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Abstract

We consider a one-dimensional kinetic model of granular media in
the case where the interaction potential is quadratic. Taking advan-
tage of a simple first integral, we can use a reformulation (equivalent
to the initial kinetic model for classical solutions) which allows mea-
sure solutions. This reformulation has a Wasserstein gradient flow
structure (on a possibly infinite product of spaces of measures) for a
convex energy which enables us to prove global in time well-posedness.
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gradient flows.
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1 Introduction

Kinetic models for granular media were initiated in the work of Benedetto,
Caglioti and Pulvirenti [4], [5] who considered the following PDE

∂tf+v ·∇xf = divv(f(∇W⋆vf)), (t, x, v) ∈ R+×R
d×R

d, f |t=0 = f0, (1.1)

where f0 is an integrable nonnegative function on the phase space and W is
a certain convex and radially symmetric potential capturing the (inelastic)
collision rule between particles, and the convolution is in velocity only (∇W⋆v

∗Department of Mathematics and statistics University of Victoria, Victoria, BC, PO Box 3060 STN
CSC Victoria, BC, V8W 3R4, CANADA, agueh@math.uvic.ca.

†CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de Tassigny, 75775
Paris Cedex 16, FRANCE carlier@ceremade.dauphine.fr.

1



ft)(x, v) =
∫

Rd ∇W (v − u)ft(x, u)du (so that there is no regularizing effect
in the spatial variable). At least formally, (1.1) captures the limit as the
number N of particles tends to +∞ of the second-order ODE system:

Ẋi(t) = Vi(t), V̇i = −
1

N

∑

j 6=i

∇W (Vi(t)− Vj(t))δXi(t)−Xj (t), i = 1, · · · , N,

(1.2)
which describes the motion of N particles of mass 1

N
moving freely until

collisions occur, and at collision times, there is some velocity exchange with
a loss of kinetic energy depending on the form of the potential W .

Surprisingly there are very few results on well-posedness for such equa-
tions. This is in contrast with the spatially homogeneous case (i.e. f depend-
ing on t and v only) associated with (1.1) that has been very much studied
(see [4, 11, 12, 17, 6, 13] and the references therein) and for which existence,
uniqueness and long-time behavior are well understood. In fact, the spatially
homogeneous version of (1.1) can be seen as the Wasserstein gradient flow
of the interaction energy associated to W , and then well-posedness results
can be viewed as a consequence of the powerful theory of Wasserstein gra-
dient flows (see [3]). For the full kinetic equation (1.1), local existence and
uniqueness of a classical solution was proved in one dimension in [4] for the
potential W (v) = |v|3/3 (as observed in [2], the arguments of [4] extend to
dimension d and W (v) = |v|p/p provided p > 3 − d) when the initial datum
f0 is a non-negative C1 ∩ W 1,∞(R × R) integrable function with compact
support. Under an additional smallness assumption, the authors of [4] also
proved a global existence result. In [1], the first author has extended the
local existence result of [4] to more general interaction potentials W and to
any dimension, d ≥ 1. The proof of [1] is based on a splitting of the kinetic
equation (1.1) into a free transport equation in x, and a collision equation in
v that is interpreted as the gradient flow of a convex interaction energy with
respect to the quadratic Wasserstein distance. In [2], various a priori esti-
mates are obtained, in particular a global entropy bound (which thus rules
out concentration in finite time) in dimension 1 when W ′′ is subquadratic
near zero.

Understanding under which conditions one can hope for global existence
or on the contrary expect explosion in finite time is mainly an open question.
Let us remark that the weak formulation of (1.1) means that for any T > 0
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and any φ ∈ C∞
c ([0, T ]× R

d × R
d) one has

∫ T

0

∫

Rd×Rd

(∂tφ(t, x, v)ft(x, v) +∇xφ(t, x, v) · vft(x, v))dxdvdt

=

∫

Rd×Rd

φ(T, x, v)fT (x, v)dxdv −

∫

Rd×Rd

φ(0, x, v)f0(x, v)dxdv

+

∫ T

0

∫

Rd×Rd×Rd

∇vφ(t, x, v) · ∇W (v − u)ft(x, v)ft(x, u)dxdudvdt

and for the right hand side to make sense, it is necessary to have a control
on nonlinear quantities like

∫ T

0

∫

Rd×Rd×Rd

ft(x, v)ft(x, u)dxdudvdt

which actually makes it difficult to define measure solutions (this also explains
why in [4] or [1], the authors look for L1 ∩ L∞ solutions). Observing that
(1.1) can be written in conservative form as

∂tf + divx,v(fF (f)) = 0, with F (f)(x, v) = (v,−(∇W ⋆v f)(x, v)),

we see that, at least for smooth solutions, (1.1) can be integrated using the
method of characteristics:

ft = St#f0

where St is the flow of the vector-field F (f) i.e.

S0(x, v) = (x, v),
d

dt
St(x, v) = F (ft)(St(x, v)),

and ft = St#f0 means that
∫

Rd×Rd

ϕ(x, v)ft(x, v)dxdv =

∫

Rd×Rd

ϕ(St(x, v))f0(x, v)dxdv, ∀ϕ ∈ Cb(R
d×R

d).

In the present work, we investigate the one-dimensional case with the
quadratic kernel W (v) = 1

2
|v|2 which is neither covered by the analysis of [4]

nor by the entropy estimate of [2] (actually the entropy cannot be globally
bounded in this case, see [2]). In this case the convolution takes the form

∫

R

(v − u)ft(x, u)du = ρt(x)v −mt(x),

where

ρt(x) :=

∫

R

ft(x, v)dv, mt(x) :=

∫

R

vft(x, v)dv, (1.3)
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so that the kinetic equation (1.1) rewrites

∂tft(x, v) + v∂xft(x, v) = ∂v

(

ft(x, v)(ρt(x)v −mt(x))
)

, (1.4)

and we supplement (1.4) with the initial condition

f |t=0 = f0, (1.5)

where f0 is a compactly supported probability density:

f0 ∈ L1(Rd × R
d),

∫

Rd×Rd

f0dxdv = 1 (1.6)

and
Supp(f0) ⊂ BRx

× BRv
(1.7)

for some positive constants Rx and Rv. We shall see later on, how to treat
more general measures as initial conditions. Our first contribution is the
observation that, thanks to a special first integral of motion for the charac-
teristics system associated with (1.4), one may define weak solutions not at
the level of measures on the phase space but on a (possibly infinite) prod-
uct of measures on the physical space. Our second contribution is to show
that this reformulation has a gradient flow structure for an energy functional
with good properties which will enable us to prove global well-posedness.
To the best of our knowledge, even if the situation we are dealing with is
very particular, this is the first global result of this type for kinetic models
of granular media. As pointed out to us by Yann Brenier, our analysis has
some similarities with (but is different from) some models of sticky particles
for pressureless flows (see [9], [8]) and Brenier’s formulation of the Darcy-
Boussinesq system [7].

The article is organized as follows. In section 2, we show how a certain first
integral of motion can be used to give a reformulation of (1.4) which allows
for measure solutions. Section 3 investigates the gradient flow structure of
this reformulation. Section 4 proves global existence thanks to the celebrated
Jordan-Kinderlehrer-Otto (henceforth JKO) implicit Euler scheme of [16] for
a certain energy functional. In section 5, we prove uniqueness and stability
and give some concluding remarks.

