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arguments.

• Cetin, Jarrow and Protter 2004 : illiquidity, no impact, pricing à la
B&S.
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• Bank and Dolinsky 2019.
• Loeper 2014 : impact + illiquidity, verification argument.

2 Other pricing rules (not replication nor super-replication) : Abergel and
Loeper 2013, Almgren and Li 2013, Millot and Abergel 2011, Guéant and
Pu 2013, Bank, Soner and Voss 2017, ...
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Aim of this work

2 Aim :
• Consider a model with price impact and liquidity cost, but in which

hedging still makes sense without being degenerate (in any sense).

• Not high frequency (no bid-ask spread), but still impact on prices.
To be considered as a liquidity model at a mesoscopic level.

• Permanent impact with possible resilience.

2 What we do :
• Define a continuous time trading dynamics from a discrete time

trading rule.
• Provide a direct argument for the characterization of the hedging

policy.
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Chapter 1
Impact rule and continuous time trading dynamics



Impact rule and liquidity cost
2 Basic rule : an order δ moves the price by

Xt− −→ Xt = Xt− + δf (Xt−),

and costs

δXt−+
1
2
δ2f (Xt−) = δ

1
2

(Xt− + Xt)︸ ︷︷ ︸
av. price

=

∫ δ

0
(Xt− + ιf (Xt−))︸ ︷︷ ︸
current price

dι︸︷︷︸
add. quantity

.

2 We just need model the curve around δ = 0. This should be
understood for a “small” order δ as one can split orders, in continuous
time. Would obtain the same with

Xt− −→ Xt = Xt− + F (Xt−, δ)

and costs ∫ δ

0
(Xt− + F (Xt−, ι))dι

if ∂δF (x , 0) = f (x), ∂2
δxF (x , 0) = f ′(x), F (x , 0) = ∂2

δδF (x , 0) = 0.
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2 In particular, would lead to the same results if

Xt− −→ Xt− + F (Xt−, δ)

with

F (x , δ) = ∆x(x , δ) := x(x , δ)− x ,

and x(x , ·) defined as the solution of

x(x , ·) = x +

∫ ·
0
f (x(x , s))ds.

2 In this case, the cost would be∫ δ

0
x(Xt−, ι)dι.
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Trading signal and discrete trading dynamics

2 A trading signal is an Itô process of the form

Y = Y0 +

∫ ·
0
bsds +

∫ ·
0
asdWs .

2 Need to define the dynamics of the wealth and of the asset. As usual,
consider discrete trading and pass to the limit.

2 Trade at times tni = iT/n the quantity δntni = Ytni
− Ytni−1

.

2 We assume that the stock price evolves according to

X = Xtni
+

∫ ·
tni

µ(Xs)ds +

∫ ·
tni

σ(Xs)dWs

between two trades.
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2 The corresponding dynamics are

Y n
t :=

n−1∑
i=0

Ytni
1{tni ≤t<tni+1} + YT1{t=T} , δ

n
tni

= Y n
tni
− Y n

tni−1

X n = X0 +

∫ ·
0
µ(X n

s )ds +

∫ ·
0
σ(X n

s )dWs +
n∑

i=1

1[tni ,T ]δ
n
tni
f (X n

tni −
),

V n = V0 +

∫ ·
0
Y n
s−dX

n
s +

n∑
i=1

1[tni ,T ]
1
2

(δntni )2f (X n
tni −

),

where
V n = cash part + Y nX n = “portfolio value” .

Warning : The portfolio is (V n − Y nX n,Y n) whose liquidation will not
lead to V n in cash !
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2 Passing to the limit n→∞, it converges in S2 to

Y = Y0 +

∫ ·
0
bsds +

∫ ·
0
asdWs

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0
f (Xs)dYs +

∫ ·
0

(µ+ asσf
′)(Xs)ds

V = V0 +

∫ ·
0
YsdXs +

1
2

∫ ·
0
a2
s f (Xs)ds,

at a speed
√
n.



2 More details on the limit... : We have
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0
σ(X n

s )dWs +
n∑

i=1

1[tni ,T ]δ
n
tni
f (X n

tni −
),

in which

δntni+1 f (X n
tni+1−

) =(

∫ tni+1

tni

dYt)f

(
X n
tni

+

∫ tni+1

tni

dX n
t−

)

=

∫ tni+1

tni

f

(
Xtni

+

∫ t

tni

dX n,c
r

)
dYt

+

∫ tni+1

tni

d〈
∫ ·
tni

dYr , f

(
X n
tni

+

∫ ·
tni

dX n
r

)
〉t + neglectable

so that

X = X0 +

∫ ·
0
σ(Xs)dWs +

∫ ·
0
f (Xs)dYs +

∫ ·
0

(µ+ asσf
′)(Xs)ds.
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Adding jumps and splitting of large orders

2 We now consider a trading signal of the form

Y = Y0− +

∫ ·
0
bsds +

∫ ·
0
asdWs+

∫ ·
0
δν(dδ, ds)

where
ν(A,B) =

∑
i≥1

1(δi ,τi )∈A×B

in which τi is a stopping time and δi is Fτi -measurable.

2 Approximation : Jump δi at time τi is passed on [τi , τi + ε] at a rate
δi/ε. This leads to

Y ε = Y0− +

∫ ·
0

(bs+
∑
i≥1

1[τi ,τi+ε)(s)
δi
ε

)ds +

∫ ·
0
asdWs .
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2 The limit dynamics when ε→ 0 is

X = X0− +

∫ ·
0
σ(Xs)dWs +

∫ ·
0
f (Xs)dY c

s +

∫ ·
0

(µ+ asσf
′)(Xs)ds

+

∫ ·
0

∫
∆x(Xs−, δ)ν(dδ, ds)

V = V0− +

∫ ·
0
YsdX

c
s +

1
2

∫ ·
0
a2
s f (Xs)ds

+

∫ ·
0

∫
(Ys−∆x(Xs−, δ) + I(Xs−, δ)) ν(dδ, ds)

in which Y c is the continuous part of Y , and

x(x , δ) = x +

∫ δ

0
f (x(x , s))ds , ∆x(x , δ) := x(x , δ)− x

I(x , δ) :=

∫ δ

0
sf (x(x , s))ds.



Adding resilince

X = X0 +

∫ ·
0
σ(Xs)dWt + R

R = R0 +

∫ ·
0
f (Xt)dYt +

∫ ·
0

(at(f
′σ)(Xt)− ρRt)dt

Y = y +

∫ ·
0
atdWt +

∫ ·
0
btdt

V = V0 +

∫ ·
0
YtdXt +

∫ ·
0

1
2
a2
t ft(Xt)dt.

