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Abstract 

We consider the linear program rain { c'x: Ax ~< b } and the associated exponential penalty function 
fr(x) = c'x + rEexp [ ( A ~ -  bi)/r].  For r close to 0, the unconstrained minimizer x(r) offr admits an 
asymptotic expansion of the form x (r) = x* + rd* + *l(r) where x* is a particular optimal solution 
of the linear program and the error term ~(r) has an exponentially fast decay. Using duality theory 
we exhibit an associated dual trajectory h(r) which converges exponentially fast to a particular dual 
optimal solution. These results are completed by an asymptotic analysis when r tends to ~: the primal 
trajectory has an asymptotic ray and the dual trajectory converges to an interior dual feasible solution. 
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1. Introduction 

Polynomial methods for linear programming (LP) have become a central theme in 

mathematical programming since Khachiyan [ 13 ] proved the polynomial solvability of LP. 

Khachiyan's result solved an important problem in complexity theory, but failed to provide 

a competitive algorithm which could challenge the (non-polynomial but practically effi- 

cient) Simplex method. 

A most important step towards this end was achieved by Karmarkar [ 12] who proposed 

an algorithm based on potential functions which, besides solving LP in polynomial time, 

proved to be efficient in practice. The close relation between Karmarkar's potential function 

* Corresponding author. Both authors partially supported by FONDECYT. 

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved 
SSD10025-5610 (94) 00024-N 



170 R. Cominetti, J. San Martfn / Mathematical Programming 67 (1994) 169-187 

and the classical logarithmic barrier function of Frisch opened the way to further progress. 
Since then, the number of contributions and new polynomial methods for LP has grown 
rapidly. We refer to the recent review [9] for a detailed and unified account of the main 
developments in the field. 

These achievements have definitely brought LP into the realm of nonlinear programming 
but, with few exceptions [5, 11, 16], the attention has been primarily directed towards the 
methods and properties related to the logarithmic barrier function. It is the purpose of this 
work to investigate an alternative tool from nonlinear programming, the exponentialpenalty 
function, in the context of linear programming. 

To be more precise, let us consider the linear program 

(LP) min {c'x: Ax <~b} 
x 

and its unconstrained penalized version 

(Pf) min c 'x+r  ~ exp[(Aix-b i ) / r ]  . 
x 

Under very mild assumptions problem (Pf) has a unique solution x(r).  Since the problems 
(Pf) tend to (LP) as r goes to O, a first goal in our study is to investigate the asymptotic 
behavior of the trajectory x(r)  and its relation with the solution set of (LP). We shall prove 
that, essentially, the trajectory x(r) is a straight line directed towards the center of the 
optimal face of (LP), namely 

x(r) =x* +rd* +~(r)  

where x* is a (central) optimal solution of (LP) which we call centroid, the directional 
derivative d* is completely characterized in variational terms, and the error ~(r)  goes to 
zero exponentially fast, that is, at the speed of exp ( - / x / r )  for some/x > O. 

Our second goal is to investigate the asymptotic behavior of the dual trajectory ~(r) ,  
defined as the unique solution of the following dual of (Pf), 

(Dr) min {b ' ,~+  r ~ a 2~~(ln ,~i - 1): A')~ +c  = 0, ~ > 0 } .  

We remark that the classical linear programming dual of (LP) is 

(D) min{b'A:A')t+c=O, ,~>0},  

so we may interpret (Dr) as a penalty method which introduces the positivity constraints 
of (D) into the objective function through the penalty term "rE)ti( ln ) t l -  1)" .  The dual 
lrajectory is closely related to the primal one as Ai(r) = expl (Ai x(r) -b i ) / r ] .  We prove 
that this trajectory is essentially a constant 

h(r) = h * +  v(r) , 
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where A * is a center of the optimal face of (D) and the error v(r) goes to zero exponentially 
fast. 

The previous results are completed by an asymptotic analysis when r tends to ~. For the 
prima/trajectory we find that it has an asymptotic ray, namely, 

x(r) =x°~+ rd°~+ p(r) 

with the error term p(r)  tending to 0 when r 1' % while the dua/trajectory converges towards 
an interior point of the dual feasible polytope (see Fig. 1 ). 

Similar limiting properties for the optimal trajectory associated with the logarithmic 
barrier function, the so-called central path, have been extensively studied in recent years 
(see [ 10, 14] and references therein). 

The"a/most  straight' ' asymptotic character of the exponential trajectory (and our limited 
computational experience) suggests that a path-following method should have no trouble 
to follow this trajectory. More precisely, we suggest to approximately trace the prima/path 
x(r), which solves an unconstrained strictly convex problem and converges to x* at a 
reasonable linear speed, and to check for convergence by looking at the dual path which 
tends to A* much laster. While there exist several methods based on the idea of exponential 
penalties [ 1, 15, 19], the asymptotic analysis presented in this paper is more directly 
connected with predictor-corrector methods as the one studied in [4] in the setting of 
nonlinear progranuning. 

Another favorable fact is that, in contrast to the interior point methods, the exponential 
penalty is everywhere defined and does not need strictly interior points in the prima/problem, 
which is certainly a desirable feature. However, our analysis here is just asymptotic and it 
is not clear whether a path-following method based on exponential penalties will yield a 
polynomial method for LP. 