2 A first integral and measure solutions

2.1 A first integral for classical solutions

Let us consider a C1 compactly supported initial condition f0 and a classical
solution f , that is a C1 function which solves (1.4) in a pointwise sense on

4



R+ × R
d × R

d. It is then easy to show (see [2]) that f remains compactly
supported locally in time; more precisely (1.7) and (1.4) imply that

Supp(ft) ⊂ BRx+tRv
× BRv

, ∀t ≥ 0. (2.1)

The characteristics for (1.4) is the flow map for the second-order ODE

Ẍ = −ρt(X)Ẋ +mt(X) (2.2)

in the sense that
ft = (Xt, Vt)#f0

where (X0(x, v), V0(x, v)) = (x, v) and

d

dt
Xt(x, v) = Vt(x, v),

d

dt
Vt(x, v) = −ρt(Xt(x, v))Vt(x, v) +mt(Xt(x, v)),

(2.3)
with ρ and m being respectively the spatial marginal and momentum asso-
ciated to f defined by (1.3). Integrating (1.4) with respect to v, first gives:

∂tρt(x) + ∂xmt(x) = 0, t ≥ 0, x ∈ R (2.4)

so that there is a stream potential G such that

ρ = ∂xG, m = −∂tG, (2.5)

and since ρ is a probability measure, it is natural to choose the integration
constant in such a way that G is the cumulative distribution function of ρ:

Gt(x) =

∫ x

−∞

ρt(y)dy = ρt((−∞, x]). (2.6)

Replacing (2.6) in (2.2) then gives

Ẍ = −∂xGt(X)Ẋ − ∂tGt(X) = −
d

dt
Gt(X)

so that Ẋ + Gt(X) is constant along the characteristics. Since G0 can be
deduced from the initial condition f0 by

G0(x) =

∫ x

−∞

∫

R

f0(y, v)dv dy,

we have the following explicit first integral of motion for (2.3):

Vt(x, v) +Gt(Xt(x, v)) = v +G0(x). (2.7)
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2.2 Reformulation and equivalence for classical solu-

tions

In view of the first integral (2.7), it is natural to perform a change of variables
on the initial conditions:

a(x, v) := v +G0(x)), ν
a
0 (x) := f0(x, a−G0(x))

so that for every φ ∈ C(R× R) one has

∫

R×R

φ(x, a(x, v))f0(x, v)dxdv =

∫

R×R

φ(x, a)νa0 (x)dxda,

and then to rewrite the characteristics as a family of first-order ODEs parametrized
by the label a:

d

dt
Xa

t (x) = a−Gt(X
a
t (x)), X

a
0 (x) = x. (2.8)

The flow (2.3) may then be rewritten as:

Xt(x, v) = Xa
t (x), Vt(x, v) = a−Gt(X

a
t (x)) for a = a(x, v) = v +G0(x).

Hence setting
νat := Xa

t #ν
a
0 , (2.9)

the relation ft = (Xt, Vt)#f0 can be re-expressed as:

∫

R2

φ(x, v)ft(x, v)dxdv =

∫

R2

φ(x, a−Gt(x))ν
a
t (x)dxda (2.10)

for every t ≥ 0 and every test-function φ ∈ C(R2). This implies in particular
that

ρt(x) =

∫

R

νat (x)da

and then also

Gt(x) =

∫

R

Ga
t (x)da with Ga

t (x) := νat ((−∞, x]). (2.11)

On the other hand, using (2.8), we deduce that for each a ∈ R, νa satisfies
the continuity equation:

∂tν
a
t + ∂x

(

νat (a−Gt(x))
)

= 0, νa|t=0(x) = νa0 (x) = f0(x, a−G0(x)). (2.12)
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Note that νat is a nonnegative measure but not necessarily a probability
measure, its total mass being that of νa0 i.e. h(a) :=

∫

R
f0(x, a−G0(x))dx.

The previous considerations show that any classical solution of (1.4) is
related to a solution of the system of continuity equations (2.12)-(2.11) with
initial condition f0 via the relation (2.10). The converse is also true: if νa is
a family of classical solutions of (2.12) with Ga and G given by (2.11), then
the time-dependent family of probability measures ft on R

2 defined by (2.10)
actually solves (1.4). Indeed, by construction the spatial marginal ρ of f is
∂xG; as for the momentum, we have

mt(x) :=

∫

R

vft(x, v)dv =

∫

R

(a−Gt(x))ν
a
t (x)da.

Then, thanks to (2.12) and Fubini’s theorem, we have

∂tG(x) =

∫ x

−∞

∫

R

∂tν
a(y)dyda = −

∫ x

−∞

∫

R

∂x(ν
a
t (y)(a−Gt(y)))dyda

= −

∫

R

(a−Gt(x))ν
a
t (x)dx = −mt(x).

Then let us take a test-function φ ∈ C1
c (R

2), differentiating (2.10) with re-
spect to time, using ∂xG = ρ, ∂tG = −m, (2.10) and an integration by parts
and (2.12), we have

d

dt

∫

R2

φft =

∫

R2

(

− φ(x, a−Gt(x))∂x(ν
a
t (a−Gt)) + ∂vφ(x, a−Gt)mtν

a
t

)

dxda

=

∫

R2

(

∂xφ(x, a−Gt(x))− ∂vφ(x, a−Gt(x))ρt(x)
)

(a−Gt(x))ν
a
t (x)dxda

+

∫

R2

∂vφ(x, v)mt(x)ft(x, v)dxdv

=

∫

R2

(∂xφ(x, v)v + ∂vφ(x, v)(mt(x)− ρt(x)v)ft(x, v))dxdv.

This proves that, for classical solutions, the kinetic equation (1.4) is ac-
tually equivalent to the system of PDEs (2.12)-(2.11) indexed by the label
a.

2.3 Measure solutions

We now take the system (2.12)-(2.11) as a starting point to define measure
solutions. We have to suitably relax the system so as to take into account:
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• the fact that shocks may occur i.e. atoms of ρ may appear in finite
time, then the cumulative distribution G may become discontinuous
(in which case it will be convenient to view G, which is monotone, as
a set-valued map),

• the fact that when shocks occur, the velocity may depend on the label
a,

• more general initial conditions.

Let us treat first the case of more general initial conditions. What really
matters is to be able to make the change of variables a = v + G0(x) in a
non-ambiguous way, which can be done as soon as ρ0 is atomless i.e. does
not charge points. We shall therefore assume that f0 is a probability measure
on R

2 with compact support and having an atomless spatial marginal:

Supp(f0) ⊂ BRx
×BRv

, ρ0 is atomless i.e. f0({x}×R) = 0, ∀x ∈ R. (2.13)

Defining the spatial marginal ρ0 of f0 by
∫

R

φ(x)dρ0(x) =

∫

R2

φ(x)df0(x, v), ∀φ ∈ C(R)

as well as its cumulative distribution function

G0(x) := ρ0((−∞, x]) = f0((−∞, x]× R), ∀x ∈ R,

G0 is continuous and ρ0 is suppported on [−Rx, Rx]. Since G0 takes values
in [0, 1], then a(x, v) := v + G0(x) ∈ [−Rv, Rv + 1] for (x, v) ∈ Supp(f0).
We then define the probability measure η0 as the push-forward of f0 through
(x, v) 7→ (x, a(x, v)) i.e.

η0(C) := f0

(

{(x, v) : (x, v+G0(x)) ∈ C}
)

, for every Borel subset C of R2.

(2.14)
We then fix a σ-finite measure µ such that the second marginal of η0 is
absolutely continuous with respect to µ; for instance it could be the second
marginal of η0, but we allow µ to be a more general measure (not necessarily a
probability measure; for instance it was the Lebesgue measure in the previous
paragraph 2.2, and in the discrete example of paragraph 2.4 below, µ will
be a discrete measure). Then we can disintegrate η0 as η0 = νa0 ⊗ µ which
means that for every φ ∈ C(R2) we have

∫

R2

φ(x, v +G0(x))df0(x, v) =

∫

R

(

∫

R

φ(x, a)dνa0 (x)
)

dµ(a).
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Note that νa0 is supported on [−Rx, Rx] and it is not necessarily a probability
measure. We denote by h(a) its total mass i.e. the Radon-Nikodym density
of the second marginal of η0 with respect to µ:

∫

R2

φ(v +G0(x))df0(x, v) =

∫

R

φ(a)h(a) dµ(a), ∀φ ∈ C(R) (2.15)

so that h ∈ L1(µ),
∫

R
h(a) dµ(a) = 1 and h = 0 outside of the interval

[−Rv, Rv + 1].

The rest of the paper will be devoted to study the structure and well-
posedness of the following system which relaxes to a measure-valued setting
the system (2.12)-(2.11):

∂tν
a
t + ∂x(ν

a
t v

a
t ) = 0, νa|t=0 = νa0 , (2.16)

subject to the constraint that

vat (x) ∈ [a−Gt(x), a−G−
t (x)] (2.17)

where

ρt :=

∫

R

νat dµ(a), Gt(x) = ρt((−∞, x]), G−
t (x) = ρt((−∞, x)). (2.18)

Note that when µ is the Lebesgue measure and there are no shocks i.e.
when Gt is continuous, we recover the system (2.12)-(2.11) of paragraph 2.2.
Denoting by P2(R) the set of Borel probability measures on R with finite
second moment, solutions of (2.16)-(2.17)-(2.18) are then formally defined
by:

Definition 2.1. Fix a time T > 0; a measure solution of the system (2.16)-
(2.17)-(2.18) on [0, T ]×R is a family of measures (t, a) ∈ [0, T ]× [−Rv, Rv+
1] 7→ νat ∈ h(a)P2(R) which

1. is measurable in the sense that for every Borel bounded function φ on
[0, T ]×R×R, the map (t, a) 7→

∫

R
φ(t, a, x)dνat (x) is dt⊗µ measurable,

2. satisfies the continuity equation (2.16) in the sense of distributions for
hµ-a.e. a, with a νat ⊗µ⊗dt-measurable velocity field vat which satisfies
(2.17), νat ⊗ µ⊗ dt a.e, and with Gt and G

−
t defined by (2.18).

