1 > 0), and the associated instantaneous cost is c(ν1) where

c(U1) is bounded, c(0) = 0 and c(ν1) > 0 on (0, ν̄1].

The aim of the agent is to compute the minimal initial wealth needed in order to guar-

antee the non negativity of the terminal wealth Y ν
T , and therefore, the value function of

the associated super-replication problem is :

v(t, x) := inf
{
y ∈ R : ∃ ν ∈ U , Y ν,(t,x,y)

T ≥ 0
}
.

Using Theorem 4.4.1 we can easily prove that :

Theorem 4.5.1 The value function v is the unique continuous viscosity solution on

(0, T ) × (0, x̂) of

ϕ(t, x)r − π(1, x)− ∂ϕ(t, x)

∂t
(t, x)− c̃

(
∂ϕ(t, x)

∂x

)
= 0 ,

where

c̃

(
∂ϕ(t, x)

∂x

)
= inf

ν1∈U1

(
c(ν1) + ν1∂ϕ(t, x)

∂x

)
,

satisfying lim
t→T

v(t, x) = 0, for all x ∈ (0, x̂), and lim
x↑x̂

v(t, x) = 0, for all t ∈ [0, T ].
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Remark 4.5.25 Fix (t, x) ∈ [0, T ] × [0, x̂). Direct computation show that f(t, x) :=

π(1, x)/r (1− exp(−r(T − t))) is the minimal initial capital needed in order to pay

full insurance on [t, T ] if the level of self-protection remains equal to x, i.e. ν1 = 0.

Therefore, if f(t, x) > v(t, x), it is less expensive to invest in self-protection and the

problem is basically a problem of optimal rate of investment. From an economic point

of view, v(t, x) may be considered as a upper-bound for the discounted price of full

insurance.

Proof. We first prove that for all (t, x) ∈ [0, T ] × [0, x̂] :

0 ≤ v(t, x) ≤ min

(
f(t, x) ,

[x̂− x]+

ν̄1

(
π(1, x) + c(ν̄1)

))
, (4.5.1)

where f(t, x) is defined as in the above Remark. It is clear from the dynamics of Y ν

that v ≥ 0. To see that v(t, x) ≤ [x̂−x]+

ν̄1
(π(1, x)+ c(ν̄1)), consider the strategy where

(ν1(s), ν2(s)) = (ν̄11Is−t≤[x̂−x]+/ν̄1 , 1Is−t≤[x̂−x]+/ν̄1) for s ∈ [t, T ] and notice that Xν is

nondecreasing with Xν(t+[x̂−x]+/ν̄1) = x̂. Then, using the fact that π is non-increasing

with respect to x, it is easily checked that starting with [x̂− x]+/ν̄1 (π(1, x)+ c(ν̄1)) is

more than we need to adopt a full insurance strategy up to T∧ [x̂− x]+/ν̄1 and then a

full self-protection strategy with no insurance from T∧ [x̂− x]+/ν̄1 up to T .

Boundary conditions. This is a direct consequence of (4.5.1).

Super-solution property. From (4.5.1), v∗ is finite and, by Theorem 4.4.1, v∗ is a viscosity

super-solution on (0, T ) × (0, x̂) of

sup
ν∈U

min

{
ϕ(t, x)r − c(ν1)− π(ν2, x)− ∂ϕ(t, x)

∂t
− ν1∂ϕ(t, x)

∂x
;

inf
σ∈Rd

−(1− ν2)b(x, σ)

}
= 0 .

Since infσ∈Rd −(1 − ν2)b(x, σ) < 0 if x < x̂ and ν2 < 1, this proves that v∗ is also a

viscosity super-solution on (0, T ) × (0, x̂) of

sup
ν1∈U1

ϕ(t, x)r − c(ν1)− π(1, x)− ∂ϕ(t, x)

∂t
− ν1∂ϕ(t, x)

∂x
= 0 .

Subsolution property. From (4.5.1), v∗ is finite. Then, the fact that v∗ is a viscosity

subsolution on (0, T ) × (0, x̂) of

sup
ν1∈U1

ϕ(t, x)r − c(ν1)− π(1, x)− ∂ϕ(t, x)

∂t
− ν1∂ϕ(t, x)