See D. Becherer and T. Bilarev. Hedging with transient price impact for
non-covered and covered options. arXiv preprint arXiv :1807.05917,
2018.



Zero cost immediate round trips

2 A jump of size δ moves the stock price to

x(x , δ) = x +

∫ δ

0
f (x(x , s))ds,

but
x(x(x , δ),−δ) = x .

Similarly, the impact on the portfolio value is

y∆x(x , δ) + I(x , δ)

but

(y + δ)∆x(x(x , δ),−δ) + I(x(x , δ),−δ) = −[y∆x(x , δ) + I(x , δ)].

2 Warning : be careful with barrier-like options !
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Other possible specifications

2 Multiplicative formulation

X = X ◦`(Y )
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target problems with generalized market impact. SIAM Journal on Control and
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Chapter 2 - Hedging of un-covered options



Super-hedging problem

2 Fix a claim g = (g0, g1) with
• g0 = cash part
• g1 = # of stocks to deliver.

2 Super-hedging price = minimal initial cash so that

VT − YTXT ≥ g0(XT ) and YT = g1(XT ).

⇒ Match perfectly the number of stocks and be above the cash
requirement.
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Super-hedging price
2 w(0,X0−) is the inf over V0− such that one super-hedges for some
(a, b, ν), starting from Y0− = 0.

2 ŵ(0,X0−,Y0−) is the inf over V0− such that one super-hedges for
some (a, b, ν), starting from Y0− ∈ R.

2 We will need both... see later. Anyway, we have the relation

w(t, x(x ,−y)) = ŵ(t, x , y)− I(x(x ,−y), y)

⇒ One inequality (the other way round) : With initial initial stock price
x(x ,−y), wealth ŵ(t, x , y)− I(x(x ,−y), y) and 0 stock, buying y stocks
at t leads to

V0− = ŵ(t, x , y)− I(x(x ,−y), y) −→ ŵ(t, x , y)

X0− = x(x ,−y) −→ x(x(x ,−y), y) = x

Y0− = 0 −→ y .
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V0− = ŵ(t, x , y)− I(x(x ,−y), y) −→ ŵ(t, x , y)
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Dynamic programming principle for stochastic
targets

2 Geometric Dynamic Programming Principle : Let θ be a stopping time.
• GDP1 : if V0− > ŵ(0,X0−,Y0−) then Vθ ≥ ŵ(θ,Xθ,Yθ) for some

(a, b, ν).
• GDP2 : if Vθ > ŵ(θ,Xθ,Yθ) for some (a, b, ν), then
V0− ≥ ŵ(0,X0−,Y0−).

2 This basically means that, for V0− = ŵ(0,X0−,Y0−), we can find
(a, b, ν) such that

dV = dŵ(·,X·,Y·)

but not better (i.e. with >). In particular, we should have

f (x)∂x ŵ(t, x , y) + ∂y ŵ(t, x , y) = yf (x)

otherwise the control b allows to violate the DPP. The solution leaves on
a submanifold... (not easy to handle ! !)
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2 Geometric dynamic programming transferred from ŵ to w by using

w(t, x(x ,−y)) = ŵ(t, x , y)− I(x(x ,−y), y).

2 GDP : (i) If V0− > w(0,X0−), then ∃ (a, b, ν) and Y0 ∈ R s.t.

Vθ ≥ w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ),

for all θ ≥ t, where (X0,V0) = (x(X0−,Y0),V0− + I(X0−,Y0)).
(ii) If V0− < w(0,X0−) then 6 ∃ (a, b, ν), Y0 and θ ≥ t s.t.

Vθ > w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ),

with (X0,V0) = (x(X0−,Y0),V0− + I(X0−,Y0)).

⇒ This will kill the singularity issue !
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Pricing equation

2 If v = w(t, x) the GDP “implies”

dEt := dVt − dw(t, x(Xt ,−Yt))− dI(x(Xt ,−Yt),Yt) = 0,

where (Xt ,Yt ,Vt) = (x(x , y), y , v + I(x , y)).

2 Key property :

dE = [Y − Y̌ ]
[
(µ− f ′fa2/2)(X )dt + σ(X )dW

]
+F̂ [w ](·, x(X ,−Y ),Y )dt

in which

Y̌ := Y +
x(X ,−Y )− X

f (X )
+ ∂xw(·, x(X ,−Y ))

f (x(X ,−Y ))

f (X )
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2 By identifying the dW and dt terms, we obtain the PDE :

0 = F̂ [w ](·, ŷ)

= −∂tw − µ̂(·, ŷ)∂x [w + I]− 1
2 σ̂(·, ŷ)2∂2

xx [w + I]

where

µ̂(·, y) :=
1
2

[∂2
xxxσ

2](x(·, y),−y) and σ̂(·, y) := (σ∂xx)(x(·, y),−y).

and
ŷ(t, x) := x−1(x , x + f (x)∂xw(t, x)).

2 Terminal condition

w(T−, ·) = G (·) := inf {yx(x , y) + g0(x(x , y)) : y = g1(x(x , y))} .

2 To be taken in the discontinuous viscosity sense for the relaxed
semi-limits associated to problems with bounded controls.
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Verification

2 Assume that w is a smooth solution of

F̂ [w ](·, ŷ) = −∂tw − µ̂(·, ŷ)∂x [w + I]− 1
2 σ̂(·, ŷ)2∂2

xx [w + I] = 0

with terminal condition

w(T−, ·) = G (·).

2 We can use the strategy
• Make an initial jump of size

Y0 = ŷ(0,X0−) = x−1(X0−,X0− + f (X0−)∂xw(0,X0−)).
• Follow (a, b) such that Y = ŷ(·, x(X ,−Y )).
• VT− = G (x(XT−,−YT−)) + I(x(XT−,−YT−),YT−).

• Liquidate YT− : VT = G (XT ) and YT = 0.
⇒ Jumps only at 0 and T !
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Viscosity solution approach

2 Proposition : Let σ and µ be adapted, bounded, and
a.s. right-continuous at 0. Assume that

Zt :=

∫ t

0
µsds +

∫ t

0
σsdWs ≥ 0

a.s., for all t ≤ t0. Then, σ0 = 0 and µ0 ≥ 0.

Proof. Take dQ/dP = E(−n
∫ ·
0 σsdWs), so that

dZs = (µs − n|σs |2)ds + σsdW
Q
s . In particular,

1
t
EQ[

∫ t

0
(µs − n|σs |2)ds] =

1
t
EQ[Zt ] ≥ 0.

