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Abstract

The present article is devoted to the study of a constrained weighted
total variation minimization problem, which may be viewed as a relax-
ation of a generalized Cheeger problem and is motivated by landslide
modelling. Using the fact that the set of minimizers is invariant by
a wide class of monotone transformations, we prove that level sets of
minimizers are generalized Cheeger sets and obtain qualitative prop-
erties of the minimizers: they are all bounded and all achieve their
essential supremum on a set of positive measure.
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1 Introduction

Given an open bounded subset of RY and nonnegative functions f and g
(more precise assumptions on the data €, f and g will be given later on), we

are interested in the following

= inf R(u)

ueBV)



where

BV :={u€ BV(R"Y), u=0on RV \ Q}, (2)
and for u € BV} such that [, fu # 0,

| st@) diDute)

R(u) = S

: (3)

Whenever [, fu =0, we set R(u) = +oo.

This problem is motivated by a landslide model proposed by Ionescu
and Lachand-Robert [8] in which f and g respectively represent the body
forces and the (inhomogoneous) yield limit distribution. These functions are
determined by the properties of the considered geomaterials and, roughly
speaking, taking a non constant f captures the idea that the mechanical
properties of the geomaterials (e.g. the way they are compacted by their own
weight) vary with depth. When g = f = 1 (which is not always a relevant
assumption in landslides modelling), it is well-known that the infimum in (1)
coincides with the infimum of R over characteristic functions of sets of finite
perimeter. In this case, (1) appears as a natural relaxation of:

[ Dxall(RY)

AQ) = inf w (4)

ACQ, xAEBV

where |A| and [[Dya||[(RY) denote respectively the Lebesgue measure of
A and the total variation of Dxy4. Problem (4) is famous and known as
Cheeger’s problem [3], its value A\(Q2) is called the Cheeger constant of 2 and
its minimizers are called Cheeger sets of Q0 (see [9], [10] and the references
therein). Note also that A(£2) is the first eigenvalue of the 1-Laplacian on €,
see for instance [5], [6].

Throughout the paper, we will assume that
e (2 is a nonempty open bounded subset of RY with a Lipschitz boundary,
o f e L>Q), f>fofor apositive constant f,

e g€ CYQ), g > go for a positive constant go.



Let us remark that the space BV (RY) is the natural one to search for a
minimizer of (1). Indeed the infimum is usually not achieved in a Sobolev
space like WHH(RY). Tt is also clear that one always have R(|u]) < R(u) so
that we can restrict the minimization problem to non-negative functions.

In what follows, every v € BV (Q) will be extended by 0 outside €, and
thus will also be considered as an element of BV (RY), still denoted u. Let
us define, for every u in BVj:

6w = [ o) d |Du(e)] o)

Since 0N2 is Lipschitz, functions in BV (2) have a trace on 02, and one can
write for u € BV (2):

G(u) = / 4(z) d |Du(z)| + / o) Ju(z)| d HY(2)

o0

see [4] and [7] for details. Taking advantage of the homogeneity of (1), it is
convenient to reformulate (1) as the convex minimization problem

= inf Glu) (6)

uEBVf

where
BV = {ue BV(RY), u>0, u=0on RN\Q,/fu: 1}. (7)
Q

In analogy with the case ¢ = f = 1, it is natural to consider the generalized
Cheeger problem:

/ 9(z) d|Dxalc)| . .
A= inf ZBY = inf R(x 8
AcE /f(x) da AcE A

A

where
E:={ACQ with / f(z)dz >0 and x4 € BV(RM)}.  (9)
A

Again (1) can be interpreted as a relaxed formulation of (8) and one aim
of the present paper is to study the precise links between (1) and (8). We
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shall first prove that if u is a nonnegative solution of (1) then so is H(u)
provided H is Lipschitz, nondecreasing, H(u) # 0 and H(0) = 0. This in-
variance property will enable us to deduce very simply qualitative properties
of the solutions of (6) and to study the link between (1) and (8). As a first
consequence of the invariance property, we shall prove that u solves (6) if
and only if all its level sets of positive measure solve the generalized Cheeger
problem (8). This is in fact a simple generalization of what is well known
when g = f = 1. A more involved application is that the set of solutions
of the generalized Cheeger problem (8) is stable by countable union. Fi-
nally, regarding qualitative properties, we will show that solutions of (6) are
all bounded and that they all achieve their essential supremum on a set of
positive measure (even when g = f = 1, to our knowledge, this result is
new).

