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Introduction and notations

These lecture notes have been written as a support for the lecture on stochastic control

of the master program Masef of Paris Dauphine.

Our aim is to explain how to relate the value function associated to a stochastic control
problem to a well suited PDE. This allows, at least, to approximate it numerically, and,
in good cases, to retrieve the optimal control through the explicit resolution of the PDE

and a verification argument.

The main tool for deriving the PDE is the dynamic programming principle. It essentially
relates the value function at time ¢ to its expected value a time t + h for A > 0. The
link between the PDE and the control problem is then obtained through an application

of Itd’s Lemma on a small time interval.

We shall first discuss this approach in the case where the stochastic process is not
controlled, i.e. we just compute an expectation. This corresponds to the well-known
Feynman-Kac formula. This first chapter is crucial in the sense that all the fundamental

tools will be presented here.

We first derive the PDE under suitable smoothness assumptions and then explain how
to construct a verification argument. We also discuss the question of the uniqueness of

the solution.

All this is done under the assumption that the value function (or the solution of the
PDE) is at least C'2. This is not the case in general and one has in general to rely
on a weak notion of solution. Here, we discuss the notion of viscosity solutions which
has become very popular in finance. We show how to prove that the value function is a
viscosity solution of the associated PDE and explain how to derive a uniqueness result

for viscosity solutions through a comparison theorem.

We then repeat these arguments for various control problems in standard form with

finite or infinite time horizon. We also discuss some specific control problems leading to



PDEs with free boundary (optimal stopping, optimal switching and optimal dividend
payment) and present a direct approach for solving a general class of stochastic target
problems for which the dynamic programming principle takes a very particular form. We
finally discuss the stochastic maximum principle which is an extension of the Pontryagin

principle in deterministic control.

These different analysis are carried out in different settings in order to introduce various

techniques and are illustrated by examples of application in finance and insurance.

Notations:

Any element z € R? will be identified to a column vector with i-th component z* and
Euclidean norm ||z||. The scalar product is denoted by (-,-). The set of d x d (resp.
symmetric) matrices is denoted by M? (resp. S%), the superscript * stands for transposi-
tion, A7 is the j-th column of A. The norm || - || on M? is the Euclidean norm obtained
when M is identified to R%*?. For a smooth map 1 : (t,y) € Ry x R — 4(t,y), we
denote by D (resp. D) its partial gradient (resp. Hessian) with respect to . When
it depends on more variables, we use the more explicit notations Dy, D, etc... We
denote by B(R?) the Borel tribe associated to R?. For a set B C R?, B and 0B stands

for its closure and boundary. The open ball of center x and radius 1 > 0 is denoted by
B(z,n).

We always work on a complete probability space (€2, F,P) endowed with a right-continuous
filtration F = (F;)i>0, which satisfies the usual assumptions. On this space, we shall

consider:

- a R%-market point process j with predictable intensity kernel fi of the form ji;(dz) =

M\ ®(dz) where @ is a probability distribution on R? and A a bounded Lipschitz-continuous

map from R; into Ri. We note fi = p — i the compensated jump measure.

- a d-dimensional Brownian motion W, independent of p.

Basic properties of Itd’s integral and random measures are presented in the Appendix.
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Chapter 1

Conditional expectations and the

Feynman-Kac Formula

In this Chapter, we consider a family of processes (Xt ) ¢ 2)cr, xre defined by the SDEs :

v v
X(v) = 2 +/ b(X(s)) ds +/ o (X / B(X(s—), 2) u(dz, ds) .
t t R?

(1.0.1)

Note that the coefficients may actually depend on time by choosing it in such a way that

X1(t) =t. We could also choose them so that the effective dimension of X is different

from RY.

Our aim is to characterize value functions of the form

o(t,2) = E | & (T)g(Xsa(T / € o(5)f(Xen(s))ds| (t,2) € [0,T] x RY,

(1.0.2)

where & ,(s) =€~ JfpXea(@)dv - ag golutions of PDEs of the form

L+ f=pv (1.0.3)

on [0,T) x R? with the boundary condition v(T,-) = g. Here, £ is the Dynkin operator

associated to X:

Lo(tz) = gt (t, x)+(b(x),D<p(t,x)>+%Tr [00*(2) D%o(t, )]

b [ el B.2) = olta) ()
R
This allows at least to compute v numerically by using standard PDE solvers. In par-

ticular cases, we shall see that (1.0.3) can be solved explicitly, thus providing a closed

form formula for v.



1 Markov property and formal derivation

Before turning to the technical proof, let us briefly justify this relation. Under the
Lipschitz continuity assumptions that will be imposed in the next section, it is well
known that the process X;, is a strong Markov process. In particular, for all stopping
times T >tP—a.s.and h >0

P X o(T+h)€A|F]=P[Xso(r+h)€A| Xp2(r)] P—as. (1.1.1)
Moreover, for all continuous and bounded function g
Elg(Xea(m+h)) | Xea(n)] = @7, Xe2(7);9,h) P —as. (1.1.2)
where
(5,939, h) = E[g(Xsy(s + )] -
Since X, is right-continuous, this also implies that for all 7" > 0
Elg(Xt2(T)) | Xta(M)]1r>r = &7, X12(7);9, T)lr>r P—as.  (1.1.3)
where for s < T
P(s,439,T) = E[g(Xs,,(T))] -

See [21] for more details. Under the same Lipschitz continuity assumptions, (1.0.1)
admits a unique solution, even if we replace (¢,x) by (0,£) where 6 is a stopping time
and ¢ a Fy-measurable R%-valued random variable. It follows that the family X satisfies

the flow property
Xtz = Xg x,,0) onlf,00)P—as. (1.1.4)

for all stopping times 6 >t P — a.s.

For simplicity, let us for the moment assume that p, g and f are bounded. Then, the

process Z defined by

2() = E | E0.0(T)g(Xo.0(T / E00(8)f (Xow(s))ds | Fo| € [0,T]

is well defined and is a martingale. But, it follows from the flow property (1.1.4) and
(1.1.1)-(1.1.2)-(1.1.3) that

2() = Eo.u(t)0(t, Xo.a(t / E0.0(5)f(Xou(s))ds P — as. (1.1.5)

7



Thus, the right-hand side term is a martingale. Since by It6’s Lemma, see the Appendix,

its dynamics has the form
AZ(s) = Eoa(s) (Lo + F) (5, Xo.n(5)) — (p0)(5, Xo.o(5))) ds(---) W (5)+(- ) fi(dz, ds)

we see that (Lv + f)(s, Xoz(s)) — (pv)(s, Xo,(s)) must be equal to 0. This formally
leads to (1.0.3).

The rest of this chapter is dedicated to the technical justification of this argument. After
having derived some standard controls on X, and a dynamic programming principle of
the form (1.1.5), we first show that v solves (1.0.3) whenever it is C12. Tt is completed
by a Comparison Theorem which implies that there is at most one solution to (1.0.3)
satisfying the boundary condition ¢(T,-) = g, in a suitable class of functions. We then
provide a verification argument, i.e. we show that if ¢ is a sufficiently regular solution
of (1.0.3) satisfying the boundary condition ¢(7,-) = ¢ then ¢ = v. This result is here
essentially a consequence of the Comparison Theorem but this approach will be useful
when we will study control problems. Finally, we study the case where v is not smooth
(possibly even not continuous). In this case, we still characterize v as the (unique)

solution of (1.0.3) but in the sense of viscosity solutions.

2 Assumptions on the coefficients and a-priori estimates
on the SDE

From now on, we shall always assume that the coefficients satisfy, for some L > 0,

18 (2, 2) | < L (L+ [|lz])

18 (2,2) = B(y,2) | < Llly — ||

16(2) || + [lo (@) [ < L (1 + [|l2]]) (1.2.1)
16(z) =b(y) | +lo(z) = (y) || < Llly —«|

~—  ~—

for all (z,y,2) € (R%)? x RY, so that existence and uniqueness of a solution to (1.0.1)
is guaranteed. Existence follows from a standard fixed point procedure, and uniqueness

from estimates similar to the one presented in the next proposition.

Proposition 1.2.1 Fiz T > 0 and p > 2. Then, there is C > 0 such that, for all



(t,z,y) € [0,T) x (R)? and h € [0,T — ],

E | sup [[Xea(s)P| < C 1+ |])”
t<s<T |
E| sup [[Xpa(s)—alP?| < Ch2(1+ [x|?)
t<s<t+h ]
E| sup [[Xpa(s) = Xepna(s)|P| < ChE1+|z|?)
t+h<s<T ]
E | sup [ Xial(s) = Xey()[IP| < Cllz—yl’.
t<s<T

Proof. We denote by C' > 0 a generic constant whose value may change from line to
line but which does not depend on x, y or t. Using Jensen’s inequality, Proposition A.1.1
and Proposition A.2.3 in the Appendix, we first observe that, for ¢t < s < T,

E{sup uxt,x(u)r\p] < B |+ /:\b(Xt,m»dew(/:det,x(v)ﬂﬁdv)g

t<u<s

| [ [ 18t Mtz

< CE vaH“r/ts(Hb(Xt,x(v))llp+IIU(Xt,z(v))\p)dv}

+ CE /t/Rd ||B(Xt,x(v),z)||p)\v<1>(dz)dv] .

In view of (1.2.1), this shows that

E[sup uXt,x(u)up] < CE[1+||x||p+ [ ||Xt,x<u>|pdv]
¢ <

t<u<s t<u<v

' CEU / (1+ sup HXW)HP) muz)dv] _
t JRd t<u<v

Since A is bounded, the first assertion is a consequence of Gronwall’s Lemma, see Lemma
1.2.1 below.

By the same arguments, we obtain, for t < s <t + h,

t+h
E | sup || X¢q(u) —pr] < CE [hg +/ sup HXm(u)dev]
¢

t<u<s t<u<v

t+h
' CE[/ / <1+ sup HXt,x(U)\p> Avcb(dz)dv]
t Rd t<u<v

—_



and deduce the second assertion by using the first one. The two last estimates are ob-
tained by similar arguments. O
We now state the lemma which was used in the above proof.

Lemma 1.2.1 (Gronwall’s Lemma) Fiz T > 0. Let g be a non-negative measurable real

map such that

g(t) < aft)+ H/O g(s)ds Vtel0,T],

where k > 0 and « : [0,T] — R is integrable. Then,
t
g(t) < alt) + H/ a(s)e™tds vt e0,T].
0

In the following, we shall also assume that
(i) p is bounded from below,
(ii) g and f have at most polynomial growth,

(iii) p, g and f are continuous.

In view of Proposition 1.2.1, this ensures that the value function v is well defined.

3 Feynman-Kac formula in the regular case

3.1 Derivation of the PDE in the regular case

Our first result relates the value function v at time ¢ in terms of its value at some future
time. In terms of processes, it corresponds to (1.1.5). In stochastic control, this kind of
equation is called dynamic programming equation and is here a simple consequence of
(1.1.1)-(1.1.2)-(1.1.3)-(1.1.4).

Proposition 1.3.2 Let § be a stopping time such that 0 € [t,T] P — a.s. and X4 is
bounded on [t,0]. Then,

0
ot x) = E | &.2(0)0(8, X0 (8)) + / Era()f (Xra(s))ds | - (13.1)

Proof. For ease of notations, we only consider the case where f = 0. By the flow

property of X, the usual tower property and (1.1.1), we have

v(t,z) = E[E.(0)E [Ex,.0)(T)9(Xpx,.0)(T)) | Fol]
= E[&20)E [& x,.0)(T)9(Xo,x,.0)(T)) | Xe2(0)]] -

10



It then follows from (1.1.3) that

E [EG,X,:,I(H) (T)Q(XH,Xt,I(O) (T)) ’ Xt,a:<0)] = U(Q,th(g)) P — a.s.

O
Using the above proposition, we can now relate v with a suitable PDE in the case where

it is smooth enough.

Theorem 1.3.1 (Feynman-Kac) Assume that v is continuous on [0,T] x R? and v €
CH2([0,T)xR9). Then, v is a solution on [0, T) xR of (1.0.3) and satisfies the boundary
condition lim; ~rv(t,z) = g(x) on R%.

Proof. The boundary condition is a consequence of the continuity assumption on v.
It remains to show that v solves (1.0.3).

We now fix (¢,z) € [0,T) x R%. Let 6 be the first time when (s, Xt 2(5))s>t exits a given
bounded open neighborhood of (¢, z). Set 6" = @ A (t+h) for h > 0 small. Using (1.3.1),
It6’s Lemma, Corollary A.2.1, (A.1.1), we deduce that

1 e
0-E !h E1n(3) (L0 + F)(5, Xa(5)) — (p0) (5, X1.a(s))) ds
t
Now, we observe that Proposition 1.2.1 implies that, after possibly passing to a subse-
quence, Sup;<s<iip [[Xtz(s) — | — 0P —as. as h — 0. Moreover, § > 0 P — ass. so
that (0" —t)/h — 1. Using the mean value theorem and the continuity of Lv + f — puv,
we then deduce that, after possibly passing to a subsequence,
1o
7 Ceal(s) (Lot (s, Xea(s)) = (pv)(s, Xea(s))) ds
t
— (Lv+ f)(t,x) — (pv)(t,z) P—as.

as h — 0. The required result is then obtained by applying the dominated convergence

theorem. 0

In order to complete the proof, it remains to show that v is the unique solution of (1.0.3)
satisfying the boundary condition lim; »r v(t,z) = g(z) on R%. To this purpose, we first

state a comparison principle also called maximum principle.

Theorem 1.3.2 (Comparison principle) Assume that U and V' are continuous on [0, T]x
RY and CY2 on [0,T) x RY. Assume further that, on [0,T) x R?,

LU+ f<pU and LV +f>pV (1.3.2)

11



and that U(T,z) > V(T,z) on R Finally assume that U and V have polynomial
growth. Then, U >V on [0,T] x R

Remark 1.3.1 When U and V satisfy (1.3.2), we say that U is a super-solution and
that V is a sub-solution of (1.0.3).

Remark 1.3.2 The above theorem can be restated as follows. If U and V are C°([0, 7] x
R4 N CH2([0,T) x RY) super- and sub-solutions of (1.3.2) on [0,7T) x R%, then the max
of V — U can only be attained on the boundary {T} x R?. This explains why the above

comparison theorem is also called the Mazimum Principle.
Remark 1.3.3 If we set U(t,z) = e U(t,x) and V(t,x) = "V (t,z) then
LU+ F<(p+x)U and LV+F>(p+r)V

where f(t,z) = e f(z). After possibly replacing (U, V) by (U, V) and taking x > p~,

we can always assume that p > 0.

Proof. In view of Remark 1.3.3, we may assume that p > 0. Assume now that
for some (tg,29) € [0,T] x R? we have Ul(tg,z0) < V(to,z0). We shall show that
this leads to a contradiction. Fix € > 0, k > 0 and p an integer greater that 1 such
that lim supj, | o0 sup<r(|U(t, )| + [V (¢, 2)[)/(1 + ||2]|”) = 0. Then, there is (f,2) €
[0, T] x R? such that, for € small enough,

0 < V(ia '%) - U(t:i.) - ¢(£7 'f) = max (V(ta $> - U(t,l') - ¢(t7 x)) )
(t,x)€[0,T]|x R4

where
o(t,x) == ee” "™ (1 + ||lz[*) .

Since U > V on {T} x R% we must have { < T. Moreover, the one and second order

conditions of optimality imply
(0:V, DV)(t, &) = (8:U + 0, DU + D) (1, &)
and

D?V(t,z) < (D*U+ D?*¢)(t,#)

12



in the sense of matrices. Combined with (1.3.2) and the fact that (V — U — ¢)(¢, 4 +
B(t,z,-)) < (V—U — ¢)(t, ), this leads to

p(V-U)(t,2) < LV -U)( )
< 0i9(t,2) + (b(2), Do(t, 2)) + Tr [o0* (2) D?¢(t, 2)]
+ /Rd (V=0)(t, &+ B, 2,2)) — (V-U)( 2)) \;®(dz)
< Lot ) .

Since b, 0 and 8 have polynomial growth, we can choose x > 0 sufficiently large so that
the term in the last bracket is (strictly) negative. This contradicts (V — U)(f,2) > 0
since p > 0. O

Remark 1.3.4 In the above proof, the penalization term ¢ is introduced only to ensure
that the max is attained. If we were working on a bounded domain, instead of R¢, this

term would not be necessary.

Corollary 1.3.1 Assume that v is CY2([0,T) x RY) N CO([0,T] x RY), then it is the
unique C12([0,T) x RY) N CO([0, T] x RY) solution of (1.0.3) satisfying v(T,-) = g in the

class of solutions with polynomial growth.

Proof. Since f and g have polynomial growth and p is bounded from below, we deduce
from the estimates of Proposition 1.2.1 that v polynomial growth too. The result then
follows from Theorems 1.3.1 and 1.3.2. O

3.2 Verification theorem

In practice, the regularity assumptions of the above theorem are very difficult to check
and we have to rely on a weaker definition of solutions, like viscosity solutions (see e.g.
[7] and [6]), or to use a verification theorem which essentially consists in showing that,

if a smooth solution of (1.0.3) exists, then it coincides with v.

Theorem 1.3.3 (Verification) Assume that there exists a C%2([0,T) x R?) solution ¢
to (1.0.3) with polynomial growth such that
lim  o(t,2") = g(x) onRe. (1.3.3)

t /T,x'—x

Then, v = .

13



Proof. Given n > 1, set
Op :=1inf{s > t: || X¢,(s)|| > n} .

Note that (1.2.1) implies that X, is bounded on [t,0 A T]. By It6’s Lemma, Corollary
A.2.1, (A.1.1) and the fact that ¢ solves (1.0.3), we obtain

o(t,x) =E |&200 ANT)p(0n AT, Xt 2(0, NT)) + /t(’n/\T Era(s)f(Xia(s))ds| (1.3.4)

for each n. Now, observe that #,, — co as n — oco. In view of (1.3.3), this implies that
O AT
gt,z(en N T)(p(en A T7 Xt,z(en N T)) + / gt,x(s)f(Xt,x<3))dS
t

T
~»aﬂﬂwxm@»+1'aﬂaﬂxm$mhp&&

Using Proposition 1.2.1, we then deduce that ¢ = v by sending n — oo in (1.3.4) and

using the dominated convergence theorem. O

Remark 1.3.5 In the case where o = 0, then we only need v to be C! since no second
order term appears in the PDE and in It6’s Lemma. If X takes values in (0,00)¢ then
the PDE has to hold on [0,7") x (0,00)? and the boundary condition has to be written
on (0,00)¢ as well. We shall discuss in Section 5.1 a case where the PDE is satisfied on
a cylindrical set [0,T) x O for some open set O C RY. In this case, one has to specify a
boundary condition on [0,7") x 9O.

4 Viscosity solutions: definitions and derivation of the

PDE in the non-regular case

As explained above, it is in general very difficult to derive some a-priori regularity on v
or on the solutions of (1.0.3). When o is uniformly elliptic, i.e. there is ¢ > 0 such that
for all £ € R?

oot > cl|¢]? (1.4.1)

and the coefficients are smooth enough, general results for PDEs can be used, see e.g.
[13] or [14], but in general a solution of (1.0.3) needs not to be regular.

In this case, we can still characterize v as a solution of (1.0.3) in a weak sense. In these
notes, we present the notion of viscosity solution which has become very popular in

finance. We refer to [2] or [6] for more details.

14



4.1 Definition

Let F be an operator from [0, 7] x R x R x R x R? x S x R into R where S denotes the
set of d-dimensional symmetric matrices. In this chapter, we will be mostly interested

by the case
1
F(tvx’uv q,p, Aa I) = p(t,x)u —q— <b(ta 1“)7p> - QTI‘ [O-O-*(‘T)A] o f(:E) ) (142)
so that v solves (1.0.3) means

F](t,z) := F(t,z,v(t,x),0w(t, x), Do(t, ), D*v(t, ), I[t,z;v(t,-);v(t,x)]) = 0
(1.4.3)
on [0,T) x R? with

It = [ (pla+ A(e.2) —u) M(d2)

We say that F is elliptique if it is non increasing with respect to A € S? and its last
variable I. This is clearly the case for F' defined as in (1.4.2). In the following, F' will

always be assumed to be elliptic and non-increasing in its g-variable.

Let us assume for a moment that v is smooth. Let ¢ be C*2 and (£,2) € [0,T) x R? be
a (global) minimum point of v — ¢ on [0, 7] x R%. After possibly adding a constant to
¢, one can always assume that (v — ¢)(#,4) = 0. The first and second order optimality

conditions imply

ow(t, &) > 0yo(t, ), Du(t,z) = De(t, ) and D*v(t, &) > D*p(t,2) .

whenever
F(t,z,v(t,x),0v(t,x), Dv(t, z), D*v(t, z), I[t, z;0(t, -);v(t, z)]) = 0.

Conversely, if (£,4) is a (global) maximum point of v — ¢ then

F(t,2,0(t, &), 00p(t, &), Dp(t, &), D2p(t, 2), I[t, 25 (1, ); 0(t, #)]) <0 .

This leads to the following notion of viscosity solution.
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Definition 1.4.1 Let F' be an elliptic operator as defined as above. We say that a l.s.c.
(resp. u.s.c) function U is a super-solution (resp. sub-solution) of (1.4.3) on [0,T) x R?
if for all o € CY2 and (t,2) € [0, T) xR? such that 0 = ming 71 xgd (U =) = (U—p)(t,2)
(resp. 0 = maxpy p)xra(U — @) = (U — ©)(t, %)), we have:

F(ﬂjﬁﬂo(fa i)76t90(£>£)aDQ0(£a £)7D290(£7 j)>1[£7£5 90(7?’ ')?‘P(Ev j})]) >0 ( resp. < O) :
(1.4.4)

Note that a smooth solution is also a viscosity solution. We shall say that a locally

bounded function is a discontinuous viscosity solution of F' = 0 if U, and U* are respec-

tively super- and sub-solution, where, for (¢,z) € [0,T] x R,

Ui(t,x) = lim inf U(s,y) and U*(t,z) = lim sup U(s,y) . (1.4.5)
(,9)€[0,T) xRI— (t,2) (5,y)€[0,T) xRd— (t,z)

If U is continuous, we simply say that it is a viscosity solution.

Remark 1.4.6 If ({,4) € [0,T) x R? realize a minimum of U — ¢ then it realize a strict
minimum of U — ¢° where ¢°(t, ) = ¢(t,z) —¢||lx — &||* — |t —£|* and £ > 0. Moreover, if
©° satisfies (1.4.4) at (£,2) then ¢ satisfies the same equation whenever F is continuous
in its last variable (take the limit ¢ — 0). In this case, it is clear that the notion of
minimum can be replaced by that of strict minimum. Similarly, we can replace the

notion of maximum by the one of strict maximum in the definition of sub-solutions.

Remark 1.4.7 Assume that F' is continuous in its last variable. Let B, be the ball of
center (f,2) and radius n > 0. It is clear from the super-solution definition that we can
always assume that ¢ = U, on By if we replace the property ¢ € Cl2 by ¢ € 0172(Bn/4).
Indeed, let U, be a sequence of smooth functions such that U, < U, for each n and
Up — U,. Let now x be a smooth non-increasing function such x(z) = 1 if z > n/4 and
x(z) = 0if 2 < —n/4. Let d, )5 be the algebraic distance to 9B,/ (d, /2 > 0 on By, and
dy/2 < 0on B;/2). This function is smooth. We then set ¢} := ¢ xod, 5 +Un(1—x0d,/2).
Then, (£, #) is still a minimum point for U, — ¢y and (Usx — 907’71)(5,:&) = 0. We can then
apply the definition to (£, %, ¢y). By sending n — oo, this shows that (1.4.4) holds for
¢n = X ody + Us(1 = xod,y) which is smooth in B, /4 and satisfies ¢ = U, on By.

Remark 1.4.8 Observe that, in the discontinuous viscosity solutions approach, there
is no need to prove the a-priori continuity of the value function since we work directly
with the l.s.c. and u.s.c. envelope of the value function v. The continuity will actually
be a consequence of the maximum principle (see Theorem 1.4.2 below) which, under
suitable conditions, implies that v, > v* and thus v, = v* = v is continuous (at least

inside the domain, with continuous extension at the boundary).
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4.2 PDE derivation

We can now characterize v as a discontinuous viscosity solution of (1.0.3).

Theorem 1.4.1 The value function v is a discontinuous viscosity solution on [0, T) x R?
of (1.0.3). Moreover, vi(T,-) > g and v*(T,-) < g on R

Proof. We only prove the super-solution property of v, and the fact that v.(T,-) > g.
The proof of the other assertions is symmetric. Let (£, z)n>1 be a sequence of [0, T') x R4
such that (t, xp, v(te, ) — (£,2,v.(f,2)). We first assume that £ = 7. In this case,

we deduce from Proposition 1.2.1 and a dominated convergence argument that

T

0(b8) = W [Eh (DX (D) + [ (91 (Xr ()]

T

- E [1i£n <5tn,mn (T)g( X1, 2, (T)) +t"

= g(T,z).

Etn () (Ko, (1)) |

in

We now assume that ¢ < 7. Let ¢ € C"? be such that 0 = ming 7} gd (Ve — ) =

(vx — @)(t,2). We proceed by contradiction, i.e. we assume that for some 1 > 0
po(t, @) — Lo(t, &) — f(2) < =21

and show that this contradicts (1.3.1). Indeed, if the above inequality holds at (i, ),
then

p(p(t,.%') - E(P(tvx) - f(x) <0

on a neighborhood of (£, %) of the form B := B(t,r) x B(&,r), r € (£, T —t), containing,
without loss of generality, the sequence (¢, ),. By Remark 1.4.6, we can then assume,

after possibly changing the value of 7, that
v>v, > @+n ond,B

where 9, B is the parabolic boundary of B, i.e. (B(t,r) x 0B(&,7))U({t+7r} x B(&,7)).

We can also assume that it holds on
B = {(t,z+ B(x,2)) : (t,z,2) € B X R? and z + B(x,2)) ¢ B(z,7))}

which is also bounded thanks to the linear growth assumption on .

17



Let 60,, be the first exit time of (¢, X, 2, (t))t>t, from B. By Itd’s Lemma applied to ¢

and the above inequalities, we then obtain
<p(tn’ "En) = E [gtn,mn (077/)(70(0”’ thyxn (0))]

On
_E [ [ 610,(9) (£(5 X1, (5) = s, X (5)) ds]
0n

S E |:gtn,xn (en) (U(‘gny th,;rn (6)> - 77) + gtn,xn(s)f(th,xn (8))d8:| .

tn
Since Xy, »,, is uniformly bounded on [t;, 6], uniformly in n, and p is continuous, we
can then find € > 0, independent of n, such that
On,
@(tn, xn) S —E&n + ]E |:gtna$n (gn)v(gn’ Xtrumn (0)) + gtrumn <S)f(th7$n ($)d8:| °
ln

Since @(tn, ) — @(t,2) = vi(t, %) and v(ty, zn) — v«(t, 1), we deduce that for n large

enough
0rn
o(tnrn) < E[stn,mnwn)v(emth,znw))+ etn,zn<s>f<xtn,zn<s>ds},
tn
which contradicts (1.3.1). O

Remark 1.4.9 The introduction of the sequence (t,,xn)n>1 is only used in order to
approximate v, by v on which the dynamic programming principle is stated. Obviously,

this approximation argument is not required if v is already l.s.c.

