Restrictions and identification in a multidimensional risk-sharing problem

M. Aloqeili , G. Carlier, I. Ekeland ${ }^{\dagger}$

November 6, 2013

Abstract

We consider H expected utility maximizers that have to share a risky aggregate multivariate endowment $X \in \mathbb{R}^{N}$ and address the following two questions: does efficient risk-sharing imply restrictions on the form of individual consumptions as a function of X ? Can one identify the individual utility functions from the observation of the risk-sharing? We show that when $H \geq \frac{2 N}{N-1}$ efficient risk sharings have to satisfy a system of nonlinear PDEs. Under an additional rank condition, we prove an identification theorem.

Keywords: multidimensional risk-sharing, restrictions, identification.
JEL classification: C10, D61, D81.

1 Introduction

In [9], Townsend tested restrictions of efficient risk-sharing in a pure exchange economy on data from three villages in Southern India. In Townsend's model, the risk to be shared between the different agents is unidimensional and Townsend's test was based on the mutuality principle, that is, the idea that an agent's individual consumption should depend only on aggregate resources and not on her idiosyncratic shocks. As a consequence, if a risk-sharing is efficient then it should be comonotone in the sense that the consumption of each agent should be nondecreasing in the total resource. The idea of

[^0]comonotonicity and its connections with Pareto efficiency have been developed further in a series of papers. It has been shown to be relevant to the case of utilities which are not of von Neumann-Morgenstern type, notably strictly risk-averse rank-dependent expected utility (see [2]) as well as to the multivariate setting (see [3]).

In the present work, we want to address the multivariate case where the resource to be shared has several dimensions (wheat and meat production for instance). We shall see that in this case there are some sharp restrictions on efficient risk sharings between expected utility maximizers that take the form of systems of nonlinear PDEs. We shall also prove an identification theorem i.e. that under some rank condition the knowledge of an efficient risk sharing enables us to reconstruct some sharp information on individual preferences and Pareto weights. The framework of the present work is that of the efficient risk-sharing of some multidimensional risky resource X among several expected utility maximizers with strictly concave and smooth utility functions that are not known to the econometrician. As observed in [3], the first-order condition gives that the consumption of agent h takes the form $X_{h}=\nabla V_{h}^{*}(\nabla V(X))$ (where V_{h}^{*} is related to the Legendre transform of agent h 's utility and her Pareto weight, see section 2 for details). A first question is whether such forms entail sharp restrictions on the consumptions X_{h} as functions of X, for instance in the form of a system of PDEs. The second issue we shall address is whether the knowledge of the X_{h} 's as functions of X enable us to identify the individual preferences. To be complete, one should also take into account the economic integration issue i.e. the further requirement that the functions V_{h}^{*} and V should be concave, however, this problem will not be addressed here.

We make no assumption about risk-sharing within the group, except that the result is efficient. So our paper is part of the growing literature on formal models of efficient group behavior (see [5] for a survey). This literature considers each group as a black box: inputs (prices, initial endowments) and outputs (consumption) can be observed but individual allocations cannot. One can observe aggregate consumption of the group but not the individual consumption of its members. The problem then is to recover individual consumptions with minimal assumptions on the allocation mechanism within the box. This minimal assumption is that the allocation mechanism is efficient i.e. Pareto-optimal. Browning and Chiappori [1] have shown that this is enough to derive restrictions on aggregate demand, analogous to (but different from) the classical Slutsky conditions of consumer theory and they have tested these conditions on microeconomic data.

Another issue to bear in mind is the so-called identifiability problem (see [5], p. 7 for a full discussion): we will not assume that the demand functions
have a particular form (so our model is non-parametric) but we will assume that they are smooth functions and that we can observe them. Of course, in any practical situation, one can only observe finitely many values. Proceeding as if one could observe the full demand function is an intermediate step for the econometrician. If we can recover the individual demands in that case, it will be up to him to find the adequate tools to recover the collective demand functions from finitely many points. If he cannot recover the preferences, even he knew the full demand functions, then clearly he will not be able to do so either if he knows only finitely many points

The paper is organized as follows. The model is introduced in section 2. Necessary conditions for a risk-sharing to be efficient are given in section 3 in the form of systems of nonlinear PDEs. Section 4 is devoted to identification issues. Section 5 is devoted to concluding remarks and a discussion of our results.

2 The model

Consider $H \geq 2$ expected utility maximizing ${ }^{1}$ agents that have to share ex ante a risky multivariate aggregate endowment X that is some (essentially bounded say) \mathbb{R}^{N}-valued random vector with $N \geq 2$. Ex-ante, the agents have to decide on how to share the total resource X between the H agents in an efficient way. This leads to the following program ${ }^{2}$

$$
\begin{equation*}
\sup \left\{\mathbb{E}\left(\sum_{h=1}^{H} \lambda_{h} U_{h}\left(X_{h}\right)\right): \sum_{h=1}^{H} X_{h}=X\right\} \tag{1}
\end{equation*}
$$

where the $\lambda_{h}>0$ are the Pareto weights and U_{h} are agents' von NeumannMorgenstern utility functions. Assume that the U_{h} are C^{2}, that $D^{2} U_{h}$ is negative definite everywhere and set $V_{h}=\lambda_{h} U_{h}$. The solution $\bar{X}=\left(\bar{X}_{1}, \cdots, \bar{X}_{H}\right)$ of (1) can be obtained as $\bar{X}_{h}=X_{h}(X)$ where for every $x \in \mathbb{R}^{N}$, $\left(X_{1}(x), \cdots, X_{H}(x)\right)$ solves the sup-convolution problem:

$$
\begin{equation*}
V(x)=\sup \left\{\sum_{h=1}^{H} V_{h}\left(x_{h}\right): \sum_{h=1}^{H} x_{h}=x\right\} . \tag{2}
\end{equation*}
$$

[^1]The first-order optimality conditions of (2) read as

$$
\nabla V_{h}\left(X_{h}(x)\right)=p(x) \text { i.e. } X_{h}(x)=\nabla V_{h}^{*}(p(x))
$$