By sending t → 0, we obtain : µ0 − n|σ0|2 ≥ 0, for all n ≥ 0. 2
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Take ϕ such that min(w − ϕ) = (w − ϕ)(t0, x0) = 0. Start from
Vt0− = w(t0, x0) = ϕ(t0, x0).

Then, “there exists” (a, b, ν) and Yt0 ∈ R s.t.

Vθ ≥ w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ),

for all θ ≥ t0, where (Xt0 ,Vt0) = (x(Xt0−,Yt0),Vt0− + I(Xt0−,Yt0)).
Since w ≥ ϕ,

Vθ ≥ ϕ(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ).

Apply the above to Z := V − [ϕ(·, x(X·,−Y·)) + I(x(X·,−Y·),Y·)].

Then, F̂ [ϕ](t0, x0, ŷ(t0, x0)) ≥ 0.
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Take ϕ such that min(w − ϕ) = (w − ϕ)(t0, x0) = 0. Start from
Vt0− = w(t0, x0) = ϕ(t0, x0).

Then, “there exists” (a, b, ν) and Yt0 ∈ R s.t.

Vθ ≥ w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ),

for all θ ≥ t0, where (Xt0 ,Vt0) = (x(Xt0−,Yt0),Vt0− + I(Xt0−,Yt0)).
Since w ≥ ϕ,

Vθ ≥ ϕ(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ).

Apply the above to Z := V − [ϕ(·, x(X·,−Y·)) + I(x(X·,−Y·),Y·)].

Then, F̂ [ϕ](t0, x0, ŷ(t0, x0)) ≥ 0.



2 Proposition : Let σ and µ be adapted, bounded. Assume that there
exists a stopping time θ > t0 such that

σ1[[t0,θ]] = 0 and µ1[[t0,θ]] ≥ 0.

Then ∫ θ

0
µsds +

∫ θ

0
σsdWs ≥ 0.



Take ϕ such that max(w − ϕ) = (w − ϕ)(t0, x0) = 0 with
(w − ϕ)(t, x) < 0 for (t, x) 6= (t0, x0). Assume that

F̂ [ϕ](t0, x0, ŷ(t0, x0)) > 0.

Then there exists a neighborhood B of (t0, x0) such that F̂ [ϕ](·, ŷ) ≥ 0.
Start from Vt0− = w(t0, x0)− ε = ϕ(t0, x0)− ε where
−2ε := maxB(w − ϕ). Let θ be the exist time of B. Then, using the
controls of the verification argument applied with ϕ,

Vθ ≥ ϕ(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ)− ε
≥ w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ) + 2ε− ε
> w(θ, x(Xθ,−Yθ)) + I(x(Xθ,−Yθ),Yθ).
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Proposition : Comparison holds.

This implies uniqueness and convergence of monotone finite difference
numerical schemes.
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A simple example : Bachelier model
2 Model : Xt = µt + σWt and f (X ) = f ∈ (0,∞).

2 In this case, x(x , δ) = x + f δ, I(x , δ) = 1
2δ

2f , and the pde is

−∂tw −
1
2
σ2∂2

xxw = 0

This is the usual heat equation ! ! !
Hedging strategy : Y = ∂xw(·,X − fY ) with ∆Y0 = ∂xw(0,X0−).

2 Call hedging :
• Cash settlement : G (x) = g0(x) = [x − K ]+

• With delivery :

G (x) = min
{
y(x + yf )− K1{x+yf≥K} : y = 1{x+yf≥K}

}
= (x + f − K )+1{K>x} + (x + f − K )1{x≥K}
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A simple example : Bachelier model
2 Model : Xt = µt + σWt and f (X ) = f ∈ (0,∞).

2 In this case, x(x , δ) = x + f δ, I(x , δ) = 1
2δ

2f , and the pde is

−∂tw −
1
2
σ2∂2

xxw = 0

This is the usual heat equation ! ! !
Hedging strategy : Y = ∂xw(·,X − fY ) with ∆Y0 = ∂xw(0,X0−).

2 Interpretation :
• We have x(Xt ,−Yt) = x(µt + σWt + Yt f ,−Yt) = µt + σWt , i.e.

moves on price due to trading will cancel when the position is closed.
• Cost of trading is compensated by the impact on prices :

−δ 0− 1
2
δ2f + δ(0 + µt + σWt + δf )− 1

2
δ2f = δ(µt + σWt).
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Chapter 3 - Hedging of covered options



Super-hedging problem

2 Fix a claim g :
• At 0, the trader asks for receiving an initial amount of stocks Y0 and

of cash such that cash+Y0X0 =premium.
• At T , the trader delivers YT stocks plus some cash such that

cash+YTXT = g(XT ).

2 Avoids big impact at 0 and T .
2 Super-hedging price = minimal initial cash so that

VT ≥ g(XT ).

⇒ In this case V is exactly the relevant quantity. We will not need jumps
anymore... ν ≡ 0 for the rest of these slides.

We set

v(0,X0) := inf{v = c + Y0X0 : c ,Y0, (a, b) s.t. VT ≥ g(XT )}.
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Hedging and pricing - informal derivation

Let us assume that we use the delta-hedging rule :

V = v(·,X ) , Y = ∂xv(·,X ).

Then, equating the dt terms implies

1
2
a2f (X ) = ∂tv(·,X ) +

1
2

(σ + af )2∂2
xxv(·,X ),

and applying Itô’s Lemma to Y − ∂xv(·,X ) leads to

γa :=
a

σ(X ) + f (X )a
= ∂2

xxv(·,X ) ∈ R \ {1/f }

By definition of γa and a little bit of algebra :[
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv
]

(·,X ) = 0.
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The pricing pde should be

−∂tv −
1
2

σ2

(1− f ∂2
xxv)

∂2
xxv = 0 on [0,T )× R,

v(T−, ·) = g on R.

Singular pde :
- Can find smooth solutions s.t. 1 > f ∂2

xxv, cf. below.
- In general, needs to take care of 1 6= f ∂2

xxv
- One possibility : add a gamma constraint ∂2

xxv ≤ γ̄ with f γ̄ < 1.
- A constraint of the form f ∂2

xxv > 1 does not make sense.
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Hedging with a gamma contraint

2 By a change of variable, we write the dynamics in the form :

dY = γa(X )dX + µa,b
Y (X )dt and dX = σa(X )dW + µa,b

X (X )dt.