∂x
= 0 ,

is obtained by arguing as as above.
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Continuity and uniqueness. Recall that r > 0 and π(1, ·) is Lipschitz continuous. More-

over, from the compacity of U1 and the boundedness of c(U1) it is easily checked that

c̃ is uniformly Lipschitz. Therefore, the result is a direct consequence of [1, theorem 4.8

p.100]. 2

5.2 Option hedging under stochastic volatility and dividend revision

process

We consider a financial market with a non-risky asset, normalized to unity, and a risky

asset S that pays a dividend St1δ(Xt1) ∈ F(t1) at time t1 ∈ (0, T ]. We assume that

the dividend anticipation process X may be modified along the time. The problem

consists in finding the minimal initial capital needed in order to hedge the contingent

claim ψ(ST ) where ψ is a R-valued function, continuous and bounded from below. We

assume that the dynamics of S and X are given on [0, T ] by :

dSt = St (α(St, Xt)dW (t)− δ(Xt)1It=t1)

dXt :=

∫
Rd
Xt b(St , Xt , σ)µ(dσ, dt)

where δ is continuous, valued in [0, δ̄] with δ̄ < 1, and b takes values in (−1, 1). We also

assume that for all (t, s, x) ∈ [0, T ] × (0,∞)2 :

(i) there exists σ1 and σ2 ∈ Rd such that b(s, x, σ1)b(s, x, σ2) < 0.

(ii) ᾱ(t, s) := sup
x∈(0,∞)

α(s, x) < ∞

and α(t, s) := inf
x∈(0,∞)

α(s, x) ≥ ε for some ε > 0 .

Let ν be a progressively measurable IF -predictable process valued in a convex compact

set U with non empty interior corresponding to the proportion of wealth Y ν invested in

the risky asset. Then, under the self-financing condition, the dynamics of Y ν on [0, T ]

is given by

dY ν
t := νt Y

ν
t

(
dSt
St

+ δ(Xt)1It=t1

)
= νtY

ν
t α(St, Xt)dW (t) .

Given, (t, z) = (t, s, x, y) ∈ [0, T ] × (0,∞)2 × R, we denote by (S(t,z), X(t,z), Y ν,(t,z)) the

previously introduced processes with initial conditions (S
(t,z)
t , X

(t,z)
t , Y

ν,(t,z)
t ) = (s, x, y).

The value function associated with the target problem is defined on [0, T ] × (0,∞)2 by :

v(t, s, x) := inf
{
y ∈ R : Y

ν,(t,s,x,y)
T ≥ ψ(S

(t,s,x)
T ) , for some ν ∈ U

}
.
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Remark 4.5.26 Using standard arguments it is easily checked that for all ν ∈ U and

(t, z) ∈ [0, T ] × (0,∞)2 × R, Y ν,(t,z) is a super-martingale. It follows, from the definition

of v and the fact that ψ is bounded from below, that v is also bounded from below.

Notice that our continuity assumption of Section 2 does not hold in this model because of

the term δ(Xt)1It=t1 in the dynamics of S. We show in Lemma 4.5.10 that this difficulty

may be avoided.

We first introduce some notation. For all (t, s, x) ∈ [0, T ] × (0,∞)2, we set

ṽ∗(t, s, x) := lim inf(s′,x′)→(s,x) v(t, s′, x′) , ṽ∗(t, s, x) := lim sup(s′,x′)→(s,x) v(t, s′, x′) ,

Gt(s, x) := lim inft′↑t, (s′,x′)→(s,x) v(t′, s′, x′) , Ḡt(s, x) := lim supt′↑t, (s′,x′)→(s,x) v(t′, s′, x′) .

Then we have the

Lemma 4.5.10 Assume that v∗ is finite on [0, t1] and Ḡt1 is finite, then Theorem 4.3.1

holds for v on (0, t1). Moreover, Theorem 4.3.2 holds for Gt1 and Ḡt1 with g∗((s, x)) =

ṽ∗(t1, s(1− δ(x)), x), g∗((s, x)) = ṽ∗(t1, s(1− δ(x)), x) and T = t1.

Proof. The proof is similar to that of Theorem 4.3.1, so we only explain how to adapt

it. First notice that (DP1) and (DP2) hold in our framework and that there is no

discontinuity on the functions driving the dynamics of S on (0, t1). Since by Remark

4.5.26, v∗ is finite, Theorem 4.3.1 holds for v on (0, t1). We now consider the boundary

conditions.

Super-solution. First notice that, by Remark 4.5.26, Gt1 is finite. From (DP1), for all

(t, s, x) ∈ [0, t1) × (0,∞)2 and y > v(t, s, x), there exists some ν ∈ U such that :

Y
ν,(t,s,x,y)
t1

≥ v(t1, S
(t,s,x)
t1

, X
(t,s,x)
t1

) = v(t1, S
(t,s,x)
t1

(1− δ(X(t,s,x)
t1

)), X
(t,s,x)
t1

)

Hence, the proof of the super-solution property is similar as in the general case. It

suffices to replace T by t1, g((s, x)) by v(t1, s − sδ(x), x) and consider the continuous

part of the state process (S(t,s,x), X(t,s,x)).