In the previous formula, V_{h}^{*} is the Legendre Transform of V_{h}, we then have $\nabla V_{h}^{*}=\nabla V_{h}^{-1}$ and $p(x)$ is the vector of shadow prices i.e. the multiplier associated to the scarcity constraint $\sum_{h=1}^{H} x_{h}=x$. Using that constraint, one can compute $p(x)$ as

$$
p(x)=\left(\sum_{h=1}^{H} \nabla V_{h}^{*}\right)^{-1}(x)=\nabla V(x) .
$$

We thus obtain the following form for the risk-sharing:

$$
\begin{equation*}
X_{h}(x)=\nabla V_{h}^{*}(\nabla V(x)), \text { for } h=1, \cdots, H \tag{3}
\end{equation*}
$$

The issues we shall investigate in the sequel are the following:

- Necessary conditions/restrictions: Given maps

$$
x \in \mathbb{R}^{N} \mapsto\left(X_{1}(x), \cdots, X_{H}(x)\right) \in \mathbb{R}^{N \times H}
$$

that sum to the identity, what conditions should they satisfy if in addition, they come from a risk-sharing problem of the form (2) without knowing neither the utility functions U_{h} nor the Pareto weights λ_{h} ? As seen in (3), each X_{h} should be the composition of two gradient maps, the second one being independent of h, We shall see that when H is large enough, $H \geq \frac{2 N}{N-1}$, this imposes that the vector fields X_{h} 's solve a system of nonlinear PDEs.

- Identification: When the X_{h} 's are obtained from an efficient risksharing process, can one recover information about the individual preferences i.e. about the functions $V_{h}=\lambda_{h} U_{h}$? We shall see that under some rank condition, there is identification i.e. the knowledge of individual consumptions as functions of the aggregate consumption enables one to reconstruct the functions V_{h}.

Finding sufficient conditions for the X_{h} 's to be an efficient risk-sharing seems to be more delicate as will be discussed in the concluding section. The economic integration issue (i.e. the further requirement that the primitives V_{h} should be concave, or at least quasiconcave) also seems more involved and will not be discussed here.

3 Necessary conditions

Before going further, let us set some notations. We denote by \mathcal{M}_{N} the space of $N \times N$ real matrices, by A^{*} the transpose of $A \in \mathcal{M}_{N}$, by \mathcal{S}_{N} (respectively $\mathcal{A} \mathcal{S}_{N}$) the subspace of \mathcal{M}_{N} consisting of symmetric (respectively antisymetric) matrices and by GL_{N} the linear group of nonsingular matrices. We shall denote by $\langle A, B\rangle:=\operatorname{tr}\left(A^{*} B\right)$ the usual inner product on \mathcal{M}_{N} matrices and recall that \mathcal{S}_{N} and $\mathcal{A} \mathcal{S}_{N}$ are orthogonal supplementary subspaces for this inner product. For $A \in \mathcal{M}_{N}$ we denote by $\operatorname{sym}(A)$ its symmetric part i.e. $\operatorname{sym}(A)=\frac{1}{2}\left(A+A^{*}\right)$. Finally, given a linear map Q we denote respectively by $\mathrm{R}(Q)$ and $\mathrm{N}(Q)$ its range and nullspace.

3.1 General case

We are given H vector fields X_{1}, \cdots, X_{H} that sum to the identity i.e.

$$
\begin{equation*}
\sum_{h=1}^{H} X_{h}(x)=x, \forall x \in \mathbb{R}^{N} \tag{4}
\end{equation*}
$$

and we wonder whether these X_{h} can be obtained as a solution of a nondegenerate risk-sharing problem as in section 2 i.e. can be written as in (3) for some functions V_{h}^{*} and V with a nonsingular Hessian. Taking $x \in \mathbb{R}^{N}$ (fixed for the moment), differentiating (3) we get

$$
\begin{equation*}
F_{h}:=D X_{h}(x)=D^{2} V_{h}^{*}(\nabla V(x)) D^{2} V(x) . \tag{5}
\end{equation*}
$$

This in particular implies that each F_{h} is nonsingular,

$$
\begin{equation*}
\sum_{h=1}^{H} F_{h}=I_{N} \tag{6}
\end{equation*}
$$

and one can find nonsingular and symmetric matrices S_{h} and S such that

$$
F_{h}=S_{h} S, \forall h \in\{1, \cdots, H\}
$$

which, defining $\sigma:=S^{-1}$ and $\Phi_{h}(\sigma):=F_{h} \sigma$ for $h=1, \cdots, H$ and $\Phi(\sigma):=$ $\left(F_{1} \sigma, \cdots, F_{H} \sigma\right)$ we may rewrite as $\Phi(\sigma)=\left(S_{1}, \cdots, S_{H}\right)$. A necessary condition for the $F_{h}=D X_{h}$'s to satisfy (5) for some V_{h} and V is then:
there exists $\sigma \in \mathcal{S}_{N} \cap G L_{N}$ such that $\Phi(\sigma) \in \mathcal{S}_{N}^{H}$.

As we shall see in the next lemma, it is convenient to express (7) in terms of the linear map $L \in \mathcal{L}\left(\mathcal{A} \mathcal{S}_{N}^{H-1}, \mathcal{S}_{N}\right)$ defined by:

$$
\begin{equation*}
L\left(A_{1}, \cdots, A_{H-1}\right):=\operatorname{sym}\left(\sum_{h=1}^{H-1} A_{h} F_{h}\right), \forall\left(A_{1}, \cdots, A_{H-1}\right) \in \mathcal{A S}_{N}^{H-1} \tag{8}
\end{equation*}
$$

Note that if the matrices F_{h} are observed, the maps Φ and L are known. In the sequel, we will derive restrictions on these maps.
Lemma 1 If $\sigma \in \mathcal{S}_{N}$ the following assertions are equivalent:

1. $\Phi(\sigma) \in \mathcal{S}_{N}^{H}$,
2. $\sigma \in \mathrm{R}(L)^{\perp}$.

