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Abstract

The present article is devoted to the study of a constrained weighted
total variation minimization problem, which may be viewed as a relax-
ation of a generalized Cheeger problem and is motivated by landslide
modelling. Using the fact that the set of minimizers is invariant by
a wide class of monotone transformations, we prove that level sets of
minimizers are generalized Cheeger sets and obtain qualitative prop-
erties of the minimizers: they are all bounded and all achieve their
essential supremum on a set of positive measure.
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1 Introduction

Given an open bounded subset of RN and nonnegative functions f and g
(more precise assumptions on the data Ω, f and g will be given later on), we
are interested in the following

µ := inf
u∈BV0

R(u) (1)
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where
BV0 := {u ∈ BV (RN), u ≡ 0 on RN \ Ω}, (2)

and for u ∈ BV0 such that
∫

Ω
fu 6= 0,

R(u) :=

∫
RN

g(x) d|Du(x)|∣∣∣∣∫
Ω

f(x)u(x) dx

∣∣∣∣ . (3)

Whenever
∫

Ω
fu = 0, we set R(u) = +∞.

This problem is motivated by a landslide model proposed by Ionescu
and Lachand-Robert [8] in which f and g respectively represent the body
forces and the (inhomogoneous) yield limit distribution. These functions are
determined by the properties of the considered geomaterials and, roughly
speaking, taking a non constant f captures the idea that the mechanical
properties of the geomaterials (e.g. the way they are compacted by their own
weight) vary with depth. When g = f = 1 (which is not always a relevant
assumption in landslides modelling), it is well-known that the infimum in (1)
coincides with the infimum of R over characteristic functions of sets of finite
perimeter. In this case, (1) appears as a natural relaxation of:

λ(Ω) := inf
A⊂Ω, χA∈BV

‖DχA‖(RN)

|A|
(4)

where |A| and ‖DχA‖(RN) denote respectively the Lebesgue measure of
A and the total variation of DχA. Problem (4) is famous and known as
Cheeger’s problem [3], its value λ(Ω) is called the Cheeger constant of Ω and
its minimizers are called Cheeger sets of Ω (see [9], [10] and the references
therein). Note also that λ(Ω) is the first eigenvalue of the 1-Laplacian on Ω,
see for instance [5], [6].

Throughout the paper, we will assume that

• Ω is a nonempty open bounded subset of RN with a Lipschitz boundary,

• f ∈ L∞(Ω), f ≥ f0 for a positive constant f0,

• g ∈ C1(Ω), g ≥ g0 for a positive constant g0.
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Let us remark that the space BV (RN) is the natural one to search for a
minimizer of (1). Indeed the infimum is usually not achieved in a Sobolev
space like W 1,1(RN). It is also clear that one always have R(|u|) ≤ R(u) so
that we can restrict the minimization problem to non-negative functions.

In what follows, every u ∈ BV (Ω) will be extended by 0 outside Ω, and
thus will also be considered as an element of BV (RN), still denoted u. Let
us define, for every u in BV0:

G(u) :=

∫
RN

g(x) d |Du(x)| . (5)

Since ∂Ω is Lipschitz, functions in BV (Ω) have a trace on ∂Ω, and one can
write for u ∈ BV (Ω):

G(u) =

∫
Ω

g(x) d |Du(x)|+
∫

∂Ω

g(x) |u(x)| d HN−1(x)

see [4] and [7] for details. Taking advantage of the homogeneity of (1), it is
convenient to reformulate (1) as the convex minimization problem

µ = inf
u∈BVf

G(u) (6)

where

BVf :=
{

u ∈ BV (RN), u ≥ 0, u ≡ 0 on RN \ Ω,

∫
Ω

fu = 1
}

. (7)

In analogy with the case g = f = 1, it is natural to consider the generalized
Cheeger problem:

λ := inf
A∈E

∫
RN

g(x) d|DχA(x)|∫
A

f(x) dx

= inf
A∈E

R(χA) (8)

where

E := {A ⊂ Ω with

∫
A

f(x) dx > 0 and χA ∈ BV (RN)}. (9)