Remark 1.4.10 If g is not continuous, similar arguments as above show that v, (T, -) >
g« and v*(T,-) < g*

4.3 Comparison principle
An equivalent definition of viscosity solutions

In order to complete the characterization of v, it remains to show that it is the unique
solution of (1.0.3) satisfying the boundary condition v(7,-) = ¢g. For this purpose, we

need an alternative definition of viscosity solutions in terms of super- et subjets.
Note first that if U is ls.c., ¢ € CY% and (£,#) € [0,7) x R? is such that 0 =
ming g)pra(U — ) = (U — ©)(f,2) then a second order Taylor expansion implies
Ut,z) > Utz
= Utz
+ (Dy(t,2),x — 3) + = (D*p(t,2)(x — &),z — £) + o([t — {| + ||z — £[|?) .



This naturally leads to the notion of subjet defined as the set P‘U(f,ﬁc) of points
(q,p,A) € R x RY x S? satisfying

(Alx —2), 2 —2) +o(|t —t| + ||lz — 2| .

N | =

Ut,z) > U(t,2) +q(t —t) + (p,x — 3) +

We define similarly the superjet PTU(f,2) as the collection of points (g,p, A) € R x
R? x S? such that

U(t,2) < UG ) +alt =) + (.o — 8) + (A = )2 = )+ ollt — 8] + lo — 2]).

For technical reasons related to Ishii’s Lemma, see below, we will also need to con-
sider the “limit” super- and subjets. More precisely, we define P+U (%, ) as the set of
points (g,p, A) € R x R% x S? for which there exists a sequence (tn, Zn, ¢n, Pr, An)n of
[0, T) xRYx PHU (L, ) satisfying (tn, o, Utn, Tn), Gns P, An) — (6,2, U(E, £), q, p, A).
The set P~U(t,4) is defined similarly.

We can now state the alternative definition of viscosity solutions.

Lemma 1.4.2 Assume that F is continuous. A l.s.c. (resp. w.s.c.) function U is
a super-solution (resp. sub-solution) of (1.4.3) on [0,T) x R? if and only if for all
(t,2) € [0,T) x R? and all (§,p, A) € P~U(L, %) (resp. PTU(E,2) )
F(t,&,U(t,2),4,p, A I[E,&U®E-),UE D)) >0 (resp. <0). (1.4.6)

Proof. We only consider the super-solution property. It is clear that the definition of
the Lemma implies the Definition 1.4.1. Indeed, if (#,4) € [0,T) x R? is a minimum of
U — ¢ then (040, Do, D%¢)(t,2) € P~U(t,2). It follows that

F(t,2,U(£4),q,p, A I[E2;U(E ) U(E2)]) 2 0
with (4, p, fl) = (0y, Do, D?p)(t,&). Since U > ¢, I is non-decreasing in its third
argument and F' is elliptic, this implies the required result.
We now prove the converse implication. Fix (¢, %) € [0,T)xR% and (g, p, fl) € P-U(t, ).
It is clear that, if (q,p, fl) € P~U(t, %), then we can find ¢ locally C'? such that
(§,p, A) = (80, Do, D*¢)(i, &), ¢ = U at (£,2) and U > ¢ (see e.g. [7] page 225 for an
example of construction). We then have

F(t,2,U(t,2),¢.p, A Il & ¢(i,);U(E,2)]) 2 0.
By Remark 1.4.7, we can also assume that ¢ = U outside a neighborhood of radius

n > 0. By taking the limit when 1 — 0, we then get
F(t,,U(8,%),q,p, A I[L.3;U(E,): U(E,2)]) 2 0.

The extension to (¢,p, A) € P~U({, &) is immediate since F' is continuous. O
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Ishii’s Lemma and Comparison Theorem

The last ingredient to prove a comparison theorem is the so-called Ishii’s Lemma.

Lemma 1.4.3 (Ishii’s Lemma) Let U (resp. V') be a l.s.c. super-solution (resp. u.s.c.
subsolution) of (1.4.3) on [0,T) x RL. Assume that F is continuous and satisfies

F(t7$7u7Q7p7A7I) :F(tax7u707p7A7]) —q

for all (t,z,u,q,p, A, I) € [0, T)xRIXRxRxRIxSIxR. Let p € C22([0, T]x R?x R?)
and (t,2,9) € (0,T) x R x R? be such that

W(t,z,y) :=V(t,x) = U(ty) - d(t,z,y) < W(L,2,9) V(tz,y) €[0,T)x R x R?.

Then, for all n > 0, there is (q1,p1, A1) € PTV (L, %) and (g2, p2, A2) € P~U(t,7) such
that

and
A1 0 ~ A A a2
< D(:c,y)¢(t?xvy) +n (D(x,y)¢(taw7y)) .
0 —A
Proof. The proof is technical and long, we refer to [6] for details. O

Remark 1.4.11 Let F be as in Lemma 1.4.3. Let U be a wviscosity supersolution of

Flp] =0 on [0,T) x RY. Set U(t,x) := U(t, z) + £ for some e > 0. If (t,&) reaches the

infimum of U—@ over (0, T)xR® for some smooth function ¢, such that (U—¢)(t,4) = 0,
g

then it also reaches a minimum of U — ¢ with ¢(t,r) := §(t,x)— 5. Thus, F[g](t,2) > 0.

If F is also also non-decreasing in its u-argument, then

Hence, U is still a supersolution, but we know that t > 0 since limy o ﬁ(t, ) = 400.
If V is a subsolution of F[p] =0 on [0,T) xRY, then saying that sup(o,r)xrd(V —U) >0
is the same as saying that sup g p)xra(V —U) > 0, upon choosing € > 0 small enough.
The latter is also the same as saying that sup[(),T)XRd(V —U) > 0 upon considering the
same PDE on [—-1,T].
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We now prove the expected comparison theorem also called maximum principle.

Theorem 1.4.2 (Comparison) Let U (resp. V') be a l.s.c. super-solution (resp. u.s.c.
subsolution) with polynomial growth of (1.0.3) on [0,T) x R%. IfU >V on {T} x R,
then U >V on [0,T) x R

Proof. By the same arguments as in Remark 1.3.3, we can assume that p > 0. Assume
now that there is some point (¢, zq) € [0, 7] x R? such that U(tg, x9) < V(to,z0). We
shall prove that it leads to a contradiction. Let € > 0, x > 0 and p an integer greater
than 1 be such that limsup,| e supi<r(|U (¢ )| + [V(¢, 2)[)/(1 + [|z[|?) = 0. Then
there exists (£,2) € [0,7] x R? such that

0 < V(ivjj) - U(iv i.) - ¢(£7 z, 'i') = max (V(ta Q?) - U(t,l') - ¢(t7 x?'%')) )
(t,x)€]0,T]|x R4

where
o(t,z,y) == ee ™ (1+ ||z + [ly|*)

and ¢ is chosen small enough. Since U >V on {T} x R%, it is clear that £ < T. By the
arguments of Remark 1.4.11, we can restrict to the case where £ > 0.
For all n > 1, we can also find (t,, Z,,yn) € [0,T] x R? x R? such that

0 < TI'y(th,zn, = I'n(t, z, 1.4.7
n( ns LTn yn) (t,x,y)E[I(I)T%});RdXRd n( T y) ( )

where

Fn(taway) = V(t,l') - U(tv y) - ¢(t,$,y) - on - yH2
— (t= P +llz 2.

It is easily checked that, after possibly passing to a subsequence,
(tns Toos Yo Tr(tns Ty yn)) = (£, 8,8, To(E,2,2)) and nz, — yul*> = 0. (1.4.8)

Moreover, Ishii’s Lemma implies that for all n > 0, we can find (¢}, p}', A7) € PV (b, )
and (g4, p%, A%) € P~U(ty,yn) such that

a7 — 43 = Oeon(tn, TnYn) , (P1,02) = (Dan, *Dy‘Pn)(tnvxmyn)

and
A? 0 2 2 2
< 0 —Ag ) < D(x,y)@n(tmmna yn) +n (D(;p,y)@n(tm‘rna yn)) .
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where
on(t,z,y) = o(t,z,y) + nllz —y|> + |t — >+ lz — &||* .

In order to obtain the required contradiction, it now suffices to appeal to Lemma 1.4.2

and to argue as in the proof of Theorem 1.3.2. By (1.4.8), we obtain that for all n > 0
p(V =U)(t,2) < en+nCy+ Lo, 2)

where €, — 0 is independent of  and C,, does neither depend of n. By sending n — 0,

we deduce that
p(V=U)(t,&) < e+ Lo(E,2,7).

For £ > 0 big enough so that the second term in the right-hand side is strictly negative
and n large enough, we get p(V — U)(#,2) < 0. This contradicts the fact that (V —
U)(t,2) > 0 since p is assumed to be (strictly) positive. O

Corollary 1.4.2 The value function v is continuous and is the unique viscosity solution
on [0,T) xR of (1.0.3) satisfying limgr, y—z v(s,y) = g(x) in the class of discontinuous

viscosity solutions with polynomial growth.

Proof. Recall that since f and g have polynomial growth and p is bounded from below,
the estimates of Proposition 1.2.1 imply that v has polynomial growth too. The above

assertion is then a consequence of Theorem 1.4.1 and Theorem 1.4.2. O

5 Examples of application

5.1 Plain Vanilla and Barrier options in a local volatility model

Let us consider the following financial market composed by one non-risky asset with
instantaneous constant interest rate p > 0 and d risky asset whose dynamics under the

risk neutral probability measure (here P) is given by
dXio(s) = Xt 2(s)pds + diag[ Xy 4 (s)]o(X¢ (s))dW (s) , s>t >0.

Here, z € (0,00)?, diag[z] denotes the element of M? whose i-th diagonal argument is

given by z°, and we assume that the map z + diag[z]o(x) is Lipschitz.
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Plain Vanilla options

Given a payoff function g, the price at time ¢ of the European random claim g(X; (7))

is given by:
oft,@) == E [T g(X, 0 (T))

If ¢ is continuous with polynomial growth, then it follows from the same arguments as

those used to prove Theorem 1.4.1 that it is a discontinuous viscosity solution of

PP — %gp(t, x) — plx, Dp(t,x)) — %Tr [diag[w]aa*(x)diag[:v]D2<p(t,:E)] = 0 (1.5.1)

on [0,7) x (0,00)% with the terminal condition limgr, 4z v(s,y) = g(z) on (0,00)%
However, we can not apply directly the argument of the proof of Theorem 1.4.2 because
the domain in the space variable is not closed. In particular, there is no reason why the
max in (1.4.7) should be attained on [0, 7] x (0,00)%¢ and not on [0, 7] x [0, c0)%.

In order to avoid this problem, we could specify a boundary condition. This is pos-
sible when d = 1. In this case, standard estimates implies that lim(, ) 0 v(s,y) =
e P(T=1g(0) on [0,T]. This provides uniqueness in the class of solutions satisfying this
additional boundary condition: since Z can not be equal to 0, it follows that, after pos-
sibly passing to a subsequence x,,y, > 0, recall (1.4.8), and the remaining arguments
can be applied.

For d > 2, this is much more difficult. An other way to adapt the proof of Theorem
1.4.2 is to start with a point (f., .) satisfying

d
0 < V(e &) = Ulle, &) — <€€_”tc(1+2Hf1cHz”) +CZ(@Z)_2>

i=1

(t,2)€[0,T]x(0,00)%

d
- max (V(t7 x) —U(t,z) —ee (1 + 2Hx\|2p) — 2cZ(mi)_2> )

for some ¢ > 0. In this case, #. € (0,00)%

We can then repeat the argument of the
proof of Theorem 1.4.2. The only difference is that we have to take the limit ¢ — 0

to conclude and control the additional term (which is easy once we have observed that

lime o ¢ 32, (22) 72 = 0).

Barrier options

In the case of Barrier options, the payoff is typically of the form g(X;.(T"))17<r,, where
Tt = Inf{s >t : X;.(s) ¢ O} for some given open subset O C (0, o0)d.
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Here again, one can easily adapt the proof of Theorem 1.4.1 to show that the price
o(t,@) = E e T 0g(X0u(T)1r<r,

is a discontinuous viscosity solution of (1.5.1) on [0,7") x O with the terminal condition
v(T—,-) = g on (0,00)¢. It remains to specify a boundary condition on [0,7) x 00.
From now on, we define v* and v, as in (1.4.5) except that we take the limit over
y € O. For a smooth test function ¢ and (¢,4) € [0,T) x 0O such that (v« — ¢)(f,2) =
ming 77,0 (vs — )(¢, ), we can then show that, at (t,#) €[0,T) x 90,

0 . 1 Ot
max {gp i p(Z, Dp) — §Tr [diag[2]oo dlag[x]DQcp]} >0

by adapting the arguments used to prove Theorem 1.4.1. Similarly, for a smooth test
function ¢ and (£,4) € [0,T) x 90O such that (v* — p)(t, &) = maxy 716 (V" — ¢)(t, ),

we must have, at (¢, 1),
. 0 . 1 e tal ke faliad
min § ¢, PP = 5.0 = p(Z, Dp) — §Tr [dlag[:c]aa diag[z] D cp] <0.

Let us now assume that the algebraic distance d to A0 is C? (d > 0 on O, d < 0 on O°
and d = 0 on JO). Then, if ¢ is a test function at (,#) for v, then so is ¢ — (d — d?/¢)
for € > 0 in the sense that (f,#) is still a local minimum point. Applying the above

characterization, we obtain that, if ¢(f, ) < 0, then, at (£, %)
0 < pp— %g@ — p(z, Dyp) — %Tr [diag[#]oo* diag[2] D]
+ p{x,Dd — 2dDd/e) + %Tr [diag[#]oo*diag[2](D?d(1 — 2d/e) — 2Dd ® Dd/e))
= pp— %gp — p(Z, D) — %Tr [diag[:ﬁ]aa*diag[s&]D2cp]
+ p(&, Dd) + %Tr [diag[]oo*diag[2](D?*d — 2Dd @ Dd/<)] .
If moreover, the non-characteristic boundary condition
J¢>0 s.t. |[|[Dddiag[z]o|| > ¢ on 00 , (1.5.2)

holds, then we obtain a contradiction by sending € — 0 in the above inequality. This
shows that v, (£, 2) = p(f, %) > 0. We can similarly show that v*(£,2) < 0 which provides

the required boundary condition whenever (1.5.2) holds.
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5.2 The Lundberg model in insurance
In the Lundberg model the evolution of the reserve X of the insurance company is given

by

t
X(t) ::r—l—pt—/ zu(dz,ds) ,
0

where p is the premium rate and g models the arrival of sinisters.

A reinsurance rule can be described as a map

R : RIx U — R?
which to a size of claim z and a level of reinsurance u € U C R? associate a retention
level, i.e. the part which is not reinsured.

Two typical examples are:
- Proportional reinsurance: U = [0, 1], R(z,u) = (1 — u)z.
- Excess of Loss reinsurance: U = Ry, R(z,u) = min{z , u}1,_,<r + L1, > where

L > 0 stands for the maximum amount of claims insured by the reinsurance company.

To a reinsurance rule, we can associate a reinsurance premium function g which depends

on the level of reinsurance.

The evolution of the reserve in the Lundberg model with reinsurance is:

t t
X(t)==x +/0 (p—qlvs))ds /0 R(z,vs)u(dz,ds) ,

where v is a U-valued predictable process which models the evolution in time of the level

of retention.

Evaluation of reinsurance premiums

We take d = 1 and assume that the level of reinsurance v is constant, equal to u € U.

Then, the part of the claim paid by the reinsurance company up to time T is:

T
/0 (z — R(z,u))pu(dz,ds) .

If the reinsurance premium is paid once for all at time 0 for all the period [0, 7], then

the fair premium is:
T
2(0,0) = E [/ (2 — R(z,u))p(dz, ds)
0
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The associated PDE is
%v(t, x)+ /]Rd (v(t,z+ (2 — R(z,u))) —v(t,z)) u®(dz) =0 on [0,T) x Ry
with the boundary condition
(T, x) ==z

If we look for a solution in the form v(t,z) = x + f(t), for some smooth function f, we

obtain

0

o (t) + ME[Z1 — R(Z1,u)] =0

which implies
T
o(t,z) = 2+ B [Z1 — R(Z1,u)] / Aods |
t
where Z7 has the distribution ®.

Risk evaluation

We now compute the level of remaining risk for the insurance company. It is defined as

w00 = v ([ ' Rz upiz, ) )|

for some increasing convex function V.
The associated PDE is

;)tv(t, ) +/ (v(t,x + R(z,u)) — v(t,z)) M®(dz) =0 on [0,T) x Ry
R4
with the boundary condition
v(T,z) =V(z).

In the special case where V(z) = €™, we can look for a solution in the form v(t,z) =

e f(t), for some smooth function f. We obtain

0
- nR(Ziu) _
atf(t) + ME [e 1} 0

which implies

v(t,x) = e"E e”R Ziw) _ / Asds .
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Chapter 2

Hamilton-Jacobi-Bellman
equations and control problems in

standard form

1 Controlled diffusions: definition and a-priori estimates

We now consider the case where the process X is controlled. The set of controls U is
defined as the set of all locally bounded square integrable predictable processes v =
{v4,t > 0} valued in a given subset U of R

Given a control process v € U, t > 0 and = € R, we define the controlled process Xt»

as the solution on [t,00) of the stochastic differential system :
v v
X(w) = =z —|—/ b(X(s),vs)ds —|—/ o (X(s),vs) dW (s)
t t
v
—l—/ B(X(s—),vs,z) p(dz,ds) . (2.1.1)
t JRd

In the rest of this chapter, we shall always assume that there is some L > 0 such that

18 (@, u, 2) || < L (1 + ]| + [Jul])

18 (@, 4, 2) = B (y,0,2) || < L(lly — ]| + [[u—vl)

16 (2, ) || + llo (2, u) || < L (1 + [|2]] + [Jul]) (2.1.2)
16 (2, u) = b (y, 0) | + llo (z,u) = o (y,0) | < L([ly — ]| + [lu = o))

for all (z,y,u, v, 2) € (R?)? x U? x R, These conditions ensure the existence of a unique

solution to (2.1.1) which, in particular, has the flow property (1.1.4).
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By the same arguments as those used to prove Proposition 1.2.1, we can also obtain the

following a-priori controls on XV.

Proposition 2.1.3 Fiz v, v € U and T > 0. Then, for all p > 1, there is C > 0 such
that, for all (t,x,y) € [0,T) x (RY)? and h € [0,T — t],

] T
E| sup [XL()P| < c<1+||:c||p+E[/ ||us||pds}>
t<s<T | ¢
] , t+h
E| sup |X0.(s) —alP| < c(hz<1+||x||p>+1€[/ ||us||pdsD
t<s<t+h ] t
E| sup |X2.(5) = XU, ()P| < Clle—ylP
t<s<T ]
} ] T
E| sup [|X2,(s) - X0u(s)[P| < OE[/ r|us—z>s|pds].
t<s<T ] t

2 Optimal control with finite time horizon

In this section, we focus on stochastic control problem in standard form with a finite
(and fixed) time horizon T' > 0. We first study a general control problem and then

discuss in more details some applications in insurance.

The aim of the controller is to maximize the quantity

T
J(t,z;v) =K 5Zx(T)9(XZx(T))+/ o (8) [(X{ o (5),vs)ds
¢
over the set of controls U. Here, g, f and p are locally Lipschtiz, p is bounded from
below, g and f have at most polynomial growth, uniformly in v.

The function J is called the gain function. In minimization problem, we call it the cost

function.

The associated value function is:

v(t,x) == Sélg{) J(t,xz;v)
velty

where U4; denotes the set of controls in I/ which are independent of F;.

The aim of this section is to characterize v in terms of the Hamilton-Jacobi-Bellman

equation

Hv = pv (2.2.1)
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where

Hep(t,z) = igg(ﬁuw(t,x)Jrf(fv,U))

and, for a smooth function ¢ and u € U,

LYp(t,x) = gt (t,z) + (b(z,u), Do(t,z)) + %Tr [oo*(z, u)D?*p(t, 7))

+ /d (p(t,z + Bz, u,2)) — @(t,z)) \®(dz) .
R
This relation will be obtained by using essentially the same arguments as in Chapter 1.

We shall first prove a dynamic programming principle, see (2.2.3) below. It will imply
that, for all v € U, the process Z¥ defined by

Z¥(t) =& (t)v(t, Xg (1) / E0x(8)f(Xg,(s),vs)ds , >0, (2.2.2)
is a super-martingale. Since its dynamics is given by

dZ(s) = Ef.(s) (L0 + £)(5,X(,(5)) = (p)(5, X( 1 (5),v5)) ds
+ () dW(s) + () pldz, ds)

we must have (L0 + f)(s, X§ ,(s)) — (pv) (s, X§ . (5),vs) < 0 which formally leads to

sup (LY%(t, z) + f(z,u)) < pv .

uelU
Moreover, if for some ©, Z” is a martingale, then © should be the optimal control in
(2.2.3) and should satisfy

(L7 + f)(5, X0 2(5), 75) = (pv) (5, X 2(5))
thus leading to (2.2.1).

From the technical point of view, we first prove the dynamic programming principle
which justifies the above super-martingale property for Z. Then, we show that v solves
(2.2.1) in the classical sense if it is C'1'2, in the viscosity sense otherwise. The proof of a
uniqueness result for (2.2.1) is left to the reader. Then, we prove a verification theorem.
When the solution of (2.2.1) with the boundary condition ¢(7),-) = ¢g can be computed
explicitly (and is sufficiently nice), this allows to retrieve the optimal control associated

to v.
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2.1 Dynamic programming

We first prove the so-called dynamic programming principle:

olt,z) = sup E | €2, (8)u(6, XV, ( / E7,(5) F (XY (s), va)ds (2.2.3)
vEUY
which, as in the non-controlled case, is the key ingredient to relate control problems to

PDEs, compare with Proposition 1.3.2.

Interpretation

Its interpretation is the following. First note that the strong Markov and flow properties
of XV imply that

v(t,x) = zS/gBE {EM(H)J(H X{ (0 / & (s Xt”,x(s),ys)ds} .

Let U(0, v) denotes the set of controls of U which coincides with v on [0, ), then (2.2.3)

can be interpreted as

0
v(t,z) =supE [5;’1,(9) (ess sup J(H,ngﬁ@);ﬁ)) —i—/t Egz(s)f(XKx(s),us)ds] .

veu veEU(,v)

Here, ess sup J(0, X{,(0); 7) denotes the smallest random variables which dominates
veU(f,v)

the family {J(0, X/,(0);7), 7 € U(f,v)} and should be interpreted as a sup'.

Thus, (2.2.3) means that the optimization problem can be split in two parts, i.e. there
is no difference between:

1. Looking directly for an optimal control on the whole time interval [t, T'.

2. First, searching for an optimal control starting from time 6, given the value of Xy, at
time 6, i.e. compute (0, X{,(0)) that maximizes J(6, X{,(f);-). Second, maximizing

over v the quantity

E [£2,(6)7(6, X2, (0); (0, XV (6 /em XY, (5),ve)ds

Morally speaking, if 7 maximizes the last quantity, then the control 21y 5)+(0, ng (0))16,77

should be the optimal control on [¢,T] associated to v(t, z).

'The reason why we have to consider this notion of esssup is that the sup may not be well defined as

a random variable, see [16]
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Rigorous proof

In the following, we denote by U ; the subset of elements of f; which are bounded in
L°° and by Z/lt{i the subset of the elements bounded by K, K > 1. We omit the subscript
t if the controls are allowed to depend on F;. We first show that we can restrict to
elements of U;; to compute the value function. This will allow us to work with the
family {J(t,z;v), v € Z/lt{i} instead of {J(t,x;v), v € Us}. The main advantage is that
the elements of the first family are continuous in (¢, ) uniformly in the control parameter.

This point will be essential in the proof of the dynamic programming principle.
Proposition 2.2.4 For all (t,x) € [0,T) x R,

v(t,x) = sup J(t,z;v) =supvk(t,x)
Veut’b K

where

v (t,z) == sup J(t,z;v).

I/EZ/{th

Proof. Clearly, v(t,z) > sup,¢y, , J(t,z;v). Given some v € Uy, set vE =uvA(~K)VK.

By dominated convergence,

T
lim E U ”ySVSKHQdS} =0.
K—oo t

By Proposition 1.2.1, this implies that

lim sup B [[|X7,(s) - X5 (5)2] = 0.
K_)ootSSST ’ ’

Since f~ and g~ have at most polynomial growth, Fatou’s Lemma and the dominated

convergence theorem show that

T
il B & (g2 () + [ € (X (ks | 2 Stz
t

K—oo

which proves that v(¢,z) < supy SUp, ey J(t, z;v). O

Proposition 2.2.5 For all K > 1 and compact set © C [0,T] x R, there is a real map
ex,0 such that ege(r) — 0 as r — 0 for which:

sup |J(t,z;v) — J(s,y;v)| < erolls —t|+ |z —yl]) forall (s,y,t,x) € 02
l/EZ/{gI<

The value function vi is locally uniformly continuous, vy has at most polynomial growth

and v s lower-semicontinuous.
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Proof. The first assertion is a consequence of the estimates of Proposition 2.1.3 and
the assumptions on p, f and g. Indeed, since they are locally Lipschitz with polynomial
growth, Proposition 2.1.3 shows that, for each NV, there is Cxy > 0, C > 0 and p > 1,
independent on N, such that (if s > t)

sup |J(t,x;v) — J(s,y;v)|
VGZ/{bK

1
O (s =3 (1 + ljal) + 1z =yl + |s — t]K)

IN

+ OO+ [zl + llyll + K)” P [tgungin{HXt”,x(U)H [ Xsyuvs)lly = N
SUS

1
< O (Is =1+ Jl2]) + 2 =yl + |s — 1K)
£ OO+ ol + gl + KN

Similar estimates shows that J(-;v)~ has polynomial growth for each v € U,. Since
v (t,z) = Sup,, ek J(t,z;v) and v(t,z) = supg vk (t,x), by Proposition 2.2.4, the

lower semi-continuity of v and the polynomial growth of vy follow. O

We now turn to the proof of (2.2.3).

Theorem 2.2.1 For all (t,x) € [0,T) x R? and all family of stopping times {0",v € U}
with values in [t,T], we have

91—/
v(t,x) = sup E [5&(0”)1)(9”,)(&(9”) +
vEU

szx<s>f<xz$<s>,us>ds] |

t

Proof. For ease of notations, we omit the dependence of 6 with respect to v.
1. Since a control v has to be a measurable function of the Brownian motion W, one

easily checks that for P-almost each w € 2, on can find 7, € Up(,,) such that

E |€0,(T)g(XE(T)) + [ E4a()] (XEo(s), vs)ds | Fo (@)

VL (0) (W) T (B(w), XY (0)(w); ) + [T €0(5) (@) F (XY o (8)(w), vs(w))ds .