2 We now define v with respect to the gamma constraint

γa(X ) ≤ γ̄(X )

with
f γ̄ < 1− ε, ε > 0.



Pricing pde :

min

{
−∂tv −

1
2

σ2

(1− f ∂2
xxv)

∂2
xxv , γ̄ − ∂2

xxv
}

= 0 on [0,T )× R.

Propagation of the gamma contraint at the boundary :

v(T−, ·) = ĝ on R

with ĝ the smallest (viscosity) super-solution of

min
{
ϕ− g , γ̄ − ∂2

xxϕ
}

= 0.

See Soner and Touzi 00, and Cheridito, Soner and Touzi 05.



Super-solution property

Use a weak formulation approach and results on small time behavior of
double stochastic integrals, see Soner and Touzi 00 and Cheridito, Soner
and Touzi 05.

It is based on the Geometric DPP (Soner and Touzi) :
if

V0 > v(0,X0)

then we can find (a, b,Y0) such that

Vθ ≥ v(θ,Xθ)

for any stopping time θ with values in [0,T ].



Sub-solution property

2 Main difficulty : can not establish the reverse Geometric DPP, i.e.

If (a, b,Y0) are such that

Vθ > v(θ,Xθ)

at a stopping time θ with values in [0,T ], then

V0 ≥ v(0,X0).

2 Problem :
- at θ we have a position Yθ that may not match with the position Ŷθ
associated to v(θ,Xθ). Can not jump from Yθ to Ŷθ...
- can neither go smoothly to it as it will move X because of the impact,
and therefore Ŷ (sort of fixed point problem), compare with Cheridito,
Soner, and Touzi 05.
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The smoothing approach

In place, we use a smoothing/verification approach initiated by B. and
Nutz 13 (inspired from Jensen’s and Krylov’s ideas).

1. Using the concavity of the PDE, create a sequence wιδ of smooth
super-solutions that converges to a viscosity solution w.

2. By verification wιδ ≥ v.

3. By PDE comparison v ≥ w ←−︸︷︷︸
δ,ι→0

wιδ ≥ v.

Conclusion : v is the (unique) viscosity solution.
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δ,ι→0

wιδ ≥ v.

Conclusion : v is the (unique) viscosity solution.
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How to construct the smooth super-solution (in a
nutshell)

Consider a viscosity solution to the PDE (with F convexe non-decreasing)

0 = −∂tw − F (∂2
xxw).

Take the quadratic inf-convolution

wι(t, x) := inf
(t′,x′)

(w(t ′, x ′) +
1
ι
‖(t ′, x ′)− (t, x))‖).

Then, it is semi-concave and

0 = −∂twι − F ((∂2
xxw

ι)abs), a.e.

Then, smooth it out and use the fact that −F is concave and
non-increasing

0 =

∫ (
−∂twι − F ((∂2

xxw
ι)abs)

)
(t ′, x ′)φδ(t ′ − t, x ′ − x)dt ′dx ′,

≤− ∂twιδ(t, x)− F (∂2
xxw

ι
δ)(t, x).
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A-priori estimates
2 Assume that ∂2

xxg ≤ 1/f − ε for some ε > 0.

2 Set F (x , z) := σ(x)2z/(1− f (x)z). Let ϕ be a solution of

−∂tϕ− F (·, ∂2
xxϕ) = 0

and let $ := F (·, ∂2
xxϕ). Then, −∂t∂2

xxϕ− ∂2
xx$ = 0, and

∂t$ = −∂zF (·, ∂2
xxϕ)∂2

xx$

which means that

σ2(x)

1− f (x)∂2
xxϕ(t, x)

∂2
xxϕ(t, x) = E

[
σ2(X̃T )

1− f (X̃T )∂2
xxg(X̃T )

∂2
xxg(X̃T )

]

with dX̃s =
√

2∂zF (X̃s , ∂2
xxϕ(s, X̃s))dWs , X̃t = x .

⇒ ∂2
xxϕ ≤ 1/f − εg with εg > 0.
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Smooth solution

2 Proposition : Assume that ∂2
xxg ≤ 1/f − ε for some ε > 0 (+

smoothness conditions). Then, v is a smooth solution of

0 = −∂tv −
1
2

σ2

(1− f ∂2
xxv)

∂2
xxv

and ∂2
xxv ≤ 1/f − εg for some εg > 0.



Small impact expansion

We replace f by εf , ε > 0.

Then, the PDE becomes

0 = −∂tvε −
1
2

σ2

(1− εf ∂2
xxvε)

∂2
xxv

ε.

2 Proposition :

vε(0, x) =v0(0, x) +
ε

2
E

[∫ T

0

[
σ2f |∂2

xv
0|2
]

(s, X̃s)ds

]
+ o(ε)

where, X̃ is the solution on [0,T ] of

X̃ = x +

∫ ·
t

σ(X̃s)dWs .
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Proof : Since

0 = −∂tvε −
1
2

σ2

(1− εf ∂2
xxvε)

∂2
xxv

ε,

we have

0 = −∂tvε −
1
2
σ2∂2

xxv
ε − ε

2
σ2f |∂2

xxv
ε|2 − o(ε)

= −∂tv0 − 1
2
σ2∂2

xxv
0.



There exists a constant C > 0 such that

|V ε
T − g(X ε

T )| ≤ Cε2

in which

V ε
0 = v0(0,X0) + ε∆v(0,X0)

Y ε = ∂xv0(0,X0) + ε∂x∆v(0,X0),

with

∆v(0, x) :=
1
2
E

[∫ T

0

[
σ2f |∂2

xxv
0|2
]

(s, X̃s)ds

]
.



Numerical illustration



2 Constant impact and constraint.
2 Bachelier model : dXt = 0.2 dWt .
2 Butterfly option : g(x) = (x + 1)+ − 2x+ + (x − 1)+, T = 2.
Covered option.

Figure – Left : Dashed line : f = 0.5, γ̄ = 1.75 ; solid line : f = 0, γ̄ = 1.75 ; dotted line : f = 0, γ̄ = +∞.



Towards a duality

Observe that :

0 =− ∂tv −
1
2

σ2

1− f ∂2
xxv

∂2
xxv

=inf
s∈R

(
−∂tv −

1
2
s2∂2

xxv +
γ

2
(s− σ)2

)
.

2 Then

v(0, x) = v̄(0, x) := sup
s∈A2

E

[
g(X̄ s

T )−
∫ T

0

γ(X̄ s
t )

2
(st − σ(X̄ s

t ))2dt

]

with

X̄ s := x +

∫ ·
0
stdWt .