Condition (7) is thus equivalent to the fact that $\mathrm{R}(L)^{\perp} \cap \mathrm{GL}_{N} \neq \emptyset$ which in particular implies that L is not surjective.
Proof. Let $\sigma \in \mathcal{S}_{N}, \sigma \in \mathrm{R}(L)^{\perp}$ means that for every $\left(A_{1}, \cdots, A_{H-1}\right) \in$ $\mathcal{A S}_{N}^{H-1}$ one has
$0=\operatorname{tr}\left(\sigma \sum_{h=1}^{H-1} A_{h} F_{h}\right)=\sum_{h=1}^{H-1} \operatorname{tr}\left(A_{h} F_{h} \sigma\right)=-\sum_{h=1}^{H-1} \operatorname{tr}\left(A_{h}^{*} F_{h} \sigma\right)=-\sum_{h=1}^{H-1}\left\langle A_{h}, \Phi_{h}(\sigma)\right\rangle$.
This is equivalent to the fact that $\Phi_{h}(\sigma) \in \mathcal{S}_{N}$ for $h=1, \cdots, H-1$ but recalling (6) we also have

$$
\Phi_{H}(\sigma)=\left(I_{N}-\sum_{h=1}^{H-1} F_{h}\right) \sigma=\sigma-\sum_{h=1}^{H-1} \Phi_{h}(\sigma) \in \mathcal{S}_{N}
$$

This proves the desired equivalence.
We deduce the following restrictions on nondegenerate efficient risk-sharings:
Theorem 1 If $H \geq \frac{2 N}{N-1}$ and $x \mapsto\left(X_{1}(x), \cdots, X_{H}(x)\right)$ is a nondegenerate efficient risk-sharing then it solves a system of nonlinear PDEs expressing the fact that the map L defined by (8) is nonsurjective.

Proof. Since

$$
\operatorname{dim}\left(\mathcal{A S}_{N}^{H-1}\right)=\frac{(H-1) N(N-1)}{2} \text { and } \operatorname{dim}\left(\mathcal{S}_{N}\right)=\frac{N(N+1)}{2}
$$

the fact that L is nonsurjective entails restrictions on the Jacobian matrices $F_{h}=D X_{h}$ as soon as $(H-1)(N-1) \geq N+1$ i.e. $H \geq \frac{2 N}{N-1}$. More precisely, in this case, (7) implies that all $\frac{N(N+1)}{2} \times \frac{N(N+1)}{2}$ minors of L should identically vanish: since L depends linearly on the $D X_{h}$'s this gives a system of $\binom{(H-1) N(N-1) / 2}{N(N+1) / 2}$ equations that are homogeneous of degree $\frac{N(N+1)}{2}$ in the derivatives $\left(D X_{1}, \cdots, D X_{H-1}\right)$.

At this point, a few remarks are in order:

- The previous theorem asserts that there are restrictions on efficient risk-sharings as soon as the number of agents is large enough: for instance H needs to be larger than 4 when $N=2$ and larger than 3 if $N \geq 3$. This contrasts with the literature on aggregate demand (in the Debreu-Mantel-Sonnenschein line) which typically finds that there are restrictions only when the number of agents is small enough. This is by no means a contradiction since here we are observing individual consumptions so that more agents increase the available information.
- In fact (7) is stronger than the condition that L is not surjective since it requires $\mathrm{R}(L)^{\perp} \cap G L_{N} \neq \emptyset$.
- To obtain restrictions as above, it is important to consider the whole system $F_{h}=S_{h} S, h=1, \cdots, H$. Indeed, each equation $F_{h}=S_{h} S$ taken separately only implies that F_{h} is the product of two symmetric matrices and according to a theorem of Frobenius (see for instance [7]), any matrix can be written in such a way.
- The proportional risk-sharing rule corresponds to the most degenerate case where $L \equiv 0$, indeed in this case $F_{h}(x)=\alpha_{h} I_{N}$ for every x (where the α_{h} 's sum to 1), so, for every $\left(A_{1}, \cdots, A_{H-1}\right) \in \mathcal{A S}_{N}^{H-1}$ one has

$$
L\left(A_{1}, \cdots, A_{H-1}\right):=\operatorname{sym}\left(\sum_{h=1}^{H-1} \alpha_{h} A_{h}\right)=0
$$

3.2 Special cases

We now consider some special cases and write explicitly the system of PDEs that nondegenerate risk-sharings should solve in these cases. These two cases are the first ones for which efficient risk-sharing implies some nontrivial restrictions namely:

- the case of 4 agents and 2 goods, in this case L can be identified with an endomorphism of \mathbb{R}^{3} and $\left(X_{1}, X_{2}, X_{3}\right)$ should solvea single PDE,
- the case of 5 agents and 2 goods, in this case L can be identified with an element of $\mathcal{L}\left(\mathbb{R}^{4}, \mathbb{R}^{3}\right)$ and $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ should solve a system of 4 nonlinear PDEs.

These two cases also illustrate the general case. In fact, the computations and arguments below can easily be generalized to larger values of H and N for which $H \geq \frac{2 N}{N-1}$. Indeed, $(H, N)=(4,2)$ serves as a prototype for the case $H=\frac{2 N}{N-1}$ whereas $(H, N)=(5,2)$ serves as a prototype for the case $H>\frac{2 N}{N-1}$. Before studying the examples in details, let us remark that the case $H=\frac{2 N}{N-1}$ is rather rare ${ }^{3}$, more precisely it consists only of the two cases $(H, N)=(4,2)$ and $(H, N)=(3,3)$.