Note that since vat constrained by (2.18) is bounded, t 7→ νat is actually
continuous for the weak convergence of measures for hµ a.e. a. Note also that
the fact that t 7→ νat satisfies the continuity equation (2.16) in the sense of
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distributions is equivalent to the condition that for every ψ ∈ C([−Rv, Rv +
1]) and φ ∈ C1

c ([0, T ]× R) one has:

∫

R

ψ(a)
(

∫ T

0

∫

R

(∂tφ(t, x) + ∂xφ(t, x)v
a
t (x))dν

a
t (x)dt

)

dµ(a)

=

∫

R

ψ(a)
(

∫

R

φ(T, x)dνaT (x)−

∫

R

φ(0, x)dνa0 (x)
)

dµ(a).

2.4 A discrete example and a system of Burgers equa-

tions

As an example, let us consider the special case

f0 = ρ0 ⊗
1

N

N
∑

i=1

δai−G0(x)

where ρ0 is a smooth compactly supported probability density and a1 < · · · <
aN are the finitely many values that the label a may take. In this case, we
take µ as the counting measure and then

µ =

N
∑

i=1

δai , h(ai) =
1

N
, νai0 =

1

N
ρ0.

Even though G0 is smooth, we have to expect that shocks may appear in
finite time. Let us relabel the measures νi := νai and the corresponding
cumulative distributions Gi := Gai , G :=

∑N
j=1G

j . If there were no shocks,
the system (2.16)-(2.17)-(2.18) would become

∂tν
i + ∂x(ν

i(ai −
N
∑

j=1

Gj)) = 0, νi|t=0 =
1

N
ρ0, i = 1, · · · , N. (2.19)

Integrating with respect to the spatial variable between −∞ and x would
then give a system of Burgers-like equations:

∂tG
i + ∂xG

i(ai −

N
∑

j=1

Gj) = 0, Gi|t=0 =
1

N
G0, i = 1, · · · , N. (2.20)

We can at least formally rewrite each of these equations in the more familiar
form

∂tG
i + ∂xG

iψi
t(G

i) = 0
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where each function ψi is implicitly defined in terms of the pseudo inverse
H i

t of G
i
t:

ψi
t(α) = ai − α−

∑

j 6=i

Gj
t(H

i
t(α)).

Note that ψi
t is decreasing for every t and actually (ψi

t)
′ ≤ −1. In the absence

of shocks, H i
t simply solves ∂tH

i = ψi
t. Let us then take x1 < x2 belonging

to a certain interval on which ρ0 ≥ ν with ν > 0 and define y1 :=
1
N
G0(x1),

y2 := 1
N
G0(x2), we then have y2 − y1 = 1

N

∫ x2

x1
ρ0 ≥ ν

N
(x2 − x1). Integrating

∂tH
i = ψi

t and using the fact that (ψi)′ ≤ −1, we get

H i
t(y2)−H i

t(y1) = x2 − x1 +

∫ t

0

(ψi
s(y2)− ψi

s(y1))ds ≤ x2 − x1 − t(y2 − y1).

This means that H i
t becomes noninjective before a time

x2 − x1
y2 − y1

≤
N

ν
.

In other words, discontinuities of Gi i.e. shocks appear in finite time O(N).

3 A gradient flow structure

In this section, assuming (2.13) we will see how to obtain solutions to the
system (2.16)-(2.17)-(2.18) by a gradient flow approach. Existence of such
gradient flows using the JKO implicit scheme for Wasserstein gradient flows
will be detailed in section 4. We denote by M(Rd) the set of Borel measures
on R

d and P(Rd) the set of Borel probability measures on R
d. Given two

nonnegative Borel measures on R
d with common finite total mass h (not

necessarily 1) and finite p-moments, ν and θ, recall that for p ∈ [1,+∞), the
p-Wasserstein distance between ν and θ is by definition:

Wp(ν, θ) := inf
γ∈Π(ν,θ)

{

∫

Rd×Rd

|x− y|pdγ(x, y)
}

1

p

where Π(ν, θ) is the set of transport plans between ν and θ i.e. the set of
Borel probability measures on R

d×R
d having ν and θ as marginals (we refer

to the textbooks of Villani [18, 19] for a detailed exposition of optimal trans-
port theory). Wasserstein distances are usually defined between probability
measures such as h−1ν and h−1θ , but of course they extend to measures with
the same total mass and W p

p (ν, θ) = hW p
p (h

−1ν, h−1θ). We shall mainly use
the 2-Wasserstein distance but the 1-Wasserstein distance will be useful as
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well in the sequel. We also recall that the 1-Wasserstein distance can also be
defined through the Kantorovich duality formula (see for instance [18, 19]):

W1(ν, θ) := sup
{

∫

Rd

fd(ν − θ) : f 1-Lipschitz
}

. (3.1)

We will see in section 4 that one may obtain solutions to the system (2.16)-
(2.17)-(2.18) by a minimizing scheme for an energy defined on an infinite
product of spaces of measures parametrized by the label a. Wasserstein
gradient flows on finite products have recently been investigated in [15], [10].
To our knowldege the case of an infinite product is new in the literature.

3.1 Functional setting

Let A := [−Rv, Rv+1] and denote by X the set consisting of all ν := (νa)a∈A,
µ-measurable families of measures such that

νa(R) = h(a); for µ-a.e. a and

∫

A

∫

R

x2dνa(x)dµ(a) < +∞.

Given R > 0 (the precise choice of R will be made later on, see (4.2) below),
let us denote by XR the subset of X defined by

XR := {ν ∈ X : Supp(νa) ⊂ [−R,R], for µ-a.e. a ∈ A}. (3.2)

For ν ∈ XR, let us define the probability (because
∫

R
h(a)dµ(a) = 1)

measure

ν :=

∫

R

νadµ(a)

and the energy

J(ν) =
1

4

∫

R×R

|x− y|dν(x)dν(y) +

∫

A

∫

R

(1

2
− a

)

xdνa(x)dµ(a). (3.3)

Note that J is unbounded from below on the whole of X but it is bounded
on each XR. Note also that the interaction term can be rewritten as:

∫

R×R

|x− y|dν(x)dν(y) =

∫

R4

|x− y|dνa(x)dνb(y)dµ(a)dµ(b). (3.4)

We equip XR with the distance d given by:

d2(ν, θ) :=

∫

A

W 2
2 (ν

a, θa)dµ(a), (ν, θ) = ((νa)a∈A, (θ
a)a∈A) ∈ XR ×XR.

(3.5)

12



It will also be convenient to work with the weak topology on XR that is the
one defined by the family of semi-norms

pφ(ν) :=
∣

∣

∣

∫

A×[−R,R]

φd(ν ⊗ µ)
∣

∣

∣
, φ ∈ C(A× [−R,R])

where ν ⊗ µ is the probability measure defined by

∫

A×[−R,R]

φd(ν ⊗ µ) :=

∫

A

(

∫

[−R,R]

φ(a, x)dνa(x)
)

dµ(a)

and
K := A× [−R,R]

so that convergence for the weak topology is nothing but weak-∗ convergence
of ν⊗µ. Since for all ν ∈ XR, ν⊗µ is a probability measure on the compact
set A× [−R,R], XR is compact for the weak topology. Note also that since
the weak-∗ topology is metrizable by the Wasserstein distance (see [18, 19])
on the set of probability measures on a compact set of R2, the weak topology
is metrizable by the distance dw:

d2w(ν, θ) := W 2
2 (ν ⊗ µ, θ ⊗ µ), (ν, θ) ∈ XR ×XR, (3.6)

so that (XR, dw) is a compact metric space. We summarize the basic prop-
erties of J , d and dw in the following.

Lemma 3.1. Let XR, J , d and dw be defined as above then we have:

1. J is Lipschitz continuous for dw,

2. dw ≤ d,

3. d is lower semicontinous for dw: if (νn)n is a sequence in XR, (ν, θ) ∈
XR ×XR and limn dw(νn,ν) = 0 then lim infn d

2(νn, θ) ≥ d2(ν, θ).