Since J < v, this shows that

6
v(t,z) < sup E [5596(9)@(9,)%(9) —|—/t Szx(s)f(XZx(s),ys)ds] .

veUy

2. We now prove the converse inequality. In view of Proposition 2.2.4 and the arguments

used in its proof it suffices to prove the result for v, K > 1, and then to pass to the
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limit. Fix v € U, (to,z0) € [0,T) x RY, a ball By of radius r centered on (o, o) and
fix a compact set © D By such that

{(t,z + B(x,u,2)) : (t,z,u,z) € Byx AxRY} c© C[0,T] x R?, (2.2.4)

recall (2.1.2). Let (By)n>1 be a partition of © and (¢, x,),>1 be a sequence such that
(tn,xn) € B, for each n > 1. By definition, for each n > 1, we can find v" € Ut{f » such
that

J(tn, s V") > Vg (tn, xn) — €, (2.2.5)

where € > 0 is a fix parameter. Moreover, by uniform continuity of vx and J(-;v) for
v E Z/le on O, see Proposition 2.2.5, we can choose (By, t,, Tn)n>1 in such a way that
By, = [tn — 7, ty] X B(zy, ), for some r > 0, and

v () — vr (tn, xn)| + [T (50") — J(tn, zn;v")| <€ on B, , (2.2.6)
Let us now define
9 = inf{s € [to,T] = (s, X, 4,(5)) ¢ Bo} A6
where 6 is a given stopping time with values in [tg,T]. For v € Z/{éi p» we define v € Z/IbK

by

v = Vilicy + 1>y ZVZL L xr  (9)eBn}

tg,zQ
n>1

It follows from (2.2.4), (2.2.5), (2.2.6) and the fact that ™ is independent of F;, that,
for all v € Z/ItOK’b,

J(to,xo;ﬁ)
Z E gtyo Io('ﬁ)‘]’(ﬁ Xtyo,xo / to CEQ Xtyo,xo( ) VS)d8:|
> E Z {gtlf),:vo (19)‘](757% Tns Vn) — 0¢ +/t 5;:),x0(5)f(th:),xo (S)’ Vs)d } 1(19 XtVO 730( ))GBn]
: 9
> E Z {gt'f),;po (i (tn, Tn) — 20¢ +/ Ety 2o (8) (X 20 (5) Vs)dé’} Lw.xy , (9)eBy
> B 6 D0, X )+ [ ()X )00)05] — 30
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where g is a bounded parameter depending on the bound on p~ and T. By arbitrariness
of € > 0, this shows that

K(to,xo)zE[ggm(ﬁ)vK(ﬁ,Xgm / EY, oo () (X 20 (5), ys)ds] . (2.2.7)

Letting r go to infinity in the definition of By and using Proposition 2.1.3 again, we
deduce from the above inequality, the lower semi-continuity of vx and the polynomial

growth of v, see Proposition 2.2.5, that

(t()) xo) > E |:gt() x0 (0) (0 Xtyo Z‘() / t() x() Xéjo 1‘0( ) Vs)d8:| .
O

Remark 2.2.12 We refer to [4] for an easy proof of a weak version of the dynamic

programming principle which pertains to consider much more general settings.

2.2 Direct derivation of the Hamilton-Jacobi-Bellman equations

We can now show that, if v is smooth enough, then it solves the Hamilton-Jacobi-Bellman

equation (2.2.1).

Theorem 2.2.2 Assume that v is continuous on [0,T] x R? and v € C12([0,T) x R?).
Then, v is a solution on [0,T) x R? of (2.2.1) and satisfies the boundary condition
lim; ~rv(t, ) = g(x) on R%

Proof. Fix (t,z) € [0,T) x R? and assume that Ho(t,z) # p(t, z)v(t, z).
1. We assume that Hv(t,z) > p(t, z)v(t, z) and work toward a contradiction. Fix u € U
such that L*v(t, z) + f(x,u) > p(t,x)v(t, z). By continuity of the involved functions, we

can assume that
L + f(-,u) > pv (2.2.8)

on a compact neighborhood V' C [0,T) x R? of (t,z). Set v = u, a constant control of U,
and let 6 be the first exit time of (s, Xy, (s)) from V. Observe that (6, X, (0—)) € V.
Using It6’s Lemma, Corollary A.2.1, (A.1.1) and the fact that &/,(s), Do(s, X{,(s—)),
o(s, X, (s—)) and @(s, X/, (s—) + B(s, X{(s—),vs, 7)) — (s, X, (s—)) are bounded on
[t,0], recall (1.2.1), we observe that

E[ng(e) (0, Xt (0 / ELp(8)[(X{,(s),u)ds
= v(t,z) + E [/t Elx(5) (LM0(s, X{4(5)) — (pv) (s, X{4(5)) + F(X{4(s),u)) ds
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In view of (2.2.8), this contradicts Theorem 2.2.1.
2. We now assume that Ho(t,z) < p(t,z)v(t,x). This implies that

Hv < pv

on a neighborhood V of (¢, x) of radius » > 0. Moreover, for r small enough, we must

have
Hw<pw onV
with w(s,y) = v(s,y) + (s —t) + |z — y||*>. Given v € Uy, let 6 be the first exit time of
(s, X{,(s)) from V. Using It6’s Lemma and the above inequality, we obtain
B |£1,(6)u(6. X0, (0 / E1,(5) (X (5) v
= ) + B [ [ 60060 (€06 XE60) — (o), K20 + XL 5)v) ]
< w(t, z)

for some C' > 0. By definition of w and 6, it follows that, for some C’, c" >0,
o(t,z) > C'E[(0—1)+ [ X7,(0) — $|!2]

+ E[S;jm(ﬁ) (6, X7, ( / v (), us)ds}

Y

¢ +E {Et”x(@) (0, Xy .0 / E (s sz(s),ys)ds] .

By arbitrariness of v, this contradicts Theorem 2.2.1. O

In the case where v may not be smooth, it can still be characterize as a solution of

(2.2.1) in the viscosity sense.

Theorem 2.2.3 The value function v is a discontinuous viscosity solution of (2.2.1) on
[0,T) x RY. Moreover, vi(T,z) > g(x) and v*(T,z) < g(z) on RZ

Proof. The viscosity property inside the domain can be easily obtained by combining
the arguments used in the proofs of Theorem 1.4.1 and Theorem 2.2.2. Since g is
continuous, and, p, g and f have polynomial growth the property v.(T,z) > g(z) follows

from Theorem 2.2.1, the estimates of Proposition 2.1.3 and the dominated convergence
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Theorem. It remains to prove that v*(T,x) < g(z) on R%. We argue by contradiction

and assume that there is zo € R% such that
(W —g)(T,z9) =: 2¢>0.
Let (tg, T1)n>1 be a sequence in [0, T] x R? satisfying
(tg,xrp) — (T,x0) and v(tg,xr) — v*(T,z9) ask — 0. (2.2.9)

We can then find a sequence of smooth functions (¢™),>¢ on [0,7] x R? such that
©™"(T, z9) — v*(T,x0), and
o> (2.2.10)

on some neighborhood B,, of (T, zg). After possibly passing to a subsequence of (tx, zx)r>1,
we can then assume that it holds on B := [ty, T] x B(zy, 6%) for some sufficiently small
5,’3 € (0,1] such that Bﬁ C B,. Since v* is locally bounded, there is some ¢ > 0 such
that [v*| < ¢ on B,,. We can then assume that ¢ > —2¢ on B,,. Let us define ¢} by

Gr(t,m) =" (t,x) + 4llx — zx|*/(6))* + VT — ¢t ,
and observe that
(0" — @) (t,x) < —C <0 for (t,z) € [ty, T] x OB(xy, oF) . (2.2.11)

Since (0/0t)(v/T —t) — —oo as t — T, we can choose t;, large enough in front of 6 and

the derivatives of ™ to ensure that
(H—p)gf <0 on BY. (2.2.12)

It then suffices to argue as in the proof of Theorem 2.2.2 to obtain for some C > 0
Flltnn) > B [€0,y OO0 X0, 00+ [ €60, (MO0, (9105

> CENO +E |80, (0000, X, 0 / DX, ()20

which contradicts Theorem 2.2.1 for k and n large enough so that |} (tg, xx) —v(tk, ox)| <

Oz A C)/2. 0

Remark 2.2.13 (Comparison theorem) A comparison theorem can be easily ob-
tained for (2.2.1) by arguing as in the proof of Theorem 1.4.2 in the case where U is

compact. We leave the proof to the reader as an exercise.
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2.3 Verification theorem

As for the Feynman-Kac representation, we can also state a verification result. In good
cases, it allows to exhibit an optimal control strategy of the form (5)s>p as defined
below. Such a control is called a Markovian control because its value at time s depends
only on (s, X(s)).

Theorem 2.2.4 (Verification) Assume that there exists a C%2([0,T) x R?) solution ¢
0 (2.2.1) such that

> d 2.
t}l%lxmjxga(t ') >g(x) on R (2.2.13)

and ¢~ has polynomial growth. Assume further that
1. There is a measurable map @ : [0,T) x R? v U such that He = L% + f(-,4) on
[0,T) x RZ.
2. For all initial conditions (t,z) € [0,T) x RY, there is a solution to (2.1.1) with U
defined by vs := d(s,ng(s)).
3. Given (t,x) € [0,T) x R%, there is an increasing sequence of stopping times (0n)n
such that X7, is bounded on [t,0,], 6, — T P — a.s. and

On
B E10(0)6(60,, XEL0) + [ €L (XL, 7

t
T

= B ELD00L) + [ XL, 20ds|  asn goes o .

Then, v = .

Proof. By It6’s Lemma, Corollary A.2.1, (A.1.1), the fact that ¢ solves (2.2.1) and the

assumptions 1, 2 and 3 of the Theorem, we obtain

t2) = B [E1, (06100, XL / (XL, 7

for each n. Using assumption 3, we then deduce that

90(75’93) =E [5395( Xt:r / gtz ng(s)’ ﬁs)d8:|

by sending n to oco. This shows that ¢(¢t,z) < v(t,x). We now prove the converse
inequality. Fix v € Uy, let 7, be the first time where || X} ,(s)|| > n and set 0,, := T A 7p.
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By the same arguments as in the proof of Theorem 2.2.2, we obtain that

On

E [szmwn)so(en,xzx(en)) = [T e e, ms
On

= o(t, 96)+E{ ELe(8) (L70(s, X1 (5)) — (po) (5, X12(5)) + f(X{ 4 (), v5))) ds

t
<ot x).

Since v is bounded, ¢~ has polynomial growth and 7,, — co, we deduce from the first
estimate of Proposition 1.2.1, the boundedness of p~ and the boundary condition (2.2.13)
that

On,
liminf E [ng(ﬁn)gp(en,sz(Qn)) —I—/ Efp(8)F(X{L(s), Us)d8:|

n—oo t
T
> B[S ML) + [ LS
t
In view of Proposition 2.2.4, this shows that (¢, x) > v(¢, z). O

Remark 2.2.14 If 4 is Lipschitz continuous, then the condition 2. is satisfied. More-
over, a direct extension of the arguments used in the proof of Proposition 1.2.1 shows
that

1
swp E[|X7, ()" < €1+ al)
t<s<T

for some C' > 0 independent of z. Let 7, be the first time where HX;’x(s)H > n and
set 0, : =T A T,. If p as polynomial growth, the dominated convergence theorem then

implies that

On .
E [5ZI(9n)s@(9anﬁx(9n)) + | &) (X L(s), ﬁs)dé’]

¢
— E [g(Xfx(T)) + /tT ng(s)f(ng(s),ﬁs)ds] as n goes to 0o

if limy 7 200 0(t, 2") = g(x) on R,

Remark 2.2.15 Observe that the process Z” defined as in (2.2.2) for the optimal
control exhibited in the previous Theorem is a martingale, while Z¥ is only a super-
martingale for any other admissible control. This corroborates the interpretation given
in introduction of this chapter. We refer to [11] for a proof of this phenomenon is general

(non Markovian) control problems.
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3 Examples of applications in optimal control with finite

time horizon (exercices)

3.1 Super-replication under portfolio constraints

Let (Q, F,P) be a probability space supporting a one dimensional Brownian motion W.
We denote by F = (F;)i<r the natural filtration generated by W, satisfying the usual
assumptions, where 1" > 0 is a fixed time horizon.

We consider a financial market model where the risk free interest rate is zero and the
dynamics of the stock price, under the risk neutral measure P, is given by the process

Xtz solution of
—x+/X r))dW, ,t<s<T

where z € (0,00) and o : (0,00) +— (0, 00) is continuous, bounded, with bounded inverse
o=t :=1/0. We also assume that z € (0,00) — zo(x) is uniformly Lipschitz.

Fix A C R. We denote by A the set of predictable processes ¢ with values in A such
that

T
/ |ps|?ds < coP —as. VE<T.
t

Given (t,z,v) € [0,T] x (0,00) x Ry and ¢ € A, we define th’xv as
Veals) = v [ 0V 0)o(Xealr)aW, , t<5<T.
t

1. Give a financial interpretation of Vfwv and ¢ € A.

2. Set
= {5 eR : 0(€) :=sup(&,a) < oo}

acA
We denote by A* the set of progressively measurable processes v with values in A*
for which there exists C' > 0, which may depend on v, such that sup,<r |[vs| < C

P —a.s. Given v € A" and (t,7,y) € [0,7) x (0,00) x (0,00), we define V", , by

Y7, () = e i T4 7 o) P o)W 177

(a) What can we say on §(§) — (£,a) when a € A and £ € A* 7

(b) Sow that E [supse[t 1) (1Y%, (5)|7 + ]Xt’x(s)|‘1)} < oo for all (t,z,y) € [0,T) x
(0,00) x (0,00), v € A* and ¢ € N.
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(¢) Show that, for all (¢,z,v,y) € [0,T)x(0,00)xR4 x(0,00) and (v, ¢) € A*X A,
the process Ve vy

tx,vt,r,y
(d) Deduce that, for all (¢,z,v,y) € [0,T) x (0,00) x Ry x (0,00) and (v,¢) €

A* x A, the process VZZUYKM is a super-martingale.

is a non-negative local super-martingale.

3. Let g be a map R — R, which is lower semi-continuous with linear growth.

(a) Show that if ¢ € A is is such that Vt‘ﬁxU(T) > g(X¢2(T)) P — as., then
v > p(t,z,1) where the function p is defined by

p(t,@,y) = sup J(t, x,y;v) where J(t,z,y;v) := E [V}, (T)9(X42(T))]
veA*

for all (¢, z,y) € [0,T] x (0,00) x (0,00).
(b) Deduce that

(¢, ) == inf {v ERy - FpeAst. V2 (T) > g(Xia(T)) P - a.s.} > p(t,z) > 0
where p(t,z) := p(t,z, 1).

4. In the following, we admit that

p(t,ﬂs,y) > Su}l) E [p(evXt,x(g)’}/tl,/r,y(e))] >
veA*

for all (t,x,y) € [0,7] x (0,00) x (0,00) and all stopping time 6 with values in
[t,T].

(a) Show that p is a viscosity supersolution on [0,7") x (0,00) x (0,00) of

0 = _£X§0(t7$7y)

+ inf (5(u)£ (t,x )—1] J_l(ac)ylza—2 (t,z,y) — ux 872 (t,x,y)
UEA* y aygp ? 7y 2 y ayg(p I 7y yaxaygp ) 7y

where Lx is the Dynkin operator associated to X.

(b) Show that if ¢ € C%2 and (tg,z0) € [0,7] x (0, 00) satisfy mingg 77 (0,00) (P —

@) = (p— @)(to,z0) = 0 then ¢ defined as ¢(t,z,y) = yp(t,x) satisfies
N 7] (0,00) % (0,00) (P — ©) = (P — ¢)(to, zo, yo) = 0 for all yo > 0.

(c¢) Deduce that p is a viscosity supersolution on [0,7") x (0, 00) of

: _ _ 0 _
it (~vLxe(ta) + 0)elt.) — uoy ) olt.) ) =0

for all y > 0.
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(d) Deduce that p is a viscosity supersolution on [0,7") x (0, 00) of

min {Lxso(t, z), inf (5(u)¢(t, z) — ux%@(t, 33)) } —0

ucAj
where A} :={{ € A* : |{| =1}.
5. We now study the boundary condition at ¢t =T

(a) Let 9 € (0,00) and (tp,Zn)n>1 C [0,T) x (0,00) be such that (t,,z,) —
(T, zp) and

P(tn, ) — lim inf p(t' 2"y =: p(T—,xq) .
', a") = (T, z0)
(t',2") € [0, T) x (0, 00)

By considering the sequence of controls

"= ﬁU]‘[tmﬂ , n >1 y
n

for u € A*, and by using an appropriate Girsanov transformation, show that

P(T—,x0) > §(o) := sup e *“g(ze") > 0.
ucA*

(b) From now on, we assume that ¢ is differentiable on (0, c0).

i. By using the fact that A* is a convex cone, show that §(x) > e~ §(ze?)
foralle € A*, A >0and z > 0.

ii. Deduce that §(u)g(z) — ux%g(x) >0 for all z > 0 and u € A*.

6. From now on, we assume that there exists a function with linear growth w €
CY2([0,T) x (0,00)) N C*0([0,T] x (0,00)) solution of

—Lxw =0sur [0,7) x (0,00) and w(T),-) = g sur (0,00) .

(a) Under the assumption that p € C12([0,T) x (0,00)), show that p > w on
(0,77 x (0, 00).

(b) Explain briefly why p > w even if p ¢ C12([0,T) x (0,00)) . We shall assume

from now on that the above inequality hold.

7. We now assume that o does not depend on z and we simply write o = o(x). We
also assume that A is of the form [—m, M] where M, m > 0.

(a) Compute ¢ in this case.
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(b) Show by a verification argument that w(t,z) = E [§(X;,(T))] for all (t,x) €
[0, 7] x (0, 00).

(c) Under the assumption that % g is uniformly bounded, show that

L tr) =B | (X)X (1) |

for all (t,z) € [0,T") x (0,00).

(d) Deduce that é(u)w(t,z)— uxa%w(t,x) >0 for all u € A* and (¢,z) € [0,T) x
(0, 00).

(e) By also assuming that w > 0sur [0,7")% (0, c0), deduce that (x%w(t, x))/w(t,x) €
[—m, M] for all (¢,x) € [0,T) x (0, c0).

(f) Show that, if

T 0
/t \Xm(s)%w(s,Xt,m(s)))\Q/w(s,Xt,m(s))gds < oo P—as.

for all (¢,2) € [0,T) x (0,00), then w > p.

(g) Conclude that, in this case, w = p = p.

3.2 Super-hedging with unbounded stochastic volatility (Exercise in
French)

Le but de cet exercice est de caractériser, déterminer un prix de sur-réplication d’un
actif financier risqué dans un modele a volatlité stochastique non-bornée. Pour se faire,
nous allons introduire un probleme de controle stochastique et 1’étudier. Nous allons no-
tamment dériver une équation aux dérivées partielles via un principe de programmation
dynamique ad hoc. Commencons par introduire le probleme et les notations.

On se place sur une espace de probabilité (€2, F,P) muni de la filtration (F;);>0 satis-
faisant les conditions habituelles. On se donne un horizon de temps 7" > 0. On considere
un marché financier constitué d’un actif sans risque, de taux d’intérét nul » = 0, et d’un

actif risqué X dont la dynamique est donnée par le modele a volatilité stochatique :
dX(t) = o(Y(t)dW; , X(0) =z9 €R, dY (t) = ndt +vdW; , Y(0) =yo € R (2.3.1)

oun € R, v>0et o: R — Ry est une fonction continue uniformément Lipschitz,
W et W sont deux mouvements browniens indépendants. Soit g une fonction continue,

bornée. On s’intéresse au probleme de sur-réplication de 'option de payoff g(X (7))
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lorsque 'on ne peut acheter et vendre que l'actif financier X. Le prix de sur-réplication

est donné par

p(0,z0,50) = sup E?[g(X(T))] (2.3.2)
QeM(S)

ou M(S) est 'ensemble des mesures de probabilité sous lesquelles X est une martingale.
Afin d’étudier ce probleme par les techniques de controle stochastique, on commence
par étendre la définition des dynamiques de X et Y a des conditions initiales (¢, x,y) €
[0,T] x R x R quelconques. Par la suite, on note (X4, Y:y) la solution de (2.3.1) sur
[t,T] vérifiant la condition initiale (X ., (%), Yy ()) = (z,v).

On note U (reps. U;) l'ensemble des processus v progressivement mesurables (resp.
indépendants de F;) a valeurs réelles tels qu'il existe une constante C' > 0 pour laquelle
|| < C pour tout t > 0 P—a.s. Etant donnés v € U et (t,h) € [0,T] x (0,00), on définit
Ht” 5 bar

tn(r) == hexp <—; /tr |vs|2ds + /tr I/des) , retT].
On considere finalement la fonction cout J suivante
J(t, @y, hyv) == E [H},(T)g(X1y(T))]
et on lui associe alors la fonction valeur v suivante

v(t,x,y,h) == sup J(t,z,y, h;v).
vEUL

Partie I : fonction valeur et programmation dynamique

1. Etant donnés (t,z,y,h) € [0,T] x R x R x (0,00) et v € U, montrer que XtayHy),

est une martingale sur [¢,T] sous P.

2. Déduire de la question précédente que
p(0, 20, yo0) = v(0, 20,0, 1) (2.3.3)

3. Montrer que, pour tout v € U et tout ensemble borné B C [0,7] x R x R x (0, c0),

il existe une constante K > 0 telle que, pour tout (¢;,x;, ys, hi)i—1,2 C B vérifiant
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to > t1, 0n a

E[| tohy (1) Hy, y (T) — 1 K((ha/h1 —1)* +|t1 — ta])

E [ sup ’1/%1,3/1(5) - yl‘Q

SE[tl,tQ] ] -

E [ Sup D/;lyyl <3) - }/;527212(3)‘2
s€[t2,T)

E [|Xt1,951,y1 (T) - Xt27332,y2(T)|2] < K(|t1 - t2| + |$1 - x2‘2 + |y1 - 3/2’2) .

IA

A

K([t1 —ta) ,

< K(y —pl*+t—ta),

4. En déduire que J(+; ) est semi-continue inférieurement sur [0, 7] x R xR x (0, c0) &
v € U fixé (on rappelle que g est bornée). Que peut-on en déduire sur la régularité
dev?

5. Justifier (sans rentrer dans les détails) que pour tout (to, xo, Yo, ho) € [0,T] X R x
R x (0,00) et pour toute fonction ¢ € C? telle que (v — ¢)(to, zo, yo, ho) = 0 et
v > @ sur [tg,T] x R xR x (0,00), on a

v(to, 20, Y0, ho) = B [ (7, Xto,20,50(7)s Yeo,o (T)s Higy o 1o (7)) ] (2.3.4)

pour tout v € U et tout temps d’arrét 7 a valeurs dans [tg, T].

Dans la suite du probleme, on note

wy(t, z,y) = lim inf wt,2',y) , (t,x,y) €[0,T] x RxR.
( v) (" @'y )= (t2y), v <T ( v) v) e 0.7
6. On note w := v(-,1). Montrer que v(-,h) = hw pour tout h > 0, que w est

semi-continue inférieurement sur [0,7") x R x R et que
we(T,z,y) > g(x) . (2.3.5)

Partie II: dérivation d’une équation aux dérivées partielles
Dans cette partie, il s’agit de montrer que la fonction w, ne dépend pas de y. Pour cela,
on va montrer que 68—“; = 0 au sens des solutions de viscosité.

7. Déduire de l'inégalité de programmation dynamique (2.3.4) sur v et d’une trans-

formation de Girsanov astucieuse que w, est sur-solution de viscosité de I’équation

. 1 5 02
inf <_—a(y) @—U%—§ W)%’(@%?J) > 0 sur[0,T) xRxR,

o(T,) > g surRxR.
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8. En déduire que w, est sur-solution de viscosité de —a%go(t, x,y) > 0et a%cp(t, x,y) >
0 sur [0,7) x R x R.

Le but est maintenant de montrer que si I'on fixe ty et xg, alors la fonction y +—

wy(to, xo,y) est une solution de viscosité de —a%cp(y) >0et a%go(y) >0 sur R.

9. Soit (tg,z0) € [0,T) x R, ¢ € C?, une fonction bornée de R dans R, et yo € R tels
que wy(to, o, yo) — ©(yo) = 0 et wy(to, o, y) —¢(y) > 0 pour tout y e R. An>1
fixé on associe la fonction ¢, définie par ¢, (t,z,y) := p(y) — n(|t — to|> + |z —
$0|4) —ly - y0|4.

(a) Montrer que w, est bornée et qu’il existe (¢, Tn, yn) € [0, T] xR xR atteignant

le minimum de wy — @y.

(b) En utilisant 'inégalité
(Wi tn, s ) =) (yn) +0[tn—to|*+|zn—0| ") +yn—yol* < (ws(to, 20, -)—¢) (y0)
montrer que (tn,z,) — (to,zo), et que (yn,n(|tn — to|> + |zn — x20|*)) —
(Yoo, m) € R x Ry quand n — oo, quite a passer & une sous-suite.

(¢) Que peut-on dire sur liminf,, oo (Wy(tn, Tn, -) — @) (Yn) 7

(d) En déduire que (w*(t(), Zo, ) - @)(yO) < (w*(t0,$07 ) - @)(yoo) +m+ |y00 -
yol* < (ws(to, 20, ") — ¥)(%0)-
(e) En déduire que yoo = yo et m = 0.

10. Déduire des deux questions précédentes que, a (to,zo) € [0,7) x R, 'application

y +— wi(to, xo,y) est sur-solution de viscosité de —(%gp(y) >0 et (%(p(y) > 0 sur

R.

11. Supposons que w, est dérivable. Montrer que w, est alors indépendante de la

variable y.

Partie III : identification du prix de sur-réplication

12. On écrit maintenant wy(t, ) en omettant 'argument y (voir partie II). Montrer

que wy est sur-solution de viscosité de 1’équation

(——U(y) 93) o(t,z) > 0 sur [0,T) xR |, o(T,:)>g sr RxR.
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13. On suppose a partir de maintenant que sup,cg o?(y) = oo et inf,cgr o%(y) = 0.
Montrer que si wy est réguliere alors elle est concave en x et décroissante en temps
sur [0,7) x R.

14. A partir de maintenant, on admet que w, est concave en x et décroissante en temps
sur [0,7) x R. Montrer que w, > ¢ sur [0,7] x R ou g et la plus petite fonction

concave qui majore g.

15. En utilisant (2.3.2), montrer que p(0, zo,y0) < §(zo) et en déduire que p(0, g, yo) =
9(zo).

3.3 Calibration of local volatility surface

Let 0 < ¢ < 7 be two real constants. We denote by A (resp. A;) the set of predictable
processes o taking values in [o, 5] (resp. independants de F3). Given (¢,z) € [0,T] x
(0,00) and o € A, we denote by X7, the solution of

S
X(s) = +/ X(r)o,dW, ,t<s<T. (2.3.6)
t

We observe on the market the prices p; of plain vanilla options of payoff g;(S(73)),
i €I :={l,...,imax}. The functions g; are assumed to be Lipschitz and bounded,
To=0<Ti<Th<...<T;

process with initial value at 0 given by zg > 0.

. = 1 are the maturities, S is the underlying stock price
We want to model S as a diffusion of type X7 satisfying (2.3.6) so as to calibrate the
prices of the options on the market data p;, i € I.

Following Avellaneda, Friedman, Holmes and Samperi (1997)2, we compute o as the

solution of the problem :

sup inf [(mzma [gi<ng<:n>>—pi]> +E[ /0 Tn(cfi)dsﬂ

AERimax 0EA:L

where n : Ry — R is a given convex function.
Given \ € Rimax we define on [0, 7] x (0, c0)

v(t,z):= inf E

oEA:

/ n(a3)ds + Z Lier Migi(X{,(Th)) (2.3.7)
¢

i=1

the associated value function.

