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Abstract

We propose a (toy) MFG model for the evolution of residents and
firms densities, coupled both by labour market equilibrium conditions
and competition for land use (congestion). This results in a system of
two Hamilton-Jacobi-Bellman and two Fokker-Planck equations with
a new form of coupling related to optimal transport. This MFG has
a convex potential which enables us to find weak solutions by a varia-
tional approach. In the case of quadratic Hamiltonians, the problem
can be reformulated in Lagrangian terms and solved numerically by
an IPFP/Sinkhorn-like scheme as in [4]. We present numerical results
based on this approach, these simulations exhibit different behaviours
with either agglomeration or segregation dominating depending on the
initial conditions and parameters.

Keywords: Mean field games, convex duality, optimal transport, labour
market equilibrium, Iterative Proportional Fitting procedure (IPFP).

MS Classification: 49L05, 65K10, 91A14.

1 Introduction

Economic equilibria frequently unfold over different time scales – locally in
time, some parameters are taken as constant in the determination of a short-
term or instaneous equilibrium, while in the long run they become state
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variables. Dynamics of cities and spatial labour markets are a prominent
example: in the short run, when choosing where to work or who to hire,
inhabitants and firms can be viewed as taking their geographical position
as given (they cannot instantly relocate). In that way, labour market equi-
librium can be approached as a static problem. In the long run (years or
decades), however, people and firms can move, reshaping the city structure.
Crucially, the properties of instaneous equilibrium are contingent on given
densities which are themselves contingent on agents’ motions which reflect
their expectations. This creates strategic interactions over the dynamics of
instaneous equilibria. On top of this, cities dynamics are subject to conges-
tion that can be expressed through rents and also affect strategic moving
decisions.

We propose a stylized model for the previous dynamics using the mean
field game approach, pioneered by P.-L. Lions and the third author [21], [22],
[23] to analyze equilibria in differential games with infinitely many players.
Mean field games involving several populations have been studied recently by
Cirant [13] and Achdou, Bardi and Cirant [1]. We consider a two-populations
mean field game (e.g. workers and firms); the main mathematical novelty
resides in coupling the running cost functions for the two populations by the
potentials of an optimal transport problem between their respective distri-
butions. With the square euclidean distance as ground cost, this amounts to
couple the MFG system with Monge-Ampère equations at each time. This
comes from (classically) interpreting equilibrium on the labour market for
given densities as an optimal transport problem – the Kantorovich potentials
of the dual problem then represent equilibrium payoffs for each population,
see [11].

The market for land is modeled using absentee landlords, hence rents are
simply given by an inverse demand function of the total mass of workers and
firms at any point in space. This gives rise to a congestion-type running cost
in the MFG problem. The full MFG system we consider is of the form :{
−∂tφi − νi∆φi +Hi(x,∇φi) = f(m1 +m2) + αi, φi(T, .) = 0,

∂tmi − νi∆mi − div(mi∇pHi(x,∇φi)) = 0, mi(0, .) = m0
i ,

(1.1)

for i = 1, 2; where φi are the value functions (solving the HJB equation in
(1.1)), mi are the densities (solving the Fokker-Planck equations in (1.1)) and
αi(t, .) are the potentials of an optimal transport problem between m1(t, .)
and m2(t, .). For instance, in the case of a quadratic commuting cost, the
potentials αi(t, .) are related to the densities mi(t, .) by the Monge-Ampère
equations:

det(I −D2α1)m2(x−∇α1(x)) = m1, det(I −D2α2)m1(x−∇α2(x)) = m2.
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The paper is organized as follows : section 2 introduces the model in more
details by building up from rent and labour market interactions to workers
and firms optimal control problems in order to derive the MFG system (1.1).
Section 3 recasts the MFG system as a variational problem and adopts a
convex duality approach to prove existence of weak solutions. Section 4
specializes to the case of quadratic Hamiltonians (where the system admits
classical solutions, see [10]) and the problem is recasted in a Lagrangian
formulation as an entropy minimization problem on the space of measures
on paths. Section 5 builds on the entropy-minimization interpretation of the
system to construct an efficient IPFP-like algorithm to obtain numerical solu-
tions (generalizing the celebrated Sinkhorn algorithm in optimal transport);
numerical simulations are presented at the end of the section, displaying sev-
eral examples of dynamics and exploring sensitivity to model parameters.
Section 6 concludes.

