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Abstract

Using elementary arguments, we show how to derive Lp-error bounds for the approxi-
mation of frictionless wealth process in markets with proportional transaction costs. For
utilities with bounded risk aversion, these estimates yield lower bounds for the frictional
value function, which pave the way for its asymptotic analysis using stability results for
viscosity solutions. Using tools from Malliavin calculus, we also derive simple sufficient con-
ditions for the regularity of frictionless optimal trading strategies, the second main ingredient
for the asymptotic analysis of small transaction costs.

Keywords: Transaction costs, utility maximization, asymptotics.

MSC2010: 91G10, 91G80, 60H07

JEL Clasification: G11, C61

1 Introduction

Transaction costs, such as bid-ask spreads, are a salient feature of even the most liquid financial
markets. Their presence substantially complicates financial decision making by introducing a
nontrivial tradeoff between the gains and costs of trading. Indeed, with transaction costs, the
position in each asset is no longer a control variable that can be specified freely. Instead it
becomes an additional state variable that can only be adjusted gradually. Consequently, models
with transaction costs are notoriously intractable and rarely admit explicit solutions even in the
simplest concrete settings [7, 9, 33].

As a way out, one can view models with transaction costs as perturbations of their fric-
tionless counterparts, and study their asymptotics around these more tractable benchmarks.
This asymptotic point of view was first used to obtain closed-form approximations in simple
concrete models, cf., e.g., [33, 36, 17, 2, 1, 13]. More recently, these results have been extended
to increasingly more general settings [35, 28, 21, 24, 20, 3, 25].

Rigorous convergence proofs for such small-cost asymptotics are typically either based on
stability results for viscosity solutions or on convex duality.1 For the first approach, pioneered
by [35], the starting point for the analysis is that the difference between the value functions
with and without transaction costs indeed admits an expansion of a certain asymptotic order.
In simple models where explicit calculations are possible, this assumption has been verified in
[35, 28, 3] by constructing explicit subsolutions of the respective frictional dynamic programming
∗The authors are grateful to Costas Kardaras and Mihai Sirbu for fruitful discussions. Detailed comments
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1A related approach, building on [12, 14], studies tracking errors using weak-convergence techniques [6].
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equations. In a related model with quadratic costs [26], the corresponding bound is established
using a classical verification argument under very strong additional regularity conditions that,
however, rule out standard portfolio choice models such as [22].

In the papers based on convex duality [20, 15], a lower bound is derived by considering a
specific almost optimal control. This is in turn complemented by constructing a corresponding
dual element, for which the bound is tight at the leading asymptotic order for small transaction
costs. This approach again requires strong regularity conditions, in particular on the frictionless
optimizer. These are generally not easy to verify and only satisfied for sufficiently short time
horizons in the model of [22], for example.

In the present paper, we show how bounds for utility maximization problems with transaction
costs can be derived using arguments that are simple and elementary, but nevertheless apply to
the model of [22], for example. The expected asymptotic order formally arises as the optimal
trade-off between displacement from the frictionless optimizer and the cost of tracking it, cf. [29]
and [17, Remark 4]. We show that this idea can be exploited to obtain rigorous Lp estimates for
the corresponding tracking errors. Combined with a simple trick from [4, Proof of Theorem 3.1],
this directly leads to the desired bounds for utility maximization problems2. Once the correct
asymptotic order is identified using this bound, the corresponding leading-order term can in
turn be determined using the viscosity approach of [35, 28, 3].

Our arguments require mild integrability conditions, some of which are expressed in terms
of the frictionless optimizer. However, using techniques from Malliavin calculus, we show that
in complete Markovian3 markets these can be easily verified in terms of the primitives of the
model.

The remainder of the article is organized as follows. Our model with proportional transaction
costs is introduced in Section 2. Subsequently, in Section 3, we derive simple pathwise bounds for
the transaction costs accumulated when tracking frictionless target strategies by the solutions
of simple Skorohod problems. Under mild integrability conditions, these in turn lead to Lp-
error bounds for the approximation of frictionless wealth process in markets with proportional
transaction costs. In Section 4, we use these results to derive upper and lower bounds for
utility maximization problems with transaction costs. Using tools from Malliavin calculus,
simple sufficient conditions for the validity of these results are provided in Section 5. Finally, in
Section 7, we discuss how to extend our approach to transaction costs proportional to monetary
amounts rather than numbers of shares traded.

2 Model

Let (Ω,F ,P,F = (Ft)t∈[0,T ]) be a filtered probability space satisfying the usual conditions. We
consider a financial market with 1 + d assets. The first is safe, with price normalized to one.
The other d assets are risky, with prices modeled by a Rd-valued continuous semimartingale S.

Without transaction costs, trading strategies are described by Rd-valued predictable S-
integrable processes θ. Here, θit denotes the number of shares of risky asset i held at time
t. Accordingly, the frictionless wealth process corresponding to a strategy θ and the fixed initial
endowment X0 ∈ R is

Xθ
t := X0 +

∫ t

0
θ>s dSs, t ∈ [0, T ].

Now suppose as in [18, 2, 24] that trades incur costs proportional to the number of units trans-
2In order not to drown the main ideas in generality, we only consider utility functions defined on the real line

in the present paper. Power-like utility functions (with bounded relative risk aversion) defined on the positive
halfline can be treated with quite similar arguments, at the cost of somewhat more involved estimates.