2M. Avellaneda, C. Friedman, R. Holmes and D. Samperi (1997). Calibrating volatility surfaces
via relative-entropy minimization. Appl. Math. Finance, 4(1), 37-64. We refer to this paper for a
description of the full methodology.
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1. A-priori estimates :

(a) Justify the existence of a solution to (2.3.6) for all o € A.

(b) Show that there exists C' > 0 such that, for all (¢,z) € [0,7] x (0,00) and
occ A,

E| sup |X7(s)P

s€(t,T]

<C(1+2?%) .

(¢) Show that there exists C' > 0 such that, for all (¢,z) € [0,T] x (0,00), 0 € A,
and h > 0 satisfying ¢t + h < T, we have

IE[ sup |X(s) —z*| <C(1+2°)h.

s€[t,t+h]

(d) Let B be a compact subset of (0,00). Show that there exists C(B) > 0 such
that, for all (¢1,z1), (t2,z2) € [0,T] x B satisfying t; <t and o € A,

E| sup |X7 ., (s) = X7, 0, (s)

< C(B) (]a:l — x2|2 + |t1 — tz‘) .
s€[t2,T)

(e) Let B be a compact subset of (0,00). Show that there exists C'(B) > 0 such
that, for all (t1,x1), (t2,22) € [0,T] x B satisfying T; < t; < to < Tj41 for

some i € I, we have

N|=

[v(t1, 1) — v(ta, z2)| < C(B) (o1 — To|? + |t — ta])? .
(Hint : use an argument of the type inf, f(b,a) —inf, f(c,a) < sup,(f(b,a) —
fle,a)).)
2. Dynamic programming :
(a) Show that for (¢,z) € [0,7) x (0,00) and 0 < h <T — t we have

t+h 7;max
/ n(a?)ds + Z 1t<T,-§t+h)\igi(Xgm(ﬂ))
t i=1

T imax
+E[/t+h 77(0'3)615 + Z 1t+h<Ti)\igi(Xg+h7X0(t+h) (Ty)) | }-t+h]] _
i=1

o(t,x) = injE
oEAL

(b) Deduce by a formal argument that

Tmax

t+h
vt +h, X7(t+h)) + / n(o)ds + 1t<Ti<t+hAig¢(XZx(Ti))]
t

=1

v(t,z) = inf E

oE€AL

(2.3.8)
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3. H.-J.-B. equation : We now assume that v € C;’Q(D) where D := Uﬁi}‘)"_l[Ti, Tit1)X
(0, 00).

(a) By considering the case where o is constant, deduce from (2.3.8) that

sup (—Lo0(t,2) — (0?)) <0
0€[o,d)

for all (t,2) € D. Here, for a real o and (¢,2) € D, we use the notation

1 2
(t,z) + fGQan—v(t,x) .

o 0
LOv(t,x) = —wv 5 507

ot

(b) We assume that the inf in (2.3.8) is achieved by a Markovian control os =
(s, X7,(s)) where & is Cj. Deduce from (2.3.8) that

sup (—Lv(t,z) — n(02)) >0.

0€la,5]

(c) Show that limur, v(t,x) < v(Ti, x) + Aigi(z), for all i < iypax and x € (0, 00).
(d) What should the terminal condition as ¢ 1 T; look like ?

(e) We now assume that 7 is strictly convex, C* on (¢, &) and such that n’(c+) =

—o0 and 7/(6—) = +00. We also admit that v solves on D

sup (—Lv(t,z) — 77(02)) =0. (2.3.9)

o€la,5]

Show that v solves on D

— (t ) —&® 71x2—2 (t :1:) =0
Otv - 2 8x2v ’
where
o = inf + .
(y) 26(10_112,&2) (zy 77(2’))

Admitting that ®’ is the inverse of —7’, show that the sup in (2.3.9) is achieved
by

82
G(t,x) =@ (mQWv(t,a:)> .

4. Verification argument : We now assume that 7 is strictly convex, C! on (o, )
and such that n'(c+) = —oo and 7/(6—) = +oo. We also assume that there
exists ¢ € C;’Q(D) which solves (2.3.9) on D and satisfies limur, 2z ©(t,2') =
o(Ti, x) + Xigi(x), for all i < imax and z € (0, 00).
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(a) Show that (2.3.6) admits a solution, X, if we replace o, by &(r, X (r)) in
(2.3.6).

(b) Deduce that ¢ > v.
(c) Show that ¢ < w.
(d) What can we say on the solution of the control problem (2.3.7) ?
5. Numerical resolution: Assume that you have a software which can solve equa-

tions of the form (2.3.9). How can you use it to estimate v and ¢ (explain how to
treat the boundary conditions at Tj, i € I) ?

3.4 Optimal Importance sampling

Let (Q, F,P) be a probability space supporting a one-dimensional Brownian motion W.
We denote by F = (F;):< the completed natural filtration induced by W, where T" > 0.
Let X, be the solution

X(s) = x—i—/tso(X(r))dWT t<s<T

where x € R, ¢t € [0,T] and o is Lipschitz and satisfies inf,cg o(z) =: 3 > 0.
We consider the optimal importance sampling problem for the Monte-Carlo computation
of

m(t,x) = E [g(X0a (D)),

i

where ¢ is continuous and bounded.

The idea consists in introduction a family of density processes { Hy,,v € U} defined by

Uy

HY (s):=1 — T HY (r)dW, ,t<s<T,
t,m(s) +/t O'(Xt,x(r)) t,m(r) >S5

where U is the set of progressively measurable processes v with values in [—M, M|, where
M > 0 is a fixed constant. We then observe that

m(t,z) = B [9(Xy.(T))/H{ . (T)] (2.3.10)
where E¥ is the expectation under Q¥ defined as
dQ¥ /dP = HY,(T). (2.3.11)
We then look for & € U such that

Var” g(th(T))/H;’x(T)] = 32{{\/&1“” [g(Xm(T))/fo(T)] = w(t,z), (2.3.12)
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where Var” denotes the variance under Q¥. We finally replace the standard Monte-Carlo
estimator of E [g(X¢.(T))] by the one associated to E” [g(X;.(T))/H{,(T)], obtained
by sampling g(Xt’I(T))/Ht%x(T) under Q7.

The aim of the above question is to treat problem (2.3.12) by stochastic control technics.

1. Show that Q" is actually a probability measure equivalent to P and that (2.3.10)
holds true, for v € Y.

2. Show that the problem defined in the right-hand side of (2.3.12) is equivalent to
o(t, ) i= inf B [(9(Xea (1) H(T))?]
and that
v(t, ) = w(t, ) +m(t,x)* . (2.3.13)
In the following, we set
J(tw;v) = B | (9(X0u(T)/H(T))?| s (t2) € [0,T] xR,
and we admit that v is continuous on [0,7") x R.

3. Show that
J(t,z;v) = E [g(Xe(T))*/H ,(T)]

4. Let v1,v2 € U, (t,z) € [0,T] x R et 7 € T g}, where Tj, 71 denotes the set of
stopping times with values in [¢, T).
(a) Show that v := 111y ;) + vel; 1) €U.
(b) Show that
I(t ) = BB (90X x, (D)2 H o (T) | Fr| [HL(7)] -
(¢) Deduce by a formal argument that

u(t,x) > ;Igng [0(7, X1.0(7))/H{ o (T)] -

(d) We assume that there exists a measurable map ¢ : [0,7] x R — U such that
07
0(0,6) = E [g(Xo (1) HYO(T) | Fo| P-as.

for all 0 € Tjp 1) and all real valued Fy-mesurable random variable §. Deduce
that
v(t,x) < inéIE [U(T, Xm(T))/H;’x(T)] .
ve ’

50



From now on, we admit that v is continuous and satisfies

v(t,x) = ;QZEIE [0(7, X1.2(7))/H{ (7)) (2.3.14)

for (t,z) € [0,T] x R and 7 € Tp 7. We denote, for ¢ € C2([0,T] x R), u € R
and (t,z) € [0,T] x R,

2 0°

Lhp(t2) == rplt o) — uplt, o) + 50 () 2 5(t,7) + (wfo(@) Plt,z)

5. By considering controls of the form v = v with u € [-M, M], deduce from (2.3.14)

that v is a viscosity subsolution on [0,7") x R of

— inf L% =0. 2.3.15
ue[ir]l\/I,M] 14 ( )

6. Let (tg,z0) € [0,T) x R and ¢ € C*2([0,T] x R) be such that (tg, o) achieves a

strict local minimum of v — ¢ and (v — ¢)(to, zo) = 0.
(a) Show that the assertion — inf,c_ s, a1) £#(t0, 7o) < 0 leads to a contradiction
to (2.3.14).
(b) Deduce that v is a viscosity supersolution on [0,7") x R of (2.3.15).

7. We now study the terminal condition at T

(a) Deduce from (2.3.13) that lim infyqq zr—p v(t',2") > g(z)? for all z € R,
(b) Show that v(t,z) < E [g(X;(T))?] for all (¢,2) € [0,T] x R.
(c) Deduce that limsupyr iy, v(t',2") = liminfyyp vt 2') = o(T,z) =

g(z)? for all z € R.

8. State a verification theorem for the above problem.

3.5 Optimal insurance

Let us consider the problem of a financial agent whose wealth is submitted to some
exogenous risks, seen as accidents. The times arrival of the accidents are described by
a Poisson process N of intensity A > 0. If X is his wealth just before the sinister, its
size is 6 X where § € (0,1) is a fixed constant. To protect himself against the exogenous
risk, he can buy an insurance at a level u € U := [0, 1]. If a sinister arrives at time ¢ and
his level of protection is u then his wealth is diminished by (1 — u)0X (t—). To obtain a
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protection u at time ¢, he has to pay a premium puX (paid continuously), with p > 0 a

fixed parameter.

To sum up, we assume that the wealth process X}/, evolves on [t,T] according to

X (s) =z —/ Py Xt o (v)dv —/ (1 — 1) Xt o (v—)dN, .
t t

Observe that, by 1t6’s Lemma,

Ny
X7, (s) = e SO TT(1 - 6(1 — vpy)) (2.3.16)
k=1

where T}, denote the time of the k-th jump of N.

The aim of the agent is to maximize the utility of his terminal wealth

v(t,x) == sup E [V(X{,(T)]
veU

where V' is a concave increasing function defined on (0, co).

In this case, the Hamilton-Jacobi-Bellman equation reads:

av(t,x) + urg[%,}i] {—=upxDv(t,x) + A (v(t,z(1 — (1 —u)d)) —v(t,z))} =0 (2.3.17)

a. Power utility: We first consider the case where V(z) = 27 with v € (0,1).
We try to find a solution to (2.3.17) satisfying the terminal condition limg 7 5/ o v(t, 2") =
x7. In view of (2.3.16), we have v(t,x) = z7v(¢,1). Thus, it is natural to look for a

solution of the form z7¢(t) with ¢ a smooth function. In this case, (2.3.17) reduces to
0
a7 —p(t) + 27p(t) max {—yup+ A((1— (1 —u)d)” —1)} =0
ot u€(0,1]
so that ¢ must satisfies
2 (1) + pltym(a) = 0
T -
where @ maximizes over u € [0, 1] the quantity
m(u) == —yup+ A ((1 = (1 —u)d)” — 1) .
Since we must have ¢(7') = 1, this implies that
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The arguments used in the proof of Theorem 2.2.4 shows that the optimal control is

constant and equal to @ and that the value function v is actually given by z7e(T—Hm(@),

b. Log utility: We now take V(z) = In(z) and look for a solution of the form
In(z) + ¢(t) with ¢ a smooth function. In this case, (2.3.17) reduces to

FTid o(t) + Iél[%x{ yup +Aln(l — (1 —u)d)} =0

so that

p(t) = (T —t)ym(a)
where 4 maximizes over u € [0, 1] the quantity

m(u) := —yup + An(l — (1 — w)d) .

3.6 Optimal reinsurance with exponential utility

We now consider the problem of an insurance company. It receives premiums at a rate
p. The times arrival of the sinisters are described by a Poisson process N of intensity
A > 0 and each sinister as a constant size §. The company can reinsure a proportion
u € [0, 1] of these risks against the payment of a premium ug with ¢ > p. The dynamic
of the wealth is

XV, (s) =+ / (b — voq) dv — / 5(1— vy)dN, .
t t

We consider the exponential utility maximization problem:

v(t,x) == sg}{) E [—e_"XZz(T)} ,n>0.
vt

The associated Hamilton-Jacobi-Bellman equation is

av(t, x) + urg[%,}i} {(p —uq)Dv(t,x) + X (v(t,z — (1 —u)d) —v(t,x))} =0

and it is natural to look for a solution of the form —e™"*p(t), for a smooth function ¢

satisfying ¢(7') = 1. This implies that

Selt) + p(tym(@) =0

where 4 maximizes the quantity

m(u) :=n(p—uq) + A (1 - e"(l_“)5> .

Thus, we must have
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3.7 Optimal reinsurance with possible investments in a financial asset

We consider the previous model except that we now assume that the company can invest
on a financial market which consists in two assets: a risk free asset which provides a
constant instantaneous rate of return r > 0, and a risky asset S which evolves as in the

Black and Scholes model:
S = 50@(u702/2)t+aWt )

The amount of money invested in the risky asset is described by a predictable process

T
2
IE[/O |os] ds}<oo.

The remaining part of the wealth is invested in the non-risky asset.

¢ satisfying

The dynamics of the wealth is given by

v S dSv S » S
ij;c (s) = =« —I—/ o 5 +/ {(Xf’w (s) —¢u)r+p— yvq} dv —/ (1 — vy)dN, .
t v t t

The aim of the company is to maximize

J(t,z;0,v) :=E [—e_"Xﬁiy(T)] )

The associated Hamilton-Jacobi-Bellman equation is
_ 9 _ Lo 90
0 = v(t,x) +sup (zr + ¢(u — 7)) Dv(t, ) + =¢~0“D=v(t, x)

+ uIél[%,}i] {(p —uq)Dv(t,z) + X (v(t,z — (1 —u)d) —v(t,x))} .

Here again, we look for a solution of exponential type in x. To take into account the

r(T—t)

return of the non-risky asset, we look for v in the form — f(t)e™"*¢ . In this case,

we must have:

0 = —af(t)/f(t)+sup{77¢>(u—7“)er(T_”—7721¢20262’”(T‘”}
ot HER 2

+ max {77(2? —ug)e" T 4 A (1 — e”“*“)ew*t))} .

The sup over ¢ is attained by

so that f must satisfy

0 1(p—r)?
0 = 2w+ D

where 4(t) maximizes

my(u) 1= {77(17 —ugq)e" Tt 4 (1 - e”(l_“)eT(T_t)>} :

+ ma((t))
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4 Optimal control with infinite time horizon
We come back to the framework of Section 1 except that we assume that A does not
depend on the time variable t.

Our aim is to maximize the functional
o0
J(t,x;v) =K [/ & (8) f(X{(5),vs)ds zeR?
t

We now assume that f and p are non-negative continuous functions. This ensures that
the expectation is well defined, taking possibly the value +00. We can therefore define

the value function

v(t,z) := sup J(t,z;v) .
veEU;

Clearly, v does not depend on t and it is equivalent to consider the problem

v(x) :=sup J(z;v),
veu

where

Haiw) = | [~ etz mas| o erd

with (X7, &) = (X4, &)

We shall follow the steps of Section 2. The only difference is that we shall derive an
elliptic equation (time independent) without terminal condition (since there is no time
horizon). In practice, the terminal condition has to be replaced by an analysis of the

behavior of the value function v as t — oo.

4.1 Dynamic programming and Hamilton-Jacobi-Bellman equation

We start with the dynamic programming principle.

Proposition 2.4.6 Assume that for each v € U, J(-;v) is finite and continuous, and
that v is locally bounded. Then, for all uniformly bounded family of stopping times
{6",veu},

o
v(w)ziggE & (07)v(X(67)) + ; & (8) [ (X (), vs5)ds
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Proof. This follows from similar arguments as in the proof of Theorem 2.2.1. O

As in the finite horizon case, this leads to the derivation of an Hamilton-Jacobi-Bellman

equation. As in Section 2.2, we use the notations
() = (bla,w), Dp(a) + 3Tr 00" (r,u) D ()]
[ (ol Bl 2) = pla)) AD(:)
and

Ho(z) = 31615(5“<P(w)+f(x7w)-

Proposition 2.4.7 Let the conditions of Proposition 2.4.6 hold. Assume further that v
is C%. Then, it satisfies

Hv = pv . (2.4.1)

Proof. Given a constant control v = u, u € U, we deduce from Proposition 2.4.6 that

0
v(z) > E 55(9)U(XZ(9))+/0 & (8)f (X (s),vs)ds

for all stopping time 6. Then, the arguments used in the proof of Theorem 1.3.1 implies
that

0> L%(2) + f(2,u) — p(x)v(z) .
It remains to show that
Ho(z) > pla)o(a)
Assume to the contrary that

Ho(x) < p(x)v(z) .

Then, the same arguments as in the second part of the proof of Theorem 2.2.2 leads to

a contradiction to Proposition 2.4.6. O

In the case where v may not be smooth, it can still be characterize as a solution in the

viscosity sense, we leave the proof to the reader, see the previous section.

We now turn to the verification argument.
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Proposition 2.4.8 (Verification) Assume that there exists a C? locally bounded func-
tion ¢ satisfying (2.4.1). Assume further that

1. There is a measurable map @ : R? — U such that Hp = L% + f(-,4) on RE.

2. For all initial conditions x € R?, there is a solution to (2.1.1) starting at t = 0 with
v defined by vg := a(X7(s)).

3. For all (z,v) € RY x U, there is an increasing sequence of stopping times (0,,), such
that XY is bounded on [0,6,], 6, — co P — a.s. and

E[E(0,)p(XY(0,))] =0 asn goes to co.
Then, v = .

Proof. By It6’s Lemma, Corollary A.2.1, (A.1.1), the fact that ¢ solves (2.4.1) and the

assumptions 1., 2. and 3., we obtain

On

o(z) = E [&i(en)so(xzwn)) [ e px), mds}

0

for each n, where (6,,), is associated to v. Using assumption 3, we then deduce that

ola) = | [ L) 05 )|

by sending n to co and using the monotone convergence theorem, recall that f > 0. This
shows that ¢(z) < v(z). We now prove the converse inequality. Fix v € U, let (0,), be
the sequence associated to v. By the same arguments as in the proof of Theorem 2.2.2,
we obtain that

On

E [5;;<en>so<xz<en>> [ e rx ), u5>ds]

0
On
= ¢(z) +E [/0 £ (s) (L7 p(X7(s)) — (pp) (X7 (s)) + f(XZ(s),v5))) ds
< ().
Using the assumption 3. and sending n — oo leads to
B | [T O] < o)
Since v is arbitrary, this implies that v(z) < ¢(x). O

Remark 2.4.16 As in the finite time horizon case, the value function can be charac-
terize as a discontinuous viscosity solution of Hv = pv and a comparison result can be

established, under suitable growth assumptions. We leave this to the reader.
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4.2 Application to the optimal investment with random time horizon

Let us consider the problem of Section 3.7 where the dynamics of the wealth is given by

Xf’”(t) = x4+ /Ot ¢SdSS;S + /Ot {(Xf;””(s) —¢s)r+p— Vsq} ds — /Ot 0(1 — vg)dNs;

with
St e Soe(“_a2/2)t+awt .

Instead of fixing a time horizon, we now consider the problem of an investor who wants
to maximize the expected value of his wealth at his death time 7. We assume that 7 is
independent of (W, N) and admits an exponential distribution of parameter . We take

the utility of exponential type. In this case, one can show that

J(z;¢,v) = [—e—”X?’”“)} —E [ /0 et {—e—ﬂxi””@} dt] .

i.e. the original problem is equivalent to an optimal control problem in infinite horizon.

The value function is given by

v(z) == sup E {/ re " {—e*”Xfyu(t)} dt} ,
0

(pv)eU

where U is the set of predictable processes (v, ¢) with values in [0, 1] x R satisfying

t
/ |¢s|?ds < o0, £>0
0
and

o0
E [/ pe e XE (t)dt] <oo, limE [e_“te_nxf’ (t)dt} =0, (2.4.2)
0 t—o00

The associated Hamilton-Jacobi-Bellman equation is

kv = —e ™ +sup {(ZL‘T‘ + ¢ —r))Du(t, x) + ;¢202D2v(x)}
¢ER
& mas {(p— u)Dola) + Aol = (1= w9) — v(o))} (2.4.3)

In the case where r = 0, it is natural to search a solution of the form —be™"* b > 0,
which leads to

_ _ _1 27 2 2 _ _ on(l—w)é
kb = 1—|—2161£ {nbgb,u 2¢> bn“o }+uré1[%§] {nb(p uq) + bA (1 e >} .
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The sup over ¢ is attained by

so that b must satisfy

where 4 maximizes over u
m(u) == {n(p —uq) + A (1 - e"(l_“)‘S)} .

We now provide the verification argument in the case where b > 0. This condition is
satisfied in particular if p = q. We then set ¢ (x) := —be ",

Using It6’s Lemma, a localization argument and the fact that 1 satisfies (2.4.3), we first
observe that for any (¢, 7) € U

t
E e 5t X¢’V —ks ) —nXi.)’V(s) d:| <
o) + [ ree {—e O as) < i)

Using (2.4.2), the particular form of ¢ and sending ¢t — oo, we obtain

o [/OO o {_e—nxi?yu(s)}ds} < o(z) .
0

On the other hand, the same arguments shows that for (¢, v) := (¢, 4)
. t -
E |:€—nt¢(X$,u(t)) +/ P {_e—an (S)} d8:| — ?,Z)(ZE) ,
0
and, if (¢, 0) satisfies (2.4.2),

> —Ks ) —an’a(s) _
E[/O Ke { e }ds] P(x) .

Thus, it remains to check the admissibility condition. We have
XPH0) =t L (4 oW+ (p i)t = 51— )N,
so that

. 2 R 2 .
E [e—ﬁxf’ﬁ(t):| _ e_nze—ﬂt(;ﬁ-i-p—ua ekt(e"‘s(l*ﬁ)—l) _ e_nxe—t(;j-&-m(u))
Thus, the admissibility of the candidate to be the optimal strategy reads

5 .

~

Thus ¢ = v and the optimal strategy is given by (¢, @).
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4.3 Optimization of the survival probability

We consider the same model as in Section 3.7 except that:

1. There is no reinsurance.

2. The non risky rate of return r is equal to 0.

3. The size of each claim has a bounded density f on (0, 00).

4. We want to maximize the survival probability: J(x;¢) :=P [X;b (t)>0 Vt>0|.

The dynamics of the wealth is given by

t ds t
X)) = = +/ Gs—— + pt — / zp(dz, dt)
0 Ss 0
where 1 admits Af(z)dz as predictable kernel intensity and

S, = Speln=o%/Dt+oWe

)

where W a standard Brownian motion. Here, ¢ belongs to the set U of predictable

processes satisfying
/Ot|¢s|2ds<oo ,t>0.
We assume that \,o > 0.
The value function is: v(z) = supyey J(7; ).
Observing that, for all stopping time 6,

E

E [1{x$(t>zo v el L X2 (020 ¥ telb,o0)} |

1{X;’>(t)zo v tzo}}

= E

¢
Lixom>0 v tep.o ™ ll{Xi¢(9)(9+t)>0 visoy | Xz (9)”
we end up, formally, with the dynamic programming equation:

v(z) = supE|1l v X;f ) .
) peu [ (x2>0 v e,V Xz ( ))}

Thus, still formally, v is associated to the PDE on (0, c0):

1 o0
0 = sup {gb,uDv(:E) + 2¢202D2U(:E)} + {pDv(a:) + )\/ (v(r —2z) — v(:r))f(z)d,z}
PER 0
(2.4.4)
with v = 0 on R_. Direct computation shows that the optimal ¢ in the above equation

should be given by

2oy pDvu()
P(x) = *m )
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which leads to the equation

2 v T 2 00
0 — pDu(t,z) — ;% 4 A/O (@ — 2) —v(@)f(2)dz . (2.4.5)

Moreover, one could expect to have v(oc0) = 1.

In [8], it is actually shown that there exists a solution ¢ € C?((0,00)) N C1([0,0)) to
(2.4.5) which is positive, strictly increasing and strictly concave on [0, 00) and satisfies
1y =0 on R_. In the case where 1 — ® is integrable, then it is bounded. In this case, we

can choose it to satisfy 1)(oc0) = 1 by a simple normalization.

We now show that, if existence holds for

t
@5 +pt —/ zu(dz, dt)
0

%) = at [ 50D

with ¢(z) := —uDv(z)/(02D?v(x)), then ¢ = v and the optimal strategy is given by
(¢( X (t=))iz0-
Let ¢ be a given strategy and let 7 be the first time X2 goes below 0. By dominated

convergence, the fact that 1 satisfies (2.4.4), Itd’s Lemma and a localization argument,

we obtain

E | Jim (X2t A7) = lim B [0(XE(tAT)] < o).

t—o00

But, on {7 = oo} one can show that lim; Xf(t) = oco. Since ¥ = 0 on R_, this

implies that
P(z) 2 Plr =oo] .

Now, let 7 be the first time X, goes below 0. By the same arguments as above, one

obtains

E [¢(lim X,(tA7))| = Jim E[(Xa(t A 7)] = v(@)

where lim;_,o0 Xz(t) = 00 on {7 = co}. Thus,

Y(x) =P[1 =00 .
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Chapter 3

Free boundary problems

1 Optimal stopping

In this section, we study an optimal stopping problem. Namely, given X defined as in

Chapter 1, we want to optimize

E gt,:v( th / 5t:p Xt,x(s))ds

for 7 running in the set 7; of stopping times with values in [t, T], that are independent
of F;. This problem naturally appears in finance in the computation of American option

prices, see e.g. [3].

As in the previous chapters, we denote by v the associated value function:

v(t,x) == sup E | & 2(7)9( X (T / Eta(s)f(Xia(s))ds
TET:

The aim of this chapter is to relate v to the PDE in variational form

min{pp —Lo—f, p—g} =0, (3.1.1)

in the viscosity sense. Note that, formally, the PDE pp — L — f = 0 is satisfied on the
domain C := {(t,x) € [0,T) xR? : wv(t,x) > g(t,z)} with the boundary condition v = g
on the parabolic boundary of C. Since this boundary is not know, we call this problem

a free boundary problem.

As in control problems in standard form, this formulation has a nice probabilistic inter-

pretation. Let us define

200 = L0 XL 0) + [ ELIIXE D 120,
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The PDE (3.1.1) means that this process is a super-martingale [0,7] and a martin-
gale on [0,7] where 7 is the first time s for which v(s, Xo,(s)) = g(s, Xox(s)) or
v(s, Xoz(s—)) = g(s, Xoz(s—)). We refer to [11] for a general analysis of optimal stop-
ping problems.

For sake of simplicity, for the remaining of this Chapter, we assume that g and f are

Lipschitz continuous with Lipschitz constant L > 0, that p is constant and g > 0.

1.1 Continuity of the value function

We first prove that the value function v is continuous. This is due to the Lipschitz

continuity of f and g. A similar analysis could be carried out in the previous Chapters.