2 The model

We consider a continuous time model with a finite horizon T . For the
sake of simplicity, we will work in the periodic space setting and denote by
Td = Rd/Zd the flat d-dimensional torus. The main unknowns of the model
will be the time-dependent densities of workers and firms which we denote
respectively m1(t, .), m2(t, .), where t ∈ [0, T ]. The initial distributions m0

1

and m0
2 are given, and assumed to be everywhere positive, Lipschitz, and

normalized to have unit total mass:

m0
i ∈ W 1,∞(Td), min

Td
m0
i > 0,

∫
Td
m0
i (x)dx = 1, i = 1, 2. (2.1)

The structure of the MFG model, detailed in the next paragraphs, is the
following:

• at each given time t, workers and firms interact in two ways: i) they
compete for land use which results in a common rent which is an in-
creasing function of the total density m1(t, .) + m2(t, .), this is a local
interaction which has a standard congestion effect, ii) they interact
through the labour market, wages paid by firms should be such that
this market is at equilibrium, this is a non-local interaction since work-
ers choose where to work so as to maximize their revenue i.e. the wage
they get net of some commuting cost,

• workers/firms located at x ∈ Td at time t ∈ [0, T ], takingm1(s, .),m2(s, .)
for s ≥ t as a given prior, solve their individual stochastic control
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problem taking into account the previous interactions (as well as an
individual mobility cost), this resuts in two Hamilton-Jacobi-Bellman
equations,

• from the optimal feedback laws resulting form these HJB’s equations,
one deduces the actual evolution of densities by solving a pair of Fokker-
Planck equations,

• the MFG equilibrium system then expresses that this evolution coin-
cides with the initial priors.

Interactions: rents and the labour market

Rents: Given (t, x) ∈ (0, T ) × Td and m1(t, x), m2(t, x) the densities of
workers/firms at x at time t, the rent R(t, x) should be such that the total
demand m1(t, x) + m2(t, x) on the estate market equals the supply which
is given by an exogenously given increasing supply function S of the rent.
Thus, the rent R at (t, x) should be such that supply and demand concide
i.e. m1(t, x) + m2(t, x) = S(R(t, x)). Inverting this monotone relation i.e.
formally setting f := S−1, we get

R(t, x) = f(m1(t, x) +m2(t, x)) (2.2)

so that the rent is a local and increasing function of the total density. The
coupling induced by the estate market simply is a joint congestion effect.

Labour market: Given t ∈ [0, T ] and m1(t, .) and m2(t, .) the spatial
distributions at time t of workers and firms, which are probability measures
on Td, firms and workers also interact through the labour market which we
will assume to be at equilibrium. Firms located at y, propose a wage w(t, y) to
workers. There is a monetary commuting cost c(x, y) for workers commuting
from their residence location x to a job location y. The commuting cost is
assumed to be continuous and nonnegative

c ∈ C(Td × Td), c(x, y) ≥ 0, ∀(x, y) ∈ Td × Td. (2.3)

Since workers are rational they choose their job location so as to maximize
wage net of commuting cost which gives the following form for the revenue
r(t, x) of workers living at x ∈ Td:

r(t, x) := max
y∈Td
{w(t, y)− c(x, y)}. (2.4)
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By construction for every x and y one has

w(t, y)− r(t, x) ≤ c(x, y)

and agents living at x work only at locations where the previous inequality is
an equality. The pair of wage and revenue functions y 7→ w(t, y), x 7→ r(t, x)
induces an equilibrium on the labour market if it is continuous and there
exists a probability measure γ on Td × Td (where γ(A × B) represents the
proportion of workers living in A and working in B) such that

• γ is a transport plan between m1(t, .) and m2(t, .) i.e. γ has marginals
m1(t, .) and m2(t, .)1, which means that γ is consistent with the distri-
butions of workers and firms,

• w(t, y)−r(t, x) = c(x, y) on spt(γ), the support of γ, which means that
γ is consistent with the rationality of workers.