Proof. Let us recall that if θ and ν are (compactly supported say) probability
measures on R

d then by Cauchy Schwarz-inequality,

W1(ν, θ) ≤W2(ν, θ) (3.7)

and, it follows from (3.1) that, if f is M-Lipschitz then

∫

Rd

fd(ν − θ) ≤MW1(ν, θ). (3.8)

13



Moreover,
W1(ν ⊗ ν, θ ⊗ θ) ≤ 2W1(ν, θ). (3.9)

1. Let us rewrite J as

J(ν) =
1

4
J0(ν) + J1(ν),

with

J0(ν) :=

∫

K2

|x− y|d(ν ⊗ µ)(a, x)d(ν ⊗ µ)(b, y), (3.10)

and

J1(ν) :=

∫

K

(1

2
− a

)

xd(ν ⊗ µ)(a, x). (3.11)

The fact that J1 is Lipschitz for dw directly follows from (3.7), (3.8) and the
fact that the integrand in J1 is uniformly Lipschitz in x. As for J0, using
also (3.9) and the fact that the distance is 1-Lipschitz, we have

J0(ν)− J0(θ) ≤W1((ν ⊗ µ)⊗ (ν ⊗ µ), (θ ⊗ µ)⊗ (θ ⊗ µ))

≤ 2W2(ν ⊗ µ, θ ⊗ µ) = 2dw(ν, θ).

2. Let ν = (νa)a∈A and θ = (θa)a∈A be two elements of XR and let γa be
an optimal plan between νa and θa (which can be chosen in a µ-measurable
way, thanks to standard measurable selection arguments, see [14]). Let us
then define the probability measure α on K2 by

∫

K×K

φ((a, x), (b, y))dα(a, x, b, y)

:=

∫

A

(

∫

[−R,R]2
φ((a, x), (a, y))dγa(x, y)

)

dµ(a)

for all φ ∈ C(K ×K). Observing that α ∈ Π(ν ⊗ µ, θ ⊗ ν), we get

d2w(ν, θ) ≤

∫

K×K

|x− y|2dα(a, x, b, y) =

∫

A

(

∫

[−R,R]2
|x− y|2dγa(x, y)

)

dµ(a)

=

∫

A

W 2
2 (ν

a, θa)dµ(a) = d2(ν, θ).

3. Let γan be an optimal plan (µ-measurable with respect to a) between
νan and θa. Again passing to a subsequence if necessary we may assume that
γan ⊗ µ weakly ∗ converges to some measure of the form γa ⊗ µ. Using test-
functions of the form ψ(a)(α(x) + β(y)) we deduce easily that for µ-almost

14



every a, γa ∈ Π(νa, θa) and then

lim inf
n

d2(νn, θ) = lim inf

∫

A

∫

[−R,R]2
|x− y|2dγan(x, y) dµ(a)

=

∫

A

∫

[−R,R]2
|x− y|2dγa(x, y) dµ(a) ≥ d2(ν, θ).

3.2 Subdifferential of the energy and gradient flows as

measure solutions

Let us start with some convexity properties of J . Let ν = (νa)a∈A and θ

belong to XR and let γ := (γa)a∈A be a measurable family of transport plans
between νa and θa (which we shall simply denote by γ ∈ Π(ν, θ)). For
ε ∈ [0, 1], then define

νε := ((1− ε)π1 + επ2)#γ
a)a∈A (3.12)

where π1 and π2 are the canonical projections π1(x, y) = x, π2(x, y) = y.
Then ε ∈ [0, 1] 7→ νε is a curve which interpolates between ν and θ. Similarly
if we take transport plans γa induced by maps of the form id+ξa with ξ =
(ξa)a∈A ∈ L∞(ν ⊗ µ) i.e. θa = (id+ξa)#ν

a then νaε = (id+εξa)#ν
a and in

this case, we shall simply denote ξ := (ξa)a∈A and νε as

νε = (id+ εξ)#ν, θ = (id+ ξ)#ν.

Lemma 3.2. Let ν and θ be in XR, γ ∈ Π(ν, θ) and νε be given by (3.12).
Then

J(νε) ≤ (1− ε)J(ν) + εJ(θ), ∀ε ∈ [0, 1].

In particular, the same inequality holds if νε = (id+εξ)#ν with ξ ∈ L∞(ν⊗
µ).

Proof. This immediately follows from the construction of νε, the convexity
of the absolute value in J0 defined by (3.10) and the linearity in x of the
integrand in J1 defined by (3.11).

Definition 3.3. Let ν ∈ XR, the subdifferential of J at ν, denoted ∂J(ν),
consists of all w := (wa)a∈A ∈ L1(ν ⊗ µ) such that for every R′ > 0, every
θ ∈ XR′ and every γ = (γa)a∈A ∈ Π(ν, θ), one has

J(θ)− J(ν) ≥

∫

[−R,R]×[−R′,R′]×A

wa(y)(z − y)dγa(y, z)dµ(a).
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Remark 3.4. An equivalent way to define ∂J(ν) (which will turn out to
be more convenient in the sequel to prove stability properties, see Lemma
4.4) is in terms of transition kernels rather than of transport plans. More
precisely, given ν ∈ XR, we define the set T (ν) of ν ⊗ µ measurable maps
η: (a, y) ∈ K 7→ ηa,y ∈ P(R) such that there exists an R′ > 0 such that ηa,y

is supported by [−R′, R′] for ν ⊗ µ almost every (a, y) ∈ K. We then define
νη = (νaη)a∈A by

∫

R

ϕ(z)dνaη(z) :=

∫

R2

ϕ(z)dηa,y(z)dνa(y), ∀ϕ ∈ C(R).

By construction, γ = (γa)a∈A with γa = νa ⊗ ηa,y defined by
∫

R2

ϕ(y, z)dγa(y, z) :=

∫

R2

ϕ(y, z)dηa,y(z)dνa(y), ∀ϕ ∈ C(R2)

belongs to Π(ν,νη) and thanks to the disintegration Theorem, it is then
easy to check that w ∈ ∂J(ν) if and only if, for every η ∈ T (ν), one has

J(νη)− J(ν) ≥

∫

R3

wa(y)(z − y)dηa,y(z)dνa(y)dµ(a). (3.13)

Remark 3.5. If we restrict ourselves to transport maps (i.e. take ηa,y = δξa(y)
in (3.13)), we obtain a condition which is weaker than definition 3.3 but
somehow easier to handle. If w := (wa)a∈A ∈ L1(ν ⊗ µ) ∈ ∂J(ν) then for
every ξ = (ξa)a∈A ∈ L∞(ν ⊗ µ), one has

J((id+ξ)#ν)−J(ν) ≥

∫

K

wξd(ν⊗µ) =

∫

K

wa(x)ξa(x)dνa(x)dµ(a). (3.14)

Remark 3.6. The subdifferential ∂J obviously has the following monotonicity
property (which will be crucial for uniqueness, see section 5) : if ν1 and ν2

belong to XR and w1 ∈ ∂J(ν1) and w2 ∈ ∂J(ν2), then for every γ ∈
Π(ν1,ν2), one has

∫

R3

(wa
1(y)− wa

2(z))(y − z)dγa(y, z)dµ(a) ≥ 0. (3.15)

The connection between the subdifferential (in fact the weak condition
(3.14)) of the energy J given by (3.3) and the condition (2.17) is clarified by
the following:

Proposition 3.7. Let ν ∈ XR, if w ∈ ∂J(ν) then, defining the a-marginal
of ν ⊗ µ by

ρ :=

∫

A

νadµ(a)
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and its cumulative distribution function by

G(x) := ρ((−∞, x]), G−(x) = ρ((−∞, x)), ∀x ∈ R,

we have

wa(x) ∈ [G−(x)− a,G(x)− a] for ν ⊗ µ a.e. (a, x). (3.16)

In particular w ∈ L∞(ν ⊗ µ) with

‖w‖L∞(ν⊗µ) ≤ Rv + 2. (3.17)

Proof. Let ξ ∈ L∞(ν ⊗ µ) and define νε := (id+ εξ)#ν for ε ∈ [0, 1]. Since
w ∈ ∂J(ν) we have in particular

lim
ε→0+

1

ε
(J(νε)− J(ν)) ≥

∫

K

wξd(ν ⊗ µ) =

∫

K

wa(x)ξa(x)dνa(x)dµ(a).