Lemma 3.1.4 There is a constant C > 0 such that for all (t1,t2, 1, 22) € [0, T]?x (R%)2

we have
1
ot 21) = v(tz,az)| < C (U4 al)lts = taf? + flas — 2] ) -

Proof. Without loss of generality we can take t; < t5. Since p is constant, we have

ot z) = sggE[&i,xi<7>g<xm<ﬂ>+ Teti,mxs)f(Xti,m(s))ds}
T€ T, ti

= eMliw(ty,z) ,i=1,2,
with

it o) = sup B [ Tg(Xia(r) + [ e S CXualos]

Thus, it suffices to prove the result for w. Since g > 0, T, C T, and 7V ta € Ty, if

7 € Tt,, we have

0 < w(t,z1)— w(te,z1)
TALo
< s B e (X (1) < A K (V) + [ U (K6l
T€T 1

+ swpef Xy (9) = Xy ()]

Telnl to

In view of Proposition 1.2.1, the Lipschitz continuity assumption on g and f implies
that

1
(w(t, 1) —wltz, z1)| < C(L+ [lanl))[tr — 222 .
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Similarly,

’w(thxl) - w(tlﬂ $2)| < sup E [eipT‘g(Xm,m (T)) - Q(th,zz (7—))”

TET

L swE [ | U X (9) = T
TET t1

< Cllzy — x2f| -

1.2 Dynamic programming and viscosity property

As in the previous chapters, we shall appeal to the dynamic programming principle

which takes here the following form.

Lemma 3.1.5 (Dynamic programming) Fiz (t,x) € [0,T] x RL.  For all [t,T]-valued

stopping time 0, we have

ONT
o(t,x) = sup E |e P D0(0, X, (0))1g<r + e T g(X; o (7)) 1gsr + / e P67 f(Xy 4(s))ds
TETE t

Proof. It suffices to adapt the arguments used to prove Theorem 2.2.1. O

We can now prove that v is a viscosity solution of (3.1.1).

Theorem 3.1.1 The function v is a viscosity solution of (3.1.1) and satisfies lim;_,p v(t,-) =

g on RY.

Proof. The super-solution property is clear. First, v > g by construction. Second,

Lemma 3.1.5 implies that
0
o(t,z) > E |e P00, X, .(0)) + / e P F(X; 4(s))ds
t

for all 0 € T; (take 7 = 0). It thus suffices to repeat the arguments of the proof of
supersolution property of Theorem 1.4.1 . As for the subsolution property, we have to
prove that for (¢,2) € [0,T) x R? and a smooth function ¢ such that 0 = max(v — ¢) =
(v —@)(t,2), we have

pp(t, ) — Lo(t,2) — f(&) <0 if  w(i,2) > g(2) .
We can argue by contradiction and assume that
po(t, @) — Lo(t,2) — f(#) >0 while v(f,2) > g(2) .
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Then, by choosing a suitable stopping time 6 € 7; as done in the proof of Theorem 1.4.1,
we can find 7 > 0 such that for all s € [, 4]

pp(Xi4(8)) = Lp(s, X 3(s)) = f(Xj4(s)) = and v(s, Xj3(s)) — 9(Xg4(s)) = n
while (v — ¢)(0, X; ;(0)) < —n. By 1t0’s Lemma, this implies that, for all 7 € T,

p(h.3) = E[e 0000, X; 1 (0))To<r + e "D (g(X;5(r)) + 1) o]

ONT .
+ E / e P £(X; L (s))ds
t

5

> E[e 00 (0(0, X;5(0)) + ) losr + e 7D (g(X; (7)) + n) 1o |

ONT .
+ E / e P £(X; . (s))ds
t

This contradicts Lemma 3.1.5. O

In order to complete this characterization, we now provide a comparison result.

Theorem 3.1.2 Let U (resp. V') be a l.s.c. super-solution (resp. wu.s.c. sub-solution)
with polynomial growth of (3.1.1) on [0,T) x R If U >V on {T} x R?, then U >V
on [0,T) x RZ

Proof. We only explain how to adapt the proof of Theorem 1.4.2 from which we take
the notations. The only difference appears if (¢,,2,) is such that V(t,,z,) < g(zp).
But, in this case, since U(ty,yn) > g(x,), we obtain that U(t,,x,) > V(t,,z,) which
contradicts (1.4.7). O

1.3 Construction of the optimal stopping strategy: formal derivation
in the smooth case

For sake of simplicity, we only consider the case where there is no jumps, i.e. § = 0.
Assume that v is C12? on the set C := {(¢t,z) € [0,7] x RY : v(t,z) > g(x)} and is
continuous on [0, 7] x R%. Assume further that is solves (3.1.1) on C and satisfies v = g
on C¢:= ([0,7] x R%) \ C. We assume that the distance function d to C¢ is well defined
and is continuous. We fix the initial conditions (0,xg), with (0,z9) € C, and write X
for Xo . Let 7. :=inf{s > 0 : d(s,X(s)) < e}. Then, it follows from the fact that v
solves (3.1.1) on C that

(0, 20) = E [v(fa,X(Tf)H/oTs f(X(s))ds] :
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Since 7° — 70 P — a.s. as ¢ — 0, by continuity of the path of X, we deduce from the
continuity of v and the fact that v = g on C° that

v(0,20) = E

g(X(To))JF/OT f(X(s))ds] .

It follows that 70 = inf{s > 0 : (s,X,) € C°} is an optimal stopping strategy. The
domain C is therefore called the continuity region, it is the region where it is never

optimal to stop.

2 Optimal switching problems

In this section, we consider a diffusion whose coefficients may take different values, called
regimes, depending on the value taken by an underlying control. More precisely, in the
i-th regime, the drift is given by b(-,7) and the volatility by o(-,7). The aim of the
controller is to manage the different regimes of the process in order to maximize a mean

gain.

2.1 Definitions

We first define a set of possible regimes E = {0, ..., k}. Given the initial regime ey € E,
we say that an adapted process £ is a regime control with initial condition ey € E if it

takes the form
& = eolpo,r) + Zgi17i§t<7'i+1 ,t<T,
i>1

where (7;);>1 is a sequence of (strictly) increasing stopping times such that 7, — oo
P —as., and (&;);>1 is a sequence of random variables with values in E such that &; is
Fr,-measurable for all > 1. We denote by (TZ5 )i>1 the associates sequence of stopping
times.

The controlled process Xg . is defined as the solution of:

Xials) = z4 /t T b(Xsa (), €())du + /0 o(Xoa(u), €AW, (32.1)

+ ) B(Xealri =), €7 =), E(7))

£
T, <t

Here, we do not introduce exogenous jumps in the dynamics of X. However, X may

jump when we pass from a regime to another one.
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As in the preceding chapters, we assume that b, o (resp. §) are uniformly Lipschitz on
R x [0, k] (resp. RY x [0, x]?). We also assume that there is ¥ defined on E? such that

sup |B(z,i,7)| V1< W(i,5) forall i,57€FE. (3.2.2)
z€eRd

We say that a control ¢ is admissible if

EllY, ¥ £ < oo, (3.2.3)

3
=

for some fixed p > 1, and we denote by Sp(eg) the set of admissible controls with initial
condition &y = eg.

The aim of the controller is to maximize the mean of

Wa©) = gE)ET)+ [ FXE 60,8005~ 3 e (X1 g e 6)

TE<T
(3.2.4)
where g, f and c are locally Lipschitz functions such that
wp 9@ @D D 525)
(2,1,5)ERI x E2 L+ |zfP
and
sup c(x,i,7)T < V(i,j) forall i,j€E. (3.2.6)
z€R4
The associated value function is defined as
v(t,z,e):= sup E[II()] . (3.2.7)
£€So(eo)
We shall always assume that
B(,e,e)=0 and ¢(,e,e)=1 forallee E. (3.2.8)

This allows to avoid strategies & for which P[3 ¢ > 1 s.t. Tf <Tand e =& >0

which makes no sense.

The aim of this Section is to prove that the value function solves on [0,T) x R? x F
min{—Ly , Go} =0 (3.2.9)
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where

Gp(t,z,e) == min (p(t,z,e) —p(t,z+ B(z,e,7),j) + c(z,e,5)) ,
JjEB\{e}
and
L Y = a@+<b<,6),D@>+§Tr [UU ('76)D 90] +f(,€) )

with the boundary condition on {T'} x R? x E
min{(T,z,e) — g(z,e) , G¢o(T,x,e)} =0 . (3.2.10)
Note that, formally, this shows that v(:, e) solves the free boundary problem
min {—L(t,z,e) , v(t,x,e) — V(¢t,x)} =0
where

Te(t, x) := jglgz\i?e} (v(t,z + B(z,e,7),5) — c(z,e,7)) . (3.2.11)

This problem is therefore very close from the optimal control problem of the previous
section. The main difficulty here comes from the fact that the boundary is related to
each v(-,7), j # e, which also solve free boundary problems which boundaries depend

on v(-,e).

2.2 Dynamic programming
Some useful qualitative properties

We start with a Remark on the controlled process.

Remark 3.2.17 It follows from the admissibility condition (3.2.3) and similar argu-

ments as the one used to prove Proposition 1.2.1 that

E

sup rXf,x<s>u2p] < oo
t<s<T
Moreover, if card{i > 1 : t < Tf < T} < K for some K > 0, then

E

sup IIXf,z(S)Hp] < Cr(+ =),
t<s<T

where the constant C%. > 0 depends only on b, 0,3, T, K and p > 1.
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We first derive some useful properties for the functional

T
N e N R (e AR DRI N
t 1 1

t<rt<T '
defined for (t,z) € [0,T] x R? and & € Sy. For t; <t < T, we set
Ifl’tQ = card{i >1 : t; < Tf <ta},

and we denote by S§ the set of elements ¢ € Sy such that IgT is essentially bounded.
We set SP(e) := Si(e) N Sy.

Lemma 3.2.6 Fiz (t,r,e) € [0,T) x R x E. Then,
(i) For all ¢ € S§, J(-,€) is jointly continuous in x and right-continuous in t. If € is
such that PP [7‘5 = t} =0 for alli > 1, then J(-,§) is continuous at (t,x).
(ii) sup J(t,x,&) =v(t,x,e).
HHO!
(iii) v(-, e) is lower semicontinuous.

Proof. (i) We start with the first assertion. Fix £ € Sg, t1 < tg, x1, 2 € R and write
(X1, X?) for (Xt21):€ X (t2:22).€) We define the sequence

Pig1 = inf{s>; : & #E&-} for i >0, with ¥y =1to.
Standard computations based on Burkholder-Davis-Gundy’s inequality, Gronwall’s Lemma
and the Lipschitz continuity of b, a, 8 shows that

E sup | X = XZ[*P| >0,

to<s<; AT

sup |X;—X52\2p] < CE
to<s<V; 1 AT

where C' > 0 denotes a generic constant which may change from line to line. Since Ig T

is essentially bounded and ¥y = t2, we deduce that

E[ sup | X! —X82|273] < CE [|Xt12 —:U2|273] , (3.2.12)
to<s<T

where, by Remark 3.2.17 and (3.2.2),

IN

IE[ sup |X;x112ﬁ] C (|t2—t112ﬁ+u-z[ylfhtzﬁﬂ) . (3.2.13)

t1<s<ts
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We now fix (¢,z) € [0,7] x R? and a sequence (¢, Zn)n>1 such that ¢, | ¢ and z,, — =,
we write X and X" for X(##)€ and X (tn2n)€ In view of (3.2.12)-(3.2.13), we can find

a subsequence such that sup;,; <;<7 |X§ — Xs| = 0 P — a.s. Moreover, if follows from

Remark 3.2.17 that E | sup |X7?|? | is bounded, uniformly in n > 1. Recalling the

tn<s<T
growth condition (3.2.5) and the fact that IgT is bounded, we deduce that

liminf J(ty, 2, &) > J(t,2,§) —limsupE || > V(e L)l =Tt
n—00 N—00 T3 Ty

Aty <TE<tVin

We obtain similarly that limsup,, . J(tn, zn,&) < J(t,2,§). In the case where the
control ¢ satisfies P [Tf = t} =0 for all i > 1, the term E [\ Zt/\tangvtn \I'(grfu 575)@
goes to 0 even if ¢, approximate ¢ from the left. The above argument can then be
repeated without modification for any sequence (t,, ), such that ¢, — t and z,, — x.
(ii) Fix £ € Sy and let £ € 58 be defined by & = Et/\ﬂﬁ’ k > 1. Arguing as in Remark
3.2.17, we obtain that

suplE

k>1 [t<s<T

sup |X§t"”)’5kl2p] < 00 . (3.2.14)

Moreover, it follows from a similar induction argument as above that

E| sup [XE2& _ x00€21 50 foralli>1.
tgsgtVTf

After possibly passing to a subsequence, we can then assume that

sup |X§t’x)’§k — Xt 0 P—as. Vi>1.
t§s§tVTf

In view of (3.2.14), we deduce from (3.2.5), (3.2.3), (3.2.6) and the continuity of g, f and
c that

liminf J(¢, 2, &%) > J(t,z,¢) .

k—oo
This proves (ii).
(iii) By using a continuity argument as in (ii) above, we can restrict to £ such that
P [Tf = t] = 0 for all i > 1 in the definition of v(¢,z). The last assertion is then an

immediate consequence of (i) and (ii). a

We conclude this section with an easy result which will also be useful in the following.
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Proposition 3.2.9 v~ has polynomial growth.

Proof. This is an easy consequence of (3.2.5) since a constant control is admissible. O

Dynamic programming principle

We now turn to the proof of the dynamic programming principle.

Remark 3.2.18 The inequality

113
o(t, z,€) ggsgl(a)la (0, X5, (09), &) + | F(XPa(),6)ds — > c(ng(Tf—),ng_,ng)
cot(e t A i i
t<7; <68

for all family of [t, T]-valued stopping times {6¢, ¢ € Sy}, follows from the Markov feature

of our model.
Thus it suffices to prove the following Lemma.

Lemma 3.2.7 Fiz (t,z,¢) € [0,T] x RY x E. For all [t, T]-valued stopping time 6 and
¢ € Si(e), we have

0
o(t,z,e) > E v(e,ng(e),gg)Jr/t JXF(5),€0ds = 3 e (X, (=) € e o6 )

t<7§§0
Proof. In view of the previous results, it suffices to adapt the proof of Theorem 2.2.1.
O
2.3 PDE characterization
Definition of viscosity solutions

In this section, we adapt the notion of viscosity solutions introduced in Chapter 1 to

our context.

Definition 3.2.2 We say that a lower-semicontinuous (resp. upper-semicontinuous)
function U on [0,T) x R? x E is a viscosity super-solution (resp. subsolution) of (3.2.9)
if, for alle € E, ¢ € CY2([0,T] x R?) and all (t,z) € [0,T) x R which realizes a local

minimum (resp. maximum) of U(-,e) — ¢, we have
min {—L(t,x), GU(t,z,e)} >0 (resp <0).
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We say that a locally bounded function w is a discontinuous viscosity solution of (3.2.9)

if wy (resp. w*) is a super-solution (resp. subsolution) of (3.2.9) where

w*(t,z,e) = limsup  w(t,2,e)
(t'x")=(t,x), '<T
wy(t,z,e) = liminf — w(t',2’,e) , (t,z,e) €[0,T] xR x E .

"z —(tz), '<T

To complete this characterization, we need to provide a suitable boundary condition. In
general, we can not expect to have v(T—,-) = g, and we need to consider the relaxed

boundary condition given by the equation (3.2.10).

Definition 3.2.3 We say that a locally bounded map w satisfies the boundary condition
(3.2.10) if wi(T,-) (resp. w*(T,-)) is a super-solution (resp. subsolution) of (3.2.10).
Here the terms super-solution and subsolution are taken in the classical sense.

If w is a discontinuous viscosity solution of (3.2.9) and satisfies the boundary condition
(3.2.10), we just say that w is a (discontinuous) viscosity solution of (3.2.9)-(3.2.10).
We define similarly the notion of super and subsolution of (3.2.9)-(3.2.10).

Viscosity properties

We now provide the characterization of v as a viscosity solution of (3.2.9)-(3.2.10).
Proposition 3.2.10 The function v, is a viscosity super-solution of (3.2.9)-(3.2.10).

Proof. Fix (tg,zo,e0) € [0,7] x R? x E and let (tg, 7x)x>1 be a sequence in [0,T) x R?
such that

(tk,l‘k) — (to,xo) and U(tk,l’k,eg) — U*(to,xo,eo) ask — o0 .

k k
Given ¥ € Sy, (eq) to be chosen later, we write X* and 7 for X5 and Tf )

7 tk,:lfk

1. We first assume that tg = T. By taking ¢ = ey € S, (e0), we deduce from the
definition of v that

T
v(ty, Tk, €0) > E[g(X%,eg)—}— f(Xf,eo)ds}.
tg

Using standard estimates on X*, we deduce from our continuity and growth assumptions
on f, g that

T
(T, 0,€0) = liminfE [(9()(%76’0) + f(XfaEO)d8>:| = g(z0, €0) -
— 00 th
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We now fix j € E, set 7, := (T +t;)/2 and £ := (e0licr, + jli>r, i<t € St (e0). By
Lemma 3.2.7

Tk
v(t, T, e0) > E [U* (Tk,Xf _ +/3(ka7,€07‘7)7]') + F(XE, e0)ds — c(XE _, e, 5)

22
Sending k£ — oo, using Proposition 3.2.9 and standard estimates shows that
U*(Ta o, 60) > Vs (T7 o + 5(3307 €O7j)7j) - C(.’EQ, erj) :

2. We now fix ty < T. By considering the sequence of controls ¢* = (eolicr, +
Jlr.<t)i<T € S, (eo) where 73, 1=t + k=, j € E, using Lemma 3.2.7 and arguing as
above, we obtain

v« (to, x0,€0) = kli_{]glov(tk,f%,@o) > vy (to, zo + (0, €0,7),J) — c(xo,€0,7) -

The fact that v, is a super-solution of —Ly = 0 is obtained by considering constant
control processes, Lemma 3.2.7 and similar arguments as in the proof of Theorem 1.4.1.
O

Proposition 3.2.11 The function v* is a viscosity subsolution of (3.2.9)-(3.2.10).

Proof. 1. We first consider the viscosity property. We argue by contradiction. Fix
(to, zo,e0) € [0,T) x R x E and ¢ € CZ([0,T] x R?) such that

0 = (v"(-;e0) = 9)(to, m0) = max (v"(:,e0) =)
[0,T]xR

and assume that
min {—Lp(tg, zg) , Gv*(to, o, e0)} =:2e > 0.

Since ¢(to, xo) = v*(to, xo,€p), it follows from the upper-semicontinuity of v* that we
can find § € (0,7 — ty) for which

min{_ﬁeo(p7 . min (@_v*('a'_‘_ﬁ('an:j)aj)+C('7607j))} >e>0 (3215)
jeE\{eo}

on B := B(tg,d) x B(xp,0). Observe that we can assume, without loss of generality,

that (tg,zo) achieves a strict local maximum so that

sup  (v*(-,e0) —¢) =1 —( <0, (3.2.16)
8PB((t07$0)»5)

73



where 0,B = [to,to + 0] X 0B(z,0) U{to+ 0} x B(xg,0). Let (tx,xr)r>1 be a sequence
in [0,7) x R? satisfying

(tg,xp) — (to,zo0) and v(tg,xk,e0) — v*(to,zo,e0) ask — oo
so that
v(tg, xg, e0) — (g, xp) — 0 ask — 00 (3.2.17)

Let &% be a k~'-optimal control for v(ty,xy,eg), i.e. such that v(ty,zx, eq) is bounded

from above by

E | g(Xk, € /f - ¥ c(XfZL,ffff,fff) e

tk<TZ~kST

k
tom, and 7F stands for Tf . Set 9% = inf{s > tx : & # eo},
0F .= inf{s > tp : (s,XF) ¢ B} A9* and & = §gk By taking the conditional
expectation with respect to Fyr in the above expression and using the Markov property
of (X*,¢F), we get

where X* denotes X ¢

Wty Tr,e0) < E[v (e’f,ng + B(XE_eo, &), 5k)} (3.2.18)

9k
f(Xf, eo)ds — ¢ (Xg,_c_, eo, Ek) Tok_ygr | + k1 ,

ty

+ E

recall that 3(-,e,e) = 0 for e € E. On the other hand, applying It6’s Lemma to ¢ and
using (3.2.15) and (3.2.16) leads to

o(ty,ax) > E s0(9k,X§k_>+

123

ek
f(Xf,eo)ds]
> E [v* <9k,X§k_ + B(ng_7€035k)agk):|

Gk
+ E f(XE eq)ds — ¢ (ngf, €0, 5k> Lok_gr

tg

+en(.

In view of (3.2.17) and (3.2.18), this leads to a contradiction for k large enough.

2. It remains to show that
min {(v* — ¢)(T, zo, e0) , GV* (T, z9,e0)} < 0. (3.2.19)
We argue by contradiction and assume that

min {(v* — g)(T, zo,e0) , GV (T,x0,e0)} =: 2¢>0.
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Let (t, zx)k>1 be a sequence in [0, 7] x R? satisfying
(tg,zr) — (to,xo) and ov(tg,xp,e0) — v*(to,x0,€0) ask — oo. (3.2.20)

Under the above assumption, we can find a sequence of smooth functions (¢™),>0 on

[0, T] x RY such that ¢™ — v*(-, eg) uniformly on compact sets and

min{w—gc,eo), min <¢”—v*<-,-+ﬁ<-,eo,j>,j>+c<-,eo,j>>}>s (3.2.21)
JEE\{eo}

on some neighborhood B, of (T, z). After possibly passing to a subsequence of (tx, xg)k>1,
we can then assume that it holds on BF := [t, T] x B(z, 6%) for some sufficiently small
6k € (0,1] such that B c B,,. Since v* is locally bounded, there is some ¢ > 0 such
that [v*| < ¢ on B,. We can then assume that ¢ > —2¢ on B,,. Let us define ¢} by

Gr(t,x) =" (t,x) + Allx — a3, [?/(05) > + VT — ¢,
and observe that
(v*(-,e0) — @p)(t,x) < —=C <0 for (¢t,x) € [tg, T] % 8B(xk,6,,]§) . (3.2.22)

Since (9/0t)(v/T —t) — —oo as t — T, we can choose t;, large enough in front of 6 and

the derivatives of ¢™ to ensure that
—L%¢" >0 on BF. (3.2.23)
Let X*, ¢¥ and 9* be defined as in Step 1 and set F := inf{s > t;, : (s, X¥) ¢ BF} A0,
Using It6’s Lemma on ¢} together with (3.2.21), (3.2.22) and (3.2.23), we obtain that
or (tk, ) > E (v* (Hk,Xéf;Ti_ +B(X§£_,eo,5k),€k> —c (Xgﬁ_,eo,gk)> 119;@997;3}
+ E (v* (6&){&, eo) 19£§<T +g (X%, €0> 1953:T) 195<,‘9ki|
- o

+ E f(XE e)ds

tk

+eN(.

Since v(T,-) = g, (3.2.18) implies that

g0n<tk,$k> + T —t = @Z(tk,xk) > ’U(tk,{Ek,eo) +eN(— k_l .

We then obtain a contradiction by sending & — oo and taking n large enough, recall
(3.2.20). O
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2.4 A comparison result

In this section, we prove a comparison principle for (3.2.9)-(3.2.10) under the additional
assumptions

H1 : For some integer v > 1, v satisfies the growth condition

sup lw(t,z,e)|/(1+|z]") < oo. (3.2.24)
(t,z,e)€[0,T|xRix E
H2 : There is a function A on R? x E satisfying
(i) A(-,e) € C?(RY) for all e € E,
(ii) ¥’ DA + 3Tr [oo*D2A] < oA on R? x E, for some o > 0,
(iii) GEA(x,e) > q(z) on R? x E for some continuous function ¢ > 0 on R?,
(iv) A> g,
(v) A(z,e)/|z]" — oo as |z| — oo for all e € E.

We shall provide below some conditions on the coefficients under which this assumptions

hold.

Proposition 3.2.12 Assume that H2 holds. Let U (resp. V') be a lower-semicontinuous
(resp. upper-semicontinuous) viscosity super-solution (resp. subsolution) of (3.2.9)-
(3.2.10) such that V* and U~ satisfies the growth condition (3.2.24). Then, U > V
on [0,T] x R x E.

Proof. 1. Asusual, we shall argue by contradiction. We assume that supg 71xrdxg(V —
U) > 0. Recalling the definition of A and p in H2, it follows from the growth condition
on V — U that for A € (0,1) small enough there is some (g, 29, eg) € [0,T] x R? x E
such that

max (V—-W) = (V—W)(t,zo,e0) =1 >0 (3.2.25)
[0,T)xRix E

where, for a map w on [0,T] x R% x E, we write @(t,z,e) for ew(t,z,e), and W :=
(1— )\)U + AA. Let us define G¢ and G as G¢ and G with ¢ in place of ¢ and observe that
U and V are super and sub-solutions on [0, 7] x R* x E of

min {Q(p — Ly, (jcp} =0 (3.2.26)
and satisfy the boundary condition

min {<p -q, gNQO} = 0. (3.2.27)



2. For (t,z,y,e) € [0,T] x RE x R? x E and n > 1, we set

L(t,z,y,e) = V(t,x,e) —W(t, y,e)
@n(tal‘vyae) = F(t,m,y,e) - (TL|ZL‘ - y|2"/ + |:E - $0|2AH—2 + |t - t0|2 + |€ - 60|) :

By the growth assumption on V and U again, there is (¢, Zp, Yn, €n) € [0, T|xRIxRIx E
such that

i = Ol ).
,TTxRE xR x

Since
F(tmxnaynaen) > @n(tml‘nvynven) > (‘7 - W)(tmean) )

it follows from the growth assumption on V and U, (v) of H2, (3.2.25) and the upper-

semicontinuity of I' that, up to a subsequence,

(tns Tns Yn, €n) — (to, To, To, €0) (3.2.28)
n|zn — yn|? + [tn — tol* + |en — €0l = 0 (3.2.29)
C(tn, Tny Yn, en) — L(to, xo, To, €0) - (3.2.30)

3. We first assume that, up to a subsequence,
Ge”V(tn,wn,en) <0 forall n>1.

Then, it follows from the super-solution property of U and (iii) of H2 that, for some
Jn € E ¢ {en},

F<tn> TnyYn, en) < T (tm Tn + ﬂ(xm ena.jn)7 Yn + 5(yn7 ena.jn)7jn)
+ é(ym emjn) - 6($n7 emjn) - /\(j(yn) .

Observe that j, — jo € E \ {eo}, up to a subsequence. Using (3.2.28) and (3.2.30), we
then deduce from the upper-semicontinuity of I', (iii) of H2 and the continuity of ¢ that

F(to, Zo, X0, 60) < F(to,l’o, xo, 60) + )\Cj(ﬂ?o)
< T'(to, xo + B(wo, €0, jo), o + B(x0, €0, Jo), Jo)

which contradicts the definition of (o, o, ep) in (3.2.25).

4. We now show that there is a subsequence such that ¢, < T for all n > 1. If not,

we can assume that ¢, = 7" and it follows from the boundary condition (3.2.27) and the
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above argument that f/(tn, Zn,en) < §(xn, ey) for all n > 1, up to a subsequence. Since,
by step 1 and (iv) of H2, W(tn,yn,en) > §(Yn, en), it follows that I'(tn, Tn, Yn, €n) <
9(zn,en) — g(Yn, en). Using (3.2.28), (3.2.30) and the continuity of g, we then obtain a
contradiction to (3.2.25).