3A similar approach can be used in a non-Markovian setting but we do not consider this general case to keep
the arguments simple.
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acted.4 Then, trading strategies ϑ necessarily have to be of finite variation and the frictional
wealth process corresponding to a Rd-valued predictable, càdlàg, finite-variation process with
initial value ϑ0− = 0 is

Xϑ,ε
t := X0 +

∫ t

0
ϑ>s dSs − ε

∫ t

0
d|ϑ|s − 1{T}ε|ϑT |. (2.1)

Here, ε > 0 is the proportional transaction cost and |ϑ| :=
∑d

i=1 |ϑi|, where |ϑi|t is the total
variation of the position (ϑis)s∈[0,t] in the risky asset i on [0, t]. Buying or selling a number dϑit
of units risky asset i at time t induces the transaction costs εd|ϑi|t in (2.1). Likewise, the term
1{T}ε|ϑT | describes the transaction cost paid when liquidating the risky asset positions at the
terminal time T .

In this paper, we show that elementary arguments allow to bound the error made by approx-
imating the frictionless wealth process Xθ by a frictional wealth process Xϑ,ε when ϑ is defined
as the solution [23, 11] of a Skorokhod problem5 for some δ > 0:{

θ − ϑ ∈ [−δ, δ]d on [0, T ],∑d
i=1

(∫ T
0 1{θit−ϑit 6=δ}dϑ

i+
t +

∫ T
0 1{θit−ϑit 6=−δ}dϑ

i−
t

)
= 0.

(2.2)

This means that the position ϑit in each risky asset is held constant as long as it differs from the
frictionless target allocation θit by no more than δ. Once this threshold is reached, just enough
trading is performed to maintain a deviation smaller than or equal to δ.

3 Bounds for the Skorokhod Problem and Tracking Error

Throughout, we assume that the frictionless target strategy θ is a continuous semimartingale,6

and use the shorthand notation 〈θ〉 :=
∑d

i=1〈θi〉. The first step to derive our tracking-error
estimates are the following elementary pathwise bounds for the transaction costs accumulated
by the frictional tracking strategy (2.2). Their derivation is based on a simple application of
Itô’s formula reminiscent of [17, Remark 4].

Here and henceforth, B1 denotes the collection of predictable processes with values in [−1, 1]d.

Lemma 3.1. Fix δ ∈ (0, 1) and let ϑ be the solution of the Skorohod problem (2.2). Then, there
exists ξ ∈ B1 such that

|ϑ|t ≤ Rδ(ξ)t := 2dδ +

∫ t

0
ξ>s dθs +

1

2δ
〈θ〉t, for all t ∈ [0, T ]. (3.1)

Proof. Since we are working on the rectangle [−δ, δ]d, we can consider each component separately
and then sum the respective bounds to obtain (3.1). Without loss of generality, we therefore
suppose d = 1 and consider a smooth function with bounded derivatives ϕ such that −ϕ′(−1) =
ϕ′(1) = 1, and |ϕ| ∨ |ϕ′| ∨ |ϕ′′| ≤ 1 on [−1, 1]. Define the adapted, [−1, 1]-valued process
Z := (θ − ϑ)/δ. Itô’s formula, the dynamics (2.2), and −ϕ′(−1) = ϕ′(1) = 1 give

ϕ(Zt) =ϕ(Z0) +
1

δ

(∫ t

0
ϕ′(Zs)d(θ − ϑ)s +

1

2δ

∫ t

0
ϕ′′(Zs)d〈θ〉s

)
=ϕ(Z0) +

1

δ

(∫ t

0
ϕ′(Zs)dθs − |ϑ|t +

1

2δ

∫ t

0
ϕ′′(Zs)d〈θ〉s

)
. (3.2)

4Transaction costs proportional to the dollar amounts traded as in [7, 9, 33] can be treated along the same
lines, leading to somewhat more involved integrability conditions; cf. Section 7 below for more details.

5Here, we use the canonical decomposition ϑi = ϑi+ − ϑi− in which ϑi± is càdlàg and non-decreasing.
6In Section 5, we use tools from Malliavin calculus to provide sufficient conditions for this assumption in terms

of the primitives of the model.
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Since ϕ and its first and second-order derivatives are bounded by 1, this yields (3.1) for d = 1
with ξ = ϕ′(Z). For several risky assets, the corresponding estimates follow by summing these
bounds over all d components. �

Now, fix a probability measure Q equivalent to the physical probability P. In applications
to utility maximization problems, this will be the frictionless dual martingale measure that
minimizes the dual problem for the original optimization; cf. Section 4. Another natural choice
is P itself. The pathwise estimates from Lemma 3.1 yield Lp(Q)-estimates under the following
mild integrability conditions on the frictional target strategy:

Assumption 3.2. For some p ≥ 1, there exists a constant C3.3(p) > 0 such that

‖〈θ〉T ‖Lp(Q) + sup
ξ∈B1

∣∣∣∣∣∣ ∫ T

0
ξ>s dθs

∣∣∣∣∣∣
Lp(Q)

≤ C3.3(p). (3.3)

Remark 3.3. Suppose the frictionless target strategy is an Itô process with dynamics

dθt = µθtdt+ σθt dWt,

for a Q-Brownian motion W . Then the inequalities of Minkowski, Jensen, and Burkholder-
Davis-Gundy show that the bound (3.3) is satisfied if∫ T

0
EQ
[
|µθt |p + |σθt |2p

]
dt <∞. (3.4)

Under Assumption 3.2 , the following Lp(Q)-estimates are a direct consequence of Lemma 3.1:

Corollary 3.4. Fix δ ∈ (0, 1) and let ϑ be the solution of the Skorohod problem (2.2). For p ≥ 1
as in Assumption 3.2, there exists a constant C3.5(p) > 0 such that

‖|ϑ|t‖Lp(Q) ≤ C3.5(p)

(
1 +

1

δ

)
, for all t ∈ [0, T ]. (3.5)

Remark 3.5. Assume that θ is a Q-Brownian motion and choose ϕ(z) = z2/2 for z ∈ [−1, 1]
in the proof of Lemma 3.1. Then, taking the expectation in (3.2) leads to

EQ [|ϑ|t] = EQ
[
δ(ϕ(Z0)− ϕ(Zt)) +

d

2δ
t

]
≥ −1

2
+

d

2δ
t

for δ ∈ (0, 1). This shows that the estimate (3.5) in terms of 1/δ can not be improved in general,
up to constants.