The case $\mathrm{H}=4, \mathrm{~N}=2$
Writing $X_{h}=\left(X_{h}^{1}, X_{h}^{2}\right)$, we have

$$
F_{h}=\left(\begin{array}{cc}
\partial_{1} X_{h}^{1} & \partial_{2} X_{h}^{1} \\
\partial_{1} X_{h}^{2} & \partial_{2} X_{h}^{2}
\end{array}\right),
$$

let then

$$
A_{h}=\left(\begin{array}{cc}
0 & x_{h} \\
-x_{h} & 0
\end{array}\right), h=1, \cdots, 3,
$$

a direct computation gives

$$
L\left(A_{1}, A_{2}, A_{3}\right)=\left(\begin{array}{cc}
\sum_{h=1}^{3} \partial_{1} X_{h}^{2} x_{h} & \frac{1}{2} \sum_{h=1}^{3}\left(\partial_{2} X_{h}^{2}-\partial_{1} X_{h}^{1}\right) x_{h} \\
\frac{1}{2} \sum_{h=1}^{3}\left(\partial_{2} X_{h}^{2}-\partial_{1} X_{h}^{1}\right) x_{h} & -\sum_{h=1}^{3} \partial_{2} X_{h}^{1} x_{h}
\end{array}\right) .
$$

Identifying L with the endomorphism of \mathbb{R}^{3}

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\sum_{h=1}^{3} \partial_{1} X_{h}^{2} x_{h}, \sum_{h=1}^{3} \partial_{2} X_{h}^{1} x_{h}, \sum_{h=1}^{3}\left(\partial_{2} X_{h}^{2}-\partial_{1} X_{h}^{1}\right) x_{h}\right)
$$

we see that a necessary condition for $\left(X_{1}, X_{2}, X_{3}\right)$ to be an efficient risksharing reads:

$$
\operatorname{det}\left(\begin{array}{ccc}
\partial_{1} X_{1}^{2} & \partial_{2} X_{1}^{1} & \left(\partial_{2} X_{1}^{2}-\partial_{1} X_{1}^{1}\right) \\
\partial_{1} X_{2}^{2} & \partial_{2} X_{2}^{1} & \left(\partial_{2} X_{2}^{2}-\partial_{1} X_{2}^{1}\right) \\
\partial_{1} X_{3}^{2} & \partial_{2} X_{3}^{1} & \left(\partial_{2} X_{3}^{2}-\partial_{1} X_{3}^{1}\right)
\end{array}\right)=0
$$

The case $\mathrm{H}=5, \mathrm{~N}=2$

[^2]Denoting for $h=1, \cdots, 4, X_{h}=\left(X_{h}^{1}, X_{h}^{2}\right)$ and performing similar computations as before, we find that a necessary condition for $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ to be an efficient risk sharing reads:

$$
\begin{aligned}
0 & =\operatorname{det}\left(\begin{array}{lll}
\partial_{1} X_{1}^{2} & \partial_{2} X_{1}^{1} & \left(\partial_{2} X_{1}^{2}-\partial_{1} X_{1}^{1}\right) \\
\partial_{1} X_{2}^{2} & \partial_{2} X_{2}^{1} & \left(\partial_{2} X_{2}^{2}-\partial_{1} X_{2}^{1}\right) \\
\partial_{1} X_{3}^{2} & \partial_{2} X_{3}^{1} & \left(\partial_{2} X_{3}^{2}-\partial_{1} X_{3}^{1}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{lll}
\partial_{1} X_{1}^{2} & \partial_{2} X_{1}^{1} & \left(\partial_{2} X_{1}^{2}-\partial_{1} X_{1}^{1}\right) \\
\partial_{1} X_{2}^{2} & \partial_{2} X_{2}^{1} & \left(\partial_{2} X_{2}^{2}-\partial_{1} X_{2}^{1}\right) \\
\partial_{1} X_{4}^{2} & \partial_{2} X_{4}^{1} & \left(\partial_{2} X_{4}^{2}-\partial_{1} X_{4}^{1}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{lll}
\partial_{1} X_{1}^{2} & \partial_{2} X_{1}^{1} & \left(\partial_{2} X_{1}^{2}-\partial_{1} X_{1}^{1}\right) \\
\partial_{1} X_{3}^{2} & \partial_{2} X_{3}^{1} & \left(\partial_{2} X_{3}^{2}-\partial_{1} X_{3}^{1}\right) \\
\partial_{1} X_{4}^{2} & \partial_{2} X_{4}^{1} & \left(\partial_{2} X_{4}^{2}-\partial_{1} X_{4}^{1}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{lll}
\partial_{1} X_{2}^{2} & \partial_{2} X_{2}^{1} & \left(\partial_{2} X_{2}^{2}-\partial_{1} X_{2}^{1}\right) \\
\partial_{1} X_{3}^{2} & \partial_{2} X_{3}^{1} & \left(\partial_{2} X_{3}^{2}-\partial_{1} X_{3}^{1}\right) \\
\partial_{1} X_{4}^{2} & \partial_{2} X_{4}^{1} & \left(\partial_{2} X_{4}^{2}-\partial_{1} X_{4}^{1}\right)
\end{array}\right) .
\end{aligned}
$$

4 Identification

In the previous section, we have found necessary conditions on the Jacobian matrices $F_{h}(x)=D X_{h}(x)$ for $\left(X_{1}, \cdots, X_{H}\right)$ to be a nondegenerate efficient risk-sharing. In this section, we address the identification issue: we assume that $x \mapsto\left(X_{1}(x), \cdots, X_{H}(x)\right)$ is a nondegenerate efficient risk-sharing and we wonder what information on the individual preferences and on the shadow price can be deduced from this risk-sharing.

Given a nondegenerate efficient risk-sharing $\left(X_{1}, \cdots, X_{H}\right)$ we wish to find functions (maybe locally) V_{h} and V smooth and with nonsingular Hessians such that

$$
X_{h}=\nabla V_{h}^{*} \circ \nabla V, h=1, \cdots, H .
$$

By assumption, X_{h} can be written in such way, and the identification problem consists in reconstructing the functions ∇V_{h} and ∇V from the knowledge of X_{h}; this essentially is a uniqueness problem. The best one can hope for is to identify ∇V_{h} and ∇V up to a common translation (adding the same linear function to the V_{h} 's does not affect the corresponding risk-sharing) and up to a common multiplicative factor. In other words, what one can expect to identify at best is the collection of Hessian matrices $D^{2} V$ and $D^{2} V_{h}$ up to a multiplicative constant.