Again (1) can be interpreted as a relaxed formulation of (8) and one aim
of the present paper is to study the precise links between (1) and (8). We
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shall first prove that if u is a nonnegative solution of (1) then so is H(u)
provided H is Lipschitz, nondecreasing, H(u) 6= 0 and H(0) = 0. This in-
variance property will enable us to deduce very simply qualitative properties
of the solutions of (6) and to study the link between (1) and (8). As a first
consequence of the invariance property, we shall prove that u solves (6) if
and only if all its level sets of positive measure solve the generalized Cheeger
problem (8). This is in fact a simple generalization of what is well known
when g = f = 1. A more involved application is that the set of solutions
of the generalized Cheeger problem (8) is stable by countable union. Fi-
nally, regarding qualitative properties, we will show that solutions of (6) are
all bounded and that they all achieve their essential supremum on a set of
positive measure (even when g = f = 1, to our knowledge, this result is
new).

2 Existence

This paragraph is devoted to prove the following existence result.

Theorem 1 Let Ω, f and g satisfy the previous assumptions. Then
1) the infimum of (6) is achieved in BVf ,
2) the infimum of (8) is achieved in E.

In order to prove this theorem we need the following lemma

Lemma 1 Let Ω be a bounded open set in RN , u be in BV (Ω) and g be in
C1(Ω, R+), then∫

Ω

g(x) d|Du(x)| = sup {
∫

Ω

u(x)div(g(x)ϕ(x)); ϕ ∈ C1
c (Ω, RN), |ϕ(x)| ≤ 1}.

(10)

Proof. Since u belongs to BV (Ω), there exists a Radon measure µ on Ω
and a µ-measurable function σ : Ω → RN such that |σ(x)| = 1 µ a.e. and
Du = σµ. Then |Du| = µ, see [4]. Since

−
∫

Ω

u(x)div(g(x)ϕ(x)) dx =

∫
Ω

g(x)ϕ(x) · σ dµ

and using the fact that |ϕ(x)| ≤ 1, we obtain

−
∫

Ω

u(x)div(g(x)ϕ(x)) dx ≤
∫

Ω

g(x) dµ =

∫
Ω

g(x) d|Du(x)| .
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On the other hand, since∫
Ω

d|Du(x)| = sup {
∫

Ω

u(x)div(ϕ(x)) dx; ϕ ∈ C1
c (Ω, RN), |ϕ(x)| ≤ 1} (11)

see [4] or [7], there exists a sequence ϕk ∈ C1
c (Ω, RN), with |ϕk(x)| ≤ 1 such

that

−
∫

Ω

u(x)div(ϕ(x)) dx →
∫

Ω

dµ.

But

−
∫

Ω

u(x)div(ϕk(x)) dx =

∫
Ω

ϕk(x) · σ dµ

and then
ϕk · σ → 1 in L1

µ(Ω)

and similarly
gϕk · σ → g in L1

µ(Ω).

Now, by definition

sup {
∫

Ω

u(x)div(g(x)ϕ(x)) dx; ϕ ∈ C1
c (Ω, RN)} ≥

∫
Ω

g(x)ϕk(x)·σdµ, ∀k ∈ N

and passing to the limit we get

sup {
∫

Ω

u(x)div(g(x)ϕ(x)) dx; ϕ ∈ C1
c (Ω, RN), |ϕ(x)| ≤ 1}

≥
∫

Ω

g(x) dµ =

∫
Ω

g(x) d|Du(x)| .

This ends the proof of the lemma.

We deduce from lemma 1 the following lower semicontinuity property.

Lemma 2 Let Ω be a bounded open set in RN . The functional F : L1(Ω) →
R ∪ {+∞} defined by

F (u) =


∫

Ω

g(x) d|Du(x)| if u ∈ BV (Ω)

+∞ otherwise
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is lower semicontinuous in L1(Ω). Suppose in addition that ∂Ω is Lipschitz,
then the functional G : L1(RN) → R ∪ {+∞} defined by

G(u) =


∫

Ω

g(x) d |Du(x)|+
∫

∂Ω

g(x) |u(x)| d HN−1(x) if u ∈ BV0(Ω)

+∞ otherwise

is lower semicontinuous in L1(RN).