The equilibrium conditions above are well-known to be related to the primal-
dual optimality conditions for the Monge-Kantorovich mass transport prob-
lem (see [33], [32] [30]). More precisely, given the probability measures m1

and m2, consider

C(m1,m2) := inf
γ∈Π(m1,m2)

∫
Td×Td

c(x, y)dγ(x, y) (2.5)

where Π(m1,m2) denotes the set of transport plans between m1 and m2,
Kantorovich duality expresses that C(m1,m2) can be expressed by the dual
formula

C(m1,m2) := sup
(α1,α2)∈C(Td)×C(Td)

{∫
Td
α1m1+

∫
Td
α2m2 : α1⊕α2 ≤ c

}
(2.6)

where α1 ⊕ α2 denotes the separable function

α1 ⊕ α2(x, y) := α1(x) + α2(y), (x, y) ∈ Td × Td.

The dual formulation (2.6) admits solutions α1, α2 (called Kantorovich po-
tentials) which may be assumed to satisfy:

α1(x) = min
y∈Td
{c(x, y)− α2(y)}, ∀x ∈ Td

and γ ∈ Π(m1,m2) solves (2.5) exactly when α1⊕α2 = c on spt(γ). In other
words, equilibrium on the labour market at time t, is equivalent to the fact

1which means that γ(A × Td) = m1(t, A) and γ(Td × B) = m2(t, B), for every Borel
subsets A and B of Td.
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that the pair (α1(t, .), α2(t, .)) = (w(t, .),−r(t, .)) satisfies α1(t, .)⊕α2(t, .) ≤
c and is optimal for the Kantorovich dual. A concise way to rewrite the
equilibrium condition therefore reads as

α1(t, .)⊕α2(t, .) ≤ c, C(m1(t, .),m2(t, .)) =

∫
Td
α1(t, .)m1(t, .)+

∫
Td
α2(t, .)m2(t, .).

(2.7)

Remark 2.1. We will rather use the symmetric notation (α1, α2) instead of
(w,−r). Let us point out that the labour-market equilibrium condition (2.7)
never determines wages and revenues uniquely since adding a constant to α1

and substracting it from α2 does not affect this condition.

Remark 2.2. In the quadratic cost case i.e. when

c(x, y) =
1

2
dist2

Td(x, y), where distTd(x, y) := min
k∈Zd
|x+ k − y|

and m1 and m2 are smooth positive densities, it is well-known (see [14], [5])
that the optimal α1, α2 in (2.5) is unique (up to an additive constant) and
characterized by the condition

x ∈ Rd 7→ 1

2
|x|2 − αi(x) convex

for i = 1, 2 and the Monge-Ampère equations

det(I −D2α1)m2(x−∇α1(x)) = m1, (2.8)

det(I −D2α2)m1(x−∇α2(x)) = m2. (2.9)

Remark 2.3. Instead of assuming that workers choose to work at locations
that maximize exactly wage net of transport cost, one can consider a regu-
larization of (2.5) with a certain noise parameter σ > 0:

Cσ(m1,m2) := inf
γ∈Π(m1,m2)

∫
Td×Td

(c(x, y) + σ log(γ(x, y))γ(x, y)dxdy (2.10)

which (provided m1 and m2 have a finite entropy) has an almost closed-

form solution γ(x, y) = a1(x)a2(y)e−
c(x,y)
σ where a1 and a2 are such that the

marginal constraints are met. This entropic regularization is very popular
in numerical optimal transport because it can be solved iteratively by the
Sinkhorn/IPFP algorithm (see [15], [28] and section 5).
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Workers and firms optimal control problems

Given the rent R = f(m1 +m2) and α1 (negative of revenue), workers living
at x at time t, seek to minimize the expected cost

E
(∫ T

t

[L1(Xs, us) +R(s,Xs) + α1(s,Xs)]ds
)

(2.11)

where L1 is a Lagrangian that captures the cost of motion for workers, us is
an adapted control process, the SDE governing the evolution of the workers’
position is

dXs = usds+
√

2ν1dBs, Xt = x, (2.12)

where ν1 > 0 is the diffusivity parameter of the workers and B a standard
brownian motion.