Subsolution. Fix (t, s, x) ∈ (0, t1) × (0,∞)2 and y < v(t, s, x). From (DP2), for all ν

∈ U :

P
(
Y
ν,(t,s,x,y)
t1

> v(t1, S
(t,s,x)
t1

(1− δ(X(t,s,x)
t1

)), X
(t,s,x)
t1

)
)
< 1

Hence, we may apply the same kind of contradiction argument as in the proof of the sub-

solution property. Here again, it suffices to replace T by t1, g((s, x)) by v(t1, s−sδ(x), x)

and consider the continuous part of the state process (S(t,s,x), X(t,s,x)). 2

We can now state the main result of this subsection.
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Theorem 4.5.2 Assume that v∗ is finite. Then, the value function v is a discontinuous

viscosity solution on (0, t1) × (0,∞) and on (t1, T ) × (0,∞) of :

min

{
−∂ϕ
∂t

(t, s)− 1

2
s2α̂

∂2ϕ

∂s2
(t, s) ; χU

(
s

ϕ(t, s)

∂ϕ

∂s
(t, s)

)}
= 0 (4.5.2)

where

α̂(t, s) :=

(
ᾱ21I ∂2ϕ

∂s2
≥0

+ α21I ∂2ϕ
∂s2
≤0

)
(t, s) .

Assume further that Ḡt1 and ḠT are finite, then Gt1 and Ḡt1 are viscosity super and

sub-solutions on (0,∞) of

min

{
ϕ(s)− sup

x∈(0,∞)
ṽ∗(t1, s(1− δ(x))) ; χU

(
s

ϕ(s)

∂ϕ

∂s
(s)

)}
= 0 , (4.5.3)

min

{
ϕ(s)− sup

x∈(0,∞)
ṽ∗(t1, s(1− δ(x))) ;χU

(
s

ϕ(s)

∂ϕ

∂s
(s)

)}
= 0 , (4.5.4)

and GT , ḠT are viscosity super and subsolutions on (0,∞) of

min

{
ϕ(s)− ψ(s) ; χU

(
s

ϕ(s)

∂ϕ

∂s
(s)

)}
= 0 . (4.5.5)

Remark 4.5.27 Assume that we can prove a comparison theorem for (4.5.2)-(4.5.5),

then v is continuous on (t1, T ) and we can replace ṽ∗ and ṽ∗ by v in (4.5.3) and (4.5.4).

We may even expect to have a comparison theorem for (4.5.2)-(4.5.3)-(4.5.4). In this

case, we may be able to estimate v numerically. It suffices to compute v on [t1, T ] and

then use its value in t1 to approximate it on [0, t1) by using the boundary conditions

(4.5.3)-(4.5.4).

Proof. First notice that, by Remark 4.5.26, v∗, Gt1 and GT are finite. We only prove

that v∗ is a viscosity super-solution of (4.5.2) on (t1, T ). The other results are proved

similarly by using Theorems 4.3.1, 4.3.2 and Lemma 4.5.10.

1st Step . We first prove that v∗ is independent of x. Fix (t0, s0, x0) ∈ (t1, T ) × (0,∞)2

and a C2((t1, T )× (0,∞)2) function ϕ such that (t0, s0, x0) is a strict local minimum for

v∗ − ϕ.

Assume that ϕ is locally strictly increasing in x at (t0, s0, x0). Then, for all C ≥ 0,

(t0, s0, x0) is a strict local minimum for v∗ − ϕ̃ where ϕ̃ is defined on (t1, T ) × (0,∞)2

by ϕ̃(t, s, x) := ϕ(t, s, x− C(x− x0)2).

By Theorem 4.3.1, this proves that ϕ̃ satisfies :

inf
σ∈Rd

ϕ̃(t0, s0, x0)− ϕ̃(t0, s0, x0 + x0b(s0, x0, σ)) ≥ 0 .
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Hence,

ϕ(t0, s0, x0) ≥ sup
σ∈Rd

ϕ(t0, s0, x0 + x0b(s0, x0, σ)− C(x0b(s0, x0, σ))2) . (4.5.6)

From assumption (ii) there exists some σ̃ ∈ Rd such that b(s0, x0, σ̃) > 0. Since ϕ is C1

and locally strictly increasing in x at (s0, x0), we can find some sufficiently small C > 0

such that

ϕ(s0, x0 + x0b(s0, x0, σ̃)− C(x0b(s0, x0, σ̃))2) > ϕ(s0, x0)

which contradicts (4.5.6). Hence, (∂ϕ/∂x)(t0, s0, x0) ≤ 0.