The paper is organized as follows. In Section 2 we settle the notation and we present the 
prima/and dual trajectories. In Section 3 we define the centroid and prove the convergence 
of the prima/trajectory towards this particular optimal solution of (LP), while in Section 
4 we establish the convergence of the dual trajectory towards a dual optimal solution. 

The results concerning the asymptotic behavior of the trajectories when r tends to 0, 

y *  

(a) (b) 

Fig. 1. A two dimensional example of primal (a) and dual (b) trajectories. 



172 R. Cominetti, J. San Marffn / Mathematical Programming 67 (1994) 169-187 

including the exponential decay of the error terms, are proved in Section 5. These expansions 
imply that all higher order derivatives of the trajectories at r = 0 must vanish as soon as they 
exist, thus in Section 6 we point out a particular instance where C ~ differentiability of the 
trajectories at r = 0 can be ensured. 

The asymptotic analysis of the primal and dual trajectories when r tends to ~ is presented 
in Section 7. 

We shall assume some familiarity with convex analysis, and particularly with the abstract 
theory of convex duality for which we refer to [ 17]. While this is not strictly necessary 
since all the results in this paper may be proved by direct arguments, duality theory allows 

shorter proofs and somewhat clarifies which properties are general facts and which are 
specific to the exponential penalty. 

2. The primal and dual trajectories 

Let us consider the linear program 

(LP) a:--- min{c'x: Axt<b} 
x 

where c ~ ~n, A is an m × n matrix of full tank n ~< m, and b ~ Qm. We denote by Ai the rows 

of A for i ~ I : =  { 1 . . . . .  m}, and P : =  {x~ ~ ' :  Aèc<~bl, i ~ I }  the feasible polytope of (LP). 

We assume throughout that (LP) has a nonernpty and bounded optimal solution set 

So := { x ~  ~n: A x  «,b,  c ' x =  of} .  

This boundedness assumption is equivalent (see e.g. [ 18] ) to the existence of a strictly 
positive feasible solution for the dual problem (D),  that is, a certain A ~ R '~ such that 

c + A'A = 0 and A i > 0 for all i = 1 . . . . .  m. 
We associate with (LP) the unconstrained problem 

(Pf) min fr(x) 
x 

wherefr is the exponential penalty function 

B(x) := c 'x  + r ~_, expl ( A i x -  b i ) / r ]  . 
i ~ !  

Using convex duality theory [ 17], we construct a dual problem for (Pf) by considering the 
perturbation function q~r: E n X ~'~ ~ R defined as 

~r(X, U) = C'X + r ~ ,  exp  [ ( A i x  - bi + ul) / r ] . 
iE1  

The dual problem, which we shall denote (Dr), seeks to minimize the Fenchel conjugate 
v* of the marginal function vr(u) = infx~r(X, u), and can be explicited by using the identity 
v~*(A) = q~*(0, A). Indeed, a straightforward computation gives for all (y, A) ~ ~n X ~'~, 
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A) _ f  b'A + if A 'A +c=y ,  A~>0, 
~O *r (y, 

- -  l + ~ otherwise, 

so that we get 

(Dr) m i n ( b ' A + r ] ~ A i ( l n A i - 1 ) : A ' A + c = O , A > ~ O ) .  
A i ~ l  

Conversely, taking ~o* as a perturbation function for (Dr) and Wr(y) =infaq~*(y, A) its 
associated (dual) marginal function, the dual of (Dr) turns out to be precisely the primal 
problem (Pf). In other words, problem (Pf) corresponds to the minimization of w*. For 
further details on the general theory of convex duality, the reader may consult [ 17, pp. 18- 
21]. 

Incidentally, we observe that problem (Dr) falls into the framework of entropy minimi- 
zation problems, for which several specific solution methods have been proposed (see e.g. 
[2, 3, 6, 7] and references therein). However, in our case the entropy tenn has no special 
meaning from the statistical mechanics or information theory point of view, and we just 
interpret it as a penalty term associated with the constraint A ~> 0. 

In what follows we shall say that an optimization problem is coercive if the level sets of 
the function to be minimized are bounded. This property not only yields the existence of 
optimal solutions but, from an algorithmic point of view, it ensures the boundedness of the 
minimizing sequences generated by any descent method. 

P r o p o s i t i o n  2.1. Problems (Pr) and (Dr) are strictly convex and coercive. The optimal 
values of  these problems satisfy v (Pf) + v (Dr) = O, and the corresponding unique solutions 
x(r)  and A(r) are related by 

/~i(r) = exp [ (Aix ( r) - b i ) / r ]  . 

Proof. Let l) r and wr be the primal and dual marginal functions introduced above. Clearly 
dom vr = •" so that [ 17, Theorem 10 (a) ] implies that v* has bounded level sets and then 
(Dr) is coercive. Similarly, we have dom Wr =c+A'~"~ and since (D) has a strictly 
positive feasible solution and A' is surjective, we get 0 ~ int(dom Wr). Using [ 17, Theorem 
10 (a) ] once again it follows that w* has bourlded level sets, hence (Pr) is coercive. 