Similarly, given the rent R = f(m1 + m2) and the wage α2 paid to the
workers, firms settled at y at time t, minimize

E
(∫ T

t

[L2(Ys, vs) +R(s, Ys) + α2(s, Ys)]ds
)

(2.13)

where the Lagrangian L2 models the mobility cost of firms, vs is an adapted
control process and

dYs = vsds+
√

2ν2dBs, Yt = y, (2.14)

where ν2 > 0 is the firms’ diffusivity parameter.

The MFG system

The Hamiltonians H1, H2 associated with the Lagrangian of workers and
firms respectively are given by Hi(x, .) = L∗i (x,−.), i.e.

Hi(x, p) := sup
v∈Rd
{−p · v − Li(x, v)}, x ∈ Td, p ∈ Rd, i = 1, 2.

The MFG equilibrium system consists of two HJB equations for the value
functions φ1, φ2 of agents and firms, coupled by rents and wages/revenues
that clear the labour market, together with two Fokker-Planck equations for
m1 and m2 with respective drifts −∇pH1(x,∇φ1(x)) and −∇pH2(x,∇φ2(x))
which are the optimal feedbacks for their respective control problems. More
precisely, we look for functions

(t, x) ∈ (0, T )× Td 7→ (φi(t, x),mi(t, x), αi(t, x))i=1,2
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such that for i = 1, 2

− ∂tφi − νi∆φi +Hi(x,∇φi) = f(m1 +m2) + αi, φi(T, .) = 0, (2.15)

∂tmi − νi∆mi − div(mi∇pHi(x,∇φi)) = 0, mi(0, .) = m0
i , (2.16)

as well as for every t ∈ (0, T ):

α1(t, .)⊕ α2(t, .) ≤ c, (2.17)

and

C(m1(t, .),m2(t, .)) =

∫
Td
α1(t, .)m1(t, .) +

∫
Td
α2(t, .)m2(t, .). (2.18)

The last conditions (2.17)-(2.18) express that wages (α2) and revenues (−α1)
clear the labour market at every time (and, as explained in remark 2.2,
take the form of Monge-Ampère equations in the special case where c is the
squared distance).

3 A variational approach

3.1 Two problems in duality

At least formally, the right hand sides (f(m1 + m2) + α1, f(m1 + m2) + α2)
of the HJB equations (2.15), together with (2.17)-(2.18) can be seen as the
derivative of the (convex) functional (m1,m2) 7→ C(m1,m2) +

∫
Td F (m1 +

m2)dx with F (m) =
∫ m

0
f(α)dα. Following the seminal work of Lasry and

Lions [22], we see that the MFG system (2.15)-(2.16)-(2.17)-(2.18) has a
convex potential structure and can therefore be seen as the optimality system
for two convex minimization problems in duality.

From now on, we shall assume the following. For i = 1, 2, the Lagrangian
Li is continuous on Td × Rd, strictly convex, differentiable in its second
argument with ∇vLi continuous and such that for some M > 1 and si ∈
(1 +∞), there holds

|v|si
M
−M ≤ Li(x, v) ≤M(|v|si + 1), ∀(x, v) ∈ Td × Rd. (3.1)

This of course implies that Hi is also continuous on Td×Rd, strictly convex,
differentiable in its second argument with∇pHi continuous and that for some
M > 1 and for ri := si

si−1
, the conjugate exponent of si, one has

|p|ri
M
−M ≤ Hi(x, p) ≤M(|p|ri + 1), ∀(x, p) ∈ Td × Rd (3.2)
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(possibly with a different positive constant M). As for the congestion term f :
R+ → R+ we assume that it is continuous, nondecreasing satisfies f(0) = 0
and that for some M > 1 and some s ∈ (1,+∞), it satisfies

ms−1

M
−M ≤ f(m) ≤M(ms−1 + 1), ∀m ∈ R+. (3.3)

We then set F (m) :=
∫ m

0
f(α)dα for every m ≥ 0 and note that F is convex

with s-power growth. Finally, we define the functional (m1,m2) ∈ L1(Td)×
L1(Td) 7→ F(m1,m2) by

F(m1,m2) :=

{∫
Td F (m1(x) +m2(x))dx, if m1 ≥ 0, m2 ≥ 0,

+∞ otherwise.
. (3.4)

We also define G := (F + χR+)∗, i.e.