From lemma 2, we deduce

Corollary 1 1) Let (un)n∈N be in BV (RN) such that un → u in L1(Ω).
Then ∫

Ω

g(x) d|Du(x)| ≤ lim inf

∫
Ω

g(x) d|Dun(x)| . (12)

2) Let (un)n∈N be in BV0 such that un → u in L1(RN). Then∫
Ω

g(x) d|Du(x)|+
∫

∂Ω

g(x) |u(x)| dHN−1(x)

≤ lim inf

(∫
Ω

g(x) d|Dun(x)|+
∫

∂Ω

g(x) |un(x)| dHN−1(x)

)
.

We are now in position to prove existence.

Proof. 1) Taking a constant u in (5), we see that the infimum in BVf is
finite. Let (un)n∈N ⊂ BVf be a minimizing sequence. Since g ≥ g0 > 0,
(un)n∈N is bounded in BV (RN). Therefore there exists a subsequence, still
denoted (un) and u ∈ BV (RN) such that un → u in L1(RN). Using corollary
1, we get∫

RN

g(x) d|Du(x)| ≤ lim inf

∫
RN

g(x) d|Dun(x)| = inf
v∈BVf

G(v). (13)

But from the fact that un → u in L1(RN), we have that∫
Ω

f(x)u(x) dx = lim

∫
Ω

f(x)un(x) dx = 1

u ≥ 0 and u = 0 in RN \ Ω.

Thus u belongs to BVf and the infimum is achieved.
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2) Let (An)n∈N be a minimizing sequence of (8) in E . Following the proof
of 1), we obtain that (χAn)n∈N is bounded in BV (RN), and then, up to a
subsequence, converging to a function in L1(RN) that is still a characteristic
function of a set A ∈ RN satisfying A ⊂ Ω, and from corollary 1∫

RN

g(x) d|DχA(x)| ≤ lim inf

∫
RN

g(x) d|DχAn(x)| = inf
B∈E

∫
B

g(x) d|DχB(x)| .

Therefore the infimum is achieved.

The lower semicontinuity result of corollary 1 implies that the set of
solutions of (6) is closed in L1, this fact will be used several times later on.

3 Invariance

Proposition 1 Let H ∈ W 1,∞(R, R)∩C∞(R, R) be such that H(0) = 0 and
H ′ > 0 on R. If u is a solution of (6) then so is TH(u) defined by

TH(u) :=
H ◦ u∫

Ω

f(x)H(u(x)) dx

. (14)

Proof. Let us denote by Xt(.) the flow of the ordinary differential equation

v̇ = −H(v).

In other words, for all v ∈ R, Xt(v) is defined by:

∂tXt(v) = −H(Xt(v)), X0(v) = v. (15)

Our assumptions guarantee that (t, v) 7→ Xt(v) is well-defined and smooth
on R2. Moreover, setting Yt(v) := ∂vXt(v), differentiating (15) with respect
to v, we have:

∂tYt(v) = −H ′(Xt(v))Yt(v), Y0(v) = 1

hence for all t ≥ 0

Yt(v) = exp

(
−

∫ t

0

H ′(Xs(v))ds

)
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Thus, for all v ≥ 0 and t ≥ 0, one has the bounds:

0 ≤ Yt(v) ≤ 1,−‖H ′‖∞ ≤ ∂tYt(v) ≤ 0. (16)

Since Xt(0) = 0 (Cauchy-Lipschitz), we deduce Xt(v) ≥ Xt(0) = 0 for all
t ≥ 0 and v ≥ 0.