The strict convexity of (Dr) is an immediate consequence of the strict convexity of the 
function t ~ t l n t .  On the other hand, we have V2fr (x )=(1 / r )A 'DA where 
D := diag { exp[ (Aer-  bi) / r] : i ~ I} and, sinceA has full rank, this Hessian is positive definite 
so thatfr is strictly convex. 

The equality v (Pr) + V (Dr) = 0 and the link between the primal and dual optimal solutions 
foUow from [ 17, Theorem 18 (b) ] and [ 17, Theorem 15 (e) • (f) ] respectively. [] 

The solution x(r)  of (Pf) is also characterized by the stationarity condition Vfr(x(r) ) = 0 
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and, since V2fr(x(r)) is positive definite, the implicit function theorem tells us that the 
trajectory x(r),  and a fortiori h ( r ) ,  are C = on (0, + ~) .  The derivative o fx ( r )  satisfies 

VZfr(X(r) )~(r) + O[Vf~] (x(r) ) = 0 ,  
Or 

that is, 

(A'DA)2(r) = ~_, l~i(r ) lnhi(r)A~ =A'Dlnh(r)  , 
i ~ l  

(1) 

where we denote lnA(r) .'= ( lnh l ( r )  . . . . .  lnhm(r) ) '  and D:=diag{Ai(r): i~I} .  

3. Convergence of the primal trajectory 

In the next propositions we study the limit o fx ( r )  as r tends to 0. 

Proposition 3.1. The primal trajectory x( r) stays bounded as r approaches zero and every 
accurnulation point of x( r) is an optimal solution for (LP). 

Proof. Let x ~ So be an optimal solution of (LP) so that 

c'x(r) -Fr ~., exp[ (Aix(r) -b i ) / r ]  <~c'x+rm=a+rm. (2) 
i ~ l  

Suppose [IXkll ~oo where Xk:=x(rk) for a given sequence rk$O, and assume with no 
loss of generality that xJ[[xkl[~d for some dv~0. From (2) we obtain 
A.,xk <~ bi + rkln [ ( a + rkm - C'Xk) / rk], SO that for some constant K and k large 

A I N  ~< [I-~kll + H l n  - .~ . 

from which we deduce Afl<~O. Also, (2) implies C'Xk<~ o~+rzn so that c'd<~O, which 
combined with Ad<. 0 contradicts the boundedness of S o. 

This contradiction proves that x(r)  stays bounded as r tends to zero. Then, using (2) we 

may find a constant M such that for all small r > 0 

r ~ exp[(Aix(r) - b i ) / r  ] <~M. 
i ~ l  

It follows that limsupr+o Aev(r) ~< b» proving that every accumulation point of x(r)  must 
be feasible for (LP). Similarly, from (2) we get c'x(r)<~ot+rm, so that limsupr+o 
c'x(r) <~ ct, and the accumulation points of x(r) are not only feasible but optimal for 
(LP). [] 

We shall prove that in fact the curve x(r)  converges towards a particular optimal solution 
of (LP) which is described next. 
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Let Io := { i~I :  A g = b i  for all x~So}  be the set of  constraints saturated in So. Define 
tho(X) .'= min {bi-Aix:  i ~ Io } and let $1 be the optimal solution set of  

tl :=max{~bo(X): x ~  So } • 

Geometrically, tl and $1 are found by considering the polytopes pc..= {x ~ So: A g  <~ bi - t, 
if~Io} and taking the largest t so that P '  is nonempty (see Fig. 2). Thus, we arepushing in 

all non-saturated constraints until some of them become saturated, namely, those in 

J1 := { i ~ Io: A/x = bi - fi for all x ~ $1 }. 
Letting 11 := Io U J »  q51 (x) := min{ b~- Aix: i ~/1 }, and $2 the optimal set of  

tz := max{~b~(x): x~S1  } , 

w e m a y  define J2 := {i ¢~I~:A?c= b i - t 2 for al lx ~ $2}, 12 :=I1 U J2 and th2 (x) := min{ b i - A g :  
if~I2}, in order to find t3, $3 and so on. 

Since the sets J~ are non-empty, the sequence IoCI1 c . . .  ~I« is strictly increasing and 
after finitely many steps we have I~ = L The corresponding decreasing sequence ofpolytopes 

So ~ Sm ~ " "  » S~ satisfies 

Aix=bi '  i ~ I  0 } 
Sj = ~ x : A i x = b i - f i ,  i~J~;  ...; A i x = b i - t ~ ,  i~J~ . 

Ai:¢ ~ bi - t» i ~ ~ 

In particular S~ is defined only by equalities and, since A has full rank, it is reduced to a 
singleton {x* }. 

Definition 1. The point x*  defined by the process above will be called the centroid of the 
optimal face So. 

We remark that 

0 < 6  <t2 < ' " < t k ,  

and that S c is also characterized by the following set of  inequalities, 

r c 'x~a;Aix<., .bi ,  i~ Io  } 
Sj = ' ] x :  Aix ~ b i - fi , i E J1; ...; Aix <~ b i - tj, i ~ Jj . 