G(β) := sup
m≥0
{mβ − F (m)}. (3.5)

Defining r := s
s−1

the conjugate exponent of s, note that our assumptions on
f , imply that G is nondecreasing

G(β) = 0, for all β ≤ 0,
βr+
M
−M ≤ G(β) ≤M(βr+ + 1), ∀β ∈ R. (3.6)

(possibly with a different positive constant M). Throughout, this section, we
will asume that (2.1), (2.3), (3.1), (3.3) are in force. To abbreviate notations,
let C := C([0, T ] × Td,R), C1,2 = C1,2([0, T ] × Td,R) denote the space of
functions defined on [0, T ] × Td which admit continuous first derivative in
time and second derivatives in space, and define C1,2

T by:

C1,2
T := {φ ∈ C1,2 : φ(T, x) = 0, ∀x ∈ Td}.

For φ = (φ1, φ2) ∈ C1,2 × C1,2, and α = (α1, α2) ∈ C × C, let

G(φ, α) :=

∫ T

0

∫
Td
G
(

max
i=1,2

(−∂tφi−νi∆φi+Hi(.,∇φi)−αi)
)
−

2∑
i=1

∫
Td
φi(0)m0

i

and consider the variational problem

inf
{
G(φ, α), φ ∈ (C1,2

T )2, α ∈ C × C, α1(t, .)⊕ α2(t, .) ≤ c, ∀t
}
. (3.7)

Note that (3.7) is convex since Hi(x, .) is convex and G is convex and non-
decreasing. It can be rewritten in Fenchel-Rockafellar form as

inf
(φ,α)∈(C1,2×C)2

I(φ, α) + J(Λ(φ, α)) (3.8)
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where Λ(φ, α) = (Λ1(φ1, α1),Λ2(φ2, α2)) and Λi is the continuous linear op-
erator C1,2 × C → C([0, T ]× Td)d+1

Λi(φi, αi) := (−∂tφi − νi∆φi − αi,−∇φi),

and I and J are given respectively by:

I(φ, α) :=

{
−
∑2

i=1

∫
Td φi(0)m0

i if α1 ⊕ α2 ≤ c and φ1(T, .) = φ2(T, .) = 0

+∞ otherwise.

and for a = (a1, a2) in C × C and b = (b1, b2) in (C([0, T ]× Td,Rd))2

J(a, b) :=

∫ T

0

∫
Td
G
(

max
i=1,2

(ai(t, x) +Hi(−bi(t, x))
)

dxdt

since J is continuous everywhere and I has a nonempty domain, we deduce
from the Fenchel-Rockafellar Theorem that

inf(3.7) + min
(mi,wi)i=1,2∈(M×Md)2

{I∗(−Λ∗(m,w)) + J∗(m,w)} = 0, (3.9)

where M denotes the space of Borel measures on [0, T ]×Rd. A direct com-
putation and the Kantorovich duality formula, give the following expression
for I∗(−Λ∗(m,w)):{∫ T

0
C(m1(t, .),m2(t, .)), if mi ≥ 0, ∂tmi − νi∆mi + div(wi) = 0, mi(0, .) = m0

i

+∞ otherwise.

As for J∗, using [29] as well as the definition of F and G (see for instance
[20] for details in a similar variational MFG context), we have

J∗(m,w) =
2∑
i=1

∫ T

0

∫
Td
Li(x,

wi
mi

)mi +

∫ T

0

F(m1(t, .),m2(t, .))dt

where miL(x, wi
mi

) is a slight abuse of notations for the (convex lsc and 1-
homogeneous) function

(mi, wi) 7→


miL(x, wi

mi
) if mi > 0,

0 if mi = 0 and wi = 0,

+∞ otherwise.

Observing that J∗(m,w) < +∞ requires mi ∈ Ls and wi = mivi with

mi|vi|si ∈ L1, this implies that wi = m
1
ri
i m

1
si
i vi ∈ Lλi((0, T )× Td) with

λi =
rri

rri − 1
. (3.10)
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The dual of (3.7) thus reads as

inf
(m,w)∈K

E(m,w) :=
2∑
i=1

∫ T

0

∫
Td
Li(x,

wi
mi

)mi

+

∫ T

0

(C(m1(t, .),m2(t, .)) + F(m1(t, .),m2(t, .))dt (3.11)

where K consists of all (m,w) = (m1,m2, w1, w2) with mi ≥ 0, mi ∈
Ls((0, T )× Td), wi ∈ Lλi((0, T )× Td,Rd) such that

∂tmi − νi∆mi + div(wi) = 0 in (0, T )× Td, mi(0, .) = m0
i ,

in the sense of distributions for i = 1, 2. Applying the Fenchel-Rockafellar
Theorem thus gives

inf(3.7) + min
(m,w)∈K

E(m,w) = 0. (3.12)

and in particular the infimum is attained in (3.11).