⇒ Dual formulation !
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Chapter 4 - Understanding the dual formulation



Relaxed formulation
2 We now consider the relaxed formulation with path dependent
coefficients :

Y a,B = Y0 +

∫ ·
0
atdWt −B

X a,B = x∧0 +

∫ ·
0

(σt + at ft)(X a,B)dWt ,

V a,B
T = V0 +

∫ T

0
Y a,B
t dX a,B

t +

∫ T

0

1
2
ft(X

a,B)a2
t dt = g(X a,B).

where
• x ∈ C ([0,T ]),
• σ, f : [0,T ]× C ([0,T ]) 7→ R are non-anticipative,
• The controls are now (a,B) where B is an adapted bounded

variation process.

The above corresponds to the dynamics of X a,B under its “martingale
measure”.
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Assuming hedging holds...
Assume we have a hedging strategy (â, B̂) for a path dependent payoff
g , then

V0 = EQâ,B̂

[
g(X â,B̂)−

∫ T

0

1
2
ft(X

â,B̂)â2
t dt

]

≤ sup
(a,B)

EQa,B

[
g(X a,B)−

∫ T

0

1
2
ft(X

a,B)a2
t dt

]
.

We need to retrieve

sup
s

E

[
g(X̄ s

T )−
∫ T

0

1
2
γt(X̄

s)(st − σt(X̄ s))2dt

]

with

X̄ s := x∧0 +

∫ ·
0
stdWt while X a,B = x∧0 +

∫ ·
0

(σt + at ft)(X a,B)dW a,B
t .

Ok, up to change of variable : st = σt(X
a,B) + at ft(X

a,B).
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[
g(X â,B̂)−
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Note that super-hedging does not permit to say anything... :

V0 ≥ EQâ,B̂

[
g(X â,B̂)−

∫ T

0
ft(X

â,B̂)a2
t dt

]

6≥ sup
(a,B)

EQa,B

[
g(X a,B)−

∫ T

0
ft(X

a,B)a2
t dt

]
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g(X â,B̂)−

∫ T

0
ft(X
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Fundamental assumption

Set

v̄(0, x) := sup
s

E

[
g(X̄ s

T )−
∫ T

0

1
2
γt(X̄

s)(st − σt(X̄ s))2dt

]

Assumption : v̄(t, x) admits a solution ŝ[t, x] (need weak...) +
smoothness assumptions.



Differentiability of the gain function

2 For differentiability, we use the notion of Dupire’s derivative.

2 For a path x, set x⊕t y := x + 1[t,T ]y

2 Dupire derivative : A function ϕ is said to be horizontally
differentiable if, for all (t, x), its horizontal derivative

∂tϕ(t, x) := lim
h↘0

ϕ(t + h, xt∧·)− ϕ(t, xt∧·)

h

is well-defined.
A function ϕ is said to be vertically differentiable if, for all (t, x), its
vertical derivative

∇xϕ(t, x) := lim
y→0,y 6=0

ϕ(t, x⊕t y)− ϕ(t, x)

y

is well-defined.
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Dupire’s derivative of the gain function
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T −Bs
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(x′t − xt)λg (dt; x) + ‖x− x′‖ε(x′, x)

with ε(x′, x)→ 0 as x′ → x, and λ◦g (·; X̄ t,x,s) is its dual predictable
projection.
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Calculus of variations

Result #2 : By a simple calculus of variations argument,

γ(ŝ[t, x]− σ)(X̄ t,x,ŝ[t,x]) = â[t, x]

where (m[t, x], â[t, x]) is such that

m[t, x] +

∫ T
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â[t, x]udWu = B̂[t, x]T − B̂[t, x]t .

Recall that
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B̂[t, x]T − B̂[t, x]t
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J(t, x; ŝ[t, x]) := E

[
g(X̄ t,x,ŝ[t,x])−

∫ T

t

1
2
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Set
∫ T

t
λ◦g (dr ; X̄ t,x,ŝ[t,x]) = m +
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= E[

∫ T

t

λ◦g (dr ; X̄ t,x,ŝ[t,x])
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δrγr (ŝ[t, x]r − σr )(X̄ t,x,ŝ[t,x])dr ]
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∫ T

t
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where (m[t, x], â[t, x]) is the element of R×A2 such that

m[t, x] +

∫ T

t
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Concavity of the value function
Result #3 : Set

Γ(t, x) =

∫ xt

0

∫ y1

0
γt(x∧t + 1{t}(y2 − xt))dy2dy1,

then y 7→ (v̄ − Γ)(t, x + 1{t}y) is concave (v̄ − Γ is Dupire concave).

Cf constant coefficients + Markov :

v̄(t, x) = sup
s

E[v̄(t + h, X̄ t,x,s)−
∫ t+h

t

γ

2
(sr − σ)2dr ]

implies

v̄(t, x)− γ

2
x2
t

= sup
s

E[v̄(t + h, X̄ t,x,s)− γ

2
(X̄ t,x,s

t+h )2 −
∫ t+h

t

γ(−srσ +
1
2
|σ|2)dr ].
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2 Proof in a simpler situation : Assume that, for all s, h > 0,

ϕ(t, x) ≥ E[ϕ(t + h, X̄ t,x,s
t+h )],

where

X̄ t,x,s
t+h = x +

∫ t+h

t

ssdWs .

Take x = λx1 + (1− λ)x2 and s s.t.

P[X̄ t,x,s
t+h = x1] = λ = 1− P[X̄ t,x,s

t+h = x2].

Then,
ϕ(t, x) ≥ λϕ(t + h, x1) + (1− λ)ϕ(t + h, x2),

and let h→ 0 :

ϕ(t, x) ≥ λϕ(t, x1) + (1− λ)ϕ(t, x2),

⇒ ϕ is concave.
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Differentiability of the value function

Result #4 : v̄ admits a continuous vertical Dupire derivative given by

∇xv̄(t, x) = ∇xJ(t, x; ŝ[t, x]) = E
[
B̂[t, x]T − B̂[t, x]t

]
(= Ŷ [t, x]t)

because (t, x) maximizes (t ′, x′) 7→ v̄(t ′, x′)− J(t ′, x′; ŝ[t, x]), i.e. 0 ∈
∂y (v(t, x⊕t y)− J(t, x⊕t y ; ŝ[t, x])) = ∂yv(t, x⊕t y)−∇xJ(t, x; ŝ[t, x]).