We can prove similarly that (∂ϕ/∂x)(t0, s0, x0) ≥ 0. Hence, v∗ is a viscosity super-

solution of ∂ϕ/∂x ≥ 0 and −∂ϕ/∂x ≥ 0. By Remark 4.5.26 and Lemmas 5.3 and 5.4 in

[6], this proves that v∗ is independent of x.

2nd Step . We now prove that v∗ is a viscosity super-solution of (4.5.2) on (t1, T ). Recall

that v∗ is independent of x. Fix (t0, s0) ∈ (t1, T ) × (0,∞) and a C2((t1, T ) × (0,∞))

function ϕ such that (t0, s0) is a local minimum for v∗ − ϕ. By Theorem 4.3.1, for all x

∈ (0,∞), ϕ satisfies :

min

{
−∂ϕ
∂t

(t0, s0)− 1

2
s2

0α
2(s0, x)

∂2ϕ

∂s2
(t0, s0) ; χU

(
s0

ϕ(t0, s0)

∂ϕ

∂s
(t0, s0)

)}
≥ 0.

Consider a maximizing sequence (xn)n of α2(t0, s0, ·)(∂2ϕ/∂s2)(t0, s0). Then, the previ-

ous inequality also holds at xn for all n and the desired result is obtained by sending n

to ∞ and using the continuity of α with respect to x. 2

Notice that in the case where δ = 0, the model reduces to a stochastic volatility one

where the volatility is driven by a pure jump process. In this last case we have the

Theorem 4.5.3 Assume that δ = 0. Assume further that v∗ is finite. Then, the value

function v is a discontinuous viscosity solution on (0, T ) × (0,∞) of :

min

{
−∂ϕ
∂t

(t, s)− 1

2
s2α̂

∂2ϕ

∂s2
(t, s) ; χU

(
s

ϕ(t, s)

∂ϕ

∂s
(t, s)

)}
= 0

where

α̂(t, s) :=

(
ᾱ21I ∂2ϕ

∂s2
≥0

+ α21I ∂2ϕ
∂s2
≤0

)
(t, s) .

Assume further that ḠT is finite, then GT and ḠT are viscosity super and subsolutions

on (0,∞) of

min

{
ϕ(s)− ψ(s) ; χU

(
s

ϕ(s)

∂ϕ

∂s
(s)

)}
= 0 .

Proof. The result is obtained by the same arguments as in the previous proof. 2
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Chapter 5

Optimal control of

non-Markovian diffusions: the

stochastic maximum principle

In this chapter, we come back to the control problem studied in Section 1 but we now

allow f , b and σ to be random maps such that (t, ω) 7→ (ft(ω, ·), bt(ω, ·), σt(ω, ·)) is

predictable (we omit the ω argument in the following).

Due to the randomness of b and σ, the PDE approach of the previous sections can not be

used any more. In particular, we can not find the optimal control by using a verification

argument. However, there exists a stochastic counterpart of this approach based on the

so-called stochastic maximum principle. It corresponds to the Pontryagin principle in

deterministic control. We explain here how to use it.

We thus consider here the problem of maximizing an expected gain of the form

J(ν) := E
[
g(Xν

T ) +

∫ T

0
ft(X

ν
s , νt)dt

]
,

in which Xν is the solution of the one dimensional sde

dXν
t = bt(X

ν
t , νt)dt+ σt(X

ν
t , νt)dWt

with ν in the set U of predictable processes with values in R.

In the above, the random maps f , b and σ are such that (t, ω) 7→ (ft(ω, x, u), bt(ω, x, u),

σt(ω, x, u)) is predictable for any (x, u) ∈ R2 (we omit the ω argument in the following).

We also assume that they are dt × dP-a.e. bounded, C1 in their argument (x, u), and

that themselves as well as there first derivatives are Lipschitz. The function g maps
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Ω×R→ R, g(0) is uniformly bounded, and g is a.s. C1 with bounded first derivative in

x.

In the following, we shall show how BSDEs permits to provide necessary and sufficient

conditions for optimality. We refer to Peng [19, 20] for further references.

1 Necessary condition

Let us start with a necessary condition for a control ν̂ to be optimal. The general idea is

to used a spike variation of the form νε,τ := ν̂1[0,τ)∪[τ+ε,T ] + ν1[τ,τ+ε) with ε ∈ (0, T − τ)

and ν a Fτ -measurable random variable, τ ∈ T .