Aix ~ b i -- tj, i ~ I i 

(3) 

(4) 

S0 / ", 

- - , ~  ~ f ~ - ' ~ ~ . ~ i ~ l ~ ~ ~ ~ ~  - ~ ~~~~~~~~~~~~»~ - :" """ " " 

/ ,~ '~  ~% p~ ~ ~ ; ; ' 7 ( .  . . . . . . . . . .  ~,_~ . . . .  ... . . . . . . .  

/ f ,'" _ _  .' ," . 
(a) (b) (c) 

Fig. 2. The centroid of So is obtained by "pushing in" all nonsaturated constraints (a) until some ofthem collapse 
(b). The process continues recursively down to x * (c). 
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Remark.  The previous notion of center is of analytic nature, that is, it depends on the 
analytic description of P. For instance, the multiplication of an inequality by a positive 

constant may change the centroid. Let us also notice that the polytope Si may collapse to a 
singleton for j  < k. It suffices that {A~: i ~/j} contain n linearly independent vectors. 

Let us now prove the announced convergence result. 

Proposition 3.2. The curve x( r) converges towards the centroid x*  of  the optimal face So 

as r tends to zero: 

lim x(r)  = x *  . 
r$O 

Proof. Since x(r)  stays bounded as r goes to zero, it suffices to prove that x* is the unique 
accumulation point. Let $.'= lim x~ where xk := x(rk) with rk $ 0 be an accumulation point, 
and define x* .'= xk + (x* - $) so that x~ ---> x*. The optimality of xk gives 

CPXk q-rk E e(Aixk--bi)/rk~C * q_rk E e(Aix~--bi)/rk 

i~l  i~l 

but since ~, x* ~ So we have C'Xk = C'X* and AiXk = Aix* for all iG Io, and we get 

~,  exp[ (Aix~-bi) /rk]  ~< ~_, e x p [ ( A i x * - b ~ ) / r k ] .  (5) 
i~lo i¢~Io 

It follows that 

exp[ - ~bo(Xk)/rk] <~ m exp[ -- ~bo(x* )/rk] , 

hence ~bo(xk) >/~bo(x* ) - r k lnm, and taking limits we deduce q5o($) >~ ~bo(x*) = tl, show- 
ing that $ ~ S» 

We proceed by noting that $~$1 implies A f i = A ~ *  for i~J~, hence A«x~ =Aix* for 
these i' s. Eliminating the corresponding terms from (5) we get 

exp[ (Aixk--bi)/rk] <~ ~_, exp[ (A ix~-b~) / rk]  , 
i~ll i~ll 

and similarly as above we get ~bl (Xk) >1 d?l (X*) -- r k la m from which £ ~ S» and so on. 
By induction we ultimately get ~ ~ Sc = {x* }, proving the result. [] 

4. Convergence of  the dual trajectory 

We prove next that the dual trajectory A(r) converges as r $ 0 towards an optimal solution 
of (D). More precisely, let A* be the unique solution of the strictly convex problem 
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(Do) m i n ( ~  A/(InA/-1): A E D * ) ,  
x-i ~ lo 

where D* denotes the optimal solution set of the dual problem (D), that is, 

D * =  {A: A'A= - c ;  Ag=0, if~Io; Ag>/O, i E I o } .  

Proposition 4.1. The multipliers A ( r) converge towards A * as r tends to zero: 

lim A(r) = A * .  
r$O 

Proof. By optimality of A(r) we have 

b'A(r) +r ~ Ai(r)( lnAi(r  ) - 1) ~<b 'A*+r  ~ A*(lnA* - 1 ) ,  
i ~ l  i ~ l  

but since A(r) is feasible for (D) while A* is optimal for the same problem, we have 
b'A(r) ~>b'A* and then 

~_~ Ai(r ) ( lnAi (r ) -  l)  <~ ~ff~ A~(lnA/*-I). 
i ~ l  i~1o 

(6) 

Thus the multipliers Ag(r) must stay bounded as r goes to zero, sinee the function 
t ~ t ( l n t -  1) is coercive on [0, + ~ ) .  

Let us verify that A* is the only accumulation point of A(r). Indeed, let Ä be an accu- 

mulation point and take rk~, 0 SO that A(rk) ~ Ä. Since Äi = limkexp[ (AiX(rk) --bi)/rk] = 
0 for i~Io we obtain ÄED*,  and passing to the limit in (6) we deduce Ä is an optimal 
solution of (Do), hence Ä = A* as claimed. [] 

The next result proves that A* is in fact a central point of the dual optimal face. 

Proposition 4.2. For all i E Io one has A* > O. More precisely, there exists d E  ~n such that 

A* = exp(Agd) for i E I  o. 

Proof. Suppose A* = 0 for some i E Io and choose a dual optimal solution with Ag> 0 (see 
e.g. [ 18, p. 95 ] ). Then, the directional derivative of 0(A) := E« ~1oAj(ln Aj - 1 ) at A* in the 
direetion ( Ä -  A *) is - 0% contradicting the faet that A * minimizes 0 among all dual optimal 
solutions. 

Sinee lnAg(r) =Ai(x(r)  - x * ) / r  for all i EIo, the veetor (lnAg(r) : i EIo) belongs to the 
range of the linear operator (Ai: iEIo).  This property is inherited by the limit vector 
(lnA*: i~Io)  and the result follows. [] 
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5. Asymptotie analysis of trajeetories near zero 

Proposition 4.1 proves the convergence of the multipliers. As a matter of fact, these 
multipliers converge "very fast", in the sense made precise by the following definition. 