(3.18)
Defining J0 and J1 as in (3.10)-(3.11) and K := A× [−R,R] , first we have

1

ε
(J1(νε)− J1(ν)) = I0 :=

∫

K

(1

2
− a

)

ξa(x)dνa(x)dµ(a). (3.19)

We then write

1

ε
(J0(νε)− J0(ν)) =

∫

K×K

ηε(a, b, x, y)d(ν ⊗ µ)(a, x)d(ν ⊗ µ)(b, y) (3.20)

with

ηε(a, b, x, y) =
1

ε

(

|x+ εξa(x)− (y + εξb(y))| − |x− y|
)

. (3.21)

Observing that ηε is bounded by 2‖ξ‖L∞(ν⊗µ) and that

lim
ε→0+

ηε(a, b, x, y) =

{

sign(x− y)(ξa(x)− ξb(y)), if x 6= y

|ξa(x)− ξb(y)|, if x = y,
(3.22)

by Lebesgue’s dominated convergence theorem, we get

lim
ε→0+

1

ε
(J(νε)− J(ν)) = I0 + I1 + I2 (3.23)

with I0 given by (3.19), and

I1 =
1

4

∫

K×K

1x 6=y sign(x−y)(ξ
a(x)−ξb(y))d(ν⊗µ)(a, x)d(ν⊗µ)(b, y) (3.24)
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and

I2 =
1

4

∫

K×K

1x=y|ξ
a(x)− ξb(x)|d(ν ⊗ µ)(a, x)d(ν ⊗ µ)(b, y). (3.25)

To compute I1 we observe that thanks to Fubini’s theorem

1

4

∫

K×K

1x>y(ξ
a(x)− ξb(y))d(ν ⊗ µ)(a, x)d(ν ⊗ µ)(b, y)

=
1

4

∫

K

ξa(x)G−(x)d(ν ⊗ µ)(a, x)−
1

4

∫

K

ξb(y)(1−G(y))d(ν ⊗ µ)(b, y)

=
1

4

∫

K

ξa(x)(G−(x) +G(x)− 1)d(ν ⊗ µ)(a, x).

Treating similarly the integral on {x < y} we thus get

I1 =

∫

K

(G−(x) +G(x)

2
−

1

2

)

ξa(x)d(ν ⊗ µ)(a, x). (3.26)

As for I2, we have

I2 ≤
1

4

∫

A×A

(

∫

[−R,R]

(

|ξa(x)|+ |ξb(x)|
)

νb({x})dνa(x)
)

dµ(a)dµ(b), (3.27)

then we use Fubini’s theorem to get

∫

A×A

(

∫

[−R,R]

|ξa(x)|νb({x})dνa(x)
)

dµ(a)dµ(b)

=

∫

K

|ξa(x)|(G(x)−G−(x))d(ν ⊗ µ)(a, x).

Note that in the previous integral, the integration with respect to x is actually
a discrete sum, because the set of atoms where G > G− is at most countable
since G is nondecreasing; let us denote this set by

S := {x ∈ [−R,R] : G(x)−G−(x) > 0} = {xi}i∈I

where I is at most countable. Similarly for the second term in the right hand
side of (3.27) observing that |ξb(x)|

∫

A
νb({x})dµ(b) ≤ ‖ξ‖L∞(ν⊗µ)(G(x) −
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G−(x)), we only have to integrate in x over S which gives

∫

A×A

(

∫

[−R,R]

|ξb(x)|νb({x})dνa(x)
)

dµ(a)dµ(b)

=

∫

A×A

(

∑

i∈I

|ξb(xi)|ν
b({xi})ν

a({xi})
)

dµ(a)dµ(b)

=

∫

A

(

∑

i∈I

|ξb(xi)|ν
b({xi})(G(xi)−G−(xi)

)

dµ(b)

=

∫

K

|ξb(x)|(G(x)−G−(x))d(ν ⊗ µ)(b, x),

so that

I2 ≤
1

2

∫

K

|ξa(x)|(G(x)−G−(x))d(ν ⊗ µ)(a, x). (3.28)

Putting together (3.18), (3.19), (3.23), (3.26) and (3.28) we arrive at the
inequality

∫

K

(

wa(x) + a−
1

2
(G(x) +G−(x))

)

ξa(x)d(ν ⊗ µ)(a, x)

≤
1

2

∫

K

|ξa(x)|(G(x)−G−(x))d(ν ⊗ µ)(a, x)

which holds for any ξ ∈ L∞(ν ⊗ µ) and (3.16) obviously follows.

Definition 3.8. A gradient flow of J on the time interval [0, T ] starting from
ν0 is a Lipschitz continuous (for d) curve t ∈ [0, T ] 7→ ν(t) = (ν(t)a)a∈A ∈
XR together with a measurable map t ∈ [0, T ] 7→ v(t) ∈ L1(ν ⊗ µ) such that
v(t) ∈ −∂J(ν(t)) for almost every t ∈ [0, T ], and for µ-almost every a ∈ A,
t 7→ ν(t)a is a solution in the sense of distributions of the continuity equation
(2.16).

It then follows from Proposition 3.7 that gradient flows starting from
ν0 are measure solutions of the system (2.16)-(2.17)-(2.18). Note also that
thanks to the bound (3.17), gradient flows are not only absolutely continuous
but automatically Lipschitz for d and even more is true: for µ-almost every
a, the curve t 7→ νat is Lipschitz for W2, more precisely

W2(ν
a
t , ν

a
s ) ≤ |t− s|(Rv + 2)h(a)1/2 hence d(ν(t),ν(s)) ≤ |t− s|(Rv + 2).

(3.29)

19



4 Existence by the JKO scheme

We will prove existence of a gradient flow curve on the time interval [0, T ]
starting from ν0 = (νa0 )a∈A by considering the JKO scheme. Given a time
step τ > 0, starting from ν0, we construct inductively a sequence νk by

νk+1 ∈ argminν∈X

{ 1

2τ
d2(ν,νk) + J(ν)

}

(4.1)

for k = 0, · · · , N with N := [T
τ
].

4.1 Estimates

The first step in proving that this scheme is well-defined consists in showing
that one can a priori bound the support. This is based on the following basic
observation:

Lemma 4.1. Let R0, R > 0 and τ be positive constants, ν0 be a probability
measure on R

d with support in BR0
and ν ∈ P2(R

d). Let P be the projection
onto BR0+τR and define ν̂ := P#ν. Then, for every a ∈ BR, one has

1

2
W 2

2 (ν̂, ν0)− τ

∫

Rd

a · xdν̂(x) ≤
1

2
W 2

2 (ν, ν0)− τ

∫

Rd

a · xdν(x).

Proof. Fix an optimal transport plan between ν0 and ν i.e. a γ ∈ Π(ν0, ν)
such that W 2

2 (ν, ν0) =
∫

Rd×Rd |x − y|2dγ(x, y). Since the map (x, y) 7→
(x, P (y)) pushes forward γ to a plan having ν0 and ν̂ as marginals, we have

1

2
W 2

2 (ν̂, ν0) ≤
1

2

∫

Rd×Rd

|x− P (y)|2dγ(x, y) =
1

2
W 2

2 (ν, ν0)

−
1

2

∫

Rd×Rd

|y − P (y)|2dγ(x, y) +

∫

Rd×Rd

(y − P (y)) · (x− P (y))dγ(x, y)

and then

1

2
W 2

2 (ν̂, ν0)− τ

∫

Rd

a · xdν̂(x)−
1

2
W 2

2 (ν, ν0) + τ

∫

Rd

a · xdν(x)

≤

∫

Rd×Rd

(y − P (y)) · (x+ τa− P (y))dγ(x, y).

But since γ-a.e. x+τa ∈ BR0+τR, we get that the integrand in the right-hand
side is nonpositive by the well-known characterization of the projection onto
BR0+τR.
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Now consider the first step of the JKO scheme. Since νa0 is supported by
[−Rx, Rx], for every a ∈ A and a ∈ A ⇒ |a| ≤ Rv + 1, the previous lemma
implies that if one replaces ν = (νa)a∈A ∈ X by ν̂ = (ν̂a)a∈A defined for
every a by ν̂a = P#ν

a where P is the projection on [−Rx−τ(Rv+3/2), Rx+
τ(Rv + 3/2)], one has

1

2
W 2

2 (ν̂
a, νa0 )+τ

∫

Rd

(

1

2
− a

)

·xdν̂a(x) ≤
1

2
W 2

2 (ν
a, νa0 )+τ

∫

Rd

(

1

2
− a

)

·xdνa(x).