As a corollary, we now deduce the Lp(Q)-error made when approximating Xθ by Xϑ,ε, where
ϑ is defined as in Lemma 3.1. This requires the following additional integrability assumption on
the price process S:

Assumption 3.6. Given p ≥ 1 as in Assumption 3.2, there is a constant C3.6(p) > 0 such that

sup
ξ∈B1

∣∣∣∣∣∣ ∫ T

0
ξ>t dSt

∣∣∣∣∣∣
Lp(Q)

≤ C3.6(p). (3.6)

Remark 3.7. If S is Q-martingale and p ≥ 1, then (3.6) is equivalent to EQ[(〈S〉T )
p
2 ] <∞ by

the Burkholder-Davis-Gundy inequality. More generally, if the returns have Itô dynamics

dSt = µSt dt+ σSt dWt,

for a Q-Brownian motionW , then the inequalities of Minkowski, Jensen, and Burkholder-Davis-
Gundy show that a sufficient condition for (3.6) is∫ T

0
EQ [|µSt |p + |σSt |2p

]
dt <∞. (3.7)
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Theorem 3.8. Define ϑ as in Lemma 3.1 with δ ∈ (0, 1). Then, there exist ξ, ξ′ ∈ B1 such that∣∣∣Xϑ,ε
t −Xθ

t

∣∣∣ ≤ R̄δ,ε(ξ, ξ′)t := δ

∣∣∣∣∫ t

0
ξ>s dSs

∣∣∣∣+ 2εRδ(ξ′)t, for all t ∈ [0, T ]. (3.8)

If moreover, Assumptions 3.2 and 3.6 hold, then

‖Xϑ,ε
T −Xθ

T ‖Lp(Q) ≤ δ C3.6(p) + ε 2C3.5(p)

(
1 +

1

δ

)
.

In particular, for δ = ε1/2 ∈ (0, 1), there exists a constant C3.9(p) > 0 such that

‖Xϑ,ε
T −Xθ

T ‖Lp(Q) ≤ C3.9(p) ε1/2. (3.9)

Proof. By definition of the frictionless and frictional wealth processes Xθ, Xϑ,ε and (2.2),∣∣∣Xϑ,ε
t −Xθ

t

∣∣∣ =

∣∣∣∣∫ t

0
(ϑs − θs)>dSs − ε|ϑ|t − 1{T}ε|ϑT |

∣∣∣∣ ≤ δ ∣∣∣∣∫ t

0
ξ>s dSs

∣∣∣∣+ 2ε|ϑ|t,

where ξ := (ϑ− θ)/δ ∈ B1. The claims now follow from (3.1), (3.5), and Assumption 3.6. �

Remark 3.9. In the context of Remarks 3.5 and 3.7, one can be more precise:

δEQ
[∫ t

0
ξ>s µ

S
s ds

]
− cε

(
1 +

1

δ

)
≤ EQ

[
Xϑ,ε
t −Xθ

t

]
≤ δEQ

[∫ t

0
ξ>s µ

S
s ds

]
− c′ε

(
1 +

1

δ

)
,

for some constants c, c′ > 0 and ξ := (ϑ − θ)/δ ∈ B1. Unless EQ[
∫ t

0 ξ
>
s µ

S
s ds] vanishes, the two

error terms are of the same order only when δ is of the order of ε1/2. This is in particular the
case if θ is just a Q-Brownian motion and µS is a positive constant.

Remark 3.10. In applications to utility maximization, Q typically is a dual martingale measure,
i.e., S is a Q-martingale, compare Section 4. In this case, δ = ε1/2 no longer yields the optimal
tradeoff. In this context, we will instead use the following estimate that follows from Lemma
3.1:

EQ[Xϑ,ε
t −Xθ

t ] = −εEQ[|ϑ|t + 1{T}|ϑT |] ≥ −2εEQ[Rδ(ξ)t].

4 Bounds for Utility Maximization with Transaction Costs

We now apply the bounds from Section 3 to expected utility maximization problems. We focus
on utility functions with bounded risk aversion defined on the whole real line:7

Assumption 4.1. A utility function is a mapping U : R→ R that is strictly increasing, strictly
concave, C2, and has bounded absolute risk aversion:

0 < r < −U
′′(x)

U ′(x)
< R <∞, for constants r, R and all x ∈ R. (4.1)

Remark 4.2. The condition (4.1) implies that the derivative of ln(U ′) takes values in the
interval [−R,−r] ⊂ (−∞, 0). In particular, with the convention U(0) = 0,

e−Rx+c ≤ U ′(x) ≤ e−rx+c and − 1

R
e−Rx+c ≤ U(x) ≤ −1

r
e−rx+c, x ∈ R,

where c := ln(U ′(0)). This readily implies the Inada and reasonable asymptotic elasticity con-
ditions required for the validity of existence and duality results like [32, Theorem 1].