And (Meyer-Tanaka + martingale property - just need C0,1
r )

v̄(t ′, X̄ t,x,ŝ[t,x]) =v̄(t, x) +

∫ t′

t

∇xv̄(r , X̄ t,x,ŝ[t,x])dX̄ t,x,ŝ[t,x]
r

+

∫ t′

t

1
2
γr (X̄

t,x,ŝ[t,x])(sr − σr (X̄ t,x,ŝ[t,x]))2dr .
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More generally
Let Z be a (F,P)-continuous semi-martingale such that EP[‖Z‖2] <∞.
Let φ be a non-anticipative map in C0,1

r . Assume that there exists
R ∈ C1,2

r and a continuous function ` : [0,T ]→ R such that :
1. φ− R is Dupire-concave (i.e. y 7→ (φ− R)(t, x + 1{t}y) is concave

for all t),
2. φ− ` is non-increasing in time ((φ− `)(t +h, x∧t) ≤ (φ− `)(t, x∧t)).

Then, there exists a non-increasing predictable process A starting at 0
such that

φ·(Z )−
∫ ·

0

1
2
∇2

xRr (Z )d〈Z 〉r = φ0(Z )+

∫ ·
0
∇xφr (Z )dZr +A+`(·)−`(0).

Moreover, if Z and φ·(Z )− B are (P,F)-martingales, for some
predictable bounded variation process B, then

φ·(Z ) = φ0(Z0) +

∫ ·
0
∇xφt(Z )dZt + B , on [0,T ].

Compare with Cont and Fournier (2013), Saporito (2017) for the
Functional Itô-Meyer-Tanaka, Russo and Vallois (1996), and Gozzi and
Russo (2006) for C 1 functionals of semi-martingales.
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Remark : see also B. Bouchard and X. Tan, A quasi-sure optional
decomposition and super-hedging result on the Skorokhod space,
arXiv :2004.11105, for the case where φ is not C 1 in space.



2 In our case : v̄ − Γ is Dupire-concave (see above).

2 Moreover (with bounded coefficients) :

v̄(t, x)

= sup
s

E[v̄(t + h, X̄ t,x,s)−
∫ t+h

t

1
2
γr (X̄

t,x,s)(sr − σr (X̄ t,x,s))2dr ]

≥ E[v̄(t + h, x∧t)−
∫ t+h

t

1
2
γr (x∧t)|σr (x∧t)|2)dr ] (s ≡ 0)

≥ v̄(t + h, x∧t)− Ch.

⇒ non-increasing in time up to t 7→ `(t) = Ct.

2 Finally, the DPP

v̄(t, x) = sup
s

E[v̄(t + h, X̄ t,x,s)−
∫ t+h

t

1
2
γr (X̄

t,x,s)(sr − σr (X̄ t,x,s))2dr ]

implies that(
v̄(s, X̄ t,x,ŝ[t,x])−

∫ s

t

1
2
γr (X̄

t,x,ŝ[t,x])(ŝ[t, x ]r − σr (X̄ t,x,ŝ[t,x]))2dr

)
s≥t

is a martingale.



2 In our case : v̄ − Γ is Dupire-concave (see above).
2 Moreover (with bounded coefficients) :

v̄(t, x)

= sup
s

E[v̄(t + h, X̄ t,x,s)−
∫ t+h

t

1
2
γr (X̄

t,x,s)(sr − σr (X̄ t,x,s))2dr ]

≥ E[v̄(t + h, x∧t)−
∫ t+h

t

1
2
γr (x∧t)|σr (x∧t)|2)dr ] (s ≡ 0)

≥ v̄(t + h, x∧t)− Ch.

⇒ non-increasing in time up to t 7→ `(t) = Ct.

2 Finally, the DPP

v̄(t, x) = sup
s

E[v̄(t + h, X̄ t,x,s)−
∫ t+h

t

1
2
γr (X̄

t,x,s)(sr − σr (X̄ t,x,s))2dr ]

implies that(
v̄(s, X̄ t,x,ŝ[t,x])−
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Proof for φ Dupire-concave (i.e. y 7→ φ(t, x + 1{t}y) is concave for all t)
and non-increasing in time.

Fix tni = ihn and set Z n :=
∑

i Ztni
1[tni ,t

n
i+1). Then,

φtni+1(Z n)− φtni (Z n) = φtni+1(Z n)− φtni+1(Z n
∧tni

) + φtni+1(Z n
∧tni

)− φtni (Z n)︸ ︷︷ ︸
≤0

.

By Meyer-Tanaka formula : ∃ K n non-increasing s.t.

φtni+1(Z n)− φtni+1(Z n
∧tni

)

=

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K n

tni+1
− K n

tni

Hence,

φtni+1(Z n)− φtni (Z n) =

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K̃ n

tni+1
− K̃ n

tni︸ ︷︷ ︸
≤0

.



Proof for φ Dupire-concave (i.e. y 7→ φ(t, x + 1{t}y) is concave for all t)
and non-increasing in time.

Fix tni = ihn and set Z n :=
∑

i Ztni
1[tni ,t

n
i+1).

Then,

φtni+1(Z n)− φtni (Z n) = φtni+1(Z n)− φtni+1(Z n
∧tni

) + φtni+1(Z n
∧tni

)− φtni (Z n)︸ ︷︷ ︸
≤0

.

By Meyer-Tanaka formula : ∃ K n non-increasing s.t.

φtni+1(Z n)− φtni+1(Z n
∧tni

)

=

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K n

tni+1
− K n

tni

Hence,

φtni+1(Z n)− φtni (Z n) =

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K̃ n

tni+1
− K̃ n

tni︸ ︷︷ ︸
≤0

.



Proof for φ Dupire-concave (i.e. y 7→ φ(t, x + 1{t}y) is concave for all t)
and non-increasing in time.

Fix tni = ihn and set Z n :=
∑

i Ztni
1[tni ,t

n
i+1). Then,

φtni+1(Z n)− φtni (Z n) = φtni+1(Z n)− φtni+1(Z n
∧tni

) + φtni+1(Z n
∧tni

)− φtni (Z n).

By Meyer-Tanaka formula : ∃ K n non-increasing s.t.

φtni+1(Z n)− φtni+1(Z n
∧tni

)

=

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K n

tni+1
− K n

tni

Hence,

φtni+1(Z n)− φtni (Z n) =

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K̃ n

tni+1
− K̃ n

tni︸ ︷︷ ︸
≤0

.



Proof for φ Dupire-concave (i.e. y 7→ φ(t, x + 1{t}y) is concave for all t)
and non-increasing in time.