In general, one cannot expect an identification result, even for linear efficient risk-sharing rules. In the linear risk-sharing case, X_{h} can be identified
with a nonsingular matrix and the identification problem consists in studying the uniqueness (up to a multiplicative constant) of the decompostion $X_{h}=S_{h} S$ with S_{h} and S symmetric. If $X_{h}=\alpha_{h} I_{N}$ (proportional risk sharing) the decomposition is highly nonunique since S can be any symmetric nonsingular matrix and $S_{h}=\alpha_{h} S^{-1}$. We do not have identification in this case and this is related to the fact that under proportional risk-sharing, the map L defined by (8) is identically 0 . More generally, thanks to Lemma 1 , we know that when $\mathrm{R}(L)$ has a codimension larger than 2 then there is nonuniqueness of the decomposition. Indeed, by assumption, one can write $D X_{h} \sigma=S_{h}$ where σ and S_{h} are symmetric and nonsingular but since $\mathrm{R}(L)$ has codimension 2, by Lemma 1 there is a symmetric matrix $\tilde{\sigma}$ such σ and $\tilde{\sigma}$ are linearly independent and $D X_{h} \tilde{\sigma}_{\tilde{S}}=\tilde{S}_{h} \in \mathcal{S}_{N}$. For small enough $\varepsilon, \sigma+\varepsilon \tilde{\sigma}$ is nonsingular and $D X_{h}=\left(S_{h}+\varepsilon \tilde{S}_{h}\right)(\sigma+\varepsilon \tilde{\sigma})^{-1}$ which proves that the decomposition is highly nonunique. We will see however that when $\mathrm{R}(L)$ has codimension 1 , there is identification even in the nonlinear case.

In the previous section, the value of aggregate endowment x was somehow frozen, it is now essential to let x vary and in particular to emphasize the x-dependence of the map L defined in (8), from now on, we will therefore denote this map by L_{x}.

4.1 Identification when $\mathrm{R}\left(L_{x}\right)$ has codimension 1

For all $x \in \mathbb{R}^{N}$, we of course assume the rank condition

$$
\begin{equation*}
\operatorname{rank}\left(L_{x}\right) \leq \frac{N(N+1)}{2}-1 \tag{9}
\end{equation*}
$$

which we already know to be necessary for $\left(X_{h}\right)_{h}$ to be an efficient risksharing. Our aim is to identify the shadow price ∇V (and then the preferences) near a point $\bar{x} \in \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\operatorname{rank}\left(L_{\bar{x}}\right)=\frac{N(N+1)}{2}-1 \tag{10}
\end{equation*}
$$

which implies that for every x in a neighbourhood \mathcal{U} of \bar{x}, the subspace $\mathrm{R}\left(L_{x}\right)$ of \mathcal{S}_{N} has codimension one ${ }^{4}$ and thus an orthogonal of dimension 1. For all $x \in \mathcal{U}$, we may therefore find a symmetric (and nonsingular since $\left(X_{1}, \cdots, X_{H}\right)$ is nondegenerate) matrix $\sigma(x)$ such that:

$$
\begin{equation*}
\mathrm{R}\left(L_{x}\right)^{\perp}=\mathbb{R} \sigma(x), \forall x \in \mathcal{U} \tag{11}
\end{equation*}
$$

[^3]Moreover, thanks to condition (10), it is easy to see that we may choose $x \mapsto \sigma(x)$ in such way that σ is C^{1} with respect to x.

Again denoting $F_{h}=D X_{h}$, we know that there are smooth functions V_{h}^{*} and V with nonsingular Hessians such that

$$
X_{h}=\nabla V_{h}^{*} \circ \nabla V \text { hence } F_{h}(x)=D^{2} V_{h}^{*}(\nabla V(x)) D^{2} V(x)
$$

for every x and we want to deduce as much information as we can from the X_{h} 's to reconstruct ∇V and ∇V_{h}. It follows from Lemma 1 that $D^{2} V(x)^{-1}$ should belong to $\mathrm{R}\left(L_{x}\right)^{\perp}=\mathbb{R} \sigma(x)$ so that setting $T(x):=\sigma(x)^{-1}, D^{2} V(x)$ should be of the form

$$
D^{2} V(x)=\lambda(x) T(x), x \in \mathcal{U}
$$

for some nonvanishing scalar function λ. In particular, by Schwarz's symmetry theorem, in addition to the symmetry of T, one should have ${ }^{5}$

$$
\partial_{k}\left(\lambda(x) T_{i j}(x)\right)=\partial_{i}\left(\lambda(x) T_{k j}(x)\right), \forall(i, j, k) \in\{1, \cdots, N\}^{3}
$$

that is

$$
\begin{equation*}
\partial_{k} \lambda(x) T_{i j}(x)-\partial_{i} \lambda(x) T_{k j}(x)=\lambda(x)\left(\partial_{i} T_{k j}(x)-\partial_{k} T_{i j}(x)\right) . \tag{12}
\end{equation*}
$$

To see that these equations enable us to recover λ (hence $D^{2} V$) in a neighbourhood of \bar{x} up to a multiplicative constant, we shall use the following:

Lemma 2 Let T be an $N \times N$ symmetric and nonsingular matrix and let $\left(e_{1}, \cdots, e_{N}\right)$ be the canonical basis of \mathbb{R}^{N} then the family $\left\{T_{i j} e_{k}-T_{k j} e_{i}, i, j, k\right\}$ spans \mathbb{R}^{N}.