2 Existence

This paragraph is devoted to prove the following existence result.

Theorem 1 Let 2, f and g satisfy the previous assumptions. Then
1) the infimum of (6) is achieved in BV},
2) the infimum of (8) is achieved in E.

In order to prove this theorem we need the following lemma

Lemma 1 Let Q be a bounded open set in RY, u be in BV (Q) and g be in
CYQ,R,), then

/Qg(ﬂi) d|Du(z)| = sup {LU(x)diV(g($)¢(x));¢ € Co(Q,RY), ()] < 1}.
(10)
Proof. Since u belongs to BV (), there exists a Radon measure p on €

and a p-measurable function o : Q — R such that |o(z)| = 1 p a.e. and
Du = op. Then |Du| = pu, see [4]. Since

- / u(z)div(g(z)p(z)) dz = / g(@)e(z) - o du

Q

and using the fact that |p(z)| < 1, we obtain

—AU(w)diV(g(w)w(f))de/g(:v) duZ/Qg(l“)dlDU(fv)k

Q
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On the other hand, since
[ aiDu@)] = sup { [ uloptivio(e) daip € CHORY). Jplw)] <1} (11

see [4] or [7], there exists a sequence o5, € CH(Q, RY), with |¢p(z)| < 1 such
that

—/Qu(x)div(go(x)) dr — [ dp.

Q
But

and then
o0 —1 in Li(Q)

and similarly
gor -0 — g in LL(Q)

Now, by definition

sup {/ z)div(g(z)p(z)) dz; p € CHQ,RY)} > /Qg(x)gok(x)-adu, Vk e N

and passing to the limit we get

sup { / D)div(g(x)p(a)) do; o € CHQRY), [o(a)] < 1)

> / o) dji = / g(x) d|Du(a)]

This ends the proof of the lemma. O

We deduce from lemma 1 the following lower semicontinuity property.

Lemma 2 Let Q) be a bounded open set in RY. The functional F : L'(Q) —
R U {400} defined by

Flu) = /Qg(m) d|Du(x)| if uwe BV(Q)

+ 00  otherwise



is lower semicontinuous in L'(SY). Suppose in addition that OQ is Lipschitz,
then the functional G : L*(RY) — R U {400} defined by

/ 4(x) d |Du(z)| + / g() Ju(z)| d HYY(z) if u e BVa(Q)
Q o0

+ 00  otherwise

G(u) =

is lower semicontinuous in L'(RY).
From lemma 2, we deduce

Corollary 1 1) Let (uy)nen be in BV(RY) such that u, — u in L'(Q).
Then

/Qg(x) d|Du(z)| < liminf/ﬂg(x) d|Duy, ()] . (12)

2) Let (tup)nen be in BVy such that w, — u in L*(RY). Then

g(z) d|Du(z)| + [ g(x) Ju(z)| dHY " (x)
Q o9
< liminf (/Q g(x) d|Duy ()| + /mg(x) [t ()] dHN_l(x)) .

We are now in position to prove existence.

Proof. 1) Taking a constant u in (5), we see that the infimum in BV} is
finite. Let (uy)neny C BV be a minimizing sequence. Since g > gy > 0,
(tn)nen is bounded in BV (RY). Therefore there exists a subsequence, still
denoted (u,) and u € BV (RY) such that u,, — u in L*(RY). Using corollary
1, we get

/RN g(x) d|Du(x)| < liminf/ g(x) d|Duy(x)| = inf G(v). (13)

RN UGBVf

But from the fact that u,, — v in L'(R"Y), we have that

/Qf(x)u(w) dx:lim/Qf(ac)un(x) de =1
>0 and uw=0 in RY\Q.