Fix tni = ihn and set Z n :=
∑

i Ztni
1[tni ,t

n
i+1). Then,

φtni+1(Z n)− φtni (Z n) = φtni+1(Z n)− φtni+1(Z n
∧tni

) + φtni+1(Z n
∧tni

)− φtni (Z n)︸ ︷︷ ︸
≤0

.

By Meyer-Tanaka formula : ∃ K n non-increasing s.t.

φtni+1(Z n)− φtni+1(Z n
∧tni

)

=

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K n

tni+1
− K n

tni

Hence,

φtni+1(Z n)− φtni (Z n) =

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K̃ n

tni+1
− K̃ n

tni︸ ︷︷ ︸
≤0

.



Proof for φ Dupire-concave (i.e. y 7→ φ(t, x + 1{t}y) is concave for all t)
and non-increasing in time.

Fix tni = ihn and set Z n :=
∑

i Ztni
1[tni ,t

n
i+1). Then,

φtni+1(Z n)− φtni (Z n) = φtni+1(Z n)− φtni+1(Z n
∧tni

) + φtni+1(Z n
∧tni

)− φtni (Z n)︸ ︷︷ ︸
≤0

.

By Meyer-Tanaka formula : ∃ K n non-increasing s.t.

φtni+1(Z n)− φtni+1(Z n
∧tni

)

=

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K n

tni+1
− K n

tni

Hence,

φtni+1(Z n)− φtni (Z n) =

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K̃ n

tni+1
− K̃ n

tni︸ ︷︷ ︸
≤0

.



Proof for φ Dupire-concave (i.e. y 7→ φ(t, x + 1{t}y) is concave for all t)
and non-increasing in time.

Fix tni = ihn and set Z n :=
∑

i Ztni
1[tni ,t

n
i+1). Then,

φtni+1(Z n)− φtni (Z n) = φtni+1(Z n)− φtni+1(Z n
∧tni

) + φtni+1(Z n
∧tni

)− φtni (Z n)︸ ︷︷ ︸
≤0

.

By Meyer-Tanaka formula : ∃ K n non-increasing s.t.

φtni+1(Z n)− φtni+1(Z n
∧tni

)

=

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K n

tni+1
− K n

tni

Hence,

φtni+1(Z n)− φtni (Z n) =

∫ tni+1

tni

∇xφtni+1(Z n
∧tni
⊕tni+1

(Zr − Ztni
))dZr + K̃ n

tni+1
− K̃ n

tni︸ ︷︷ ︸
≤0

.



Construction of the hedging strategy

Result #4 : v̄ admits a continuous vertical Dupire derivative given by

∇xv̄(t, x) = ∇xJ(t, x; ŝ[t, x]) := E
[
B̂[t, x]T − B̂[t, x]t

]
= Ŷ [t, x ]t .

And (Meyer-Tanaka + martingale property - just need C 0,1)

v̄(t ′, X̄ t,x,ŝ[t,x]) =v̄(t, x) +

∫ t′

t

∇xv̄(r , X̄ t,x,ŝ[t,x])dX̄ t,x,ŝ[t,x]
r

+

∫ t′

t

1
2
γr (X̄

t,x,ŝ[t,x])(sr − σr (X̄ t,x,ŝ[t,x]))2dr .

where

Ŷ [t, x] = m[t, x] +

∫ ·
t

â[t, x]udWu − (B̂[t, x]− B̂[t, x]t).
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Ŷ [t, x]rdX̄
t,x,ŝ[t,x]
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Recall that v̄(T , ·) = g

and

g(X x,â[x],B̂[x]) = v̄(T , X̄ x,ŝ[x]) =v̄(0, x) +

∫ T

0
Ŷ [x]rdX

x,â[x],B̂[x]
r

+

∫ T

0

1
2
fr (X

x,â[x],B̂[x])|â[x]r |2dr ,

Ŷ [x] =m[x] +

∫ ·
0
â[x]rdWr − B̂[x].

Recall that ŝ[x] = σ(X̄ x,ŝ[x]) + â[x]f (X̄ x,ŝ[x]) so that

X̄ x,ŝ[x] = x∧0 +

∫ ·
0
ŝ[x]rdWr = X x,â[x],B̂[x] .

Moreover,

ŝ[x]− σ(X̄ x,ŝ[x]) = â[x]f (X̄ x,ŝ[x]) = â[x]f (X x,â[x],B̂[x]).

⇒ ŝ[x] provides (â[x],−B̂[x]) which is the hedging strategy starting
from V0 = v̄(0, x) and Y0 = ∇xv̄(0, x).
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x,ŝ[x]
r

+

∫ T

0

1
2
γr (X̄
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X̄ x,ŝ[x] = x∧0 +

∫ ·
0
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ŝ[x]rdWr = x∧0+

∫ ·
0

(σr (X̄
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x,ŝ[x])(sr − σr (X̄ x,ŝ[x]))2dr ,
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Ŷ [x]rdX
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Absolute continuity of B̂[x] ?

2 Example of the constant coefficients case :

B̂[x] =

∫ ·
0
λ◦g (dr ; X̄ x,ŝ[x]).

Assume that g(x) = g̃
(∫ T

0 xrρrdr
)
for some process ρ and g

differientable. Then,

λg (ds; X̄ x,ŝ[x]) = g̃ ′

(∫ T

0
X̄ x,ŝ[x]
r ρrdr

)
ρsds

and

λ◦g (ds; X̄ x,ŝ[x]) = E

[
g̃ ′

(∫ T

0
X̄ x,ŝ[x]
r ρrdr

)
ρs |Fs

]
ds.

In particular, B̂[x] is absolutely continuous.
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Sufficient conditions for existence I : strong
existence

2 From now, we assume for simplicity that all coefficients are bounded.

2 The problem is :

v̄(0, x) = sup
s

E[g(X̄ x,s)−
∫ T

0

1
2
γr (X̄

x,s)(sr − σr (X̄ x,s))2dr ]

which implies that, for some C > 0, one can restrict to controls so that

E[

∫ T

0
s2r dr ] ≤ C .

By Mazur’s Theorem, if (sn)n≥1 is a maximizing sequence then one can
find (s̃n)n≥1 s.t.

s̃n ∈ conv(sk , k ≥ n)

that converges in L2 to some ŝ. In particular, X̄ x,s̃n → X̄ x,ŝ.

If g and (s, x) 7→ −γr (x)(s− σr (x))2 are concave, then existence holds.