By optimality of ν̂, we must have

J(ν̂) ≥ J(νε,τ ),

and therefore, if ε 7→ J(νε,τ ) is smooth,

∂εJ(νε,τ )|ε=0
≤ 0 . (5.1.1)

The first problem is therefore to show that this map is smooth. From now on, we write

X̂ for X ν̂ and Xντ,ε for Xντ,ε , and we assume that σ does not depend on ν for sake of

simplicity, see [20] for the general case.

Under this additional condition, we can first show that Xντ,ε is smooth with respect to

ε.

Proposition 5.1.24 Let us consider the process Ŷ τ,ν defined as the solution of

Yt = 1t≥τ

(
bτ (X̂τ , ν)− bτ (X̂τ , ν̂τ )

)
+

∫ t

τ
∂xbs

(
X̂s, ν̂s

)
Ysds+

∫ t

τ
∂xσs

(
X̂s

)
YsdWs . (5.1.2)

Assume that ν̂ has P − a.s. right-continuous paths. Then, Ŷ ν,τ = ∂
∂εX

ντ,ε
|ε=0

on [0, T ]

P− a.s. Moreover,

∂

∂ε
J(νε,τ )|ε=0

= E
[
∂xg(X̂T )Ŷ ν,τ

T +

∫ T

τ
∂xfs(X̂s, ν̂s)Ŷ

ν,τ
s ds

]
+ E

[
fτ (X̂τ , ν)− fτ (X̂τ , ν̂τ )

]
. (5.1.3)
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The idea of the stochastic maximum principle is to introduce a set of dual variables in

order to exploit (5.1.3). Let us first define the Hamiltonian:

Ht(x, u, p, q) := bt(x, u)p+ σt(x)q + ft(x, u).

Then, we assume that there exists a couple (P̂ , Q̂) of square integrable adapted processes

satisfying the BSDE

P̂t = ∂xg(X̂T ) +

∫ T

t
∂xHs(X̂s, ν̂s, P̂s, Q̂s)ds−

∫ T

t
Q̂sdWs . (5.1.4)

This equation is called the adjoint equation and (P̂ , Q̂) the adjoint process.

The reason for introducing this process becomes clear once we apply Itô’s Lemma to

P̂ Ŷ τ,ν . Indeed, assuming that the local martingale part of P̂ Ŷ τ,ν is a true martingale,

we obtain that ∂xg(X̂T )Ŷ τ,ν
T = P̂T Ŷ

τ,ν
T is equal in expectation to

P̂τ (bτ (X̂τ , ν)− bτ (X̂τ , ν̂τ ))−
∫ T

τ
Ŷ τ,ν
s ∂xHs(X̂s, ν̂s, P̂s, Q̂s)ds

+

∫ T

τ
∂xbs

(
X̂s, ν̂s

)
Ŷ τ,ν
s P̂sds+

∫ t

τ
∂xσs

(
X̂s

)
Ŷ τ,ν
s Q̂sds,

which, by definition of H, is equal to

P̂τ (bτ (X̂τ , ντ )− bτ (X̂τ , ν̂))−
∫ T

τ
Y τ,ν
s ∂xfs

(
X̂s, ν̂s

)
ds .

It follows that

∂εJ(νε,τ )|ε=0
= E

[
Hτ (X̂τ , ντ , P̂τ , Q̂τ )−Hτ (X̂τ , ν̂, P̂τ , Q̂τ )

]
.

By arbitrariness of ν, this implies the necessary condition

Hτ (X̂τ , ν̂τ , P̂τ , Q̂τ ) = max
u∈R
Hτ (X̂τ , u, P̂τ , Q̂τ ) P− a.s. (5.1.5)

for all τ ∈ T .

A similar analysis can be carried out when σ does depend on the control ν but it requires

a second order expansion in the definition of Y above. See Peng [19, 20].

2 Sufficient condition

We work within the same framework as above, except that we now allow σ to depend

on the control process ν.
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We assume here that the maps

x 7→ g(x) and x 7→ Ĥt(x, P̂t, Q̂t) := sup
u∈R
Ht(x, u, P̂t, Q̂t) are P− a.s. concave (5.2.1)

for almost every t ∈ [0, T ], and that

∂xHτ (X̂τ , ν̂τ , P̂τ , Q̂τ ) = ∂xĤτ (X̂τ , P̂τ , Q̂τ ) (5.2.2)

for all stopping times τ . Note that the latter corresponds to the enveloppe principle

along the path of (X̂, P̂ , Q̂).

Under the above assumptions, the condition

Hτ (X̂τ , ν̂τ , P̂τ , Q̂τ ) = max
u∈R
Hτ (X̂τ , u, P̂τ , Q̂τ ) ∀ τ ∈ [0, T ] (5.2.3)

is actually a sufficient condition for optimality.