7As mentioned in the introduction, power-like utility functions could also be considered using similar argu-
ments. However, as usual, they have to be treated separately and lead to somewhat more involved estimates.
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As observed by [34], admissible strategies for such utilities with bounded absolute risk aver-
sion can be defined as for exponential utilities in [10, 32] by requiring the wealth process Xθ

of frictionless admissible strategies to be supermartingales under all absolutely continuous mar-
tingale measures with finite entropy.8 We denote the set of all such admissible strategies by A.
Under the no-arbitrage assumption9{

Q ∼ P : E
[
dQ
dP ln(dQdP )

]
<∞ and S is a local Q-martingale

}
6= ∅, (4.2)

and using that the existence of a dual minimizer follows from [19, Propositions 3.1 and 3.2] under
Assumption 4.1, [32, Theorem 1] shows that there exists an optimizer θ̂ ∈ A of the frictionless
utility maximization problem

θ 7→ u(θ) := E[U(Xθ
T )].

This optimizer is related to the solution Q̂ of a corresponding dual minimization problem [32,
Equation (7)] by the following first-order condition [32, Equation (12)]:

U ′(X θ̂
T )

E[U ′(X θ̂
T )]

=
dQ̂
dP

. (4.3)

Here, Q̂ is an equivalent (local) martingale measure for S. For the utility maximization problem
with transaction costs,

ϑ 7→ uε(ϑ) := E[U(Xϑ,ε
T )],

admissibility can be defined in direct analogy, by requiring frictional wealth processes to be
supermartingales under any absolutely continuous martingale measure with finite entropy.10

We write Aε for the set of these admissible frictional strategies and note that Aε ⊂ A by,
e.g., [15, Lemma E.5]. Since the transaction costs are always nonnegative, the frictionless value
function in turn provides a natural upper bound for its frictional counterpart:

v := sup
θ∈A

u(θ) ≥ sup
ϑ∈Aε

uε(ϑ) =: vε. (4.4)

In [35, 3, 28, 26], stability results for viscosity solutions are used to characterize the asymptotics
of the frictional value function vε for small transaction costs ε in a Markovian framework.
The starting point for these analyses is the abstract assumption that the normalized difference
(v− vε)/ε2/3 between the frictionless and frictional value functions is locally uniformly bounded
with respect to the initial time and space conditions.

We now establish such a bound by using the estimates from Section 3 to complement the
lower bound (4.4) with an appropriate upper bound. In order to apply the results from Section 3,
we need to assume that the frictionless optimizer is a continuous semimartingale; using tools
from Malliavin calculus, sufficient conditions for this assumption are derived in Section 5 in a
typical Markovian setting. In addition to the integrability conditions from Section 3, we also
need some (arbitrarily small) exponential moments to be finite:

8Indeed, in view of (4.1), the convex dual of U and the relative entropy (the convex dual of the exponential
utility) can be written as a convex function of each other in this case. By Jensen’s inequality, this notion of
admissibility thus coincides with the set H2 of [32]; in particular, it does not depend on the initial endowment.

9Here, existence of an equivalent local martingale measure is equivalent to “no-free lunch with vanishing risk”.
If there is such a measure with finite relative entropy, then this ensures that the dual problem is finite and the
primal problem in turn does not allow “utility-based arbitrages” that allow to attain the saturation point U(∞).
See, e.g., [31].

10In Markovian diffusion settings, this notion of admissibility allows to apply the arguments of [5, Theorem 3.5]
to obtain the weak version of the dynamic programming principle satisfied by the corresponding value function
vε. This in turn leads to the characterization of vε as a (possibly discontinuous) viscosity super- and subsolution
of a quasi-variational parabolic differential equation that is used in the above mentioned papers.
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Assumption 4.3. There exist ι > 0 and C4.5 > 0 such that

sup
ξ∈B1

{
EQ̂[eι

∫ T
0 ξ>t dθ̂t ]

}
+ EQ̂[eι〈θ̂〉T + eι〈S〉T ] ≤ C4.5, (4.5)

Remark 4.4. (i) The existence of the small exponential moments in (4.5) implies, in partic-
ular, that there exist C,R, η > 0 such that, for δ3 = ε ∈ (0, η) and all (ξj)j≤3 ⊂ B1:

EQ̂[eR|ξ
1
T |R̄δ,ε(ξ

2,ξ3)T ] < C, (4.6)

where R̄δ,ε(ξ2, ξ3)T is defined in (3.8) for θ = θ̂. This follows from the elementary estimate
exp(|x|) ≤ exp(x) + exp(−x), the Novikov-Kazamaki condition, and Hölder’s inequality.

(ii) Suppose that the frictionless optimizer θ̂ is of the form dθ̂t = µθ̂tdt + dMt for some con-
tinuous Q̂-local martingale M . Then, using again the elementary estimate exp(|x|) ≤
exp(x) + exp(−x), the Novikov-Kazamaki condition and Hölder’s inequality show that
(4.5) holds, in particular, if

EQ̂
[
eκ

∫ T
0 |µ

θ̂
t |dt + eκ〈θ̂〉T + eκ〈S〉T

]
<∞, (4.7)

for some arbitrarily small constant κ > 0.

Example 4.5. The bound (4.7) holds, e.g., for exponential utility maximization in the port-
folio choice model with mean-reverting models studied by [22]. In (the arithmetic version) of
their model,11 the volatility σS of the risky asset is constant whereas its expected returns have
Ornstein-Uhlenbeck dynamics:

dµSt = λ(µ̄S − µSt )dt+ σµdWµ
t ,

for constants λ > 0, σµ ≥ 0, µ̄S ∈ R, and a P-Brownian motionWµ that has constant correlation
% ∈ [−1, 1] with the Brownian motion W driving the risky returns. The optimal strategy for an
exponential utility U(x) = −e−rx in this model is of the following form [22]:

θ̂t =
µSt

r(σS)2
+
%σµ

rσS
(B(t) + C(t)µSt ),

for nonpositive, smooth functions B, C satisfying some Riccati equations. Accordingly, the
quadratic variation of the frictionless optimizer θ̂ is deterministic like for the returns process,
so that these two processes evidently have finite exponential moments of all orders. To verify
(4.7), it therefore remains to show that the drift of θ̂ also has small exponential moments. This
needs to be checked under the dual martingale measure Q̂, whose density process can be derived
by differentiating the value function computed in [22]. It follows that, under Q̂, the frictionless
optimizer θ̂ is still an Ornstein-Uhlenbeck process with Gaussian distribution. Its volatility,
mean-reversion level and speed are time-dependent, but bounded since they are determined
by the solutions of well-behaved Riccati equations. As a result, (4.7) is satisfied because θ̂ is
Gaussian.