Sufficient conditions for existence I : strong
existence

2 From now, we assume for simplicity that all coefficients are bounded.

2 The problem is :

v̄(0, x) = sup
s

E[g(X̄ x,s)−
∫ T

0

1
2
γr (X̄

x,s)(sr − σr (X̄ x,s))2dr ]

which implies that, for some C > 0, one can restrict to controls so that

E[

∫ T

0
s2r dr ] ≤ C .

By Mazur’s Theorem, if (sn)n≥1 is a maximizing sequence then one can
find (s̃n)n≥1 s.t.

s̃n ∈ conv(sk , k ≥ n)
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Sufficient conditions for existence II : weak
existence

2 The problem is :

v̄(0, x) = sup
s

E[g(X̄ x,s)−
∫ T

0

1
2
γr (X̄

x,s)(sr − σr (X̄ x,s))2dr ]

For using typical results ensuring tightness, one would need a penalty of
the form

γr (X̄
x,s)(sr − σr (X̄ x,s))2+ι

with ι > 0 !
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2 Assume that

y ∈ R 7→ (v − Γ̄ε0)(t, x⊕t y) is concave for all (t, x) ∈ [0,T ]× D([0,T ]).

with
Γ̄ε0(t, x) := Γ̄0(t, x)− ε0x2

t ,

for some ε0 > 0. Cf. Chapter 3 when g satisfies such a condition in the
Markovian setting.

2 We claim that (for s a maximizing sequence - encoded into Pn)

lim
θ↘0

δ(θ) = 0, with δ(θ) := lim sup
n→∞

sup
σ,τ∈T ,σ≤τ≤σ+θ

EPn
[∣∣X̄ s

τ − X̄ s
σ

∣∣2].
If not, ∃ θn → 0, and (σn, τn)n s.t.

2c := lim inf
n

EPn

[

∫ τn

σn

|ss |2ds] > 0.
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2 Set

φ := v− Γ̄ε0 and ξn := EPn

σn

[
φ(τn, X̄

s)−φ(τn, (X̄
s⊕σn (X̄ s

τn− X̄ s
σn

))σn∧·)
]
.

Then,

EPn

σn

[
v(τn, X̄

s)− 1
2

∫ τn

σn

γs(s, X̄ s
s )s2sds

]
=EPn

σn

[
φ(τn, (X̄

s ⊕σn (X̄ s
τn − X̄ s

σn
))σn∧·)−

1
2

∫ τn

σn

ε0s
2
sds
]

+ Γ̄ε0(σn, X̄
s) + ξn

≤φ(σn, X̄
s) + Cθn −

ε0
2
EPn

σn

[ ∫ τn

σn

s2sds
]

+ Γ̄ε0(σn, X̄
s) + ξn

=v(σn, X̄
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ε0
2
EPn
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2 How to prove by a pure probabilistic approach that

y ∈ R 7→ (v − Γ̄ε0)(t, x⊕t y) is concave for all (t, x) ∈ [0,T ]× D([0,T ]).

with
Γ̄ε0(t, x) := Γ̄0(t, x)− ε0x2

t ,

for some ε0 > 0, by using just the properties of the terminal data g ?



Open question

2 Conclusion : In a fairly general path-dependent setting, solving the
dual problem provides one solution to the hedging problem.

2 Open question : In the Markovian setting, and under smoothness
conditions, the super-hedging price is the only hedging price. How to
prove this in the path-dependent case by simply using probabilistic
arguments ?
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General take away message

2 One can construct models taking into account market impact and
illiquidity costs and still allowing for perfect hedging.

2 Stochastic target technics allows one to derive the associated pde (in
the viscosity solution sens).

2 In this model, covered and un-covered options are of very different
nature.

2 The question of understanding the non-Markovian case is still quite
open !
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2 The question of understanding the non-Markovian case is still quite
open !
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Appendix - Itô’s Lemma for C 0,1 functions.



Preliminaries

2 Given two measurable continuous X and Y ,

[X ,Y ]t := lim
ε↘0

1
ε

∫ t

0
(Xs+ε − Xs)(Ys+ε − Ys)ds, t ≥ 0,

whenever this limit is well defined for the uniform convergence in
probability on compact sets.

2 A measurable continuous process A is a weak zero energy process if
[A,N] = 0 a.s. for all continuous local martingale N.

2 X is a weak Dirichlet process if it admits the decomposition
X = M + A in which M is a continuous local martingale and A is a weak
zero energy process.
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2 Remark : If X is Y -integrable and Y is a semimartingale then∫ t

0
XsdYs = lim

ε↘0

∫ t

0
Xs

Ys+ε − Ys

ε
ds, t ≥ 0.



Assumptions

2 Let X be a continuous and adapted weak Dirichlet process, such that
[X ]t <∞ a.s. for all t ≥ 0.

2 There exists a measurable family of non-negative measures
(µ(·; t, x), (t, x) ∈ [0,T ]× D([0,T ]) and η > 0, β ≥ 0 satisfying

ϕ(t, x)− ϕ(t, x′) =

O

(∫
[0,t)

|xs − x′s |µ(ds; t, x) + ‖xt∧· − x′t∧·‖1+η(1 + ‖x‖β + ‖x′‖β)

)

for (x, x′) s.t. xt = x′t (⇒ always true in the not path dependent case).
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Theorem

2 Assume that ϕ and ∇xϕ are “uniformly continuous”. Then,

(i) There exists a weak zero energy process B such that

ϕ(t,X ) = ϕ(0,X ) +

∫ t

0
∇xϕ(s,X )dMs + Bt P− a.s. ∀ t ≤ T .

(ii) If A has bounded variations, then

ϕ(t,X ) = ϕ(0,X ) +

∫ t

0
∇xϕ(s,X )dXs + B′t P− a.s. ∀ t ≤ T ,

where B′ := B −
∫ ·
0 ∇xϕ(s,X )dAs is a weak energy process.

(iii) If X and ϕ(·,X ) are both martingales, then (ii) holds with B′ ≡ 0.
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2 Idea of the proof :

We want to show that

ϕ(t,X )−
∫ t

0
∇xϕ(s,X )dMs =: Bt

is a zero energy process. Need to check that

[B,N] = 0

for all (bounded) continuous martingale N, i.e.

lim
ε↘0

1
ε

∫ t

0
(Bs+ε − Bs)(Ns+ε − Ns)ds = 0.
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Corollary - Clark’s formula

2 Let X be a continuous martingale with independent increments. Then,

Φ(X ) = E[Φ(X )] +

∫ T

0
E[λΦ([t,T ];X )|Ft ]dXt .