Indeed, we first note that, by concavity of g,

E
[
g(X̂T )− g(Xν

T )
]
≥ E

[
∂xg(X̂T )(X̂T −Xν

T )
]

= E
[
P̂T (X̂T −Xν

T )
]
,

which, by Itô’s Lemma and (5.2.2), implies

E
[
g(X̂T )− g(Xν

T )
]
≥ E

[∫ T

0
P̂s(bs(X̂s, ν̂s)− bs(Xν

s , νs))ds

]
− E

[∫ T

0
∂xĤs(X̂s, P̂s, Q̂s)(X̂s −Xν

s )ds

]
+ E

[∫ T

0

(
σs(X̂s)− σs(Xν

s )
)
Q̂sds

]
.

By definition of H, Ĥ and (5.2.1)-(5.2.3), this leads to

J(ν̂)− J(ν) ≥ E
[∫ T

0
(Hs(X̂s, ν̂s, P̂s, Q̂s)−Hs(Xν

s , νs, P̂s, Q̂s))ds

]
− E

[∫ T

0
∂xĤs(X̂s, P̂s, Q̂s)(X̂s −Xν

s )ds

]
≥ E

[∫ T

0
Ĥs(X̂s, P̂s, Q̂s)− Ĥs(Xν

s , P̂s, Q̂s)ds

]
− E

[∫ T

0
∂xĤs(X̂s, P̂s, Q̂s)(X̂s −Xν

s )ds

]
≥ 0 .
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Remark 5.2.28 Let us now assume that µ, σ and f are non-random and assume that

there exists a smooth solution ϕ to the Hamilton-Jacobi-Bellman equation:

0 = sup
u∈R

(
∂

∂t
ϕ(t, x) + bt(x, u)∂xϕ(t, x) +

1

2
(σt(x, u))2∂2

xxϕ(t, x) + ft(x, u)

)
with terminal condition ϕ(T, ·) = g. Assume that the sup is attained by some û(t, x).

Set p := ∂xϕ and q := ∂2
xxϕσ. It follows from the envelope theorem, that (p, q) formally

solves (take the derivative with respect to x in the above equation)

0 = Lû(t,x)p(t, x) + ∂xĤt(x, p(t, x), q(t, x, û(t, x)))

with the terminal condition p(T, ·) = ∂xg. Let now X̂ be the controlled process associated

to the Markov control ν̂ = û(·, X̂·) (assuming that it is well defined). Then, Itô’s Lemma

implies that

p(t, X̂t) = ∂xg(X̂T ) +

∫ T

t
∂xHs(X̂s, ν̂s, p(s, X̂s), q(s, X̂s, ν̂s))ds

−
∫ T

t
q(s, X̂s, ν̂s)dWs .

Under mild assumptions ensuring that there is only one solution to the above BSDE,

this shows that

P̂t = p(t, X̂t) = ∂xϕ(t, X̂t) and Q̂t = q(t, X̂t, ν̂t) = ∂2
xxϕ(t, X̂t)σt(X̂t, ν̂t) .

Otherwise stated, the adjoint process P̂ can be seen as the derivative of the value function

with respect to the initial condition in space, while Q̂ is intimately related to the second

derivative.

3 Examples

3.1 Logarithmic utility

Let us first consider the problem

maxE [ln(Xν
T )]

where Xν is defined as

Xν
t = x0 +

∫ t

0
Xν
s νs

dSs
Ss

= x0 +

∫ t

0
Xν
s νsµsds+

∫ t

0
Xν
s νsσsdWs (5.3.1)
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for some x0 > 0 and where

St = S0e
∫ t
0 (µs−σ2

s/2)ds+
∫ t
0 σsdWs

for some bounded predictable processes µ and σ > 0 with 1/σ bounded as well.

This corresponds to the problem of maximizing the expected logarithmic utility of the

discounted terminal wealth in a one dimensional Black-Scholes type model with random

coefficients. Here, ν stands for the proportion of the wealth Xν which is invested in the

risky asset S.

It is equivalent to maximizing E [Xν
T ] with Xν now defined as

Xν
t =

∫ t

0
(νsµs − ν2

sσ
2
s/2)ds .

The associated Hamiltonian is

Ht(x, u, p, q) = (uµt − (u2σ2
t /2))p .

Thus Ĥt(x, p, q) = 1
2
µ2t
σ2
t
p and the argmax is û(t, x, p, q) := µt

σ2
t
. It follows that the

dynamics of the adjoint process (P̂ , Q̂) is given by

P̂t = 1−
∫ T

t
Q̂sdWs .