Definition 2. We say that 7: [0, + ~) ~ Nk converges exponentially towards zero if there 
exists/x > 0 such that 

lim lid(r) II - -0 .  
r~o exp( - tz /r)  

We shall denote this fact by ~/(r) ~ e (r).  

Notice that if ~/(r) ~ e (r) ,  then we also have r I(r) / r  q ~ e (r) for all q ~> 0. 

Proposition 5.1. We have A( r) ~ e( r) so that 

A(r) = A * +  v(r)  

with v( r) converging exponentially to O. In particular, 

Ä(O) :=lim A(r) - A *  =l im Ä(r) = 0 .  
r$O r r~O 

Proof. From Eq. (1) we have A'DAA(r) = A'D In A, so that ~(r) solves the weighted least- 
squares problem 

min(Az-  lnA) 'D(Az-  lnA) 
z 

that is, 

min ~ Ai(r) [ A i z - l n A i ( r )  ]2. (7) 
z i ~ l  

In particular, taking z:= (x ( r ) - x * ) / r we obtain 

1 K 
A;(r) [Aifc(r ) -lnA~(r)]2~< ~ ~ Aj(r)[A~x* -b j ]2<~ --~ max Aj(r) ,  

j~lo r /¢to 

where K =  ~,j~to[A/x* - b/] 2. 

We observe next that (d/dr)  [r lnh i ( r ) ]  =AA(r)  so that 

Ä+(r) 
r =Ai2(r )  - l n A i ( r )  , 

Ai(r) 

and therefore 
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K 
= Ai( r )max Aj(r) . Ä~(r) Ai2(r) [Aig(r) - l n A i ( r ) ] z <  r-~ jeto 

It follows that for some constant/~ and r small 
/ 

J m a x  Aj(r) , I Äi(r) I ~< ~5 vJ~~o 

and since Aj (r)  -%< exp ( - t ' /r) for any t '< q ,  j ~ Io and r small, we may take any/z  < ½ q to 
check the exponential convergence of,~ (r)  towards zero. The rest of  the proposition follows 
easily from this. []  

Our next step is to prove the existence of a right derivative of  x ( r )  at r = 0, 

d*  = l i m  x(r )  - x *  
r$O r 

To this end we shall exploit the fact that, f fom the very definition of x(r ) ,  the vector 
d ( r )  := (x (r)  - x *) / r is the unique minimizer of  the funcfion 

O r ( d ) = c ' d +  ~ eAidq-e-t#r E eAid-[-'"[-e-t«/r E eAid" 
i~lo i~iiJ1 i~Jk 

The next simple linear algebra result will be useful in what follows. 

L e m m a  5.2. Assume h ( r) ~ • n is such that Aih ( r) is bounded ( respectively Aih ( r) ~ e ( r) ) 
for  all i~Ij .  Then, the projection hj(r) o f  h(r )  onto the space Ej:---span{A~: i~ / j}  is 
bounded ( respectively hj( r) ~ e ( r) ). 

Proofi  Choose a basis for Ej out of  {A~: i~ / j}  and form a matrix B. Then 
hj( r) = B ( B 'B)  - 1B'h ( r) from which the result follows. []  

Proposi t ion 5.3. The vector d(  r) stays bounded as r tends to zero. 

Proof.  Let us prove by induction that the projection d:(r) of d(r )  onto the space 
Ej := span{A~: i ~/:} is bounded. Since Ek = R n the conclusion will follow. 

Since Az d ( r )  --* In A* for all i ~ I o, Lemma  5.2 implies that do (r)  is bounded. Moreover,  
* t since c =  - Ei~1oAi Ai ~Eo ,  we also get that c 'd(r )  is bounded. 

Suppose that dj_ 1 (r) is bounded and let us show the same holds for dj(r).  
We begin by proving that Af l ( r )  is bounded above for all i ~/j .  The induction hypothesis 

shows that Aid (r) = A,dj_ 1 (r) is bounded for all i ~/~_ 1. Moreover, since c ~ Eo c Ej_ » we 
have c ' d ( r ) = c ' d j _ l ( r )  so we may cancel the first terms in the inequality 
Or( d( r) ) <~ O,( dj_ 1 ( r) ) in order to deduce 

E eAid(r) ~ E eAidj-'(r)-'}-e(tJ-tJ+l)/r E eAia~-l'r) -I-"'-I-e(q--tk)/r E eA'dj-l(r)" 
Jj Jj Jj + ~ «k 
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From (3) and the induction hypothesis the right hand side above stays bounded, so we 
deduce that Aid(r)  is also bounded above for all i ~ Jj = / j \ /~_  1. 

Now, if dj(r) were not bounded we could find rk $ 0 such that II dA rk) II --' o~. Then, since 
the quantities Aidj(r) = Aid(r)  for all i ~/~ and c 'dj(r)  = c ' d ( r )  are bounded above, every 
accumulation pointe  of  dj(rk) /II dj(rk) II belongs to E~ and satisfies Ai e <~ O, i ~ Ij and c '  e <~ O. 