Proof. It is easy to see that the desired statement amounts to proving that the linear map $\Pi \in \mathcal{L}\left(\mathbb{R}^{N}, \mathbb{R}^{N^{3}}\right)$ defined by $(\Pi(x))_{i j k}=T_{i j} x_{k}-T_{k j} x_{i}$ for all $x \in \mathbb{R}^{N}$ and all $(i, j, k) \in\{1, \cdots, N\}^{3}$ is injective. Let x be in the null space of Π i.e.

$$
T_{i j} x_{k}=T_{k j} x_{i}, \forall i, j, k
$$

Multiply the previous by arbitrary reals α_{i} and β_{j} and sum over i and j to get

$$
\langle T \alpha, \beta\rangle x=\langle\alpha, x\rangle T \beta, \forall(\alpha, \beta) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

Taking $\alpha=x$ yields:

$$
\langle T x, \beta\rangle x=|x|^{2} T \beta, \forall \beta \in \mathbb{R}^{N}
$$

Choosing $\beta \neq 0$ orthogonal to $T x$, since $T \beta \neq 0$ we deduce that $x=0$.

[^4]The following identification theorem follows:
Theorem 2 Let $\left(X_{1}, \cdots X_{H}\right)$ be a nondegenerate efficient risk-sharing such that the rank condition (10) holds in a neighbourhood of $\bar{x} \in \mathbb{R}^{N}$, then there is local identification of shadow prices and preferences: one can deduce from $\left(X_{1}, \cdots, X_{H}\right)$ the shadow price $\nabla V(x)$ (up to a multiplicative factor and an additive constant) in a neighbourhood of \bar{x} as well as the marginal utilities ∇V_{h} in a neighbourhood of $X_{h}(\bar{x})$ (up to the same multiplicative and additive constants).

Proof. Assume that $X_{h}=\nabla V_{h}^{*} \circ \nabla V$. Then as already noted $D^{2} V(x)=$ $\lambda(x) T(x)$, where $T(x)$ is a given \mathcal{S}_{N}-valued map and λ does not vanish and should satisfy the system of linear PDEs (12) in \mathcal{U}, which we simply rewrite as

$$
b_{\alpha} \cdot \frac{\nabla \lambda}{\lambda}=a_{\alpha}, \alpha=(i, j, k), b_{\alpha}(x)=T_{i j}(x) e_{k}-T_{k j}(x) e_{i} .
$$

It follows from Lemma 2 that the family $\left\{b_{\alpha}(x)\right\}_{\alpha}$ spans \mathbb{R}^{N} for every $x \in \mathcal{U}$ hence the system (12) contains as subsystem a system of the form

$$
B(x) \nabla(\log (\lambda)(x)=a(x)
$$

for some $B(x) \in \mathrm{GL}_{N}$ so that $\nabla\left(\log (\lambda)(x)=B(x)^{-1} a(x)\right.$ which means that λ, and hence $D^{2} V(x)$, is determined up to a multiplicative constant, It follows that $\nabla V=\alpha_{0} \nabla V_{0}+p_{0}$ where V_{0} is totally determined (and has a nonsingular Hessian) by the risk sharing and $\alpha_{0} \in \mathbb{R} \backslash\{0\}$ and $p_{0} \in \mathbb{R}^{N}$ are two constants. Once one knows ∇V one easily obtains the desired identification of ∇V_{h} by observing that $X_{h}=\nabla V_{h}^{*} \circ \nabla V$ can be rewritten as $\nabla V_{h}=\nabla V \circ X_{h}^{-1}=$ $\alpha_{0} \nabla V_{0} \circ X_{h}^{-1}+p_{0}$.

The previous result is optimal: we already explained why the rank condition is important and why the quantities that may be identified are ∇V_{h} and ∇V up to multiplicative and additive constants.

4.2 The particular case $H=4, N=2$

We now restrict ourselves again to the simplest case $H=4, N=2$.

The linear case

Let us first consider the case of a linear risk sharing where $X_{h}(x)=F_{h} \times x$ $\left(x \in \mathbb{R}^{2}, h=1, \cdots, 3\right)$ and denote by $f_{h}^{i j}$ the entries of the matrix $F_{h} \in \mathcal{M}_{2}$.

We have seen in section 3 that a necessary condition for the X_{h} to be an efficient risk-sharing is that:

$$
\operatorname{det}\left(\begin{array}{ccc}
f_{1}^{21} & f_{2}^{21} & f_{3}^{21} \tag{13}\\
-f_{1}^{12} & -f_{2}^{12} & -f_{3}^{12} \\
\left(f_{1}^{22}-f_{1}^{11}\right) & \left(f_{2}^{22}-f_{2}^{11}\right) & \left(f_{3}^{22}-f_{3}^{11}\right)
\end{array}\right)=0
$$

Our goal is to find symmetric matrices σ and S_{h} such that $F_{h} \sigma=S_{h}$ and we have seen that to identify the matrix σ up to a constant we further need that this matrix has rank 2 , for instance, we assume that its first two columns are linearly independent ${ }^{6}$. The computation of σ is explicit ${ }^{7}$ and gives

$$
\sigma=\left(\begin{array}{cc}
-f_{1}^{12}\left(f_{2}^{22}-f_{2}^{11}\right)+f_{2}^{12}\left(f_{1}^{22}-f_{1}^{11}\right) & -f_{1}^{21} f_{2}^{12}+f_{1}^{12} f_{2}^{21} \tag{14}\\
-f_{1}^{21} f_{2}^{12}+f_{1}^{12} f_{2}^{21} & -f_{1}^{21}\left(f_{2}^{22}-f_{2}^{11}\right)+f_{2}^{21}\left(f_{1}^{22}-f_{1}^{11}\right)
\end{array}\right)
$$

and this matrix is invertible as soon as the X_{h} is a nondegenerate efficient risk-sharing.