Thus u belongs to BVy and the infimum is achieved.
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2) Let (A, )nen be a minimizing sequence of (8) in €. Following the proof
of 1), we obtain that (x4, )nen is bounded in BV (RY), and then, up to a
subsequence, converging to a function in L'(R") that is still a characteristic
function of a set A € RV satisfying A C Q, and from corollary 1

[ @) diDxa@] <timin [ o) D@l = ot [ gta)diDxs(e)]

Therefore the infimum is achieved. O

The lower semicontinuity result of corollary 1 implies that the set of
solutions of (6) is closed in L', this fact will be used several times later on.

3 Invariance

Proposition 1 Let H € WH(R,R)NC*(R,R) be such that H(0) =0 and
H' >0 onR. Ifu is a solution of (6) then so is Ty (u) defined by

Hou

Ty(u) = : (14)
/Q F () H u(x)) dz

Proof. Let us denote by X,(.) the flow of the ordinary differential equation
0 =—H(v).
In other words, for all v € R, X;(v) is defined by:
0 Xi(v) = —H(Xi(v)), Xo(v) = . (15)
Our assumptions guarantee that (¢,v) — X;(v) is well-defined and smooth
on R?. Moreover, setting Y;(v) := 9,X;(v), differentiating (15) with respect

to v, we have:

0:Yy(v) = —H'(Xy(v))Yi(v), Yo(v) =1

hence for all ¢t > 0

vito) = exp (- [ 1005 )



Thus, for all v > 0 and ¢ > 0, one has the bounds:
0<Yy(v) <1, —[|H || < 8Yi(v) <0. (16)

Since X;(0) = 0 (Cauchy-Lipschitz), we deduce X;(v) > X;(0) = 0 for all
t>0and v > 0.

For t > 0, define u; by ui(x) = X¢(u(x)), it is immediate to check that
u; € BV and u; > 0. Let us also define

h(t) = /RN g(x) d|Du(z)| — M/Qf(x)ut(x)dx.

Since u; belongs to BVj and u; > 0, we have h(t) > 0 and since ug = u solves
(6), we have h(0) = 0. For all ¢ > 0, this yields:

> 0. (17)

By the chain rule for BV functions (see [1]), and since 9, X:(u(z)) > 0, we
can also write h(t) as

) = [ 9@, Xi(ule) d3(o) + | gl Xilu (@) = Xt ()] 410
— i [ @) da

u

where J, is the jump set of u and the nonnegative measure dv is the sum of
the absolutely continuous part and of the Cantor part of |Du| (see [1]). We
may then rewrite:

M =1+ J; — pK,
with
him 7 [ s@ i) = 1) da(a),
Joim g [ o) (Xl (2) = Xlw (@)] ~ ' () = u (@)]) AHY ),
K= 7 [ f@)Xu() = u(@) da



By construction, we have pointwise convergence of ¢! (X;—id) and ¢t 1(Y;—1)
respectively to —H and —H’. Using the monotonicity of H and of X;, the
bounds (16), and the Dominated Convergence Theorem, we thus get

lim 7, — — /R ) H () dr (),

tim = = [ gl @) = Bl (@) a1 @),
tlir(g K, =— Qf(:z)H(u(x)) dx.

Putting everything together and passing to the limit in (17) yields

02 [ g H @) drie) + [ glH) - o) an

u

i [ f@H () d.

By the chain rule for BV functions again, the right-hand side of the previous
inequality can also be rewritten as:

/RN g(z) d|D(H o u)(z)| —M/Qf(x)H(u(x))dx.

This finally proves that H ou minimizes R, or equivalently, that Ty (u) solves
(6). -

Remark 1. Taking H bounded shows the existence of bounded solutions to
(6). We shall see in Theorem 4 that in fact every solution (6) is in fact L.