For t ≥ 0, define ut by ut(x) = Xt(u(x)), it is immediate to check that
ut ∈ BV0 and ut ≥ 0. Let us also define

h(t) :=

∫
RN

g(x) d|Dut(x)| − µ

∫
Ω

f(x)ut(x)dx.

Since ut belongs to BV0 and ut ≥ 0, we have h(t) ≥ 0 and since u0 = u solves
(6), we have h(0) = 0. For all t > 0, this yields:

h(t)− h(0)

t
≥ 0. (17)

By the chain rule for BV functions (see [1]), and since ∂vXt(u(x)) ≥ 0, we
can also write h(t) as

h(t) =

∫
RN

g(x)∂vXt(u(x)) dγ(x) +

∫
Ju

g(x)|Xt(u
+(x))−Xt(u

−(x))| dHN−1(x)

− µ

∫
Ω

f(x)ut(x) dx

where Ju is the jump set of u and the nonnegative measure dγ is the sum of
the absolutely continuous part and of the Cantor part of |Du| (see [1]). We
may then rewrite:

h(t)− h(0)

t
= It + Jt − µKt

with

It :=
1

t

∫
RN

g(x)(Yt(u(x))− 1) dγ(x),

Jt :=
1

t

∫
Ju

g(x)
(
|Xt(u

+(x))−Xt(u
−(x))| − |u+(x)− u−(x)|

)
dHN−1(x),

Kt :=
1

t

∫
Ω

f(x)(Xt(u(x))− u(x)) dx.
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By construction, we have pointwise convergence of t−1(Xt−id) and t−1(Yt−1)
respectively to −H and −H ′. Using the monotonicity of H and of Xt, the
bounds (16), and the Dominated Convergence Theorem, we thus get

lim
t→0+

It = −
∫

RN

g(x)H ′(u(x)) dγ(x),

lim
t→0+

Jt = −
∫

Ju

g(x)|H(u+(x))−H(u−(x))| dHN−1(x),

lim
t→0+

Kt = −
∫

Ω

f(x)H(u(x)) dx.

Putting everything together and passing to the limit in (17) yields

0 ≥
∫

RN

g(x)H ′(u(x)) dγ(x) +

∫
Ju

g|H(u+)−H(u−)| dHN−1

− µ

∫
Ω

f(x)H(u(x)) dx.

By the chain rule for BV functions again, the right-hand side of the previous
inequality can also be rewritten as:∫

RN

g(x) d|D(H ◦ u)(x)| − µ

∫
Ω

f(x)H(u(x)) dx.

This finally proves that H ◦u minimizes R, or equivalently, that TH(u) solves
(6).

Remark 1. Taking H bounded shows the existence of bounded solutions to
(6). We shall see in Theorem 4 that in fact every solution (6) is in fact L∞.

By standard approximation arguments, we obtain the natural extension
of proposition 1 to more general monotone nonlinearities H:

Corollary 2 Let u be a solution of (6) and H ∈ W 1,∞(R, R) be a nonde-
creasing function such that H(0) = 0. If H ◦ u 6= 0 then TH(u) defined by
(14) also solves (6).

Proof. Let (ηn)n be a sequence of mollifiers and set for all v ∈ R:

Hn(v) := (ηn ? H)(v)− (ηn ? H)(0) +
1

n
v.
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Each Hn satisfies the assumptions of proposition 1, so that THn(u) solves
(6). Obviously Hn converges uniformly to H on compact subsets of R and
Lebesgue’s Dominated Convergence Theorem then implies that THn(u) con-
verges to TH(u) in L1(RN). Using the lower-semi continuity result of corollary
1, we thus get the result.

Note that corollary 2 applies in particular to H(v) = (v−t0)+ and H(v) =
min(v, t0).

4 Main results

4.1 Generalized Cheeger sets

Theorem 2 Let u be a solution of (6) and for every t ≥ 0, define Et :=
{x ∈ RN : u(x) > t}. For every t ≥ 0 such that Et has positive Lebesgue

measure
1∫

Et
f

χEt solves (6). In particular,
1∫

{u>0} f
χ{u>0} solves (6).