As for the interaction term, it is also improved by replacing ν by ν̂; this
is obvious from the expression (3.4) and the fact that P is 1-Lipschitz. In
the first step of the JKO scheme, we may therefore impose the constraint
that ν ∈ XRx+τ(Rv+3/2). After k steps, we may similarly impose that the
minimization is performed on XRx+kτ(Rv+3/2), so simply setting

R = Rx + (T + τ)(Rv + 3/2), (4.2)

we may replace (4.1) with a bound on the support:

νk+1 ∈ argminν∈XR

{ 1

2τ
d2(ν,νk) + J(ν)

}

. (4.3)

By a direct application of Lemma 3.1 and the compactness of (XR, dw),
we then see that the minimizing scheme (4.3) is well-defined and actually
defines a sequence νk, k = 0, · · · , N + 1. We also extend this sequence by
piecewise constant in time interpolation:

ντ (t) := νk, for t ∈ ((k − 1)τ, kτ ], k = 1, · · · , N + 1. (4.4)

In the following basic estimates, C will denote a constant (possibly de-
pending on T ) which may vary from one line to the other. By construction,
for all k = 0, . . . , N , we have

1

2τ
d2(νk+1,νk) ≤ J(νk)− J(νk+1). (4.5)

Summing and using the fact that every νk belongs to XR and that J is
bounded from below on XR we get:

1

2τ

N
∑

k=0

d2(νk+1,νk) ≤ J(ν0)− J(νN+1) ≤ C. (4.6)

From (4.6), Cauchy-Schwarz inequality and Lemma 3.1 we classically get a
uniform Hölder estimate:

dw(ντ (t),ντ (s)) ≤ d(ντ (t),ντ (s)) ≤ C
√

|t− s|+ τ , ∀(s, t) ∈ [0, T ]2. (4.7)
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Since (XR, dw) is a compact metric space, it follows from some refined variant
of Ascoli-Arzelà theorem (see [3]) that there exists a limit curve

t 7→ ν(t) belonging to C0, 1
2 ([0, T ], (XR, dw))

and a vanishing sequence of time-steps τn → 0 as n→ +∞ such that

sup
t∈[0,T ]

dw(ντn(t),ν(t)) → 0 as n→ +∞. (4.8)

4.2 Discrete Euler-Lagrange equation

Let γk+1 = (γak+1)a∈A ∈ Π(νk,νk+1) be such that γak+1 is an optimal plan for
µ-almost every a and let vak+1 be defined by

∫

[−R,R]

ξ(y)vak+1(y)dν
a
k+1(y) =

∫

[−R,R]2
ξ(y)

y − x

τ
dγak+1(x, y)

for all ξ ∈ C([−R,R]), or equivalently, disintegrating γak+1 with respect to its
second marginal νak+1 as dγak+1(x, y) = dγa,yk+1(x)⊗ dνak+1(y):

vak+1(y) =
1

τ

(

y −

∫

[−R,R]

xdγa,yk+1(x)
)

. (4.9)

The Euler-Lagrange equation for (4.1) can then be written as

Lemma 4.2. Let νk+1 be a solution of (4.1), γk+1 ∈ Π(νk,νk+1) and vk+1

be constructed as above, then:

vk+1 ∈ −∂J(νk+1). (4.10)

Proof. Let R′ > 0, θ ∈ XR′ and γ ∈ Π(νk+1, θ), and define for ε ∈ [0, 1]

νε = (νaε )a∈A with νaε := ((1− ε)π1 + επ2)#γ
a.

Then by optimality of νk+1 and using Lemma 3.2, we have

0 ≤ lim inf
ε→0+

1

ε

( 1

2τ
(d2(νε,νk)− d2(νk+1,νk)) + J(νε)− J(νk+1)

)

≤ lim inf
ε→0+

1

ε

( 1

2τ
(d2(νε,νk)− d2(νk+1,νk)

)

+ J(θ)− J(νk+1).

We have already disintegrated the optimal plan γak+1 between ν
a
k and νak+1 as

γak+1(dx, dy) = γa,yk+1(dx)⊗ νak+1(dy).
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Let us also disintegrate the (arbitrary) plan γa between νak+1 and θa as:

γa(dy, dz) = νak+1(dy)⊗ γa,y(dz).

Define then the 3-plan βa by βa = (γa,yk+1 ⊗ γa,y)⊗ νak+1 i.e.

∫

R3

φ(x, y, z)dβa(x, y, z) :=

∫

R

(

∫

R2

φ(x, y, z)dγa,yk+1(x)dγ
a,y(z)

)

dνak+1(y)

for every φ ∈ C(R3). Setting

(π1(x, y, z), π2(x, y, z), π3(x, y, z)) = (x, y, z),

(π12(x, y, z), π23(x, y, z), π13(x, y, z)) = ((x, y), (y, z), (x, z)),

we have by construction, π12#β
a = γak+1, π23#β

a = γa. By the very definition
of νaε , we also have (π1, (1− ε)π2 + επ3))#β

a ∈ Π(νak , ν
a
ε ) so that

W 2
2 (ν

a
k , ν

a
k+1) =

∫

R3

|y − x|2dβa(x, y, z)

and

W2(ν
a
k , ν

a
ε ) ≤

∫

R3

|(1− ε)y + εz − x|2dβa(x, y, z).

Using Lebesgue’s dominated convergence Theorem and recalling the defini-
tion of βa and vak+1 we then get

lim inf
ε→0+

1

ε

( 1

2τ
(d2(νε,νk)− d2(νk+1,νk)

)

≤
∫

A

(

∫

R3

(z − y) ·
y − x

τ
dβa(x, y, z)

)

dµ(a)

=

∫

A

(

∫

R2

(

∫

[−R,R]

y − x

τ
dγa,yk+1(x)

)

(z − y)dγa,y(z)dνak+1(y)
)

dµ(a)

=

∫

[−R,R]×[−R′,R′]×A

vak+1(y) · (z − y)dγa(y, z)dµ(a).

This yields

J(θ)− J(νk+1) ≥ −

∫

[−R,R]×[−R′,R′]×A

vak+1(y) · (z − y)dγa(y, z)dµ(a)

i.e. vk+1 ∈ −∂J(νk+1).
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Let us also extend vk+1 by piecewise constant interpolation

vτ (t) = vk+1, t ∈ ((kτ, (k + 1)τ ], t ∈ [0, T ], vk+1 = (vak+1)a∈A, (4.11)

so that, thanks to the previous Lemma, we have

vτ (t) ∈ −∂J(ντ (t)), t ∈ [0, T ]. (4.12)

Thanks to Proposition 3.7, note that supt∈[0,T ] ‖vτ (t)‖L∞(ντ (t)⊗µ) ≤ C;
we can then define the time-dependent-family of signed measures

dqτ (t) = vτ (t)dντ (t), i.e. dqτ (t)
a = vτ (t)

adντ (t)
a.

Denoting by λ the one dimensional Lebesgue measure on [0, T ], we may
assume, taking a subsequence if necessary, that the bounded family of mea-
sures on qτn ⊗ µ ⊗ λ converges weakly ∗ to some bounded signed measure
on [−R,R] × A × [0, T ] which is necessarily of the form q ⊗ µ ⊗ λ because
marginals (with respect to the a and t variables) are stable under weak lim-
its. Since |qτn | ⊗ µ ⊗ λ ≤ Cντn ⊗ µ ⊗ λ and ντn ⊗ µ converges weakly ∗
to ν ⊗ µ, we have |q| ⊗ µ ⊗ λ ≤ Cν ⊗ µ ⊗ λ. Hence, for µ ⊗ λ a.e. (a, t),
the limit satisfies |q(t)a| ≤ Cν(t)a and therefore can be written in the form
dq(t)a = v(t)adνa(t) (q = vν for short) with ‖v(t)‖L∞(ν(t)⊗µ) ≤ C for λ-a.e.
t ∈ [0, T ]. We thus have

qτn⊗µ⊗λ = (vτnντn)⊗µ⊗λ
∗
⇀ q⊗µ⊗λ = (vν)⊗µ⊗λ as n→ +∞. (4.13)

In other words, for every φ ∈ C([0, T ]× A× [−R,R]) we have

lim
n

∫ T

0

∫

A

(

∫

[−R,R]

φ(t, a, x)vτn(t)
a(x)dντn(t)

a(x)
)

dµ(a)dt

=

∫ T

0

∫

A

(

∫

[−R,R]

φ(t, a, x)v(t)a(x)dν(t)a(x)
)

dµ(a)dt.