By standard approximation arguments, we obtain the natural extension
of proposition 1 to more general monotone nonlinearities H:

Corollary 2 Let u be a solution of (6) and H € WH*(R,R) be a nonde-
creasing function such that H(0) = 0. If H owu # 0 then Ty(u) defined by
(14) also solves (6).

Proof. Let (n,), be a sequence of mollifiers and set for all v € R:

Ho(v) = (o H)(0) — (s H)(O) + .



Each H, satisfies the assumptions of proposition 1, so that T4, (u) solves
(6). Obviously H,, converges uniformly to H on compact subsets of R and
Lebesgue’s Dominated Convergence Theorem then implies that Ty, (u) con-
verges to Ty (u) in L' (RY). Using the lower-semi continuity result of corollary
1, we thus get the result. O

Note that corollary 2 applies in particular to H(v) = (v—tg)+ and H(v) =
min(v, tp).

4 Main results

4.1 Generalized Cheeger sets
Theorem 2 Let u be a solution of (6) and for every t > 0, define Ey =
{x € RN : w(x) > t}. For everyt > 0 such that E; has positive Lebesgue
1 1
fEt f f{u>0} f

measure XE, solves (6). In particular,

X{u>0} solves (6).

Proof. Let us prove the claim first for the set Ey := {u > 0}. Define for
every n € N* and v € R:

0 ifv<0
H,(v) =4 nv ifvel0, 1]
1 ifv> %

For n large enough, H, o u # 0 and corollary 2 implies that Ty, (u) solves

1
(6). Since Ty, (u) converges in L'(RY) to ﬁ X{u>0}, We conclude as in
{u>0}

the proof of corollary 2.

Let ¢t > 0 be such that E} has positive Lebesgue measure. From corollary

9 o= (u—1t);
LU=
Jflu—1)+

solves (6), hence so does

1 1
T X{v>0} = 2 XE
f{v>0}f o fEt‘f
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We also have a converse of Theorem 2 which simply reads as:

Proposition 2 Let u € BVy, u > 0. If for every t > 0 such that E, := {x €
RN : wu(x) >t} has positive Lebesgue measure, xg, solves (1) then u solves

(1).

Proof. For M > 0 and n € N*| let us define Fy := Eue-y (k € {0,...,n})
and: "

n—1 n
U = Z ngC\Fk+1 + Mxr, = % ZXFk-
k=0 k=1
By assumption, for k = 1,...,n, xp, solves (1). Using the convexity and
homogeneity properties of (1), we deduce that wy, also solves (1) for all
M and all n. Since uys, converges in L' to min(u, M) as n tends to +oo,
we deduce that min(u, M) solves (1) and we finally get the desired result by
letting M tend to +oo0. O

4.2 Applications

As a first consequence of theorem 2, we deduce the following relaxation result:
Corollary 3 The values of problems (6) and (8) coincide:
p= inf R(u)=A= }‘réfg R(xa)

ueBVy

moreover the second infimum is actually a minimum.

Remark 2. In fact, one can obtain the relaxation result of corollary 3 as a
direct consequence of the coarea and Cavalieri’s formulae (see for instance [9],
8], [2] for similar level-sets approach for variational problems involving total
variation minimization). Indeed, one obviously has p < A and if u € BV,
u > 0, setting E; := {u > t}, the coarea and Cavalieri’s formulae yield:

[oamuwi=x [ = [T( [ aareton [ pwar)azo

which proves that © > A. From the previous argument, in fact, we see that
the converse also holds: u solves (6) if and only if E; := {u > t} (which has
finite perimeter for a.e. t) solves (8) for a.e. t > 0. Note that in Theorem 2,
we have proved that E; solves (8) for all t (and we have not used the coarea
formula).
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Of course, theorem 2 and its proof contain much more information than
corollary 3. A more precise consequence of theorem 2 is the following

Corollary 4 A € & solves (8) if and only if there exists u solving (6) such
that A = {u > 0}.