Proof. Let us prove the claim first for the set E0 := {u > 0}. Define for
every n ∈ N∗ and v ∈ R:

Hn(v) :=


0 if v ≤ 0
nv if v ∈ [0, 1

n
]

1 if v ≥ 1
n
.

For n large enough, Hn ◦ u 6= 0 and corollary 2 implies that THn(u) solves

(6). Since THn(u) converges in L1(RN) to
1∫

{u>0} f
χ{u>0}, we conclude as in

the proof of corollary 2.

Let t ≥ 0 be such that Et has positive Lebesgue measure. From corollary

2, v :=
(u− t)+∫
f(u− t)+

solves (6), hence so does

1∫
{v>0} f

χ{v>0} =
1∫

Et
f

χEt .
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We also have a converse of Theorem 2 which simply reads as:

Proposition 2 Let u ∈ BV0, u ≥ 0. If for every t ≥ 0 such that Et := {x ∈
RN : u(x) > t} has positive Lebesgue measure, χEt solves (1) then u solves
(1).

Proof. For M > 0 and n ∈ N∗, let us define Fk := EM(k−1)
n

(k ∈ {0, ..., n})
and:

uM,n :=
n−1∑
k=0

Mk

n
χFk\Fk+1

+ MχFn =
M

n

n∑
k=1

χFk
.

By assumption, for k = 1, ..., n, χFk
solves (1). Using the convexity and

homogeneity properties of (1), we deduce that uM,n also solves (1) for all
M and all n. Since uM,n converges in L1 to min(u, M) as n tends to +∞,
we deduce that min(u, M) solves (1) and we finally get the desired result by
letting M tend to +∞.

4.2 Applications

As a first consequence of theorem 2, we deduce the following relaxation result:

Corollary 3 The values of problems (6) and (8) coincide:

µ = inf
u∈BV0

R(u) = λ = inf
A∈E

R(χA)

moreover the second infimum is actually a minimum.

Remark 2. In fact, one can obtain the relaxation result of corollary 3 as a
direct consequence of the coarea and Cavalieri’s formulae (see for instance [9],
[8], [2] for similar level-sets approach for variational problems involving total
variation minimization). Indeed, one obviously has µ ≤ λ and if u ∈ BV0,
u ≥ 0, setting Et := {u > t}, the coarea and Cavalieri’s formulae yield:∫

RN

g d|Du(x)| − λ

∫
RN

fu =

∫ ∞

0

(∫
∂∗Et

g dHN−1 − λ

∫
Et

f(x) dx

)
dt ≥ 0

which proves that µ ≥ λ. From the previous argument, in fact, we see that
the converse also holds: u solves (6) if and only if Et := {u > t} (which has
finite perimeter for a.e. t) solves (8) for a.e. t ≥ 0. Note that in Theorem 2,
we have proved that Et solves (8) for all t (and we have not used the coarea
formula).
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Of course, theorem 2 and its proof contain much more information than
corollary 3. A more precise consequence of theorem 2 is the following

Corollary 4 A ∈ E solves (8) if and only if there exists u solving (6) such
that A = {u > 0}.

Proof. We have seen that (8) and (6) have the same value. If A ∈ E solves

(8) then
χA∫
A

f
obviously solves (6). Conversely, if u solves (6) then {u > 0}

solves (8) thanks to theorem 2.

We then easily deduce the following consequence

Theorem 3 Let (An)n be a sequence of solutions of (8) then
⋃

n An is also
a solution of (8).

Proof. For every n, the function un :=
χAn∫
An

f
solves (6). Define then:

λn :=
C2−n

1 + ‖un‖BV

where C > 0 is such that
∞∑
0

λn = 1. Using the convexity properties of

problem (6), we thus deduce that

u :=
∞∑

n=0

λnun

is a well-defined element of BVf that solves (6). Since
⋃

n An = {u > 0},
corollary 4 then implies that

⋃
n An solves (8).