The nonlinear case

In the nonlinear case, denote by $F_{h}(x):=D X_{h}(x)$, the same computations as before give a matrix $\sigma(x)$ which spans $\mathrm{R}\left(L_{x}\right)^{\perp}$, it is the same as in (14) except that we now understand the entries as $f_{h}^{i j}(x):=\partial_{j} X_{h}^{i}(x)$. An explicit matrix $T(x)$ that is proportional to $\sigma(x)^{-1}$ is then given by

$$
\begin{aligned}
& T_{11}=-\partial_{1} X_{1}^{2}\left(\partial_{2} X_{2}^{2}-\partial_{1} X_{2}^{1}\right)+\partial_{1} X_{2}^{2}\left(\partial_{2} X_{1}^{2}-\partial_{1} X_{1}^{1}\right) \\
& T_{12}=\partial_{1} X_{1}^{2} \partial_{2} X_{2}^{1}-\partial_{2} X_{1}^{1} \partial_{1} X_{2}^{2} \\
& T_{22}=-\partial_{2} X_{1}^{1}\left(\partial_{2} X_{2}^{2}-\partial_{1} X_{2}^{1}\right)+\partial_{2} X_{2}^{1}\left(\partial_{2} X_{1}^{2}-\partial_{1} X_{1}^{1}\right)
\end{aligned}
$$

We wish now to identify $D^{2} V$ which is of the form $\lambda(x) T(x)$ and the fact that λT is a Hessian field gives the system of two PDEs:

$$
\begin{aligned}
& T_{12} \partial_{1} \lambda-T_{11} \partial_{2} \lambda=\lambda\left(\partial_{2} T_{11}-\partial_{1} T_{12}\right) \\
& T_{22} \partial_{1} \lambda-T_{12} \partial_{2} \lambda=\lambda\left(\partial_{2} T_{12}-\partial_{1} T_{22}\right)
\end{aligned}
$$

[^5]which we can rewrite as
$$
\frac{\nabla \lambda}{\lambda}=\binom{F_{1}\left(D X, D^{2} X\right)}{F_{2}\left(D X, D^{2} X\right)}
$$
where
\[

$$
\begin{aligned}
\binom{F_{1}\left(D X, D^{2} X\right)}{F_{2}\left(D X, D^{2} X\right)} & :=\left(\begin{array}{ll}
T_{12} & -T_{11} \\
T_{22} & -T_{12}
\end{array}\right)^{-1}\binom{\partial_{2} T_{11}-\partial_{1} T_{12}}{\partial_{2} T_{12}-\partial_{1} T_{22}} \\
& =\frac{1}{\operatorname{det}(T)}\binom{-T_{12}\left(\partial_{2} T_{11}-\partial_{1} T_{12}\right)+T_{11}\left(\partial_{2} T_{12}-\partial_{1} T_{22}\right)}{-T_{22}\left(\partial_{2} T_{11}-\partial_{1} T_{12}\right)+T_{12}\left(\partial_{2} T_{12}-\partial_{1} T_{22}\right)}
\end{aligned}
$$
\]

We now wish to emphasize the fact that since the previous vector field is a gradient, we have an additional third-order nonlinear PDE for $\left(X_{1}, X_{2}\right)$, namely

$$
\partial_{2} F_{1}\left(D X, D^{2} X\right)=\partial_{1} F_{2}\left(D X, D^{2} X\right)
$$

this supplementary equation is another necessary condition for efficient risksharing.

5 Discussion and concluding remarks

In this paper, we found that efficient risk-sharing entails sharp restrictions on individual consumptions as soon as the number of agents is large enough. We have also shown that under a certain rank condition, one can identify individual preferences.

5.1 Empirical implications

Although the previous considerations are rather theoretical, we believe that they may have some practical or empirical implications if one wishes to test efficiency on real data. A typical econometric approach would consist in regressing individual consumption X_{h} on the aggregate resource X so as to obtain an estimation of, say, a linear (or linearized) model of the form $X_{h}=F_{h} X$ for certain matrices F_{h}. To test efficiency, one could then directly use the approach of section 3 on the nonsurjectivity of the map L given by (8), i.e. test as null hypothesis the fact that certain minors of a matrix that depends linearly on the F_{h} 's identically vanish. In the case $H=4$, $N=2$, this amounts to test the single equation (13). It seems important to emphasize that our approach is actually robust to the aggregation of groups of agents, that is, our results remain valid if agents h are replaced by groups of agents (households or even much larger groups). The necessary conditions of
section 3 can therefore in principle be tested on macro data which makes our results applicable to international trade data, agricultural data in developing countries...

5.2 On limited commitment

Our results rely very much on the assumption of ex ante efficiency or full commitment i.e. the fact that the Pareto weights are given. In an intertemporal framework, Mazzocco [8] developed a test for intra-household ex ante efficiency and actually rejected this assumption. This suggests that one should also consider the possibility of limited commitment in our analysis. Under limited commitment, it would be more realistic to allow the Pareto weights to depend (at least) on the realization x of the total resource. The analysis of optimality conditions for efficient risk-sharings is of course much more complex in this extended setting. Whether one can derive tractable restrictions on multi-dimensional risk-sharings under limited commitment is an interesting question that can probably be attacked with the tools of exterior differential calculus but this is out of the scope of the present paper.

5.3 Towards sufficient conditions

In this paper, we found a number of necessary conditions for maps $x \mapsto$ $\left(X_{h}(x)\right)_{h=1, \ldots, H}$ to be an efficient risk-sharing based on the simple observation that, by first order optimality conditions, the X_{h} 's should be of the form $X_{h}=$ $\nabla V_{h}^{*} \circ \nabla V$ where V_{h} and V are smooth and strictly concave functions (see (3)). Differentiating (3), one sees that for every x, the Jacobian matrix $D X_{h}(x)$ should be the product of two (semidefinite negative) symmetric matrices, the second one being independent of h. In theorem 1, we have shown that when $H \geq 2 N /(N-1)$ this implies that the X_{h} 's satisfy a system of first-order nonlinear PDEs. These equations are however far from being sufficient for the X_{h} 's to be an efficient risk-sharing. Let us briefly explain why there are additional restrictions, a more detailed study of these conditions being left for future research:

- arguing as in section 4 , if the X_{h} 's form an efficient risk-sharing and if the rank condition (10) is satisfied, there is a nonsingular symmetric matrix valued function T (which can be computed as we explicitly did in the case $H=4, N=2$) such that $D^{2} V(x)=\lambda(x) T(x)$ for some scalar function λ. Expressing the fact that λT is a field of Hessian matrices leads to the system of linear PDE's (12) for λ which can be
written as

$$
C(x) \nabla \log (\lambda)=b(x)
$$

where C is an $N^{3} \times N$ matrix and $b \in \mathbb{R}^{N^{3}}$. In this system C is an explicit functions of T (hence of the first derivatives of $\left.\left(X_{h}\right)_{h}\right)$ whereas b is an explicit function of $D T$ (hence of the second derivatives of $\left.\left(X_{h}\right)_{h}\right)$. The linear system above being overdetermined (more equations than unknowns), we should have $b(x) \in \mathrm{R}(C(x))$ for every x which is a system of nonlinear second-order PDEs for $\left(X_{h}\right)_{h}$. These clearly are additional restrictions on the X_{h} 's not captured by Theorem 1 .