Under our integrability conditions, we have the following lower bound for the frictional value
function:

11Without transaction costs, the arithmetic and geometric versions of the model are equivalent for portfolio
optimization because they span the same payoff spaces as long as the risk premium of the risky asset remains
unchanged. In contrast, the precise specification matters with transaction costs. A different parametrization that
covers the geometric version of the model of [22] is discussed in Section 7.
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Theorem 4.6. Suppose the frictionless optimal strategy θ̂ is a continuous semimartingale and
define the frictional tracking portfolio ϑ as in Lemma 3.1 for θ = θ̂ and with δ3 := ε ∈ (0, 1).
Suppose Assumptions 3.2, 3.6, 4.1, and 4.3 hold for some p > 2. Then, there exists a constant
C > 0 that does not depend on ε ∈ (0, η), such that

u
(
θ̂
)
− uε(ϑ) ≤ C ε2/3.

Moreover, ϑ ∈ Aε, so that this estimate yields the following lower bound for the frictional value
function:

v − C ε2/3 ≤ vε, (4.8)

for some C > 0 that does not depend on ε ∈ (0, 1).

Proof. Set ∆ε
T := U(Xϑ,ε

T )− U(X θ̂
T ). Then, there exists ζεT that takes values between Xϑ,ε

T and
Xθ
T such that

E[∆ε
T ] = E

[
U ′(X θ̂

T )
(
Xϑ,ε
T −X θ̂

T

)
+

1

2
U ′′(ζεT )

(
Xϑ,ε
T −X θ̂

T

)2
]

≥ αEQ̂
[(
Xϑ,ε
T −X θ̂

T

)
+

1

2

U ′′(ζε)

U ′(Xθ
T )

(
Xϑ,ε
T −X θ̂

T

)2
]
, (4.9)

where we used the first-order condition (4.3) and the notation α := E[U ′(X θ̂
T )]. Now observe

that Assumption 4.1 implies∣∣∣∣ln(U ′(x)

U ′(y)

)∣∣∣∣ =

∣∣∣∣∫ y

x

U ′′(z)

U ′(z)
dz

∣∣∣∣ ≤ R|x− y|, for all x, y ∈ R,

so that
U ′′(ζε)

U ′(X θ̂
T )

=
U ′′(ζε)

U ′(ζε)

U ′(ζε)

U ′(X θ̂
T )
≥ −ReR|ζε−X θ̂

T |.

Together with (4.9), this shows that

E[∆ε
T ] ≥ αEQ̂

[(
Xϑ,ε
T −X θ̂

T

)
− R

2
eR|ζ

ε
T−X

θ̂
T |
(
Xϑ,ε
T −X θ̂

T

)2
]
.

Now observe that ζεT defined above is of the form λXϑ,ε
T +(1−λ)X θ̂

T for some random variable λ
with values in [0, 1]. Thus ζεT −X θ̂

T = λ(Xϑ,ε
T −X θ̂

T ), and it follows from Theorem 3.8 that

E[∆ε
T ] ≥ αEQ̂

[(
Xϑ,ε
T −X θ̂

T

)
− R

2
eRλR̄δ,ε(ξ,ξ

′)T
(
Xϑ,ε
T −X θ̂

T

)2
]

for some ξ, ξ′ ∈ B1. For δ = ε1/3, Remark 3.10 and Theorem 3.8 together with (4.5) and Hölder’s
inequality in turn give

E[∆ε
T ] ≥ −C ε

2
3 ,

for some constant C > 0 that does not depend on ε ∈ (0, η).
It remains to establish that the frictional strategy ϑ is admissible, i.e., that its wealth process

Xϑ,ε is a supermartingale under any absolutely continuous local martingale measure Q, which
has finite relative entropy with respect to the physical probability P. In view of [15, Lemma
E.5], it suffices to check that

∫ ·
0 ϑtdSt is a Q-supermartingale and the corresponding transaction

costs ε|ϑ|T are Q-integrable.
Since

∫ ·
0 θ̂tdSt is a Q-supermartingale by admissibility of the frictionless optimizer θ̂, it suf-

fices to show that
∫ ·

0(ϑt − θ̂t)dSt is a Q-martingale. Since the price process S is a continuous

8



local Q-martingale, this follows if we can establish that EQ[
∫ T

0 (ϑt − θ̂t)
2d〈S〉t] < ∞, cf. [16,

Theorem I.4.40]. As ϑ − θ̂ is uniformly bounded by construction, it therefore suffices to show
EQ [〈S〉T ] < ∞ for all equivalent martingale measures Q with finite relative entropy. In view
of [10, Lemma 3.5] and [8, Theorem 2.2], this holds if EQ̂[exp(ι〈S〉T )] <∞ for some arbitrarily
small ι, which is part of the integrability conditions in Assumption 4.3.