But then, from (4) and since A : *  < b i -  tj for i ~/ j ,  we deduce that x*  + te ~ Sj for small 
enough t > 0. By the definition of Io, J 1  . . . . .  Jj we deduce Aie = 0 for all i ~ / j  and, since 
e ~ Ej, this implies e = 0 in contradiction with Ilell = 1. [] 

We may now identify the unique accumulation point of  d ( r ) .  To this end we shall use 
the following simple fact whose proof  is left to the reader. 

L e m m a  5.4. Let da: ~ d _~ ~ be a strictly convex function, H an affine subspace parallel to 
the linear subspace E, and B a d ×  n matrix. I f  the problem 

min da(Bz) 
zEH 

has a nonempty optimal solution set L, then fo r  every Zo ~ L we have 

L = Zo + [E¢3 Ker BI . 

Let us take d*  an accumulation point of  d ( r ) .  Then we have A,d* = In A* for all i ~ Io, 
and therefore 

e A i = 0 .  C -F E Aid* t 

i~lo 

This proves that d*  is an optimal solution of 

(Qo) min ctd+ E eAid 
d i~1o 

whose optimal solution set is, by the previous lemma, Lo = d*  + f')i~«o Ker A» 
Now, if we take any other dl ~Lo  and we consider d l ( r )  i = d ( r )  + (dl - d * ) ,  we have 

A,dl (r)  = Af l ( r )  for all i ~ Io, and also c'da ( r )  = c ' d ( r ) .  Thus, canceling the first two terms 
in the inequality 6)r( d (r )  ) <~ ~9r( dl(  r) ) we obtain 

E eAid(r) <~ E eAi«l(r) +e(ti-t2)/r ~ eAidl(r) d-"'" +e  (tl-tk)/r E eAidl(r) 

iEJ1 i~Jl i~J2 i~Jl~ 

and passing to the limit (in the subsequence rk such that d(rk) ~ d* ) ,  we get 

E eAid*~ E eAidl " 

i~Jl i~Jl 

This proves that d*  is also an optimal solution of  the problem 
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(Q1) min y '  e Aia 
dELO i~Jl  

whose optimal solution set is L 1 = d* + 0 i~ll Ker A i. 

We may proceed inductively by showing that d* is an optimal solution of 

(Q:) min Z eAia 
d~L1 i~J2 

with optimal solution set L 2 = d*+ fq i~i2 Ker Ai ,  and so on. 
Finally we shall get that d* solves 

(Qk) min 2 eAid 
d~Lk-I  i~Jk 

with optimal solution set 

L ~ = d * +  0 Ker A i=d*  + f ) K e r A i = { d * } .  
i~lk i ~ l  

Proposition 5.5. Let d* be the unique solution of (Qk) as above. Then 

2(0) ==lim x(r) - x *  
r~,O r 

---d*. 

Proof. It suffices to observe that every accumulation point of d(r) belongs to L~ which is 
reduced to a singleton { d* } by the full rank condition on A. [] 

To conclude this section we shall prove that the curvex(r)  is also C 1 at r =  0, in the sense 

that i ( r )  tends to ~(0) as r decreases to 0. 

Proposition 5.6. d(r) "-, e (r).  

Proof. Since d ( r ) = ( ~ ( r ) - d ( r ) ) / r ,  it suffices to prove that the vector 
h(r) :-- r(d(r) - 2 ( r )  ) converges to zero exponentially fast. To this end we notice that $(r)  
is the solution of (7),  so that h(r) minimizes the function 

Fr(h) := ~ A i ( r ) ( A i h + s i )  2 
i ~ l  

where si := Aèc* - b» 
First of all we prove that h(r) stays bounded as r goes to zero, which by Lemma 5.2 

amounts to showing that Aih(r) stays bounded for all i ~ L  Let us do this by induction. 
From the inequality F'r(h(r))<Fr(0) we deduce that Aih(r ) ~e(r)  for all i~Io, hence 
these Aih( r) are bounded. Assume now thatAih(r) stays bounded for all iEIj, and consider 
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hj(r) the projection of h ( r )  onto E:, so that h1(r) is bounded by Lemma 5.2. The inequality 
Fr( h( r) ) < _Fr( hj( r) ) implies 

Ai(r) (Aih(r) +si)2 <~ ~ A~(r) (A~hj(r) +si) z . 
i q~ lj i ¢gs lj 

We notice that Ai(r) = exp [Aid(r) ] exp ( - t: + l / r)  for i E Jj + 1. Thus, multiplying the pre- 
vious inequality by exp ( t :+ l / r )  we observe that the right hand side will stay bounded by 

some constant K so that for all i ~ J:+ 1 we obtain 

(Ai h (r) + si) 2 <~ Ke - Aid(r) • 

It follows that A~h(r) is also bounded for i ~ J:+ 1. This achieves the induction step, and the 
boundedness of  h(r) has been established. 