3.2 Relaxed primal and weak solutions of the MFG
system

Following [9], [25] (also see [8], [7], [19], [6], for the case of first-order varia-
tional MFG or transport problems), we will find weak solutions of the MFG
system by considering a suitable relaxation of (3.7). Given αi ∈ L∞((0, T )×
Td) and β ∈ Lr((0, T ) × Td), we shall say that φi ∈ Lri((0, T ),W 1,ri(Td)) is
a weak subsolution of

− ∂tφi − νi∆φi +Hi(.,∇φi) ≤ αi + β, φi(T, .) ≤ 0 (3.13)

if for every η ∈ C∞c ((0, T ]× Td) with η ≥ 0, there holds∫ T

0

∫
Td

(∂tη − νi∆η)φi +

∫ T

0

∫
Td
Hi(.,∇φi)η ≤

∫ T

0

∫
Td

(αi + β)η. (3.14)

A crucial estimate for such weak subsolutions is provided by Theorem 3.3
of [9] which establishes that if φi is a bounded from below weak solution of
(3.13), then

‖φi‖L∞((0,T ),Lηi (Td))+‖φi‖Lγi ((0,T )×Td)) ≤ C(‖φi−‖L∞((0,T )×Td), ‖αi+β‖Lr((0,T )×Td)
(3.15)
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where the exponents ηi and γi are given by

ηi =


d(ri(r−1)+1)
d−ri(r−1)

if 1 + d
ri
> r,

any exponent in (1,+∞) if 1 + d
ri

= r,

+∞ if 1 + d
ri
< r

(3.16)

and

γi =


(1+d)rir
d−ri(r−1)

if 1 + d
ri
> r,

any exponent in (1,+∞) if 1 + d
ri

= r,

+∞ if 1 + d
ri
< r.

(3.17)

Note that γi and ηi can always be chosen such that γi > ηi > r and γi > ri,
in particular if mi ∈ Ls and φi ∈ Lγi then miφi ∈ L1. We then define Ã as
the set of collections (φ1, φ2, α1, α2, β) such that:

• φi ∈ Lri((0, T ),W 1,ri(Td)) ∩ Lγi((0, T )× Td),

• αi ∈ L∞((0, T )× Td) and α1(t, .)⊕ α2(t, .) ≤ c for a.e. t ∈ (0, T ),

• β ∈ Lr((0, T )× Td) and β ≥ 02,

• for i = 1, 2, (3.13) holds in the weak sense of (3.14).

We shall say that a sequence (φn, αn, βn) in Ã converges weakly to (φ, α, β)
which we will simply denote (φn, αn, βn) ⇀ (φ, α, β) if

φni ⇀ φi in Lγi((0, T )× Td),∇φni ⇀ φi in Lri((0, T )× Td), (3.18)

and

αni
∗
⇀ αi in L∞((0, T )× Td), βn ⇀ β in Lr((0, T )× Td). (3.19)

Since H1(x, .) and H2(x, .) are convex and satisfy (3.2), one immediately

checks that Ã is closed with respect to this weak convergence.
Let (φ, α, β) = (φ1, φ2, α1, α2, β) ∈ Ã, let η ∈ W 1,∞(Td) with minTd η > 0

and define for i = 1, 2 and t ∈ (0, T ):

φi,η(t) :=

∫
Td
φi(t, x)η(x)dx, ψαi,β,η(t) :=

∫
Td

(αi(t, x) + β(t, x))η(x)dx.