5. In view of the previous arguments, we may assume that
t, <T and Qe”V(tn,xn,en) >0 forall n>1.

Using Ishii’s Lemma, Remark 1.4.11, and following standard arguments, we deduce from
the viscosity property of U , f/, (ii) of H2 and the Lipschitz continuity assumptions on
b,a and f that

Qr(tnaxmym en) < O (n‘xn - yn’2’y + ’%n - yn| + ‘xn - xO’) .
In view of (3.2.28), (3.2.29), (3.2.30), this implies that oI'(¢o, zo, o, €0) < 0 which con-
tradicts (3.2.25). O

Some sufficient conditions for H1 and H2

Our general assumptions H1 and H2 hold under various different conditions on the
coefficients. In this section, we provide some of them.
In the following, C' > 0 is a generic constant which depends only on T, k and b, 0, 5, f, g

and c.

a. The growth condition H1

Observe that, when ¢ > 0 and f™ + g* is bounded, then v is trivially bounded from
above so that H1 is satisfied. We now consider a case where g is upper-bounded by an

affine map.

Proposition 3.2.13 Assume that there exists real constants Cv,Co > 0 and some n €
R? such that

g(z,e) <Ci+(n,x)  forall (z,e) R E | [(n,b)+ f]"<Cy and (n,8)—c<0.
Then, v™ has polynomial growth.

A similar result can be obtained under weaker conditions on ¢ and g whenever b, o, f are
bounded and (3.2.10) admits a C? solution. This follows from the more general result

stated in the following proposition.
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Proposition 3.2.14 Assume that there exists a super-solution w to (3.2.10) satisfying
(3.2.24) such that w(-,e) € C*(RY) for each e and (Lw)T +|Dw*o| is uniformly bounded.
Then, v* satisfies (3.2.24).

Proof. Fix (t,z,e) € [0,7] x R? x E and ¢ € Si(e). We write X for X(Et v and 7; for

Tf . Using [t6’s Lemma and the super-solution property of w, we obtain that

w(X / F(X(s)&)ds — 3 e(X(r-)&(rim),&n)

t<m; <T
—w(m,e)—i—/ Lw(X(s),&s ds—i—/ Dw (X (s),&) 0(X(s),&s)dW,
+ > [w + B(X(7i=),8(i—), 7:), &) — w(X (7i—), §(7i—))]

t<m; <T

= Y (X (), £ ), Em)

t<r; <T
T
w(z,e) + / Lu(X(s), &)ds + / Du(X(s), ) 0(X(s), £)AW,

Since Lw™t and |Dw*o| are uniformly bounded by some C > 0 and g < w we deduce
that the expectation in the definition of v is bounded by w(x,e) + T'C, uniformly in
¢ e St(e). O

We conclude this section with a last condition which pertains for unbounded coefficients

but imposes a restriction on the support of 5 and the sign of c.
Proposition 3.2.15 Assume that

c>0 and [B=0 on ({JJ eR? : |z| > K} x E2) , (3.2.31)
for some K > 0. Then vt satisfies the growth condition (3.2.24) with «y := p.

Proof. For ease of notations, we write X for Xf’ , and 7; for Tf . It follows from the
assumption ¢ > 0 and (3.2.5) that

T
E g(X(T),f(T))Jr/t F(X(8):E(s))ds = ) e(X(ri=),&(ni—), (1))

< C(1+ sup E[|X(s)]]).

t<s<T

Thus, it suffices to show that

sup E[IX(s)P] < C(1+al?).
t<s<T

79



Since S is uniformly Lipschitz, it follows from its support condition that is it bounded
by some constant K’ > 0. Fix K” := K + K’ + |z|. Let us introduce the sequence of
stopping times (¢;);>1 by %1 =inf{s > ¢ : |X(s)| > 2K”} and for i > 1

1921‘ = inf{s 2 1921',1 : |X(S)| S K”} 5 192i+1 = inf{s Z 1921‘ : |X(S)| Z 2K”} .

It follows from (3.2.31) that |Xy,, ,| = 2K”. Fix s € [t,T] and set A% := {¥9;_1 < s <
1921'}, Ag = UiZlAi and quji = {1922'_1 <u<s< 1921'}. Then

AX(S)IA5 = Z (Xﬁm‘l]‘Ai—i_/t lBZ,ib(Xu,ﬁu)du—i-/t

i>1

s

].BZ,iJ(Xu, §u)qu> I

and it follows from the Lipschitz continuity of b and a that
S
E[|X(s)1a.?] < C 1+ (k7> +/ E |3 1,000 %% | du
¢ i>1
Since By C By := {|Xu| > K7} and B, C A, U {|X(s)] < 2K”}, we get
S
E [|X(s)1és|2ﬂ < C <1 + (K% +/t E [IBH|XU|25} du) .
It then follows from Gronwall’s Lemma that
E[X()¥] < (K)7+E|IX(s)15,%] < C(1+ (K)¥) .

Since K” = K 4+ K’ + ||, this leads to the required result. O
b. The strict super-solution condition H2

We now provide a general condition under which H2 holds.

Proposition 3.2.16 Fiz some integer v > p. Assume that there is a sequence of real

numbers (d;)icp and some o > 0 such that

—a < \x+ﬁ(x,i,j)\27—]a:|27 fOT all (:E,i,j)ERdX_EQ
d—d ..
n = min inf i = dj +ofz,i,])

— >0
1,JEE xcRd |$ + B(.I,’L,])P’Y - |aj|2fy +a

Then, assumption H2 holds for .

Proof. We set A(t,z,e) := (d + n|z|* + d.) for some d > 0 large enough so that
A > g*, recall (3.2.5). A straightforward computation shows that (iii) of H2 is satisfied
with ¢ = an. Clearly, (i) and (v) hold too. Finally, it follows from the linear growth

assumption on b and a that (ii) holds for a sufficiently large parameter p. O
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Remark 3.2.19 (i) If ¢ > ¢ for some € > 0 and § satisfies the support condition of
Proposition 3.2.15, then the conditions of Proposition 3.2.16 trivially hold with d; = 0
for all ¢ € ¥ and « large enough.

(ii) In the case where = 0 and c satisfies a strict triangular condition
o(x,i,j) +clx, j, k) > clxik) forall zeR?, i,jkeE. (3.2.32)
When ¢ does not depend on z, they show that the sequence (d;);cr defined by

d; = min c(x,1,] 3.2.33

f = min o) (3:2.33)

satisfies d; — d;j + c(z,14, ) > 0. It follows that if ¢ is independent of z, satisfies (3.2.32)
and [ satisfies the support condition of Proposition 3.2.15, or more generally the first
condition of Proposition 3.2.16, then the second condition of this proposition holds too

with (d;);er defined as in (3.2.33) and « large enough.

2.5 Verification argument: formal derivation

We now explain formally how to prove a verification theorem for the PDE (3.2.9) with
the boundary condition (3.2.10). Assume that there is a family of smooth functions
{¢(-,e) , e € E} which solves (3.2.9) with the boundary condition (3.2.10). We let ¥¢
be defined as in (3.2.11) and call j(t,z,e) its argmax. We fix the initial data (0, zo)
and the initial regime eg. We write X for Xg,aco where é is associated to the sequence of

stopping times and switches defined by

1= inf{s >0 : (s, X(s),e0) = ¥O(s, X (s))}

él = 5(7217)2(%1_)760)

Fr = inf{s > % ¢ (s, X(s),&) = WEi(s, X(s))}
éiJrl = j(f‘iJrl,X(ﬁJrl*),gi). (3234)

Now observe that (3.2.9) and It6’s Lemma imply that

o7 X0E) = B ol K)o+ [ 10K, Eas]

= E @(ﬂ‘H,X(ﬁH),&H)+/Vi+l f(X(S),és)dS}

- E :C <X(7A'z'+1_)aéﬁ+1—aéﬁ+l>}
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If we now assume that ¢(7,-) = g and that 7; — oo as i — oo, we deduce by summing

up over ¢ in the previous equation that, up to integrability conditions to be specified,

0(0,70,e0) = E|g(X(T),ér) + f s),&)ds — > C(X(%i_)véﬁ—aéﬁ)
7 <T
This implies that ¢ < v. On the other hand, the same argument but for an arbitrary

admissible strategy & associated to a sequence (7;,&;)i>1 leads to

o(1i, X4(r;),&) > E 90(71'+17X"C(Ti+1)75i)+/

L T

), 5s>ds]

> B ol X))+ [ X))

— E -C <X§(7'1‘+1_)7§n+177§7’i+1>}

which implies ¢ > v by arbitrariness of £. It follows that ¢ = v and that the optimal
switching strategy is given by (3.2.34).

3 An example of impulse control problem: Partial hedging

with constant transaction costs (exercise)

Let us consider the Black-Scholes financial model where the underlying stock is modeled

as the solution X;, of
X(s) = x—i—/ X(T)udr+/ X(ryodW, ,t<s<T
t t

where > 0, 4 € R et ¢ > 0. For sake of simplicity the risk neutral interest rate is set to
0, i.e. » = 0. We assume that each transaction is subject to a constant transaction cost
¢ > 0 which does not depend on the size of the transaction. A portfolio strategy is defined
as a sequence of increasing stopping times (7, ),>1 and amount of exchanges (0, ),>1 such
that &, is F,,-measurable. We denote by A% the set of sequences v := ((7n)n>1, (0n)n>1)
that satisfies the above properties and such that E [(an(!%! + c)1Tne[07T])2} < 00.
Given an initial amount of money y invested in the risky asset at time t, we denote by

Y}, (s) the amount of money invested in the risky asset at time s > ¢ L.

, s Y, (r
Yiu(s) =y + th(r dth )+ D onlrers] -
t n>1

)

"'We should write Y (r—) in the integral by since X has continuous paths and Y only a finite number

of jumps, this does not change anything.
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If z is the amount invested in the non-risky asset at time ¢, we denote by Z},(s) this

amount at time s >t :

Zy(s)i=2—> (On+0)lnen -

n>1

Our aim is to characterize

v(t,x,y,z) = inf J(t, z,y,2;v)

veAad
where
N2
s,y z30) = E | (12E0) +¥2,0) - a%eaD)] )]
Here, [-]~ denotes the negative part and g is a continuous function with linear growth 2.

1. Fix v € A%, Give a bound in terms of y and v but independent of T for
E (|2, (T)P].

2. Show that J is finite for all v € A%,

3. Show that 0 < v < co. In the following, we shall admit that v has quadratic
growth.

4. Show that for any stopping time 6 with values in [¢,T]

u(t,x,y,z) > é&f;dE [v (G,Xt,x(H),}Ql”y(H), zy.0))] .

5. Explain why, for any stopping time 6 with values in [¢,T], we should have

v(t,x,y,z) < él;tf;dE [v (O,Xt,x(H),Yt"'y(G), zy.0))] .

6. By considering a particular form of strategies, show that
o(t,,,2) < f 0* (2, + 6,2 (5 -+ €)1sp0)
€

where v* is the upper-semicontinuous envelop of v.

2Note that Z{ . (T) + Y, (T) is the liquidative value of the portfolio at T', up to the payment of the

transaction costs due to the final transfer, if required.
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10.

11.

12.

13.

. Show that, if v is C?, then it satisfies [0,7) x (0, 0) x R?

—Lv <0 (3.3.1)
where
1
Lo(t,z,y,z) = Ow(t,z,y,2)+zuDyu(t,x,y,z) + §x202Dmv(t, x,Y, 2)

1
+ y,U,DyU(t, $, 3/7 Z) + EyQUszyv(t7 IL', y7 Z) + ny2DmyU(t7 :177 y7 Z) .

Explain how to adapt the argument to show that v is only a viscosity subsolution

of (3.3.1) in the case where it is only upper-semicontinuous.

. Fix (t,z,y,2) € [0,T) x (0,00) x R et v € A% such that Y o>t L=t =0P—as.

Show that J(-;v) is upper-semicontinuous at (¢, x,y, z). Deduce that v is upper-

semicontinuous on [0, 7)) x (0, 00) x R2.

Deduce that v is a viscosity subsolution on [0,T) x (0,00) x R? of

max {_Ev(tax7y7 Z) , Sup (v(t,x,y,z) - U(taxay + 572 - (5 + 0)157&0))} <0.
6eR

: 2
Show that lim Sup iz, (4 4 2) s (w,y,2) V(6 25 Y5 27) < ([e+y—g(@)])"

If v is continuous on [0, T) x (0, 00) x R?, should it be a viscosity super-solution of

max {—Ev(t, r,y,2) , sup (v(t, @, y,2) —v(t, 2,y + 6,2 — (0 + C)lé;éo))} >07
dER

Briefly explain why.

What can we say if there exists a smooth solution V on [0, 7)) x (0, 00) x R? to the

equation

max {—ﬁV(t,x, 5, 2) s sup (Vt,a,y,2) — Vi{ta,y + 6,2 — (54 0)15750))} 0
JER

such that impy oy o) (@y,2) V(62 Y, 2) = ([e4+y— g(x)]_)z. Explain how to

construct an optimal control in this case.
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4 A singular control problem: dividend payment optimiza-

tion

In this section, we consider the problem of a large insurance company whose aim is to
maximize the discounted cumulated amount of dividend paid up to bankruptcy and can
reinsure part of its portfolio. This leads to a singular control problem where part of
the control is defined as a bounded variation process. We shall see that in this case the

associated PDE is of variational form as in the two previous chapters.

4.1 Problem formulation

We follow the approach of, e.g., [26] and [9] which consists in approximating the evolution

of the reserve process X (before paiment of dividends) by the diffusion

t t t t
X)) == —I—/ ysds +/ Terd W} —I—/ X™O(s)pds +/ X™0(s)odW?
0 0 0 0

where W' and W? are two independent Brownian motions, v, x, > 0, o > 0.

The term y7msds+mskdW{ corresponds to the approximation of the instantaneous evolu-
tion of the wealth due the received premiums and the paid claims for a level of retention
ms with values in [@,1] in the Cramer-Lundberg model. Here, u € [0,1] denotes the

minimal level of retention. In the case where u = 1, then no reinsurance is possible.

The term X;r’ouds + X;r’ooaﬂ/Vs2 is due to the investment of the reserve in a risky asset

S which evolves as in the Black and Scholes model according to

dSt/St = Mdt + O'dV[/vt2 .
The payment of dividends is modeled by a continuous non-decreasing adapted process
L, satisfying Lo = 0: L; is the total amount of dividends paid up to time t¢.

In case where dividends are paid, the reserve evolves according to:

t t t t
XEt) =z + / yTsds —|—/ TerdW ) +/ X™E(s)pds +/ X" E(s)odW?2 — Ly .
0 0 0 0

We denote by U the set of adapted processes v = (, L) satisfying the above properties
and such that X7 > 0 P — a.s. We note 7” and L" the controls associated to v, if not

clearly given by the context.

The aim of the company is to maximize over v € U

J(z;v) :=E {/ e_Ctst”]
0

85



where ¢ > 0 is a fixed parameter and 7} is the first time X reaches 0, this is the

bankruptcy time.
We define

v(x) :=sup J(z;v) .
vel

Remark 3.4.20 1. If =0, u > c and « > 0 then v(x) = co. To see this is suffices to
consider the strategy v = (m, L) defined by

1
m=0 and st:§(ufc)X;’dt.

2. The map x > 0 ~ wv(x) is concave. Indeed, for A € [0,1], 2 > 0 and ¥ =
(7', L) €U, i = 1,2, we can set (z,v) = A(z!,v!) + (1 — A\)(2?,2?), which implies that
XY = >‘Xal:/11 +(1—)\)X;3’22, 7 = max{7,1, 7,2} and J(z;v) > A (z1; 1) + (1= N)J (225 2).

4.2 Dynamic programming and Hamilton-Jacobi-Bellman equation with

free boundary

In this section, we relate the value function v to a suitable PDE in variational form. We

start with the dynamic programming principle.

Proposition 3.4.17 For all x > 0 and all uniformly bounded family of stopping times
{60, v elU}

OV NTY .
v(xz) =supE [/ e~ ALY + e~ v(X7(0V)Lgr<ry
vel 0

Proof. The proof uses similar arguments as the one used in the proof of Theorem 2.2.1.
O

We now derive the associated PDE. We restrict to the case where v is smooth enough

but a similar analysis can be lead with the notion of viscosity solutions.

Proposition 3.4.18 If v € C?, then it satisfies

min { m[inl] <cv — (uy + zp)Dv —
ue|u,

1
§(u2m2 + x202)D2v> , Dv — 1} =0 on (0,00) .
(3.4.1)

Proof. 1. Let v = (m, L) be of the form 7 = u for some constant u and L; = ¢(t A TY),
¢ > 0. Fix h > 0, let 6 be the first time when X% > K for some K > 2z and set
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6" = 0 A h. Then, Proposition 3.4.17 and It6’s Lemma imply:

Gh/\Tg‘D’
/ e todt
0

orATY
I [ €+ Xeo)n - 6>Dv<X;<s>>ds]
0

v(z) > wv(z)+E

+ E

oh AT
+ E 16h<7_g/0 e (;(u2ﬁ2 + (X%(s))?0*) D*v(X%(s)) — cv(Xa’j(s))) ds] .

It follows that

Gh/\TmV
0 > lm<E h_l/ e “*lds
h—0 0

ohATY
+ E|lpogh [ e-“(uwxg';(s)u—e>Dv<X;<s>>ds]
0

+ E

€h/\7'}’
et [ e (Gt 4 (X)) DX ) - co(X2 (o) ) ds] } .

Since 7% A 0 > 0, we have (6" A7%)/h — 1 P — a.s., by the mean value theorem and the

dominated convergence theorem, we then deduce that

r h
0 > E|lim h_l/ e_csﬁds]
_h‘)O 0

r h
+ E|lim ™! / e “(uy + XJ(s)p — ) Dv(X)(s))ds
_h—>0 0

r h
T E _}Lig(l) h_l/o e (;(u%? + (X%(s))%0) D*v(XL(s)) — Cv(XZ(S))> dé’]

1
= {4+ (uy+axpu—L€)Dv(x) + §(u2/<2 + 220?)D*v(z) — cv(z) .

Since ¢ > 0 is arbitrary, we must have (1 — Dv) < 0 and

1
Ir%inl] (cv(m) — (uy + zp)Do(x) — §(u2/i2 + $202)D20(m)) >0.
uela,

2. It remains to show that one of the two terms is equal to 0. Assume that for some

x>0

min {Jéﬁ% <cv(m) ~ (uy + zp) Do) — %m%? + x%?)p%(x)> . Du(w) — 1} 0.

Then, there is a neighborhood B of x of radius r € (0,z/2) such that, for some ¢ > 0,

min {urerﬁnl} (cw(y) — (wy + yp)Dw(y) — %(UQ,# i y2g2)D2w(y)> , Dw(y) — 1} >
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for all y € B where w(y) = v(y) + ||z — y||>. Fix v = (7,L) € U and let @ be the first
time when || X¥(t) — x| > r/2 or t > r/2. Observe that § < 77 P — a.s. By Itd’s Lemma

and the above inequality, we have
0
E [ecgw(xgg(a)) + / eCSdLS]
0
0
=w(z)+E [/ e (1 — Dw(X;’(s)))dLS]
0

0
+E /0 ecs(ﬂsfy+X§(s)u)Dw(X§(s))ds]

+

0 1
B | [ (G + (62D e) - cw (X)) ds|
0
<w(z) —eCE [(1(1 —e ) 4 e_ceLg)]
C
for some C' > 0. By definition of 8 and w, this implies that
0
ve) = Bletuxzo) + [ e
0
c —ch
+ B Ly xy(0)-al=r/2Lo<r/o + (1 =€) 1g=ry2

0
> Bl tuCeo)+ [ e vy
0

for some 1 > 0. Recalling that 8 < 7% P — a.s., this contradicts Proposition 3.4.17. O

4.3 Verification theorem

We now explain how to construct a verification argument. Contrary to what was done

in the above sections, we shall now allow for a jump of L at the initial time.

Proposition 3.4.19 Assume that there exists a concave function w € C?((0,00)) sat-
isfying (3.4.1) and a constant b* > 0 such that w(0) =0 and

u€[a,1] 2
On z>b" wehave Dw=1. (3.4.2)

1
On 0 <z <b* wehave min (cw — (wy + zp)Dw — = (u?k? + :L'202)D2w> =0.

Assume further that for allv € U and x > 0

: —ct
Jim e E [ X (#)1ry—00] =0 (3.4.3)
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Then, w = v. Moreover, if
1
U = argmingg 1) <cw — (uy + zp)Dw — §(u2n2 + x202)D2w) ,
then the optimal strategy associated to the initial condition x is given by U = (ﬁ,f/ +
(z — b*)") where # = 4(X?) and (X?,L) is the solution of the Skorokhod problem

X2(t) =@ AV + [y 1a(XZ(s)ds + [5 a(X2(s)rdW + [5 XZ(s)nds
+ fg X2(s)odW? — Ly

X2(t) € (0,6"]

Li = Jy pxeempmydLs -

Proof. 1. We first prove that

with © defined as in the Proposition. It follows from the result of [15] that the above
Skorokhod problem has a continuous solution (X7, L). By Ito’s formula, (3.4.2) and the

condition w(0) = 0, we have

E [e—dwa?)w(Xg(tm;))} — w(z)—E

/0 " e—CSDw<X§(s))d£S] (bt

Since Dw(b*) = 1, it follows from the definition of L that

t/\Tgl;’ .
/ e “°dL,
0

Since w(X;T ’L) is bounded by continuity of w and the bound on X5E sending t — oo

E [e—dwi)w(xg(mfg))} = w(z)—E

leads to the required result.
2. We now prove that w(z) > J(x;v) for all v € U. Fix v = (7, L) € U. By the same

arguments as in 2. of the proof of Proposition 3.4.18, we observe that
5 tATY
E |e " ew(XY(tATY)) + / e_CSdLS} <w(x) .
0

Since w is concave, bounded at 0 and Dw = 1 for = > b*, the condition (3.4.3) implies
that
Jim B e~ " u(XY( A )] =0,

which leads to the required result. O
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Chapter 4
Stochastic target problems

A general stochastic target problem consists in finding the set of initial conditions z
such that there exists a control process v, belonging to a well defined set of admissible
controls, for which a given controlled process Z},(T') reaches a given target, say for
example a Borel subset of RI*1,

In this Chapter, we consider the case where Z}, = (X{,, Y}, ), where X is R%valued
and Y is R-valued. We address the problem of finding the minimal initial data y such that
Yy (T) = g(X{,(T)) for some admissible control v, where g is a R¢ -+ R measurable
function.

Note that this corresponds to a generalization of the usual super-hedging problem in
finance where Y corresponds to the wealth process, X the risky assets and g the payoff

of a plain Vanilla option, see [3].

1 The Model

We now assume that the set U in which the admissible controls take values is compact
and convex. The controlled process Z}, = (X{,,Y}",) is defined as the solution on [t, 7]

of the stochastic differential system :

dX(s) = p(X(s),v(s))ds+a” (X(s),v(s))dW(s)
+ [ B(X(5).0(5).0) n(dor ds)
R4
dY(s) = r(Z(s),v(s))ds+a* (Z(s),v(s)) dW(s)
+/ b(Z(s—),v(s),o) u(do,ds)
Rd
Z(t) = (x,y) (4.1.1)

90



where p, «, B, r, b and a are continuous with respect to (¢t,v,0) € [0,T] x U x R?,
Lipschitz in t, Lipschitz and polynomialy growing in the variable z, uniformly in the
variables (v, 0), and bounded with respect to . This guarantees existence and unique-
ness of a strong solution Zy, to the stochastic differential system (4.1.1) for each control

process v € U.

Let g : RY — R be a measurable function. Our stochastic target problem is :
v(t,x) :==inf I'(¢, x)

where

I(t,z):={yeR : Ivel, Yiy(T) > g (X{.(T) } .

Assume that the infimum in the definition of v is attained and let y = v(t,z). Then,
we can find some v € U such that Y}, (T) > g (Xt”x(T)) Hence, if we start with ¢/
> y, we should be able to find some v/ € U such that Y;ﬂ;y,(T) >y (X;’;(T)) If this
property does not hold (which can be the case in a jump diffusion model) we are not
able to characterize the set I'(¢,x) by its lower bound v(¢, x).

Hence we assume that, for all (t,2,y,1') € [0,T] x R? x R x R,
y >y and y € I'(t,z) = 3y € I'(t,z).

By standard comparison arguments for stochastic differential equations, it will hold in
particular if b is independent of y (see e.g. [21]). It will also hold in most financial
applications as soon as there is a non-risky asset.

Under the above assumption, for each [0, T]-valued stopping time 6 and control v € U,
v(0, X{,(0)) corresponds to the minimal condition, when starting at time 6, such that
the stochastic target can be reached at time 7. This means that, if v is finite, given y
> v(t,z), we can find a control v such that V3",  (0) > v(6, X}/,(0)) for any [0, T]-valued
stopping time 0 (see Proposition 4.2.20 below). Assume that v is smooth and denote
by Dv the gradient of v with respect to . Applying [t6’s Lemma to v shows that the
only way to control the Brownian part of Y}, () — v(-, X{,(+)) is to define v(:) in a
Markovian way by v(-) = (-, X{,(-), Y%, (-), Du(-, X{,(-))) where, for all (t,z,y) €
[0,7] x R? x R,

W(t,x,y,-) is the inverse of the mapping v — o (¢, z, v)a(t, z,y,v).

Hence, we assume that, either, « is invertible and 1 is well defined, or, a = o = 0.
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2 Dynamic programming

In order to characterize the value function as a viscosity solution of a suitable PDE,
we need a dynamic programming principle. For stochastic target problems, it reads as

follows.

Proposition 4.2.20 Fiz (t,z) € [0,T] x R%.
(DP1) Lety € R and v € U be such that Y}, (T) > g (Xt”,z(T)) Then, for all stopping
time 6 > t, we have :

v
thvx:y

(0) > v (6, X0, (0)) -
(DP2) Sety < v(t,x) and let >t be an arbitrary stopping time. Then, for allv € U :
P Y, (0) >0 (0,X{,(0)] <1.

Proof. The rigorous proof can be found in [25]. We only sketch the main argument.
The assertion (DP1) is essentially a consequence of the fact that Zy(T) = Zj 27 .(0) (T)
and the very definition of v. As for (DP2), we observe that (formally), if Y}, ,_, (6) >
v (0,X7,(0)) P—as., then there must be a control o such that Zg7Z1£V,z(0) (T') reaches the
epigraph of g P — a.s.. Thus, setting v = v1jgg) + V1 1), we get Z (T) reaches the

epigraph of g P — a.s. which contradicts the fact that y < v(¢, x). O

The interpretation of (DP1) and (DP2) is very natural. If y > u, then there should be a
control such that the target can be reached. Thus, at any intermediate time 6, we are in
position to find a control on [, T] such that we can reach the target at T'. This exactly
means that Y, ,(0) > v (0, X},(0)). Conversely, if y < u then there is no control such
that the target can be reached for sure. But if Y, ,(6) > v (0, X7,(0)) P — a.s., then
there is a control such that starting from Y}",  (6) the target can be reached for sure.

This leads to a contradiction.

3 PDE characterization in the mixed diffusion case

In this section, we assume that v is well defined (see the previous section) and that U

is convex. We introduce the support function d;; of the closed convex set U :

Su(¢) :=sup(¢,v) , (ER?,
vel

and U, the restriction to the unit sphere of the effective domain of & :

0, = {g eRe, ¢l =1, du(¢) € Rd} .
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Clearly, Ui is equal to the unit sphere of R% We use this notation since part of our
results holds without the compacity assumption on U.
Notice that U and Int(U) may be characterized in terms of U; :

veU-< xyv) > 0 and v e Int(U) < xy(v) > 0,

where

xo(v) = inf (0 (¢) = (V) -

cety

Remark 4.3.21 The mapping v € U — xy(v) is continuous. This follows from the

compactness of Uj.