The second step is to prove that in fact h ( r )  ~ e ( r ) ,  which is again equivalent to showing 
that Aih (r) ~ e (r) for all i ~ L We already observed that this is the case for i ~ I 0. Suppose 
the property holds for i~I:  so that, by Lemma  5.2, hj(r) ~e(r) .  Then, by an argument 

similar to the one used to prove the boundedness of  h(r), and since s~ = -tj+a for all 
i ~ J:+ 1, we obtain 

~_, eaia(r)[Aih(r) ] z«  . ~_~ 
i E J j + l  i E J j +  1 

e Aid(r) { [Aihj(r) ] 2 _ 2 t :+  1Ai (h j ( r )  - h ( r )  ) } + E ( r )  

( 8 )  

where E( r )  ~ e ( r ) .  Moreover, 

C+ E eAid(r)eSi/rA~ = 0  

i ~ l  

and since (h~(r) - h ( r ) )  is bounded and orthogonal to all the A i's for i ~ / / ( a n d  thus also 
orthogonal to c),  we obtain 

Y'~ eAid(r)Ai(hj ( r ) - h ( r )  )=  -eO+l/r E eAid(rBe'i/rAi(hj ( r ) - h ( r )  ) ~ e ( r )  
i ~ J j + l  iq~/j+ 1 

as sl + t~ +~ < 0 for i ~ / :  +1- Therefore, the right hand side of  (8) decays exponentially and 
we deduce Aih(r) ~ e(r) for all iG Jj+» This completes the induction step and we have 
proved h( r )  ~ e ( r )  as required. [] 

Proposition 5.7. The following vectors converge exponentially towards zero, 
(a) ( d ( r ) - d * ) w e ( r ) .  
(b) ( ~ ( r ) - d * ) ~ e ( r ) .  
(c) ( x ( r ) - x * - r d * ) ~ e ( r ) .  

In particular x(r) is a C l curve for r>~O. 

Proof.  Assertion (a) follows from the mean value theorem. Part (b)  is a consequence of 
the equality :~(r) = rd(r) +d(r),  while part (c)  follows from (a) .  The last assertion is 
obvious from (b) .  [] 
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We summarize the main results of  this section in the next theorem. 

Theorem 5.8. The primal and dual trajectories have asymptotic expansions 

x(r) =x* +rd* +~7(r) , 

A(r) = A * +  v(r)  , 

where the error terms ~7( r) and u( r) converge exponentially fast to 0 as r tends to O. 

6. Higher order differentiability 

S o  far we have shown that the primal and dual trajectories are of  class C ~ on (0, + oo), 
and also right differentiable at r = 0 with the derivatives being continuous at this point. 

Concerning higher order derivatives at r = 0, the results in the previous section imply 

Y(0) :=l im £( r )  - £ ( 0 )  0 ,  
r$O r 

A(0) :=l im ,~(r) - Ä ( 0 )  0 .  
r,LO r 

More generally, all higher order Taylor expansions have only linear terms 

x(r) =x(O) + r£(O) +o(r q) , 

A(r) = A ( 0 )  -k o(r q) . 

However, we may not assert that the trajectory is of  class C = at r = 0, nor even C 2 since we 

have not proved that lim £( r )  = 0. While such a property is plausible, a direct attempt to 

prove it in a similar way to what was done for £(r )  would be very intrincate. We shall adopt 

a different strategy which allows us to prove the trajectories are C = at r =  0 (and even for 

r < 0), but under the rather restrictive hypothesis 

(H) (LP) and its dual (D) have unique solutions, 

which amounts to B := {A ~: i ~ I o } being a basis of  ~ n. 

TO this end we rewrite the equation 

c+ ~_, exp[ (Aix-bi)/r]A ~ = 0  
i~I  

which charaeterizes x( r ) ,  as the equivalent system 

f c+ ~,AiA~ = 0 ,  

(S) ~ A i x - b i - r l n A i  = 0  for i~Io,  
[ . ~ ( A i x - b i ,  r)-)% = 0  for iq~Io, 

(9) 
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where/3: ] - % 0 [ × N --* N is the C = function defined by 

[3(s, r ) = { ö  p(s / r )  if r>O~ 

if r~<0. 

System (S) is equivalent to (9) for r>O but is also meaningful for r = 0  (and even for 
r < 0). The Jacobian of this system with respect to the pair (x, A) at the point (x*, A *, 0) 
is 

(i ~ ~Aó°/ J * =  ' 0 
0 - I d  ] 

where Id denotes the identity matrix of dimension 11",,/ol. J*  is clearly nonsingular under 
hypothesis (H),  so we can apply the Implicit Function Theorem to deduce 

Proposition 6.1. Assuming (H), the primal and dual trajectories x(r)  and A(r) are of 
class C ~ on [0, + ~ ) ,  with 

x(k)(0) = 0  fork>~2,  

A(k)(0) = 0  for k>~ 1. 

Proof. Immediate by the previous discussion. [] 

This result provides further support to the conjecture that the trajectories are C = at r = 0, 
but the proof in the case of multiple primal or dual solutions remains an open question. 

7. Asymptotic behavior of trajectories at infinity 

We supplement the previous results by studying the behavior of the primal and dual 
trajectories when r tends to ~. To this end we consider the unconstrained problem 

(P~) min c 'd+ ~_, exp(Aid ) 
d i ~ l  

and the perturbation function ~p(d, u) .'= c 'd+ ~ exp(Afl+ ui) which gives the dual 

(D~) min( i~~Ai ( lnAi -1 ) :A 'A+c=O'a  A~>0). 