Proof. We have seen that (8) and (6) have the same value. If A € € solves

XA
(8) then —=—
Jaf
solves (8) thanks to theorem 2.

obviously solves (6). Conversely, if u solves (6) then {u > 0}

We then easily deduce the following consequence

Theorem 3 Let (A,), be a sequence of solutions of (8) then |, A, is also
a solution of (8).

Proof. For every n, the function w,, := LEL 7 solves (6). Define then:
Ap
c2—"
Ay = ———
1+ [unll 5v

where C' > 0 is such that Z)\n = 1. Using the convexity properties of
0

problem (6), we thus deduce that

o
U= g Anly,
n=0

is a well-defined element of BV} that solves (6). Since |J, A, = {u > 0},
corollary 4 then implies that | J, A, solves (8). O

Note that the fact that |J,, A, is of finite perimeter is contained in the
statement.
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4.3 Qualitative properties

Adapting arguments of Serrin [11], as in Demengel [6], we obtain:

Theorem 4 Let u be a solution of (6). Then u belongs to L>(£2).

Proof. Let u be a solution of (6). For every M > 0 the truncated function
i M
= min(u, M)
/ f(x) min(u, M)(x) dz
Q

is a solution of (6) thanks to Corollary 2. Using Proposition 1, it is still the
case for

/Q f(w)uAZM(@ da

where k € N*. So we have
o [ AlDuy@)] < [ oo a|Duty(@)] = [ skl s)
RN RN Q
Since f € L*°(Q), and Q is bounded, there exists some ¢ > 0, such that

N ~ 90

Then using Holder inequality, (18) implies

o [ AP @] < ut [ i) do+ SR, 09

where 1" = % On the other hand, from Poincaré’s inequality (see for

instance [4]), there exists some C' > 0 such that

1+ < C||Du||(RY)  for every v € BV(RY). (20)

lv

Applying (20) to u%, and replacing in (19) leads to

anllyll < Ot [ ubylz) do+ Pl (21)
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thus

||u]j{/[ < K/Qu’fw(x) dz, (22)

where K = %(’)”—t.
We now apply a bootstrap process: we start with £ = 1* in (22), using
monotone convergence, we pass to the limit in (22) when M — +o0 and we

get
ullgey < KT

Taking k£ = (1*)" in (22) leads to

1. (23)

___1
T

(1*)n+1 S K 1_1% ||u

|

. (24)

Finally v € L™ and ||Jullee < KV |u

1*-
[

Combining Theorem 2, Proposition 2 and Theorem 4, we deduce that
every solution of (6) has a flat zone in the following sense:

Theorem 5 Let u be a solution of (6), then the set {u = ||u||} has positive
Lebesgue measure.

Proof.

Set My = ||u]|oo and let us assume that [{u = mo}| = 0. Let (my)x
be an increasing sequence of nonnegative real numbers converging to M.
Set Iy := Q and for all k € N*, F}, := {z € Q : wu(zx) > my}. Since
Y7 |Fk \ Fry1| < +oo, there exists an increasing sequence (0y)x tending to
+o00 and such that Gy = 0 and > Gg|Fi \ Fri1| < +o0.

For n € N*| let us define:

Un ‘= Z ﬁkXFk\Fk+1 + /6n+1XFn+1
k=0

Since for k = 0,...,n, {v, > B} = Fry1 and u solves (6), we deduce from
Theorem 2 and Proposition 2 that v, solves (1). We next remark that (v,),
is monotone with respect to n and that

[ on= S BIBN Bl + Bl P
RN k=0
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Now,

get

since [{u =mq}| =0 and Frop1 = (Ujpsppr Fr \ Frr1) U{u = moo}, we

Uy < B Fie \ Frq1-
fortm s T iR

The monotone convergence Theorem then implies that v,, converges in L! to
some v which is an unbounded solution of (1). With Theorem 4, we thus
obtain the desired contradiction.

[
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