- on top of this, as proved in Lemma 2, the linear system (12) contains an invertible $N \times N$ subsystem $B(x) \nabla \log (\lambda)=a(x)$, which gives that $B^{-1}(x) a(x)$ is a gradient so that it should have a symmetric Jacobian. This imposes additional third-order PDEs for $\left(X_{h}\right)_{h}$ (exactly as in the case $H=4, N=2$ detailed above).

We have not detailed all the conditions listed above because, on the one hand, they lead to complicated expressions in general (we just gave some details for the case $H=4, N=2$) and, on the other hand, they are not sufficient yet. Indeed, the considerations above on the system (12) eventually ensure that one can write $D X_{h}(x)=S_{h}(x) D^{2} V(x)$ where the S_{h} are symmetric, but this does not guarantee that S_{h} is of the form $D^{2} V_{h}^{*}(\nabla V) \ldots$ Finally, we have ignored economic integration issues i.e. the requirement that V_{h}^{*} and V should be concave so that $D F_{h}$ should be the product of semidefinite negative matrices, in particular $D X_{h}$ should have a positive trace and a positive determinant.

Acknowledgements: The authors are grateful to the French Ministry of Foreign and European Affairs, the French Ministry of Education, Higher Education and Research and the French Consulate in Jerusalem for partial financial support through the Project Al-Maqdisi The characterization of group behavior in microeconomic theory.

References

[1] Browning, M., Chiappori, P.-A.: Efficient Intra-Household Allocations: A General Characterization and Empirical Tests. Econometrica, 66, 12411278 (1998).
[2] Carlier, G. Dana, R.-A.: Two-persons Efficient Risk-sharing and Equilibria for Concave Law-invariant Utilities. Economic Theory, 36, 189-223 (2008).
[3] Carlier, G., Dana, R.-A., Galichon, A.: Pareto efficiency for the concave order and multivariate comonotonicity. Journal of Economic Theory, 147, 207-229 (2012).
[4] de Castro, L.I., Pesce, M., Yannelis, N. C.: Core and equilibria under ambiguity. Econom. Theory 48, 519548 (2011).
[5] Chiappori, P.-A., Ekeland, I.: The Economics and Mathematics of Aggregation: Formal Models of Efficient Group Behavior, Foundations and Trends in Microeconomics, 5, issues 1 and 2 (2009), 1-151.
[6] Chudjakow, T., Riedel, F: The best choice problem under ambiguity. Economic Theory, 54, 77-97 (2013).
[7] Halmos, P.R.: Bad Products of Good Matrices. Multilinear and linear Algebra 29, 1-20 (1991).
[8] Mazzocco, M.: Household Intertemporal Behavior: A Collective Characterization and a Test of Commitment. Review of Economic Studies, 74, 857-895 (2007).
[9] Townsend, R.M.: Risk and Insurance in village India. Econometrica, 62, 539-592 (1994).

[^0]: * Department of Mathematics, Birzeit University, P.O. Box 14, Birzeit, PALESTINE maloqeili@birzeit.edu
 ${ }^{\dagger}$ CEREMADE, UMR CNRS 7534, Université Paris Dauphine, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE carlier@ceremade.dauphine.fr, ekeland@ceremade.dauphine.fr.

[^1]: ${ }^{1}$ Extensions of the subsequent analysis to a non expected utility framewok, for instance to the case of maximin expected utility (see [4] or [6]) is an interesting issue but it is out of the scope of this paper.
 ${ }^{2}$ The fact that the Pareto weights are fixed and do not depend on X is precisely justified by the fact that the agents ex ante make a commitment on an allocation on the contract curve before the risk is realized.

[^2]: ${ }^{3}$ Indeed, assume $N \geq 2$ and that $N-1$ divides $2 N$. If N is odd, write $N=2 k+1$ and then $\frac{2 N}{N-1}=\frac{4 k+2}{2 k}=2+\frac{1}{k}$ so that $k=1$ and then $N=3$ and $H=3$. If N is even, $N-1$ being odd, it follows from Gauss Lemma that $N-1$ divides N so that $N=2$ and then $H=4$.

[^3]: ${ }^{4}$ We already noticed that this rank condition is necessary for identication.

[^4]: ${ }^{5}$ Since we have differentiated $D^{2} V$ here, we are assuming that V is at least C^{3}.

[^5]: ${ }^{6}$ At least in this example, we see that the rank condition (10) is generic: among nonsingular matrices F_{1}, F_{2}, F_{3} for which (13) holds, it is generic that one of the 2×2 minors in (13) is nonzero.
 ${ }^{7}$ It is convenient to identify \mathcal{S}_{2} with \mathbb{R}^{3} by identifying the vector (a, b, c) with the symmetric matrix $\left(\begin{array}{cc}a & \frac{b}{\sqrt{2}} \\ \frac{b}{\sqrt{2}} & c\end{array}\right)$, this isomorphism has the advantage to preserve the inner product hence orthogonality, to find a matrix in $\mathrm{R}(L)^{\perp}$ we simply take the wedge product of the first two columns of its matrix in the canonical basis of \mathbb{R}^{3}.