Proposition 7.1. Problems (P~) and (Da) are strictly convex and coercive, their optimal 
values satisfy v(P~) + v(D~) = O, and the corresponding unique solutions d ~ and A a are 
related by 

A~ = exp(Ai d~) . 
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Proof.  It suffices to apply Proposition 2.1 with b = 0 and r = 1. [] 

Proposi t ion 7.2. With the previous notation we have 

lim x ( r )  = lim ~( r )  = d = , 
rT~ r rT~ 

and also 

lim A(r)  = A =.  
rl-oo 

185 

(10) 

(11) 

Proof.  Let us define d ( r )  := x ( r ) / r. The inequality f r ( X ( r ) ) ~< f ~ ( rd ~) gives 

c 'd(r)  + ~_, exp(Ai~l(r) )exp(  - bi~r) ~< c 'd = + ~ exp(Aid=)exp(  - bi~r) , 
i ~ l  i ~ l  

and since for r sufficiently large ½ ~< exp( - bi~r) <~ 2, we deduce 

c 'd(r )  + 1 ~ exp(Ai~(r )  ) ~< c ' d  ~ + 2 ~ exp(Ai d~) . 
i ~ l  i ~ l  

(12) 

Using the previous proposition (with 2c instead of c) we observe that the function on the 
left has bounded level sets, so that är(r) must be bounded. Then, passing to the limit in (12) 
we deduce that every accumulation point of  är(r) solves (P=), hence lim är(r) = d ~ proving 

the first half of  (10) .  
Property (11) follows immediately from this since Az(r) = exp [Aid(r)  - bi~r]. More- 

over, (1) implies 

Yc(r) = (A 'DA)  -aA 'D Ax(r )  - b _ d(r )  - 1 (A 'DA)  - l A ' D b  
r r 

and then we also have lim :~(r) = d ~, completing the proof  of  (10).  [] 

The previous result shows that the primal trajectory diverges when rT ~ (except when 
d = =  0).  We conclude by showing that x ( r )  admits an asymptotic ray at infinity, and by 
studying the asymptotic expansion of  A (r ) .  

To this end let D = := diag { A 7: i ~ I} and consider x ~ = (A 'D =A) - aA 'D =b, the unique 
solution of the following weighted least-squares problem 

(WLS) min ( A x -  b) 'D~°(Ax- b) . 
x 

T h e o r e m  7.3. The primal trajectory has the asymptotic behavior 

x (r )  = x = + r d = + p ( r )  (13) 
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with lim~ T ~ P(r)  = 0, and the dual trajectory has an expansion of the form 

Ag(r) = A~[ 1 + 3°~/r+ ~(r) ] 

with 8~ := Ai x°° - bi and limr,~ r~( r ) = O. 

(14) 

Proof.  Let z(r)  : = x ( r )  - rdC The optimality of x(r) for fr proves that z(r) is the unique 
solution of 

min c 'z+r  ~ A~ exp[(Aiz -b i ) / r]  . 
z i ~ l  

Noting that c ' =  - ~ A ? A »  adding the constant rEA~ß(bi/r - 1) to the objective function 

and multiplying it by r, we deduce that z(r) also minimizes the function 

~r (z)  := r 2 ~ A~(exp[ ( A i z -  bi)/r] - 1 - [ (A i z -  bi)/r] ) 
i ~ l  

= ~ A°B(Aiz-bi)2o)((Aiz-bl) /r) ,  
i ~ l  

where o)(t):=E~=otk/(k+2)[. Since z ( r ) / r  tends to 0, for each • > 0  we have 

oa((Aiz(r) - bi)/r) ~> o9(0) - • = ½ - • for all r large enough. Thus, using the inequality 

I2r(z(r) ) <~ 12r(x~), we find 

o~ ~ ra_bi) og( (Ai x _ b i ) / r ) .  ( ½ - é )  E Ai (A i z ( r ) -b i )2<~  E Ai (AiX 2 
i ~ l  i ~ I  

From this we conclude that Az(r),  and a fortiori z(r), stays bounded as r tends to c¢. 

Moreover, passing to the limit in the last inequality, we deduce that every accumulation 

point ~ of  z(r)  satisfies, 

(½_e) y ,  A?(Ai~_b,)2<~l ~ A?(A,x~ b,)2. 
i ~ l  i ~ l  

Letting • tend to 0 we deduce that ~ solves (WLS) ,  hence ~ = x  ~ proving (13).  

The expansion (14) follows from (13) since 

Ai(r ) =exp[(Aix(r) - b i ) / r  ] =A~ exp[ (6~ + A i p ( r ) ) / r  ] . [] 

Remark .  Notice that when d = --- 0, the trajectory x( r )  does not diverge but converges to x = 

when r I' oo. This happens if and only if the vector e = ( 1 . . . . .  1) ' is a dual feasible solution. 

As a matter of  fact, if we know any strictly positive dual feasible solution we may scale the 

dual variables so that e becomes feasible, and then we will have d = = 0 ,  A a =  e, and 

x ~ =  (A 'A) -aA 'b  the unique solution of  

min IIAx- bll 2 
x 
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