4.3 Existence by passing to the limit

Our task now consists in showing that the limit curve t 7→ ν(t) is a gradient
flow solution associated to the velocity t 7→ v(t) constructed above. Let us
first check that it satisfies the system of continuity equations (2.16). To do
so, take test functions ψ ∈ C(A) and φ ∈ C2([0, T ] × [−R,R]) and let us
consider

∫ Nτ

0

(

∫

K

ψ(a)∂tφ(t, x)dντ (t)
a(x)dµ(a)

)

dt

=

∫

A

ψ(a)
(

N−1
∑

k=0

∫ R

−R

(φ((k + 1)τ, x)− φ(kτ, x))dνak+1(x)
)

dµ(a).
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Then, we rewrite

N
∑

k=0

∫ R

−R

(φ((k + 1)τ, x)− φ(kτ, x))dνak+1(x)

=

N−1
∑

k=1

∫ R

−R

φ(kτ, x))d(νak − νak+1)(x)

+

∫ R

−R

φ(Nτ, x)dνaN(x)−

∫ R

−R

φ(0, x)dνa1 (x).

Using the optimal plans γak+1 as in Lemma 4.2, we then rewrite

∫ R

−R

φ(kτ, x))d(νak − νak+1)(x) =

∫ R

−R

∫ R

−R

(φ(kτ, x)− φ(kτ, y))dγak+1(x, y).

A Taylor expansion gives

φ(kτ, x)−φ(kτ, y) = ∂xφ(kτ, y)(x−y)+lk(τ, a, x, y), |lk(τ, a, x, y)| ≤ ‖∂xxφ‖∞|x−y|2.

Integrating and using the optimality of γak+1 gives

lk(τ, a) :=

∫ R

−R

∫ R

−R

|lk(τ, a, x, y)|dγ
a
k+1(x, y) ≤ ‖∂xxφ‖∞W

2
2 (ν

a
k , ν

a
k+1)

and then, recalling (4.6) we have

∫

A

ψ(a)
N−1
∑

k=1

lk(τ, a)dµ(a) ≤ Cτ‖∂xxφ‖∞‖ψ‖∞. (4.14)

Recalling the definition of the discrete velocity vk+1 from Lemma 4.2, we
can rewrite

∫ R

−R

∫ R

−R

∂xφ(kτ, y)(x− y)dγak+1(x, y) = −τ

∫ R

−R

∂xφ(kτ, x)v
a
k+1(x)dν

a
k+1(x),

hence by definition of ντ and vτ

∫

A

ψ(a)
(

N−1
∑

k=1

∫ R

−R

∫ R

−R

∂xφ(kτ, y)(x− y)dγak+1(x, y)
)

dµ(a)

= −

∫ T

0

∫

K

ψ(a)∂xφ(t, x)vτ (t)
adντ (t)

a(x)dµ(a)dt+O(τ).
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Now thanks to (4.8), we have

lim
n

∫

A

ψ(a)
(

∫ R

−R

φ(Nτn, x)dν
a
N(x)

)

dµ(a) =

∫

A

ψ(a)
(

∫ R

−R

φ(T, x)dν(T )a(x)
)

dµ(a)

(4.15)
and

lim
n

∫

A

ψ(a)
(

∫ R

−R

φ(0, x)dνa1 (x))
)

dµ(a) =

∫

A

ψ(a)
(

∫ R

−R

φ(0, x)dνa0 (x)
)

dµ(a),

(4.16)
where we use in the above limits that νaN = νaτn(Nτn) and νa1 = νaτn(τn).
Putting the previous computations together, summing and using (4.15),
(4.14), (4.16), we thus obtain

∫ Nτ

0

(

∫

K

ψ(a)∂tφ(t, x)dντ (t)
a(x)dµ(a)

)

dt

= −

∫ T

0

∫

K

ψ(a)∂xφ(t, x)vτ (t)
adντ (t)

a(x)dµ(a)dt

+

∫

A

ψ(a)
(

∫ R

−R

φ(T, x)dν(T )a(x)
)

dµ(a)

−

∫

A

ψ(a)
(

∫ R

−R

φ(0, x)dνa0 (x)
)

dµ(a) + ετ

where ετn goes to 0 as n → +∞. Taking τ = τn, using (4.8), (4.13) and
letting n→ +∞ in the previous identity we get

∫

A

ψ(a)
(

∫ T

0

∫ R

−R

(∂tφ(t, x) + ∂xφ(t, x)v(t)
a(x))dν(t)a(x)dt

)

dµ(a)

=

∫

A

ψ(a)
(

∫ R

−R

φ(T, x)dν(T )a(x)−

∫

R

φ(0, x)dνa0 (x)
)

dµ(a).

In other words, we have proved the following:

Lemma 4.3. For µ-almost every a, the limit curve t 7→ ν(t)a solves the
continuity equation (2.16) associated to the limit velocity t 7→ v(t)a.

It remains to check that

Lemma 4.4. For a.e. t ∈ [0, T ], we have v(t) ∈ −∂J(ν(t)).

Proof. By construction of the curves vτ and ντ and thanks to Lemma 4.2,
we have seen in (4.12) that

vτ (t) ∈ −∂J(ντ (t)), ∀t ∈ [0, T ]
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which means that for every τ > 0, every t ∈ [0, T ] and every η ∈ T (ντ (t))
(as defined in Remark 3.4), we have

J(ντ (t)η)− J(ντ (t)) ≥ −

∫

A×R2

vaτ (t)(y)(z − y)dηa,y(z)dντ (t)
a(y)dµ(a).

(4.17)
We wish to prove that there exists S ⊂ [0, T ], λ-negligible, such that for
every t ∈ [0, T ] \ S and every η ∈ T (ν(t)), one has

J(ν(t)η)−J(ν(t)) ≥ −

∫

A×R2

va(t)(y)(z−y)dηa,y(z)dν(t)a(y)dµ(a). (4.18)

To pass to the limit τ = τn, n → ∞ in (4.17) to obtain (4.18), we shall
proceed in several steps. Let us remark that it is enough to prove (4.17)
when ηa,y is supported by a fixed compact interval [−R′, R′] (and then to take
an exhaustive sequence of such compact intervals). Let us also recall that,
thanks to Lemma 3.1 and (4.8), J(ντn(t)) converges to J(ν(t)) as n → ∞
uniformly on [0, T ].

Step 1: Let us first consider the case where η is continuous in the sense
that (a, y) ∈ K 7→

∫

[−R′,R′]
ϕ(z)dηa,y(z) is continuous for every ϕ ∈ C(R).

Let φ ∈ C(A×R). Since ϕη defined by ϕη(a, y) :=
∫

φ(a, z)dηa,y(z) belongs
to C(K), using the fact that

〈φ,ντn(t)η ⊗ µ〉 = 〈ϕη ,ντn(t)⊗ µ〉,

〈φ,ν(t)η ⊗ µ〉 = 〈ϕη ,ν(t)⊗ µ〉

and (4.8), we deduce that limn dw(ντn(t)η ,ν(t)η) = 0 for every t ∈ [0, T ].
Hence, thanks to Lemma 3.1, we have

lim
n
[J(ντn(t)η)− J(ντn(t))] = J(ντ (t)η)− J(ντ (t)), ∀t ∈ [0, T ]. (4.19)

Let ϕ ∈ C([0, T ]), ϕ ≥ 0. Using (4.17) gives

∫ T

0

ϕ(t)[J(ντn(t)η)− J(ντn(t))]dt ≥

−

∫

[0,T ]×A×R2

ϕ(t)vaτn(t)(y)(z − y)dηa,y(z)dντn(t)
a(y)dµ(a)dt

= −

∫

[0,T ]×K

ϕ(t)ψ(a, y)dqτn(t)
a(y)dµ(a)dt

where

ψ(a, y) :=

∫

(z − y)dηa,y(z)
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belongs to C(K). We then deduce from (4.13), (4.19) and Lebesgue’s domi-
nated convergence that

∫ T

0

ϕ(t)[J(ν(t)η)− J(ν(t))]dt ≥

= −

∫

[0,T ]×K

ϕ(t)ψ(a, y)dqa(y)dµ(a)dt

= −

∫

[0,T ]×A×R2

ϕ(t)va(t)(y)(z − y)dηa,y(z)dν(t)a(y)dµ(a)dt.

This implies that there exists a negligible subset Sη of [0, T ] outside which
(4.18) holds.