Given a smooth function ¢ on [0, T] x R? v € U and 0 € R%, we define the operators :

Oy

Lot ) = 1z ot,2),v) = 5 (t2) = p(z, )" De(t, )
—%Trace (D*p(t, 2)a* (z,v)a(z, V)
Gt x) = blz,o(t,x),v,0) — @ (z+ p(x,v,0)) + ¢ (t )

Thgtta) = min{ inf 0""p(t.0) xw ()}
Hp(t,x) = min{L%(t,x); T (t,x)}

where Dy and D?¢ denote respectively the gradient and the Hessian matrix of ¢ with

respect to x. We also define :

Goo(t,x) = G"p(t,x) forv=1(t,z,o(t, ), Dp(t,x)),
’7A'cp(t,a:) = TYp(t,x) forv=1(t,z,o(t,z), Dp(t,x)) ,
Ho(t,x) = Ho(t,x) for v =1t z, ¢t ), Dp(t,x)),

and we naturally extend all these operators to functions that are independent of ¢ by
replacing ¢ by T in the definition of v.

In the following, we shall assume that the support of ® is R, We can always reduce to
this case, after possibly changing 8 and b.

3.1 Viscosity property inside the domain

Theorem 4.3.1 Assume that v* and v, are finite. Then, the value function v is a

discontinuous viscosity solution on (0,T) x R? of :
Ho(t,z) =0. (4.3.1)
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Proof. We shall only prove the sub-solution property. The super-solution property can
be proved similarly by appealing to (DP1) instead of (DP2). Let ¢ € C?([0,7] x R%)
and (tg, o) be a strict global maximizer of v* — . Without loss of generality, we may
assume that (v* — ¢)(to, z9) = 0.

We argue by contradiction. Set yo := ¢(to, zo), 20 := (20, yo), and assume that

% = Ho(to, o) > 0.

Then, from our continuity assumptions, there exists some 1 > 0 such that for all (¢, z) €
By := B((to, %), 2n) and § € [-n,7)] :

~

H(e+90)(t,z) > €. (4.3.2)
Let (tn,Tn)n>0 be a sequence such that :

(tn,xn) —> (to,xo) and v(ty,z,) —> v*(to,x0)

as n tends to co. Set ¥y, := v(tn, Tn) — n" L, 2, := (Tn,yn) and notice that

V(tn, n) — 0" — @(ty,z,) tendsto 0 as n tends to oo . (4.3.3)

Since (tn, zn) — (to0, 20), we may assume without loss of generality that (t,,z,) € B
:= B((to,20),7n). In order to alleviate the notation, we shall denote :

Zn() = (Xa(),Ya() =22, ()

the state process with initial data (¢,, z,,) and feedback control process 0, (+) := (-, Xy (.),
Yo (+), Do(+, X,,(+))) (existence of Z,, follows from our Lipschitz and polynomial growth
assumptions on the coefficients of the diffusion uniformly in v, see Section 2). Notice
that from (4.3.2) and the characterization of U in terms of its support function (see
Section 3)

[(s, Xn(s)) € By and |Yy,(s) — (s, Xn(s))| < n] = Dn(s) €U . (4.3.4)
Define the stopping times :

07 = TAinf{s>t, : AZ,(s)#0},
0 = TAnf{s>t, : |[Yu(s) — (s, Xn(s))| > n} .
Denote by Zf the continuous part of Z,,. Since 6/, is the time of the first jump of Z,,

we have :

Zn(s NG =Z5(s N0, s>t (4.3.5)

94



Finally, define the sequences :
Tn = TAIf{s>t, : (s,Xn(s)) &€ Bo} , Op = o ANO. AO2

together with the random sets J,, :=={w € Q : 7, < 0l A 0%}. Notice that from the
definition of 6,,, (4.3.2) and (4.3.4) for all s > t,,

Un(sANB,) €U
e < 1 (Zu(s NOn), U5 A Oy7)) + LN 5 (5 A 6,7, X (s A On7))
1 (Xn(sAN0p ), 0 (s AOp, Xpn(sN0p7)) ,un(sABy)) (4.3.6)
e < Uiélnqu b(Zn(sNbp7),vn(sNby),0)

+G SN0 5 (5 A By, X (5 A O7))
—b(Xn(sN0p), 0 (N0, Xn(sAOy)) un(sAOy7),0) .

By (4.3.5), applying It6’s Lemma to ¢ on [t,,0,) leads to
On
(0=, Xn(0n—)) = ¢(tn,zn) +/t r(X5(s), (s, X5(s)), In(s))ds
o
- [ e, i) ds
tn
+D¢(s, X5(5)) a(X5(s), In(s))dW (s) ,

where by definition of Y,,, ¥, and o,

On
Yo(On—) = yn+/t 7(Z3(8), n(s))ds + a*(Zy,(s), on(s))dW (s)
= V(tn,Tn) — n~t
On,
+ /t 7(Z5(8), Un(8))ds + Dep(s, X;,(8)) (X5 (), n(s))dW (s) .

Then, by a standard comparison result on the dynamics of ¢(-, X,,(-)) and Y, (+), the
definition of 7, 6, and (4.3.6), we obtain :

Yo (On—) — o(On—, Xn(On—)) > v(tn, o) — % R (4.3.7)

where the last inequality is obtained by taking some sufficiently large n and using (4.3.3).

We now provide a contradiction to (DP2) at stopping time 6,, for some large n. We

study separately the case where w € J,, and the case where w € J£.
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Case 1, on J,,: Define

—(:= sup (v —o)(t,x) (4.3.8)
(t,l‘)eapBo

where 0,8 stands for the parabolic boundary of By, i.e. 9,By := [to — 21, tg + 2] X
dB(z0,2n) U {to+2n} x B(wo,2n). Since (to, 7o) is a strict global maximizer of v* — ¢,
we have ¢ > 0.

Recall that on 7, 0l > 0, = 1. Hence, from (4.3.5), Z,(- A 0,,) is continuous on 7,.
Together with (4.3.7) and the fact that v < v*, this leads to

(Yo (0n) = v(0n, X0n(00)] Uz, = [Ya(7s) — v(70, Xn(7))] Uz,
Z [SD(Tnan(Tn)) - U*(Tn,Xn(Tn))
+ v(tn, xn) — n - o(tn, Tn) |1, .

Since by continuity, (7, X (7)) € 0pBo, on Jy,, (4.3.8) implies that
Yo (0r) — v(0n, Xn(0,))] L7, > [C +v(ty, xy) —n L — ap(tn,xn)] Iy, .
Using (4.3.3) and assuming that n is large enough, we get :
[Yn(6r) — v(0n, X (0,))] Lz, > (¢/2) 7, for some ¢ > 0. (4.3.9)

Case 2, on J¢ : Recall that on J¢, 6, = (6% A 69). From the definition of 6%, (4.3.5)
and (4.3.7), we have
Yo (0n) = @O, Xa(0n))] Mg Mpa i = |Yi(05) — (07, X5:(67)) | Lz

0d <63, 62 <63,

ot<6 - (4.3.10)
On the other hand, on J¢ N {#% > 6]}

> wf* @)
/ D(Zn(037), 5 (03), 0) ({63}, do)
[ G770, X, 8] (167} o)

= [ MO (O X, 000). 50 (0). (103} )
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Using (4.3.6) and (4.3.7), this proves that
(Y0 (0n) — ©(0n, X0 (6r))] ]1‘77?]19%29%

1
> (0t @n) = — = @(tn, o) + 2| Ugellps g -

Finally, by (4.3.3), the fact that v < v* < ¢ and (4.3.10), this proves that we can find

some n such that :
[V (0n) — v(0n, X0n(0n))] Mge > (e/2 N 17)11% (4.3.11)

for some € > 0 and n > 0. o

3.2 Boundary condition

The nonlinear PDE reported in the above theorem does not provide a complete char-
acterization of the value function v. To further characterize it, we need to specify the
terminal condition. From the definition of v it is clear that v(7T, z) = g(x) but we know

that v may be discontinuous in T'. Therefore we introduce :

G(z) = limsup v(t,2') and G(z) := liminf v(¢,a') z € RY.
tT,x'—x T ,x' =

Observe that the above functions functions may not be smooth. Since the constraint on
the gradient which appears inside the domain through the operator 7 should propagates
on the boundary, it is natural to consider the equations solved by G and G in the viscosity

sense.

Theorem 4.3.2 Let the conditions of Theorem 4.5.1 hold. Then, if G is finite, it is a

viscosity super-solution on R? of

min {gp(a:) — () ; 7A'g0(a:)} =0, (4.3.12)
and, if G is finite, it is a viscosity subsolution on R¢ of

min {g@(z) — (@) ; ﬂo(az)} ~0. (4.3.13)

We split the proof in different lemmas.
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Terminal condition for G
Lemma 4.3.8 For all z € R, we have G(z) > g.(x).

Proof. Fix z € R? and let (t,,z,) be a sequence in (0,7) x R? such that v(t,,x,)
tends to G(z) as n tends to co. Set y, := v(tn,z,) + n~ L. By definition of v(t,,x,),

there exists some control v, € U such that :

Yo (1) =g (X, (1)) .

tn,znyyn tn,Tn

Now, observe that Z; (T) — (x,G(x)) P-a.s. as n — oo after possibly passing to

tn,Tn,Yn

a subsequence. Then, sending n — oo in the last inequality provides :

G(z) > liminfg (z') = gu(z) .

' —x

Lemma 4.3.9 Let 2o € R? and f € C?*(R?) be such that :

0 = (G~ f)(xo) = min(G — f)(x) .

rERY

Then,
Tf(z0) > 0.

Proof. Let f and z( be as in the above statement. Let (s,,&,)n be a sequence in
(0,T) x R? satisfying :

($ns&n) — (T,x0), sn <T and wvi(sp,&) — G(xo) -

The existence of such a sequence is justified by the fact that we may always replace v
by v, in the definition of G. For all n € N and & > 0, we define :

T—1t

T—s5,

k
on(t,z) = f(a) - Slle = ol + k
Since f is continuous in (¢, z, ), bounded in ¢ and U is compact, we see that :
n:i= sup{|ﬂ(x,0,u)\ coeRY veU, ||z —ax < C’} < 00,

where C' > 0 is a given constant. Let By denote the closed ball of radius 1 centered at
xo. Notice that for t € [s,, T], we have 0 < (T — t)(T — s,)~! < 1, and therefore :

lim limsup sup |k (t,z) — f(z)| =0. (4.3.14)
k=0 n—oo (tz)€[sn,T]x Bo
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Next, let (t*

k k) be a sequence of local minimizers of v, — ¥ on [s,, T] x By and set e

= (vs — ©F) (% 2F). We shall prove later that, after possibly passing to a subsequence :

forall £>0, (tZ7 n) (T7 l’o) ) (4315)
forall k>0, tF < T for sufficiently large n (4.3.16)
v (t8 2F) — G(x0) = f(xo) as n— oo and k — 0. (4.3.17)

First notice from (4.3.15) and a standard diagonalization argument, that we may assume
that 2% € IntBy. Therefore, by (4.3.16), for all k, (t£, 2¥) is a sequence of local minimizers
on [sp,T) x IntBy.

Also, notice that from (4.3.14), (4.3.15) and (4.3.17)

for all k>0, DpE(tr 8y = Df(aF) — k(zk —20) = Df(zo), (4.3.18)
and lim lim ¥ = 0 . (4.3.19)
k—0n—oo

Hence, for sufficiently large n, using Theorem 4.3.1, (4.3.16) and the fact that (¢

n? ’I’L)

is a local minimizer for v, — ¢, we get,
Tlo+e)(th,zF) > 0 forall neN, k>0.

The statement of the lemma is then obtained by taking limits as n — oo, then as k — 0,
and using (4.3.14), (4.3.15), (4.3.17), (4.3.18), (4.3.19) as well as the continuity of the
involved functions.

In order to complete the proof, it remains to show that (4.3.15), (4.3.16) and (4.3.17)
hold.

Notice, from the convergence assumption on (s, &, ), that we can find some large integer
N (independent of k) such that for all n > N and & > 0 :

k
(vs — (P’:L)(Smfn) = vu(8n,&n) — f(&n) + ”fn — ol —k < ) < 0.
On the other hand, by definition of the test functlon fs
(vy — )T, ) = G(x) — f(z) + EHCE —xol> > 0 forall zeRe.

Comparing the two inequalities and using the definition of (t*,z¥) provides (4.3.16).

For all k > 0, let ¥ € By be the limit of some subsequence of (z£),,. Then by definition

of x¢, we have :

0 < (G- HE") = (G = f)xo)
k
< liminf(ve = ¢5) (b, 2n) = (0 = ) (5n,6n) = 512" = 20l
Ttk
+ kT_Sn—k.

99



Since s, < tF < T, it follows from the definition of (%, z%) that :

.. k
0 < Timinf(v, — @h)(tS, 25) = (0n — k) (5m €0) — 3 2% — 2]

n»n
n—o0

IN

k
—5 " =l < 0,

k

This proves that we must have z* = x(, and therefore (4.3.15) holds since the convergence

of the sequence (t£),, to T is trivial. Notice that the two last terms in the previous

inequality tend to 0. This proves that

liniinf(v* — Btk 2k =0

which, together with (4.3.14) and (4.3.15), implies (4.3.17), after possibly passing to

some subsequences. O

Terminal condition for G

Let f be in C%(R?) and x € R? be such that

0= (G- f)(xo) = max (strict)(G — f) .

We assume that

min { f(z0) = g*(x0) s Tf (20)} >0, (4.3.20)
and we work towards a contradiction to (DP2) of Proposition 4.2.20 in the 4th Step of
this proof.

Ist Step. Fix some arbitrarily small scalar ¢ > 0 and define on [0,T] x R? :
1
o(t,z) == f(z) 4 cl|z — 2o||* + (T —t)2 .

Notice that for all z € R? :

agogt,:c) — —o0 as t — T (4.3.21)

Recall that r, Dy, D?p, a and p are continuous and therefore locally bounded. Hence,
we may assume by (4.3.21) that for all (¢, x, y) in a suitable neighborhood of (T, z¢, f(z0))

r(z,v) —r(z,p(t,z),v) + L(t,z) >0 forallveU. (4.3.22)

Now, notice that /8 is uniformly bounded in ¢ on any neighborhood of (T, z¢) and that
o(T, x0) = f(x0). Hence, by (4.3.20) and by taking a sufficiently small ¢, we may assume
that ¢ satisfies :

o(T,x0) — g*(z0) > 0 and ienﬂgd G () (T, x0) >0 .
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Then, by upper-semicontinuity of ¢g*, continuity of ¢, and continuity of b and 8 uniformly
in o0 and v, there exist some ¢ > 0 and some 1 > 0 such that for all (t,x) € By :=
[T —n,T] x B(xo,n) and § € [~n,7) :
o(t,z)+6 — g*(z) >e and inf G7(¢+6)(t,z) >
o€Rd

Finally, by using (4.3.22) and by taking a sufficiently small 7, we may assume that for
all (t,.’B,(S) S B()X [—

)
Uk
mln{gp (t,x) +d —g*(x); ﬁ(gp—i—é)(t,x)} > €. (4.3.23)

2nd Step. Let (s,,&,) be a sequence in [T —n/2,T)x B(xg,n) C By satisfying :

(80,&n) — (T, 20), 8n <T and v*(sn, &) — G(xo) .

Let (t,,,) be a maximizer of (v* — ) on [s,, T|x B(x¢,n) C By. For all n, let (t£, 2F),

n? n
be a subsequence in [s,, T] x B(xg,n) satisfying :
(t

n? n)

(tn,zyn) and v(tl’C k) — 0¥ (tn, Tn) -

n’ n

We shall prove later that

(tn, zn) — (T, z0) and v*(t,, z,) — G(z0) (4.3.24)

and that there exists a subsequence of (t&, %), ., relabelled (¢, x/,), satisfying :
(th,xh) — (T,m9) and v(t,,z)) — G(zo) , where for all n, ¢, < T . (4.3.25)
3rd Step. Consider the sequence (t,,,x,) of the 2nd Step. Set y), := v(t,,z)) — n 1,

2l = (2}, y),) and notice that

v(t,xl) —n"t —o(t,, x)) tendsto 0 as n tendsto oo . (4.3.26)
Hence (t,,2],) — (T, xo, f(z0)) and we may assume without loss of generality that
(t,,2!) € Int By and that |y!, — p(t),, 2!,)| < n for all n. In order to alleviate the notation,

we shall denote :
Zn() = (Xn(), Ya() =207, (1)

the state process with initial data (¢, z},) and control process vy, (-) := ¥(-, X, (.), Yn(+),

nr n

Dp(-, Xn(+))). Recall that by (4.3.25), ¢, < T for all n and define the stopping times :

0) = T Ainf{s> 1), : AZ,(s)#0} ,

0l = T Ainf {s>1t,  |Ya(s) — @(s, Xpn(s))| = n}
o = TAinf{s>t, : (s,X5(s)) € Bo} ,

On = TaA(0) N0,
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together with the random sets 7, := {w € Q : 7, < (64 A 6%)}. Finally, define

—¢:= sup (G- f)(z).

2€0B(x0,n)

Since g is a strict maximizer and (G — f)(z) = 0, we have ¢ > 0.

4th Step. We can now prove the required contradiction. Arguing like in the proof of
Theorem 4.3.1 and using (4.3.23) as well as (4.3.26), it is easily checked that we can find

some n such that :

Yo (0) = v(0n, Xn(6r)) > C/2HJ7L+(5/2/\77)HJ5 >0
and Un(-NBp) €U on [t,,T].

Since, yl, < v(t),,z,) this leads to the required contradiction to (DP2).
5th Step. It remains to prove (4.3.24) and (4.3.25). Clearly, ¢, — T. Let & € [xg —
1, o + 1] be such that x,, — &, along some subsequence. Then, by definition of f and

To

o
v

(G =)&) = (G = f)(zo)
> limsup(v* — @) (tn, 2n) + ¢l|Z — z0||* = (v* = ) (50, &)

n—oo

> ||z — :L‘0||2 >0,

where the third inequality is obtained by definition of (¢,,x,). Hence, & = ¢ and, by
continuity of ¢, v*(t,,x,) — G(z0). This also proves that
lim lim(¢8 2%) = (T,29) and lim lilgn v(th, 2%y = G(x0) . (4.3.27)

n*n n»n
n k n

Now assume that card{(n,k) € Nx N : t¥ = T} = co. Since v(T,-) = g(-), there exists

a subsequence, relabelled (t£, %), such that :

n»'n
n

lim sup limsup v(t*, 2%) < g*(x0) .
k

Since by assumption ¢g*(xg) < f(z9) = G(x0), this leads to a contradiction to (4.3.27).
Hence, card{(n,k) e NxN : th =T} < o0, and, using a diagonalization argument, we

can construct a subsequence (t),z,), of (t&, z%), ;. satisfying (4.3.25). O

n»r'n n»'n
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4 The pure jump model

The proof of Theorem 4.3.1 can be reproduced almost exactly in the case where o = a

= 0, i.e. in the case of a pure jump model.

Theorem 4.4.1 Assume that v* and v, are finite. Then, the value function v is a

discontinuous viscosity solution on (0,T) x R? of :

sup min {E”(p(t, x); inf Q”"’(p(t,x)} =0. (4.4.1)
velU o€R?
Notice that since o = 0, we have
v d¢ .
L QO(t,SU) = T($7 QD(t,I‘), V) - a(twr) - p(t,x, V) DQD(t,I) :

Theorem 4.4.2 Let the conditions of Theorem 4.4.1 hold and assume that G and G

are finite. Then :

H,(G(z)) := min {G(x) — g«(z) ; sup inf gV’UG(l')} >0, zeR? (4.4.2)
velU o€Rd

H*(G(x)) := min {G(ZL‘) —g"(z); sup inf g“"é(x)} <0, zeR?. (4.4.3)
velU oc€R4

In contrast to Theorem 4.3.2, the boundary condition is obtained in the classical sense
(in opposition to the viscosity sense). This comes from the fact that it does not contain

any derivatives term.

In general, we are not able to prove that G = G, and, even if ¢ is continuous, we
have no general comparison result for continuous functions satisfying both (4.4.2) and
(4.4.3). Nevertheless, the intuition is that if g is continuous and G = G =: G, then G
should be interpreted as the smallest solution of (4.4.2)-(4.4.3). In this case, and under

mild assumptions, we can construct explicitly a sequence of functions that converge to G.

The existence of a smallest solution for (4.4.2) is easily obtained under (4.4.4) below.

Proposition 4.4.21 Assume that there exists a strictly increasing function h on R such
that for all (z,v,0) € RY x U x R?, the mapping

y+—y+blx,y,v,0) — h(y) is non-decreasing. (4.4.4)
Assume further that there exists a finite function f satisfying H.(f) > 0 on R
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Then, there exists a lower-semicontinuous function £ such that H,(¢) > 0 on R? and
such that £ < f for all function f satisfying H.(f) > 0 on R?, i.e. (4.4.2) admits a
smallest solution which is lower-semicontinuous. Moreover, we have H,(¢(x)) = 0 for
all z € RY,

Remark 4.4.22 (4.4.4) implies in particular that for all finite function f

y—y+sup inf b(z,y,v,0) — f(z + B(z,v,0))
velU o€R?

is strictly increasing. Hence, given (y1,y2) € R? and a finite function f such that

y1+sup inf b(.fL‘,yl,I/,O')*f(l'ﬂ’ﬁ(l‘,l/,O’)) > 0
velU o€R?

y2 +sup inf b(x,y2,v,0) — f(x + B(z,v,0)) < 0,
velU o€R?

(4.4.4) implies that y1 > yo. Moreover, if such y1 and yo exist, by using the continuity
of b in y, uniformly in (v,0), we can find some y (which is unique) such that

y+sup inf b(z,y,v,0) — f(x + B(z,v,0)) =0.
velU o€R?

We now provide sufficient conditions under which we can explicitly characterize the
boundary condition. The assumptions of the following proposition are quite strong but

it gives the intuition for the general case.

Proposition 4.4.22 Let the conditions of Theorem 4.4.2 hold. Assume that g is con-
tinuous and that there exists a continuous smallest solution ¢ of (4.4.2). Assume further
that there exist a neighborhood V' of T and a classical super-solution w of (4.4.1) on V
x R? such that, for all z € RY, limyr, e w(t, ') = w(T,z) = £(z) and for all (t,z)
€V x R4

Y — y + sup infd b(x,y,v,0) —w(t,x + B(x,v,0)) is strictly increasing. (4.4.5)
veU o€R

Then, G =G = /.

Remark 4.4.23 If we combine the conditions of Propositions 4.4.21 and 4.4.22, we
obtain that G = G = ( where { is the solution of H,({) = 0.

Proof. Fix (t,z) € V x R? and set z := (x,y) where y := w(t,z). w satisfies on V x
R?
sup min {E”w(t, x); inf g”’aw(t,x)} >0, (4.4.6)
velU o€Rd
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Define for all n € N \ {0}, the sequence of stopping times :

61 = TAinf{s>t : AZZz(s);éO}
Oni1 = T Ainf {s >0 0 AZ](s) # 0} ,
where the control process v is defined in a Markovian way as v(-) := o(-, X,(+)) and

o(t,r) is the argmax in (4.4.6) for all (t,2) € V x R?% Using (4.4.6), the fact that
y = w(t,z) and standard comparison results for stochastic differential equations, we
get that Y}, (01-) > w(f1-, X{,(017)). By (4.4.5) and (4.4.6) again we obtain that
YY.(01) > w(01, X{,(01)). Using a recursive argument, we get that, for all i > 1,
Y (6:) > w(8i, Xy (6:)). This proves that : Y2,(T) > w(T, XY,(T)) > ((XY,(T)) >
g(X¢,(T)). Hence, by definition of v, for all (t,z) € V' x RY, w(t, ) > v(t,x) and £(z)
= limy7,0/ e w(t, @) > Iimsupyyp o, v(t, @) = G(x) > G(x), where the last inequality
is obtained by definition. The result is finally obtained by noticing that, by definition
of £ and Theorem 4.4.2, G > /. O
Finally, we give some conditions under which we can easily prove the continuity of the
smallest solution of (4.4.2).

Proposition 4.4.23 Under the conditions of Proposition 4.4.21, if g is uniformly con-
tinuous and b and B are independent of (x,y), then the smallest solution £ of (4.4.2) is

uniformly continuous.

5 Applications

In this section, we will always assume that the standing assumptions of this Chapter

hold except when the contrary is explicitly specified.

5.1 Optimal insurance and self-protection strategies

We denote by U the set of all IF-predictable processes v = {v(t), 0 <t < T} valued in
U :=U; x [0,1], where Uj is defined below. Fix z := (t,z,y) € [0,T] x (0,00) x R. We
assume that the dynamics of Y** and X** are given by
dYY = Y'rds—c(vl)ds — w(v?, X¥)ds — / (1 —vHb(XY, 0)u(do, ds)
Rd

dX? = uvlds

together with the initial condition (X;"*,Y;"*) = (z,y).
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Remark 4.5.24 This dynamics is derived from that of Section 2 by setting p(t, x, v) =
2

vhr(z,y,v) =ry — c(v!) — n(v?,2),a =a =B =0and b(z,y,v,0) = —(1—1v2)b(x, 7).
The economic interpretation of the above model is the following. Consider the problem
of an agent who wants to protect part of his wealth from a depreciation due to a random
event modeled by a point process associated with the mark-space R? and the random
measure U.

He has the choice between insurance and self-protection. The level of self-protection is
modeled by the controlled process X”. The nonnegative insurance premium 7 is paid
continuously and depends on the level of insurance v? € [0, 1] and self-protection X*.
We suppose that 7, defined on [0,1] x [0,00), is Lipschitz continuous, nondecreasing
with respect to its first variable and non-increasing with respect to its second variable.
We assume that the level of loss b is decreasing with x, that there exists a level £ € RT
such that, for all # > &, b(z,-) = 0 and that b(z,0) > 0 for all z < & and ¢ € R?.

The wealth of the agent Y” may be invested in a non-risky asset with instantaneous
appreciation rate r > 0. Y" is used to pay the insurance premium, the non insured
losses (1 — 2)b(X",-) and to invest in order to increase the level of self-protection X.
The instantaneous level of investment is modeled by the U!-valued control process v!,
where U! = [0, 7!] (with 7' > 0), and the associated instantaneous cost is ¢(v!) where
c(U") is bounded, ¢(0) = 0 and ¢(v!) > 0 on (0, 7].

The aim of the agent is to compute the minimal initial wealth needed in order to guar-
antee the non negativity of the terminal wealth Y7/, and therefore, the value function of

the associated super-replication problem is :
v(t,z) := inf {y eR : Jvel, Y;’(t’w’y) >0 } .
Using Theorem 4.4.1 we can easily prove that :

Theorem 4.5.1 The value function v is the unique continuous viscosity solution on
(0,7) x (0,2) of

o(t,x)r —w(l,xz) — ago((;t,x)(t,x) —cC (W) =0,

where

ox vleul ox

satisfying thnjl" v(t,x) =0, for all z € (0,%), and li%I} v(t,x) = 0, for allt € [0,T].
— Tr|x

é(ﬁgp(t,m)) — inf <c(y1)+ylf990(t7‘r)> |
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Remark 4.5.25 Fix (t,z) € [0,7] x [0,2). Direct computation show that f(¢,z) :=
w(1,2z)/r (1 —exp(—r(T —t))) is the minimal initial capital needed in order to pay
full insurance on [t, T] if the level of self-protection remains equal to z, i.e. v! = 0.
Therefore, if f(t,x) > v(t,z), it is less expensive to invest in self-protection and the
problem is basically a problem of optimal rate of investment. From an economic point
of view, v(t,z) may be considered as a upper-bound for the discounted price of full

surance.