We now turn to the Q-integrability of the transaction costs ε|ϑ|T . By the pathwise bound
(3.1) for δ = ε1/3 as well as [10, Lemma 3.5] and [8, Theorem 2.2], this holds if

sup
ξ∈B1

EQ̂
[
exp

(
ι

∫ T

0
ξ>t dθt

)
+ exp (ι〈θ〉T )

]
<∞

for some arbitrarily small ι > 0 as we have assumed in Assumption 4.3. This shows that ϑ is
indeed admissible, completing the proof. �

5 Itô Decomposition of the Frictionless Optimizer Using Malli-
avin Calculus

In this section, we explain how to verify the conditions imposed on the frictionless optimizer in
Theorem 4.6. More specifically, we show that a simple application of the Clark-Ocone formula
provides sufficient conditions in terms of the primitives of the model, avoiding the need for
abstract assumptions on the frictionless optimizer.

To ease notation, we focus on a simple one-dimensional, time-homogeneous Markov model
where the asset price process S is the solution of a stochastic differential equation,

S = S0 +

∫ ·
0
µ(St)dt+

∫ ·
0
σ(St)dWt. (5.1)

Here, S0 ∈ R, W is a one-dimensional standard Brownian and µ, σ are globally Lipschitz maps
taking values in R and (0,∞), respectively.

Remark 5.1. Adding a time dependency in the coefficients or considering a multi-dimensional
setting would not change the nature of the analysis. In principle, our approach could also be
extended to non-Markovian settings, but we do not pursue this here since the corresponding
assumptions for Malliavin differentiability would be rather involved and abstract.

For our analysis based on Malliavin calculus, the primitives of the model need to be suffi-
ciently regular. The following conditions are sufficient; for clarity, we do not strive for minimal
assumptions.

Assumption 5.2. The maps λ := σ−1µ, σ and σ−1 are twice continuously differentiable with
bounded derivatives of order 0, 1, 2. Moreover, the utility function U satisfies Assumption 4.1,
U ∈ C3(R), and U ′′′/U ′′ is bounded.

For a bounded market-price of risk λ as in Assumption 5.2, the measure Q̂ ∼ P with density

dQ̂
dP

= eN , where N :=
1

2

∫ T

0
λ(St)

2dt+

∫ T

0
λ(St)dW

Q̂
t , (5.2)

is the unique martingale measure for S, and W Q̂ := W −
∫ ·

0 λ(St)dt is a Q̂-Brownian motion.
As Q̂ trivially is the minimizer of the dual problem, it is linked to the optimal strategy θ̂ for the
primal problem by the first-order condition (4.3). Since the derivatives of the utility function U
and its convex conjugate Ũ(y) := supx∈R{U(x)−xy}, y ∈ R, are related by Ũ ′(x) = −(U ′)−1(x),
this means that we can find h > 0 such that

X θ̂
T = −Ũ ′(H), where H := heN .

Assumption 5.2 in turn also guarantees the integrability of the optimal frictionless wealth process:

9



Lemma 5.3. Under Assumption 5.2, we have Ũ ′(H) ∈ L2(Q̂).

Proof. As Ũ ′(x) = −(U ′)−1(x), observe that the derivative of x 7→ Ũ ′(exp(x)) is given by
x 7→ exp(x)/U ′′[(U ′)−1(exp(x))]. Since exp(x) = U ′[(U ′)−1(exp(x))], the derivative of x 7→
Ũ ′(exp(x)) is therefore bounded because U ′/U ′′ is bounded by assumption. Thus, x 7→ Ũ ′(exp(x))
has at most linear growth and the integrability of Ũ ′(H) in turn follows from Assumption 5.2. �

We can now establish the main result of this section, which shows that under Assumption 5.2,
the frictionless optimizer is not only a continuous semimartingale but in fact an Itô process with
bounded drift and diffusion coefficients. In particular, Theorem 4.6 is applicable in this case.

Proposition 5.4. Let Assumption 5.2 hold. Then, the frictionless optimizer θ̂ is bounded and
of the form

θ̂ = θ̂0 +

∫ ·
0
αtdt+

∫ ·
0
γtdW

Q̂
t ,

where θ̂0 ∈ R and α, γ are bounded, adapted processes.

Proof. Step 1 : we first prove that θ̂ is bounded by applying the Clark-Ocone formula. We denote
by Dt the time-t Malliavin derivative operator with respect to W Q̂. It follows from (5.1), (5.2)
and [27, Theorem 2.2 and p.104] (applied to the two-dimensional diffusion process (S,N)) that

DtN =

∫ T

t
(λλ′)(Ss)DtSsds+

∫ T

t
λ′(Ss)DtSsdW

Q̂
s + λ(St),

where

DtS = σ(St)e
− 1

2

∫ ·
t |σ
′(Ss)|2ds+

∫ ·
t σ
′(Ss)dW

Q̂
s . (5.3)

Hence,

DtN = σ(St)E−1
t

[
N̄T − N̄t

]
+ λ(St), (5.4)

with

N̄ :=

∫ ·
0

(λλ′)(Ss)Esds+

∫ ·
0
λ′(Ss)EsdW Q̂

s and E := e−
1
2

∫ ·
0 |σ
′(Ss)|2ds+

∫ ·
0 σ
′(Ss)dW

Q̂
s .

Note that, using standard estimates, our bounds on σ, σ′, λ and λ′ imply that, for all p ≥ 1,

sup
t∈[0,T ]

‖EQ̂
[

sup
s∈[t,T ]

|Es/Et|p|Ft
]
‖L∞ <∞, (5.5)

sup
t∈[0,T ]

‖EQ̂[|(N̄T − N̄t)/Et|p|Ft]‖L∞ <∞, (5.6)

sup
t∈[0,T ]

‖EQ̂[|DtN |p|Ft]‖L∞ <∞, (5.7)

EQ̂[Hp] <∞. (5.8)

Moreover, X θ̂
T = −Ũ ′(H) and the chain-rule formula [27, Proposition 1.2.3, Lemma 1.2.3] imply

DtX
θ̂
T = −HŨ ′′(H)DtN = F

(
X θ̂
T

)
DtN,

where F := U ′/U ′′. Recall that F is bounded by assumption and Ũ ′(H) ∈ L2(Q̂) by Lemma 5.3.
In view of (5.7), it follows that X θ̂

T belongs to the Malliavian space D1,2, see [27, p.27], and that

sup
t≤T
‖EQ̂

[
|DtX

θ̂
T |2|Ft

]
‖L∞ = sup

t≤T
‖EQ̂

[
|F
(
X θ̂
T

)
DtN |2|Ft

]
‖L∞ <∞. (5.9)
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One can then apply the Clark-Ocone formula [27, Proposition 1.3.14] to obtain

θ̂tσ(St) = EQ̂
[
DtX

θ̂
T |Ft

]
, t ∈ [0, T ].