This implies that P̂ = 1 and Q̂ = 0 dt × dP a.e. In particular, for X̂ := X ν̂ with

ν̂ := µ/σ2 the optimality conditions of the previous section are satisfied. This implies

that ν̂ is an optimal strategy. Since the optimization problem is clearly strictly concave

in ν, this is the only optimal strategy.

Observe that the solution is trivial since it only coincides with taking the max inside

the expectation and the integral in E [Xν
T ] = E

[∫ T
0 (νsµs − ν2

sσ
2
s/2)ds

]
.

3.2 General utility

We consider a similar problem as in the previous section except that we now take a

general utility function U which is assumed to be C1, strictly concave and increasing. We

also assume that it satisfies the so-called Inada conditions: ∂xU(∞) = 0 and ∂xU(0+) =

∞.

We want to maximize E [U(Xν
T )] where Xν is given by (5.3.1). We write X̂ for X ν̂ .

In this case, the condition (5.2.3) reads

Ht(X̂t, ν̂t, P̂t, Q̂t) = sup
u∈R

(
u µtX̂tP̂t + u σtX̂tQ̂t

)
.
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But, it is clear that it can be satisfied only if

Q̂t = −λtP̂t with λ = µ/σ .

Thus, by (5.1.4), P̂ should have the dynamics

P̂t = ∂xU(X̂T ) +

∫ T

t
λsP̂sdWs .

This implies that we have to find a real P̂0 > 0 such that

P̂t = P̂0e
− 1

2

∫ t
0 λ

2
sds−

∫ t
0 λsdWs

and P̂T = ∂xU(X̂T ). Hence, the optimal control, if it exists, should satisfy

X̂T = (∂xU)−1
(
P̂0e
− 1

2

∫ T
0 λ2sds+

∫ T
0 λsdWs

)
. (5.3.2)

Now, let Q ∼ P be defined by dQ = P̂T /P̂0 so that WQ = W +
∫ ·

0 λsds is a Q-Brownian

motion, and that Xν is a supermatingale under Q for all ν ∈ U . If X̂ is actually a true

Q-martingale, then we must have

x0 = EQ
[
(∂xU)−1

(
P̂0e
− 1

2

∫ T
0 λ2sds+

∫ T
0 λsdWs

)]
. (5.3.3)

Using the Inada conditions imposed above, it is clear that we can find P̂0 such that

the above identity holds. The representation theorem then implies the existence of an

admissible control ν̂ such that (5.3.2) is satisfied. Since the sufficient conditions of

Section 2 hold, this shows that ν̂ is optimal.

We can also check this by using the concavity of U which implies

U(Xν
T ) ≤ U(X̂T ) + ∂xU(X̂T ) (Xν

T −XT ) = U(X̂T ) + P̂T

(
Xν
T − X̂T

)
.

Since, by the above discussion, the last term is non positive in expectation, this shows

that the optimal terminal wealth is actually given by (5.3.2).
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Part A.

Appendix: A reminder on

stochastic processes with jumps
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We recall here some basic properties of Itô integrals and marked point processes. We

refer to [5], [10] and [17] for more details.

A.1 Itô integral

Let W a d-dimensional Brownian motion and a be an adapted process with values in

Md such that ∫ t

0
‖as‖2ds <∞ for all t ≥ 0 .

Then the stochastic integral
∫ t

0 asdWs is well defined as an Itô integral, see e.g. [10].

Moreover, the process (
∫ t

0 asdWs)t≥0 is a local martingale and

(

∫ t

0
asdWs)t≥0 is a martingale if E

[∫ ∞
0
‖as‖2ds

]
<∞ . (A.1.1)

Recall that, in this case, we have

E

[∥∥∥∥∫ ∞
0

asdWs

∥∥∥∥2
]

= E
[∫ ∞

0
‖as‖2ds

]
(A.1.2)

as a consequence of the Itô isometry and the so-called Burkholder-Davis-Gundy inequal-

ity (or Doob’s maximal inequality) reads as follows:

Proposition A.1.1 Let a be an adapted process with values in Md such that

E
[∫ T

0
‖as‖2ds

]
<∞ .

Then, for each p ≥ 1, there is C > 0 such that

E

[
sup
t≤T
‖
∫ t

0
asdWs‖2p

]
≤ C E

[(∫ T

0
‖as‖2ds

)p]
.

A.2 Rd-marked point process

A Rd-market point process is a sequence of jump times (Tn)n≥1 and sizes of jumps

(Zn)n≥1 with values in Rd. Here, Tn is the time of the n-th jump while Zn is its size.