Step 2: For every N ∈ N
∗, let ∆N := {(α0, · · · , α2N−1) ∈ R

2N
+ :

∑2N−1
k=0 αi = 1}, FN be a countable and dense family in C(K,∆N), and

consider

DN := {(a, y) ∈ K 7→
2N−1
∑

k=0

αk(a, y)δzN
k
, (α0, . . . , α2N−1) ∈ FN}, D :=

⋃

N∈N∗

DN

where for k = 0, . . . , 2N − 1, zNk denotes the midpoint of the interval [−R′ +
kR′/N,−R′ + (k+1)R′/N ]. Since D is countable and its elements belong to
C(K, (P([−R′, R′]),W2)), it follows from Step 1, that (4.18) holds for every
η ∈ D and every t ∈ [0, T ] \ S where S is the λ-negligible set

S :=
⋃

η∈D

Sη . (4.20)

Step 3: Let t ∈ [0, T ] \ S, and η ∈ T (ν) having its support in [−R′, R′].
Note that now we are working with a fixed t so that we just have to suitably
approximate η by a sequence in D. For N ∈ N

∗, first define for every
(a, y) ∈ K the discrete measure

2N−1
∑

k=0

fN
k (a, y)δzN

k
, fN

k (a, y) := ηa,y(INk ) (4.21)

where INk is the interval [−R′+kR′/N,−R′+(k+1)R′/N) if k = 0, . . . , 2N−2
and IN2N−1 := [R′(1− 1/N), R′]. We then have

sup
(a,y)∈K

W1

(

ηa,y,
2N−1
∑

k=0

fN
k (a, y)δzN

k

)

≤
R′

N
. (4.22)
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The function (fN
k )k=0,...,2N−1 is not continuous but belongs to L1(ν(t) ⊗

µ,∆N). Since C(K,∆N) is dense in L
1(ν(t)⊗µ,∆N), there exist (g

N
0 , . . . , g

N
2N−1) ∈

C(K,∆N) such that

2N−1
∑

k=0

∫

K

|fN
k (a, y)− gNk (a, y)|dν(t)

a(x)dµ(a) ≤
1

N
. (4.23)

Since we have chosen FN dense in C(K,∆N), there exist α = (αN
0 , . . . , α

N
2N−1) ∈

FN such that
2N−1
∑

k=0

sup
(a,y)∈K

|gNk (a, y)− αN
k (a, y)| ≤

1

N
. (4.24)

We then define ηN ∈ D by

ηa,yN :=
2N−1
∑

k=0

αN
k (a, y)δzNk .

Thanks to Kantorovich duality formula (3.1), it is easy to see that for every
α and β in ∆N , W1(

∑

k αkδzN
k
,
∑

k βkδzNk ) ≤ R′
∑

k |αk − βk|. In particular,

thanks to (4.23), we have
∫

K

W1

(

∑

k

fN
k (a, y)δzN

k
,
∑

k

gNk (a, y)δzN
k

)

d(ν(t)⊗ µ)(a, y) ≤
R′

N
. (4.25)

Similarly, (4.24) implies that

sup
(a,y)∈K

W1

(

ηa,yN ,

2N−1
∑

k=0

gNk (a, y)δzNk

)

≤
R′

N
. (4.26)

We know, from Step 2 that for every N ∈ N
∗:

J(ν(t)η
N
)− J(ν(t)) ≥ −

∫

A×R2

va(t)(y)(z − y)dηa,yN (z)dν(t)a(y)dµ(a).

(4.27)
Thanks to (4.22), (4.25), (4.26) and the triangle inequality, we have

lim
N→∞

∫

K

W1(η
a,y, ηa,yN ) d(ν(t)⊗ µ)(a, y) = 0. (4.28)

Recalling that v(t) ∈ L∞(ν(t)⊗ µ) and using (3.8), we have
∣

∣

∣

∫

K

va(t)(y)
(

∫

[−R′,R′]

(z − y)d(ηa,yN − ηa,y)(z)
)

dν(t)a(y)dµ(a)
∣

∣

∣

≤ ‖v‖L∞(ν(t)⊗µ)

∫

K

W1(η
a,y, ηa,yN ) d(ν(t)⊗ µ)(a, y)
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so that the right-hand side of (4.27) converges to

−

∫

A×R2

va(t)(y)(z − y)dηa,y(z)dν(t)a(y)dµ(a)

as N → ∞. As for the convergence of the right-hand side of (4.27), we
have to show that limN W1(νη

N
⊗ µ,νη ⊗ µ) = 0. For this, we shall use

the Kantorovich-duality formula (3.1) and observe that if φ ∈ C(K) is 1-
Lipschitz then

∫

K

φ(a, y)d((νη
N
− νη)⊗ µ)(a, y) ≤

∫

K

W1(η
a,y, ηa,yN ) d(ν(t)⊗ µ)(a, y)

which tends to 0 as N → ∞ thanks to (4.28). Using Lemma 3.1 we then
have limN→∞ J(ν(t)η

N
) = J(ν(t)η). Passing to the limit N → ∞ in (4.27)

gives the desired inequality (4.18). This shows that v(t) ∈ −∂J(ν(t)) for
every t ∈ [0, T ] \ S.

We deduce from Lemma 4.3 and Lemma 4.4 the following existence result:

Theorem 4.5. If (2.13) holds, then for any T > 0, there exists a gradient
flow of J starting from ν0 on the time interval [0, T ]. In particular, there
exists measure solutions to the system (2.16)-(2.17)-(2.18).

5 Uniqueness and concluding remarks

5.1 Uniqueness and stability

Thanks to (3.15), we easily deduce uniqueness and stability:

Theorem 5.1. Let ν0 and θ0 be in XR. If t 7→ ν(t) and t 7→ θ(t) are
gradient flows of J starting respectively from ν0 and θ0, then

d(ν(t), θ(t)) ≤ d(ν0, θ0), ∀t ∈ R+.

In particular there is a unique gradient flow of J starting from ν0.

Proof. By definition there exists velocity fields v and w such that for a.e. t,
v(t) = (v(t)a)a∈A ∈ −∂J(ν(t)) and w(t) = (w(t)a)a∈A ∈ −∂J(θ(t)) and for
µ-almost every a, one has

∂tν
a + ∂x(ν

ava) = ∂tθ
a + ∂x(θ

awa) = 0, νa|t=0 = νa0 , θ
a|t=0 = θa0 . (5.1)

Since va and wa are bounded in L∞(νa) and L∞(θa) respectively, it follows
from well-known arguments (see [3], in particular Theorem 8.4.7 and Lemma
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4.3.4) that t 7→ W 2
2 (ν

a
t , θ

a
t ) is a Lipschitz function and that for any family of

optimal plans γas between νas and θas for t1 ≤ t2 one has:

W 2
2 (ν

a
t2 , θ

a
t2) ≤W 2

2 (ν
a
t1 , θ

a
t1)+

∫ t2

t1

(

∫

R2

(va(s)(y)−wa(s)(z))(y−z)dγas (y, z)
)

ds.

Integrating the previous inequality gives

d2(νt2 , θt2) ≤ d2(νt1 , θt1)+

∫ t2

t1

(

∫

A×R2

(va(s)(y)−wa(s)(z))(y−z)dγas (y, z)dµ(a)
)

ds.

But since v(s) ∈ −∂J(ν(s)) and w(s) ∈ −∂J(θ(s)) for a.e. s, the mono-
tonicity relation (3.15) gives

∫

A×R2

(va(s)(y)− wa(s)(z))(y − z)dγas (y, z)dµ(a) ≤ 0.

We then obtain the desired contraction estimate.

5.2 Concluding remarks

More general initial conditions

We would like to mention here that in our main results of existence and
uniqueness of a gradient flow for J , the assumption that ρ0 is atomless plays
no significant role. Actually, our results hold for any compactly supported
initial condition ν0 (we did not investigate the extension to the case where
this assumption is relaxed to a second moment bound, but this is probably
doable). The assumption that ρ0 is atomless was used only to select un-
ambiguously the Cauchy datum νa0 in order to justify the reformulation of
the initial kinetic equation by taking advantage of the first integral trick of
section 2. We suspect that in the case where ρ0 is a discrete measure, there
might be an interesting connection between gradient flows solutions and some
solutions of the initial ODE system (1.2) but a more precise investigation is
left for the future.

Higher dimensions, more general functionals

The motivation for the present work comes from kinetic models of granu-
lar media. Since the first integral trick of section 2 is very specific to the
quadratic interaction kernel case in dimension one, all our subsequent analy-
sis has been performed in dimension one only. However, it is obvious (but we
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are not aware of any practical examples in kinetic theory) that our arguments
can be used also to study systems of continuity equations in R

d for infinitely
many species (labeled by a parameter a) such as

∂tν
a + divx

(

νa(∇xV (a, x) +

∫

A×Rd

∇xW (a, b, x, y)dνb(y)dµ(b))
)

= 0,

which (taking for instance W symmetric W (a, b, x, y) = W (b, a, y, x)), can
be seen as the gradient flow of

J(ν) :=

∫

A×Rd

V d(ν ⊗ µ) +
1

2

∫

A×Rd

∫

A×Rd

Wd(ν ⊗ µ)⊗ d(ν ⊗ µ).
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