Since σ−1 is bounded, (5.9) in turn shows that θ̂ is indeed bounded.
Step 2 : next, we prove that θ̂ has a bounded quadratic variation. Set

F̃ := F ((U ′)−1)

and recall that U ′(X θ̂
T ) = H. Then, it follows from Step 1 that

θ̂t = EQ̂
[
DtX

θ̂
T |Ft

]
σ(St)

−1 = E−1
t (At −BtN̄t) + (σ−1λ)(St)Bt, t ∈ [0, T ],

where

At := EQ̂[F̃ (H)N̄T |Ft] = EQ̂[F̃ (H)N̄T ] +

∫ t

0
φAs dW

Q̂
s ,

Bt := EQ̂[F̃ (H)|Ft] = EQ̂[F̃ (H)] +

∫ t

0
φBs dW

Q̂
s .

Here, (φA, φB) are obtained from the Clark-Ocone formula [27, Proposition 1.3.14] and the
chain-rule formula [27, Proposition 1.2.3, Lemma 1.2.3] :

φAs := EQ̂[F̃ ′(H)HDsNN̄T + F̃ (H)DsN̄T |Fs] , φBs := EQ̂[F̃ ′(H)HDsN |Fs], s ∈ [0, T ].

Again, the required integrability conditions can be easily deduced from Assumption 5.2 by
arguing as in Step 1. As a consequence,

d

dt
〈θ̂ − (σ−1λ)(S)B〉t =|E−1

t (φAt − φBt N̄t)−Btλ′(St)− (At −BtN̄t)E−1
t σ′(St)|2

where, by (5.4),

E−1
t (φAt − φBt N̄t) :=σ(St)E−2

t EQ̂[F̃ ′(H)H(N̄T − N̄t)
2|Ft] + E−1

t EQ̂[F̃ (H)DtN̄T |Ft]

+ λ(St)E−1
t EQ̂[F̃ ′(H)H(N̄T − N̄t)|Ft]

and
(At −BtN̄t)E−1

t = EQ̂[F̃ (H)(N̄T − N̄t)|Ft]E−1
t .

The identity

|F̃ ′(H)H| =
∣∣∣∣ U ′U ′′(X θ̂

T

)(
1− U ′U ′′′

(U ′′)2

(
X θ̂
T

))∣∣∣∣
combined with our assumptions ensures that F̃ ′(H)H is bounded. This is also the case for
E−2
t EQ̂[(N̄T − N̄t)

2|Ft] by (5.6), and for F̃ (H) by assumption. Moreover,

E−1
t DtN̄T = λ′(St) +

∫ T

t
E−1
t Dt[(λλ

′)(Ss)Es]ds+

∫ T

t
E−1
t Dt[λ

′(Ss)Es]dW Q̂
s

where
DtEs = Es ×

(
σ′(St)−

∫ s

t
(σ′σ′′)(Ss)DtSsds+

∫ s

t
σ′′(Ss)DtSsdW

Q̂
s

)
,

so that (5.3), (5.5), Assumption 5.2, and the chain-rule formula imply that

sup
t∈[0,T ]

‖EQ[|E−1
t DtN̄T ||Ft]‖∞ <∞.
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The above bounds combined with Assumption 5.2 yield that 〈θ̂−(σ−1λ)(S)B〉 and 〈(σ−1λ)(S)B〉
are bounded. By polarization, it follows that 〈θ̂〉 is bounded as well.

Step 3 : it remains to prove that the drift part of θ̂ has a bounded density. Recall from Step 2
that the frictionless optimizer can be represented as

θ̂t = E−1
t (At −BtN̄t) + [σ−1λ](St)Bt.

After applying Itô’s formula, our assumptions and similar arguments as in Step 2 show that its
dynamics are of the following form:

θ̂t = θ̂0 +

∫ t

0
βsds+

∫ t

0
γsdW

Q̂
s , t ∈ [0, T ],

with θ̂0 ∈ R, |γ|2 = d〈θ̂〉/dt and

βt :=(At −BtN̄t)E−1
t |σ′(St)|2 − E

−1
t σ′(St)(φ

A
t − φBt N̄t)

−Bt[(λλ′)(St)− (λ′σ′)(St) + λ′(St)φ
B
t ]

+ L(σ−1λ)(St)Bt + [(σ−1λ)′σ](St)φ
B
t .

Here, L denotes the Dynkin operator associated to S under Q̂. Similar arguments as in Step 2 –
now also using the boundedness of the second-order derivatives – in turn show that β is indeed
bounded. This completes the proof. �

6 Processes with jumps

The case where the price process S (and, in turn, typically also the frictionless target strategy
θ) have jumps can be treated similarly as above if θ can be decomposed into θc + θd, where θc

is a continuous semimartingale and θd is purely discontinuous with a.s. summable jumps. In
this case, we let ϑc be defined as in Lemma 3.1 but with respect to θc and set ϑd := θd, so
that ϑ is now defined as ϑc + ϑd. With this modification and a straightforward adaptation of
our integrability conditions, Theorem 3.8 and Theorem 4.6 remain valid. The intuition is that
summable jumps can simply be tracked without any adjustment, because this only generates
trading costs of order O(ε) that do not affect our bound at the leading order.