Note that the fact that
⋃

n An is of finite perimeter is contained in the
statement.
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4.3 Qualitative properties

Adapting arguments of Serrin [11], as in Demengel [6], we obtain:

Theorem 4 Let u be a solution of (6). Then u belongs to L∞(Ω).

Proof. Let u be a solution of (6). For every M > 0 the truncated function

uM =
min(u, M)∫

Ω

f(x) min(u, M)(x) dx

is a solution of (6) thanks to Corollary 2. Using Proposition 1, it is still the
case for

uk
M∫

Ω

f(x)uk
M(x) dx

where k ∈ N∗. So we have

g0

∫
RN

d
∣∣Duk

M(x)
∣∣ ≤ ∫

RN

g(x) d
∣∣Duk

M(x)
∣∣ = µ

∫
Ω

f(x)uk
M(x) dx. (18)

Since f ∈ L∞(Ω), and Ω is bounded, there exists some t > 0, such that(∫
{f≥t}

f(x)N dx

) 1
N

<
g0

2Cµ
.

Then using Hölder inequality, (18) implies

g0

∫
RN

d
∣∣Duk

M(x)
∣∣ ≤ µ(t

∫
Ω

uk
M(x) dx +

g0

2Cµ
‖uk

M‖1∗), (19)

where 1∗ = N
N−1

. On the other hand, from Poincaré’s inequality (see for
instance [4]), there exists some C > 0 such that

‖v‖1∗ ≤ C‖Dv‖(RN) for every v ∈ BV (RN). (20)

Applying (20) to uk
M and replacing in (19) leads to

g0‖uk
M‖1∗ ≤ Cµt

∫
Ω

uk
M(x) dx +

g0

2
‖uk

M‖1∗ , (21)
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thus

‖uk
M‖1∗ ≤ K

∫
Ω

uk
M(x) dx, (22)

where K = 2Cµt
g0

.

We now apply a bootstrap process: we start with k = 1∗ in (22), using
monotone convergence, we pass to the limit in (22) when M → +∞ and we
get

‖u‖(1∗)2 ≤ K
1
1∗ ‖u‖1∗ . (23)

Taking k = (1∗)n in (22) leads to

‖u‖(1∗)n+1 ≤ K

1− 1
(1∗)n

1− 1
1∗ ‖u‖1∗ . (24)

Finally u ∈ L∞ and ‖u‖∞ ≤ KN‖u‖1∗ .

Combining Theorem 2, Proposition 2 and Theorem 4, we deduce that
every solution of (6) has a flat zone in the following sense:

Theorem 5 Let u be a solution of (6), then the set {u = ‖u‖∞} has positive
Lebesgue measure.

Proof.
Set m∞ := ‖u‖∞ and let us assume that |{u = m∞}| = 0. Let (mk)k

be an increasing sequence of nonnegative real numbers converging to m∞.
Set F0 := Ω and for all k ∈ N∗, Fk := {x ∈ Ω : u(x) > mk}. Since∑
|Fk \ Fk+1| < +∞, there exists an increasing sequence (βk)k tending to

+∞ and such that β0 = 0 and
∑

βk|Fk \ Fk+1| < +∞.

For n ∈ N∗, let us define:

vn :=
n∑

k=0

βkχFk\Fk+1
+ βn+1χFn+1

Since for k = 0, ..., n, {vn > βk} = Fk+1 and u solves (6), we deduce from
Theorem 2 and Proposition 2 that vn solves (1). We next remark that (vn)n

is monotone with respect to n and that∫
RN

vn =
n∑

k=0

βk|Fk \ Fk+1|+ βn+1|Fn+1|.

14



Now, since |{u = m∞}| = 0 and Fn+1 = (
⋃

k≥n+1 Fk \ Fk+1)∪ {u = m∞}, we
get ∫

RN

vn ≤
∞∑

k=0

βk|Fk \ Fk+1|.

The monotone convergence Theorem then implies that vn converges in L1 to
some v which is an unbounded solution of (1). With Theorem 4, we thus
obtain the desired contradiction.
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