Such a process can be represented in terms of a random measure (counting measure) µ

on R+ × Rd defined by

µ(A,B) :=
∑
n≥1

1(Zn,Tn)∈A×B , ∀ (A,B) ∈ B(Rd)× B(R+) .
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We shall always identify (Tn, Zn)n with µ.

Let µ̃t(ω, dz) be a transition measure from Ω × [0,∞) into Rd such that, for each A ∈
B(Rd), µ̃(A) is non-negative, predictable, P− a.s. locally integrable and satisfies:

E
[∫ ∞

0
ξsµ(A, ds)

]
= E

[∫ ∞
0

ξsµ̃s(A)ds

]
for all non-negative predictable process ξ. Then, µ̃ is called the predictable intensity

kernel of µ, compensator. We note

µ̄(dz, ds) := µ(dz, ds)− µ̃s(dz)ds

the so-called compensated market point process.

Let P the σ-algebra of F-predictable subsets of Ω×[0, T ]. An indexed process (ξt(z))t≥0,z∈Rd

such that the map (t, ω, z) 7→ ξt(z)(ω) is P ⊗ B(Rd)-measurable is called a predictable

Rd-indexed process.

Proposition A.2.2 If µ admits the predictable intensity kernel µ̃, then for each non-

negative predictable Rd-indexed process ξ:

E
[∫ ∞

0

∫
Rd
ξs(z)µ(dz, ds)

]
= E

[∫ ∞
0

∫
Rd
ξs(z)µ̃s(dz)ds

]
.

Proof. See [5]. 2

Corollary A.2.1 Assume that µ admits the predictable intensity kernel µ̃. Let ξ be

predictable Rd-indexed process such that

E
[∫ t

0

∫
Rd
‖ξs(z)‖µ̃s(dz)ds

]
<∞ ∀ t ≥ 0 .

Then, the process
(∫ t

0

∫
Rd ξs(z)µ̄(dz, ds)

)
t≥0

is a martingale.

In the case of pure jump processes of the above form, the Burkholder-Davis-Gundy

inequality reads as follows:

Proposition A.2.3 Let the conditions of Corollary A.2.1 hold. Then, for each p ≥ 1,

there is C > 0 such that

E

[
sup
t≤T
‖
∫ t

0

∫
Rd
ξs(z)µ̄(dz, ds)‖p

]
≤ CE

[∫ T

0

∫
Rd
‖ξs(z)‖pµ̃s(dz)ds

]
.
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A.3 Mixed diffusion processes and Itô’s Lemma

Let (a, b) be an adapted process with values in Md×Rd and ξ be predictable Rd-indexed

process with values in Rd such that∫ t

0
(‖as‖2 + ‖bs‖)ds+

∫ t

0

∫
Rd
‖ξs(z)‖µ̃s(dz)ds <∞ ∀ t ≥ 0 .

Then, we can define the process X by

Xt = X0 +

∫ t

0
bsds+

∫ t

0
asdWs +

∫ t

0

∫
Rd
ξs(z)µ(dz, ds)

with X0 ∈ Rd.
We recall that, in this case, Itô’s Lemma for processes with jumps implies that, for all

C1,2([0, T ]× Rd) function f , we have

f(t,Xt) = f(0, X0) +

∫ t

0

(
∂

∂s
f(s,Xs) + 〈bs, Df(s,Xs)〉+

1

2
Tr
[
asa
∗
sD

2f(s,Xs)
])

ds

+

∫ t

0
Df(s,Xs)asdWs +

∫ t

0

∫
Rd

(f(s,Xs− + ξs(z))− f(s,Xs−))µ(dz, ds) .

In the case where the dynamics of X has an additional component L which is an adapted

bounded variation process, i.e.

Xt = X0 +

∫ t

0
bsds+

∫ t

0
asdWs +

∫ t

0

∫
Rd
ξs(z)µ(dz, ds) + Lt ,

then Itô’s formula reads

f(t,Xt) = f(0, X0) +

∫ t

0

(
∂

∂s
f(s,Xs) + 〈bs, Df(s,Xs)〉+

1

2
Tr
[
asa
∗
sD

2f(s,Xs)
])

ds

+

∫ t

0
Df(s,Xs)asdWs +

∫ t

0

∫
Rd

(f(s,Xs− + ξs(z))− f(s,Xs−))µ(dz, ds)

+

∫ t

0
Df(s,Xs)dL

c
s +

∑
s≤t

f(s,Xs− + ∆Ls)− f(s,Xs−)

where Lc stands for the continuous part of L and ∆Ls for the jump of L at time s, if

any.
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