When θ exhibits infinitely many small jumps, and the above decomposition does not hold,
the strategy ϑ can not follow all the jumps of θ (the cost would be infinite). Results of [30] for
pure-jump processes suggest that even such infinite-activity jumps also only generate only higher
effects than Brownian components, but making this rigorous is an open problem, in particular,
since it is unclear how to derive results about the activity of optimal trading strategies from the
primitives of the model in such contexts.

7 Strategies Parametrized in Monetary Amounts

For simplicity, our results are presented in the case where the controls θ and ϑ describe the
numbers of shares of the risky assets held in the portfolio, and transaction costs are levied on
the number of shares transacted. A similar analysis can also be conducted when the controls
represent monetary amounts invested and transaction costs are proportional to dollar amounts
traded. We now outline how to adapt the arguments from Sections 3 and 4 in this case.

In order to parametrize strategies in terms of monetary risky positions, suppose that the
price process S is a (0,∞)d-valued continuous semimartingale. The frictionless target strategy
θ is in turn assumed to be a continuous semimartingale such that θ/S is S-integrable.12 Here,

12Here, we use the notation x/y = (xi/yi)i≤d.
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θi now represents the amount of money invested in the risky asset i, so that the corresponding
frictionless wealth process is

Xθ
t := X0 +

∫ t

0
(θs/Ss)

>dSs, t ∈ [0, T ].

Now suppose trades incur costs proportional to the monetary amount transacted. Then, the
frictional wealth process is

Xϑ,ε
t := X0 +

∫ t

0
(Y ϑ
s /Ss)

>
dSs − ε

∫ t

0
d|ϑ|s − 1{T}ε|Y ϑ

T |,

where the amounts of money invested into the risky assets follows

Y ϑ
t :=

∫ t

0
(Y ϑ
s /Ss)

>
dSs + ϑt.

These positions are controlled through the continuous bounded-variation process ϑi, which de-
scribes the cumulative amount of money transferred to the position in the corresponding asset
so far. In this setting, the Skorokhod problem studied in Lemma 3.1 becomes{

θ − Y ϑ ∈ [−δ, δ]d on [0, T ],∑d
i=1

(∫ T
0 1{θit−Y

ϑ,i
t 6=δ}

dϑi+t +
∫ T

0 1{θit−Y
ϑ,i
t 6=−δ}

dϑi−t

)
= 0.

The arguments used to prove Lemma 3.1 can in turn be adapted to control |ϑ| also in this
setting. Indeed, define ϕ as in the proof of Lemma 3.1 and set Z := (θ− Y ϑ)/δ. Then, focusing
on a single risky asset (d = 1) without loss of generality, it follows from Itô’s lemma and the
identities −ϕ′(−1) = ϕ′(1) = 1 that

ϕ(Zt) =ϕ(Z0) +
1

δ

(∫ t

0
ϕ′(Zs)d(θ − Y ϑ)s +

1

2δ

∫ t

0
ϕ′′(Zs)d〈θ − Y ϑ〉s

)
=ϕ(Z0) +

1

δ

(∫ t

0
ϕ′(Zs)dθs −

∫ t

0
ϕ′(Zs)(Y

ϑ
s /Ss)dSs − |ϑ|t

)
+

1

2δ2

(∫ t

0
ϕ′′(Zs)d〈θ〉s +

∫ t

0
ϕ′′(Zs)(Y

ϑ
s /Ss)

2d〈S〉s − 2

∫ t

0
ϕ′′(Zs)(Y

ϑ
s /Ss)d〈S, θ〉s)

)
.

One can then use the bounds on ϕ and its derivatives (|ϕ| ∨ |ϕ′| ∨ |ϕ′′| ≤ 1 on [−1, 1]) as well as
(Y ϑ − θ)/δ ∈ B1 to obtain the following estimate:

|ϑ|t ≤ δ
(

2 +

∫ t

0
ξ1
sdMs +

1

2

∫ t

0
d〈M〉s

)
+

∫ t

0
ξ2
sdθs +

∫ t

0
ξ3
sθsdMs +

∫ t

0
ξ4
sθsd〈M〉s +

∫ t

0
ξ5
sd〈M, θ〉s

+
1

δ

(
1

2
〈θ〉t +

1

2

∫ t

0
θ2
sd〈M〉s +

∫ t

0
ξ6
sθsd〈M, θ〉s

)
.

Here, ξ1, . . . , ξ6 ∈ B1, and M denotes the returns process with dynamics dMt = dSt/St.
The counterparts of Corollary 3.4 and Theorem 3.8 in turn follow under integrability con-

ditions similar but somewhat more involved than Assumptions 3.2 and 3.6. An analogue of
Theorem 4.6 can also be obtained under conditions similar to Assumption 4.3.

In particular, arbitrarily small exponential moments of the primitives of the model are still
sufficient to derive the lower bound (4.8). In particular, this allows to cover the geometric
version of the model of [22] where the frictionless target strategy θ = θ̂ is Gaussian, compare
Example 4.5. In contrast, the integrability conditions imposed in previous papers are only
satisfied in this context if the time horizon T is sufficiently small. Indeed, [20, Condition (3.2)]
or [15, Condition (A.2)] require the existence of a specific exponential moment for

∫ T
0 θ̂tdMt

or
∫ T

0 θ̂2
t dt, which both involve a squared Ornstein-Uhlenbeck process for the model of [22].

Therefore, these conditions only hold if the time horizon T is not too large.
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