Proof. We first prove that for all (¢,z) € [0,T] x [0,7] :
. [ — " _1
0 < o(t,x) <min|( f(t,z), o (m(L,z) +c(@)) ) , (4.5.1)
where f(¢,x) is defined as in the above Remark. It is clear from the dynamics of Y
that v > 0. To see that v(t,z) < [i;“fﬁ
(W(s),v%(s)) = (P Ms_y<pzogjtjor, Ws_y<fz—gj+/p1) for s € [t,T] and notice that X" is

nondecreasing with X" (t+[#—z]" /') = #. Then, using the fact that 7 is non-increasing

(m(1,z)+ c(#!)), consider the strategy where

with respect to =, it is easily checked that starting with [# — z]* /o' (7(1,2)+ c(#1)) is
more than we need to adopt a full insurance strategy up to TA [# — x| /7! and then a
full self-protection strategy with no insurance from TA [& — z]* /! up to T.

Boundary conditions. This is a direct consequence of (4.5.1).

Super-solution property. From (4.5.1), v, is finite and, by Theorem 4.4.1, v, is a viscosity

super-solution on (0,7") x (0,2) of

. 0p(t, ) 0p(t, )
ol (2 1 .
lsllelgmm{cp(t,a;)r c(v') — (v, x) 5t v

inf —(1—v?)b(z, =0.
it (1= ()}

Since inf cga —(1 — v?)b(z,0) < 0 if < 2 and v? < 1, this proves that v, is also a

viscosity super-solution on (0,7") x (0,%) of

sup o(t,z)r —c(v!) —n(1,z) — do(t,x) ylM

=0.
vley? 3t 8x

*

Subsolution property. From (4.5.1), v
subsolution on (0,7") x (0, %) of

is finite. Then, the fact that v* is a viscosity

r — by 7 B St VA s 0 B =
V?upl QO(t, ZL‘) C(V ) ( ,ZL’) 14 - 0 5

is obtained by arguing as as above.
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Continuity and uniqueness. Recall that » > 0 and 7 (1, -) is Lipschitz continuous. More-
over, from the compacity of U! and the boundedness of ¢(U!) it is easily checked that
¢ is uniformly Lipschitz. Therefore, the result is a direct consequence of [1, theorem 4.8
p.100]. O

5.2 Option hedging under stochastic volatility and dividend revision
process

We consider a financial market with a non-risky asset, normalized to unity, and a risky
asset S that pays a dividend S;,6(Xy,) € F(t1) at time ¢; € (0,7]. We assume that
the dividend anticipation process X may be modified along the time. The problem
consists in finding the minimal initial capital needed in order to hedge the contingent
claim v (S7) where v is a R-valued function, continuous and bounded from below. We

assume that the dynamics of S and X are given on [0,7] by :
dSt (S, Xp)dW (t) — (X)) My—y,)

/Xt (St-, X¢-, o) p(do, dt)

where § is continuous, valued in [0, 8] with § < 1, and b takes values in (—1,1). We also
assume that for all (¢,s,2) € [0,T] x (0,00)? :

(i) there exists o1 and o2 € R such that b(s, z,01)b(s, z, 72) < 0.

(17) a(t,s) == sup afs,z) < o
z€(0,00)
and aft,s) = 1(18f )a(s ,x) > ¢ for somee >0.
xe (0,00

Let v be a progressively measurable IF-predictable process valued in a convex compact
set U with non empty interior corresponding to the proportion of wealth Y invested in
the risky asset. Then, under the self-financing condition, the dynamics of Y on [0, T
is given by

ds,
ClY‘tV = l/tfyzj (Stt + 6(Xt)]ltt1) = I/tY;Va<St,Xt)dW(t) .

Given, (t,2) = (t,s,z,y) € [0,T] x (0,00)? x R, we denote by (§*2), X(#:2) y¥(t2)) the

previously introduced processes with initial conditions (Slft’z), Xt(t’z), Ytl/’(t’z)) = (s,z,y).

The value function associated with the target problem is defined on [0,7] x (0, 00)? by :

u(t, s, x) = mf{yER : Yu(tsxy > (S, 2EM)) ,forsomeuEU} .
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Remark 4.5.26 Using standard arguments it is easily checked that for oll v € U and
(t,z) € [0,T] x (0,00)% x R, Y*2) is a super-martingale. It follows, from the definition

of v and the fact that v is bounded from below, that v is also bounded from below.

Notice that our continuity assumption of Section 2 does not hold in this model because of
the term §(X¢)1;—, in the dynamics of S. We show in Lemma 4.5.10 that this difficulty
may be avoided.

We first introduce some notation. For all (¢,s,2) € [0,T] x (0,00)%, we set

Ui (t, 8, 2) i= Hminf (g oy 52y 0(E, 8", @), 0¥(2, 5, @) i= imsup g 4y (5.2) V(L 8’5 2)

Gy(s, ) = lminfyr, (g o152 V(1,8 2) 5 Gi(s, @) := MM supygy (o 20y (s,0) V(8" 27) -
Then we have the

Lemma 4.5.10 Assume that v* is finite on [0,t1] and Gy, is finite, then Theorem 4.5.1
holds for v on (0,t1). Moreover, Theorem 4.3.2 holds for G, and Gy, with g.((s,z)) =
Ox(t1,8(1 = d(x)),x), g"((s,x)) = 0*(t1,s(1 — 6(z)),x) and T = t;.

Proof. The proof is similar to that of Theorem 4.3.1, so we only explain how to adapt
it. First notice that (DP1) and (DP2) hold in our framework and that there is no
discontinuity on the functions driving the dynamics of S on (0,¢1). Since by Remark
4.5.26, v, is finite, Theorem 4.3.1 holds for v on (0,¢1). We now consider the boundary
conditions.

Super-solution. First notice that, by Remark 4.5.26, G,, is finite. From (DP1), for all
(t,s,2) € [0,1) x (0,00)? and y > v(t, s, x), there exists some v € U such that :

}/tzl/,(t,s,z,y) > U(thst(f,s,x) X(t,s,x)) _ U(tl,st(flsw)(l _5(Xt(f,s,x)))7Xt(f,s,x))

9 t1

Hence, the proof of the super-solution property is similar as in the general case. It
suffices to replace T by t1, g((s,x)) by v(t1,s — sd(x),z) and consider the continuous
part of the state process (S(t’s’x), X(t’s’x)).
Subsolution. Fix (t,s,2) € (0,t1) x (0,00)? and y < v(t,s,x). From (DP2), for all v
eU:

P (3@’;*“’3’“” > ot S (1 - 5(x () X(t’S@))) <1

9 t1

Hence, we may apply the same kind of contradiction argument as in the proof of the sub-
solution property. Here again, it suffices to replace T by t1, g((s,z)) by v(t1, s —sd(x), x)

and consider the continuous part of the state process (S(t’s’x), X(t’s’x)). O

We can now state the main result of this subsection.
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Theorem 4.5.2 Assume that v* is finite. Then, the value function v is a discontinuous

viscosity solution on (0,t1) x (0,00) and on (t1,T) x (0,00) of :

min{—%f(t,s)—ls gi( ) xu <SO(ZS)Z(§(t,s)>}:0 (4.5.2)

where

a(t,s) == (a ]132¢>0 + Ha2¢<0> (t,s) .

Assume further that Gy, and Gt are finite, then G, and Gy, are viscosity super and

sub-solutions on (0,00) of

V)

V)

min{cp(s)— sup  0x(t1,s(1 —9d(z))); xv <)gp(s)>} = 0, (45.3)
Iy
s

z€(0,00)
(s))} = 0, (454
and G, Gt are viscosity super and subsolutions on (0,00) of

min {w(S) —(s) 5w (@fs) Zf(s)) } 0. (45.5)

Remark 4.5.27 Assume that we can prove a comparison theorem for (4.5.2)-(4.5.5),

min {cp(s) — sup 0°(t1,s(1 —d(x))) ;xv (

z€(0,00)

then v is continuous on (¢1,7") and we can replace o, and 0* by v in (4.5.3) and (4.5.4).
We may even expect to have a comparison theorem for (4.5.2)-(4.5.3)-(4.5.4). In this
case, we may be able to estimate v numerically. It suffices to compute v on [¢t1,T] and
then use its value in ¢; to approximate it on [0,¢;) by using the boundary conditions
(4.5.3)-(4.5.4).

Proof. First notice that, by Remark 4.5.26, v, G;, and G are finite. We only prove
that v, is a viscosity super-solution of (4.5.2) on (¢;,7). The other results are proved
similarly by using Theorems 4.3.1, 4.3.2 and Lemma 4.5.10.

1st Step . We first prove that v, is independent of x. Fix (tg, so,z0) € (t1,T) x (0, 00)?
and a C?((t1,T) x (0,00)?) function ¢ such that (o, s, zg) is a strict local minimum for
Vi — .

Assume that ¢ is locally strictly increasing in x at (to, so, zp). Then, for all C' > 0,
(to, 80, o) is a strict local minimum for v, — ¢ where ¢ is defined on (¢1,7) x (0, 00)>
by @(t,s,z) = p(t,s,x — C(x — 20)?).

By Theorem 4.3.1, this proves that ¢ satisfies :

1Hﬂ£ @(to, 50, o) — @(to, s0, xo + xob(s0, x0,0)) > 0.
oE
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Hence,

o(to, S0, o) > supd ©(to, S0, xo + xob(s0, o, ) — C(20b(s0, 0, O’))Q) . (4.5.6)
g€eR

From assumption (ii) there exists some & € R? such that b(sg, xg, ) > 0. Since ¢ is C!
and locally strictly increasing in z at (sg,xo), we can find some sufficiently small C' > 0
such that

©(s0, 0 + z0b(s0, 20, ) — C(x0b(s0, T0,5))?) > @(s0,x0)
which contradicts (4.5.6). Hence, (0¢/0x)(to, S0, x0) < 0.
We can prove similarly that (9¢/0x)(to, so,z0) > 0. Hence, v, is a viscosity super-
solution of dp/dx > 0 and —d¢/dz > 0. By Remark 4.5.26 and Lemmas 5.3 and 5.4 in

[6], this proves that v, is independent of z.

2nd Step . We now prove that v, is a viscosity super-solution of (4.5.2) on (¢1,7). Recall
that v, is independent of x. Fix (tg,so) € (t1,T) x (0,00) and a C%((t1,T) x (0,00))
function ¢ such that (o, so) is a local minimum for v, — ¢. By Theorem 4.3.1, for all =

€ (0,00), ¢ satisfies :
) Op 145 4 0% so Oy
_Zr _Z v . 0 ZF > 0.
mln{ ot (to,s0) 550 (s0,7) 052 (to: s0) 5 XU (0, 50) Os (to,s0) ) ¢ =0

Consider a maximizing sequence (), of a?(to, so, -)(0%¢/9s%)(to, s0). Then, the previ-
ous inequality also holds at x,, for all n and the desired result is obtained by sending n
to oo and using the continuity of o with respect to x. O
Notice that in the case where 6 = 0, the model reduces to a stochastic volatility one

where the volatility is driven by a pure jump process. In this last case we have the

Theorem 4.5.3 Assume that § = 0. Assume further that v* is finite. Then, the value
function v is a discontinuous viscosity solution on (0,7) x (0,00) of :

2

ind 20 012690 o 0 (222 _
mln{ at (t78) 28 a882 (t75) y XU <90(t,$) 88 (t7s)>} =0

alt,s) == (oﬂ]laz%o +a21132¢<0> (t,s) .

Assume further that G is finite, then G and G are viscosity super and subsolutions

on (0,00) of o
win o)~ v66) 0 (5 52) | =0

Proof. The result is obtained by the same arguments as in the previous proof. O

where

111



Chapter 5

Optimal control of
non-Markovian diffusions: the

stochastic maximum principle

In this chapter, we come back to the control problem studied in Section 1 but we now
allow f, b and o to be random maps such that (t,w) — (fi(w,-),bi(w,"),o0e(w,-)) is
predictable (we omit the w argument in the following).

Due to the randomness of b and ¢, the PDE approach of the previous sections can not be
used any more. In particular, we can not find the optimal control by using a verification
argument. However, there exists a stochastic counterpart of this approach based on the
so-called stochastic maximum principle. It corresponds to the Pontryagin principle in

deterministic control. We explain here how to use it.

We thus consider here the problem of maximizing an expected gain of the form

T
J(v) =E [g(X%) +/ fir( XY, Vt)dt] ,
0
in which X% is the solution of the one dimensional sde
dXé/ = bt(Xty, Vt)dt + O't(XtV, I/t)th

with v in the set U of predictable processes with values in R.

In the above, the random maps f, b and o are such that (¢,w) — (fi(w,z,u), by(w, z,u),
o¢(w, z,u)) is predictable for any (x,u) € R? (we omit the w argument in the following).
We also assume that they are dt x dP-a.e. bounded, C! in their argument (z,u), and

that themselves as well as there first derivatives are Lipschitz. The function g maps
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QxR — R, g(0) is uniformly bounded, and g is a.s. C! with bounded first derivative in

x.

In the following, we shall show how BSDEs permits to provide necessary and sufficient

conditions for optimality. We refer to Peng [19, 20] for further references.

1 Necessary condition

Let us start with a necessary condition for a control ¥ to be optimal. The general idea is
to used a spike variation of the form v*7 := D1(g \yjr4e, 1) + V17 r4e) With e € (0,7 —7)
and v a Fr-measurable random variable, 7 € T.

By optimality of 7, we must have
J(@0) = Jw=T),
and therefore, if € — J(v*7) is smooth,

0.J (V57 ., <0. (5.1.1)

e=0 —

The first problem is therefore to show that this map is smooth. From now on, we write
X for X? and X¥™° for X", and we assume that o does not depend on v for sake of

simplicity, see [20] for the general case.

Under this additional condition, we can first show that X*"° is smooth with respect to

E.

Proposition 5.1.24 Let us consider the process Y defined as the solution of

Vi = Lir (0r(X00) = be(Xr,0))

t . t .
+ / Db (Xs,ﬁs> sts—l—/ By0s (X) YodW . (5.1.2)
Assume that 0 has P — a.s. right-continuous paths. Then, Y7 = %X”T’e‘azo on [0,T]
P — a.s. Moreover,
0 P T A A
%J(VE’T)L::O = E [&cg(XT)Yj'f’T +/ axfs(Xs,ﬁs)YS”’Tds}
+ E [fT(XT,V) - fT(XT,aT)} . (5.1.3)
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The idea of the stochastic maximum principle is to introduce a set of dual variables in
order to exploit (5.1.3). Let us first define the Hamiltonian:

Hi(x, u,p,q) := be(x,u)p + or(x)q + fi(x, u).

Then, we assume that there exists a couple (15, Q) of square integrable adapted processes
satisfying the BSDE

T T
P, = 3$g(XT)+/ 8367{5()2'5,05,]55,@8)@—/ QsdW . (5.1.4)
t t

This equation is called the adjoint equation and (]5, Q) the adjoint process.

The reason for introducing this process becomes clear once we apply 1t6’s Lemma to
PY™ . Indeed, assuming that the local martingale part of PY™ is a true martingale,

we obtain that 8xg(XT)Y7f’” = PTY;’V is equal in expectation to
A A A T A~ ~ A A
Prbr(Xr0) = bo (X 0m) = [ VOH (Ko Py Qo)
T A o T .
+ / Oubs (Xos ) V¥ Pods + / 00y (X)) V7" Quds,
which, by definition of #, is equal to
A~ A~ A T A
Pr(br (X7, v7) = b7 (X7, D)) — / Y0 fs (Xs;ﬁs) ds .
It follows that

0

35J(I/€’T)|E: E |:HT(X7'7 VTaPTaQT) - HT(XTv ﬁ7p7'7©7'):| N

By arbitrariness of v, this implies the necessary condition
Ho (X, 00, Pr,Qr) = maﬂé(HT(XT,u, P.,Q;) P—as. (5.1.5)
ue

forall 7€ T.
A similar analysis can be carried out when o does depend on the control v but it requires
a second order expansion in the definition of Y above. See Peng [19, 20].

2 Sufficient condition

We work within the same framework as above, except that we now allow ¢ to depend

on the control process v.
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We assume here that the maps

z = g(x) and z— Hy(z, P, Q) := sup Hy(x,u, P, Q;) are P — a.s. concave (5.2.1)
u€R

for almost every t € [0,T7], and that
a{ﬂHT(XTaﬁ’IWPT?QAT) = a:v?:{T(XTaPTaQT) (522)

for all stopping times 7. Note that the latter corresponds to the enveloppe principle
along the path of (X, P, Q)

Under the above assumptions, the condition

Ho(Xr, 0p, P Qr) = maﬂ?m(x, u, Pr,Qy) Y7 el0,T) (5.2.3)

ue
is actually a sufficient condition for optimality.

Indeed, we first note that, by concavity of g,
E[g(%r) - 9(X5)| > E|0.9(Xr)(Xr — X5)| =E[Pr(Xr - x§)]
which, by It6’s Lemma and (5.2.2), implies

B [s0n) —oxp] 2 B[ [ RChan - b0

r pT
- E / ax,]:ls(X&ps;Qs)(Xs _X;/)dsi|
L/ O

B A A
+ E / (JS(XS) - as(xg)) Qsds] .
LJo
By definition of H, # and (5.2.1)-(5.2.3), this leads to
T A A A A A
J(ﬁ) - J(V) > E / (HS(XS7 Ug, P, Qs) - ,Hs(Xga vg, P, Qs))ds]
0

T
— E / a:c?:[s(X&Ps;Qs)(XS_X;/)dS]
0

Y
=
S~

S
mi>
=
~
gQ>

\
CE&
>
® <
2V
:;Q>
=
ILI

v
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Remark 5.2.28 Let us now assume that u, o and f are non-random and assume that

there exists a smooth solution ¢ to the Hamilton-Jacobi-Bellman equation:

0 = sup (o0, + b )rplt,) + or(o ) POp,2) + fo)
ucR 13 2

with terminal condition (T, ) = g. Assume that the sup is attained by some u(t,x).
Set p := Oy and q := 0%, 0. It follows from the envelope theorem, that (p,q) formally

solves (take the derivative with respect to x in the above equation)
0 = LU p(t,x) + 8, Hy(x, p(t, x), q(t, z, i(t, x)))

with the terminal condition p(T,-) = 0yg. Let now X be the controlled process associated
to the Markov control v = 0(-, X.) (assuming that it is well defined). Then, Ité’s Lemma
implies that

T
p(t,X) = ng(Xp) + / Dty (X, 0, p(s, Xo), a(s, X, 0))ds
t

T A
— / q(s, Xs,v5)dWs .
¢

Under mild assumptions ensuring that there is only one solution to the above BSDE,
this shows that

P=p(t,Xy) = o0(t, Xy) and Qu = q(t, Xy, 1) = Onp0(t, Xy)on(Xy, 1) -
Otherwise stated, the adjoint process P can be seen as the derivative of the value function
with respect to the initial condition in space, while Q is intimately related to the second
derivative.

3 Examples

3.1 Logarithmic utility

Let us first consider the problem
max E [In(X7)]
where X" is defined as

t s t t
X{ = :1:0+/ Xs”yssszxo—i—/ X;’ususds—f—/ X vso5dWs (5.3.1)
0 S 0 0
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for some xy > 0 and where

S, = Soefot(us—ag/Q)ds-i-fOt osdWs

for some bounded predictable processes 1 and o > 0 with 1/ bounded as well.

This corresponds to the problem of maximizing the expected logarithmic utility of the
discounted terminal wealth in a one dimensional Black-Scholes type model with random
coefficients. Here, v stands for the proportion of the wealth X* which is invested in the

risky asset S.

It is equivalent to maximizing E [X] with X* now defined as

t
X{ = / (Vspts — V202 /2)ds .
0
The associated Hamiltonian is

He(w,u,p, q) = (upe — (u*07 /2))p .

A~ 2
Thus H(z,p,q) = %“—tp and the argmax is u(t,z,p,q) := £ . It follows that the
t

2
Ot

dynamics of the adjoint process (P, Q) is given by
A T A
Pt=1—/ O.dW, .
t

This implies that P=1and Q = 0 dt x dP ae. In particular, for X = X7 with
U := p/o? the optimality conditions of the previous section are satisfied. This implies
that 7 is an optimal strategy. Since the optimization problem is clearly strictly concave
in v, this is the only optimal strategy.

Observe that the solution is trivial since it only coincides with taking the max inside
the expectation and the integral in E [X7] = E |:f0T<I/S,u,S — yfaz/Q)ds].

3.2 General utility

We consider a similar problem as in the previous section except that we now take a
general utility function U which is assumed to be C, strictly concave and increasing. We
also assume that it satisfies the so-called Inada conditions: 0,U(c0) =0 and 9, U (0+) =

00.
We want to maximize E [U(X¥)] where X is given by (5.3.1). We write X for X”.

In this case, the condition (5.2.3) reads

He(Xe, 01, Py, Q) = Suﬁ (U X P+ u UtXtQt> .
ue
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But, it is clear that it can be satisfied only if
Qt =-MP, with \= wlo .

Thus, by (5.1.4), P should have the dynamics
A A T A
b = 0,U(Xr) + / N Bod WV, .
t

This implies that we have to find a real Py > 0 such that
By — Bye- b JiA2ds— [ aw,

and Pr = 8,U (XT) Hence, the optimal control, if it exists, should satisfy

Xr = (8,U)! (Poe—%fo“?dﬁfo”sdws) . (5.3.2)

Now, let Q ~ PP be defined by dQ = Pr/Py so that W@ =W + [, A\,ds is a Q-Brownian
motion, and that X" is a supermatingale under Q for all v € Y. If X is actually a true

@-martingale, then we must have
vy = EC [(axU)*l (Poe*%foT Nods+fy' Ades)} . (5.3.3)

Using the Inada conditions imposed above, it is clear that we can find Py such that
the above identity holds. The representation theorem then implies the existence of an
admissible control 7 such that (5.3.2) is satisfied. Since the sufficient conditions of

Section 2 hold, this shows that  is optimal.

We can also check this by using the concavity of U which implies
U(Xp) < U(Xr)+,U(Xr) (X¢ — Xr) = U(Xr) + Pr (X§ - Xr) .

Since, by the above discussion, the last term is non positive in expectation, this shows

that the optimal terminal wealth is actually given by (5.3.2).
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Part A.

Appendix: A reminder on

stochastic processes with jumps
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We recall here some basic properties of It6 integrals and marked point processes. We
refer to [5], [10] and [17] for more details.

A.1 1Ito integral

Let W a d-dimensional Brownian motion and a be an adapted process with values in
M such that

t
/ |as||?ds < oo forall t>0.
0

Then the stochastic integral fg asdWy is well defined as an It6 integral, see e.g. [10].

Moreover, the process ( fg asdWs)i>0 is a local martingale and

t o]
(/ asdWs)i>0 is a martingale if E [/ ||as||2ds} <00 . (A.1.1)
0 0

Recall that, in this case, we have

‘/UooadeS 2] = EUOOO HaSH?ds] (A.1.2)

as a consequence of the It6 isometry and the so-called Burkholder-Davis-Gundy inequal-

E

ity (or Doob’s maximal inequality) reads as follows:

Proposition A.1.1 Let a be an adapted process with values in M¢ such that
T
E [/ HasHst] <.
0
Then, for each p > 1, there is C > 0 such that
T P
</ Has|]2ds> ] .
0

t
E[sup” adesHQPI < CE
<7 Jo

A.2 R%marked point process

A R%market point process is a sequence of jump times (T)n>1 and sizes of jumps
(Zy)n>1 with values in R?. Here, T}, is the time of the n-th jump while Z, is its size.

Such a process can be represented in terms of a random measure (counting measure) p
on Ry x R? defined by

WA B) :=> 1z, myeaxs » ¥ (A B) € BRY) x B(Ry).

n>1
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We shall always identify (7}, Z,,), with p.

Let ji¢(w,dz) be a transition measure from © x [0,00) into R? such that, for each A €

B(RY), fi(A) is non-negative, predictable, P — a.s. locally integrable and satisfies:

E [ /0 (A, ds)] —E [ /0 N @%(A)ds]

for all non-negative predictable process &. Then, [ is called the predictable intensity

kernel of u, compensator. We note
fa(dz,ds) := u(dz,ds) — fis(dz)ds

the so-called compensated market point process.

Let P the o-algebra of F-predictable subsets of 2x [0, T']. An indexed process (£(2))>0,.crd
such that the map (t,w, z) — &(2)(w) is P ® B(R?)-measurable is called a predictable

R?-indexed process.

Proposition A.2.2 If  admits the predictable intensity kernel fi, then for each non-

negative predictable R%-indexed process &:

B [7 ] stomaan] = | [T [ coms .

Proof. See [5]. O

Corollary A.2.1 Assume that pu admits the predictable intensity kernel fi. Let & be
predictable R%-indexed process such that

E [/Ot /Rd ||§S(Z)H[L3(dz)ds] <oo Vt>0.

Then, the process (fg Jra §s(z)ﬁ(dz,ds)>t>0 is a martingale.

In the case of pure jump processes of the above form, the Burkholder-Davis-Gundy

inequality reads as follows:

Proposition A.2.3 Let the conditions of Corollary A.2.1 hold. Then, for each p > 1,
there is C' > 0 such that

sl [ ] fs<z>a<dz,ds>up] < e[ [ e
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A.3 Mixed diffusion processes and I1t6’s Lemma

Let (a,b) be an adapted process with values in M? x R? and ¢ be predictable R%-indexed

process with values in R¢ such that

[ et ods+ [ [ e laazs < oo w0,

Then, we can define the process X by

t t t
X; = Xo +/ byds + / asdW, +/ &s(z)p(dz, ds)
0 0 0 Jrd

with X, € RZ.
We recall that, in this case, It6’s Lemma for processes with jumps implies that, for all
C¥2([0,T] x RY) function f, we have

ft, X)) = f(O,Xo)+/O (if(s,Xs)—l—(bs,Df(s,Xs))—l—;Tr [asa;D2f(s,Xs)])ds

4 /ODf(s,XS)anWSJr/O /Rd(f(s,Xs_—kés(z))—f(s,XS_))u(dz,ds).

In the case where the dynamics of X has an additional component L which is an adapted

bounded variation process, i.e.

t t t
X =X, +/ bsds +/ asdWy +/ &s(z)p(dz,ds) + Ly
0 0 0 JRd

then Ito’s formula reads

ft, X)) = f(0,Xo) +/0 <888f(s,Xs) + (bs, Df(s, Xs)) + %Tr [asa:DQf(s,Xs)]) ds

+

[ psexaaw. s [ [ (16X 4 602) — f(5, X)) ldz, )
0 0 JR4

b [ Dyt XaLs + Y J(5, X + ALY ~ (5, X, )
0

s<t

where L€ stands for the continuous part of L and ALg for the jump of L at time s, if

any.
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