(3.20)

2Imposing β ≥ 0 is not really a restriction since G(β+) = G(β) and (3.13) still holds
when changing β into β+.
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It easily follows from (3.13) and the superlinearity of Hi that for some con-
stant Mη one has

d

dt
φi,η(t) +Mη + ψαi,β,η(t) ≥ 0, (3.21)

and since ψαi,β,η ∈ L
r((0, T )), we deduce that φi,η is BV hence has a right

(resp. left) limit φi,η(t
+) (resp. φi,η(t

−)) at each t ∈ [0, T ) (resp. t ∈ (0, T ]).
Actually, more is true, indeed defining the W 1,r((0, T )) function

Ψαi,β,η(t) :=

∫ t

0

ψαi,β,η(s)ds =

∫ t

0

∫
Td

(αi(s, x) + β(s, x))η(x)dxds

since
t 7→ φi,η(t) +Mηt+ Ψαi,β,η(t) is nondecreasing

then for every t ∈ [0, T ) one has

φi,η(t
+)+Mηt+Ψαi,β,η(t) = inf

δ∈(0,T−t)

{
1

δ

∫ t+δ

t

∫
Td

(φi +Mηs+ Ψαi,β,η(s))dsdx

}
from which we deduce that whenever a sequence (φn, αn, βn) in Ã converges
weakly to some (φ, α, β), then for every t ∈ [0, T ), one has

lim sup
n

∫
Td
φni (t+, x)η(x)dx ≤ φi,η(t

+). (3.22)

In particular, if we set∫
Td
φi(0, x)m0

i (x)dx := φi,m0
i
(0+), (3.23)

we see that the functional

G̃(φ, α, β) :=

∫ T

0

∫
Td
G(β(t, x))dxdt−

2∑
i=1

∫
Td
φi(0, x)m0

i (x)dx

is well-defined on Ã, convex and lsc for weak convergence. The relaxed
formulation of (3.7) then reads:

inf
(φ,α,β)∈Ã

G̃(φ, α, β) (3.24)
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Remark 3.1. It is worth at this point remarking that (3.24) (as well as the
unrelaxed problem (3.7)) has the following invariance property. If (φ, α, β) ∈
Ã and µ ∈ L∞((0, T )), setting α̃1(t, x) := α1(t, x)+µ(t), α̃2(t, y) := α2(t, y)−
µ(t) and

φ̃1(t, x) := φ1(t, x) +

∫ T

t

µ(s)ds, φ̃2(t, x) := φ2(t, x)−
∫ T

t

µ(s)ds, (3.25)

then (φ̃, α̃, β) = (φ̃1, φ̃2, α̃1, α̃2, β) ∈ Ã and G̃(φ̃, α̃, β) = (φ, α; β) (the fact
that the boundary term remains unchanged follows from m0

1 and m0
2 having

the same mass).

Obviously, inf(3.24) ≤ inf(3.7). The converse inequality follows from
Lemma 5.3 in [9] which says that whenever (m,w) ∈ K is such that E(m,w) <

+∞ and (φ, α, β) ∈ Ã then for i = 1, 2,

−
∫
Td
φi(0, x)m0

i (x)dx+

∫ T

0

∫
Td
mi

(
αi + β + Li(x,

wi
mi

)
)
≥ 0, (3.26)

with an equality only if

wi = −mi∇pHi(.,∇φi)). (3.27)

We thus have

Proposition 3.2. The relaxed problem (3.24) satisfies the duality relation

0 = min
(m,w)∈K

E(m,w) + inf
(φ,α,β)∈Ã

G̃(φ, α, β). (3.28)

Proof. Let (m,w) ∈ K be such that E(m,w) < +∞ and (φ, α, β) ∈ Ã.
Young’s inequality gives∫ T

0

∫
Td
G(β) +

∫ T

0

F(m1(t, .),m2(t, .)dt ≥
∫ T

0

∫
Td
β(m1 +m2) (3.29)

likewise, ∫ T

0

C(m1(t, .),m2(t, .)dt ≥
2∑
i=1

∫ T

0

∫
Td
αimi. (3.30)

Summing (3.29)-(3.30) with (3.26), exactly gives

E(m,w) + G̃(φ, α, β) ≥ 0

so that inf(3.24) ≥ −min(3.11) but since inf(3.24) ≤ inf(3.7), (3.28) follows
from (3.12).
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Corollary 3.3. If (m,w) ∈ K solves (3.11) and (φ, α, β) ∈ Ã solves (3.24),
then (m,w, φ, α) is a weak solution of the MFG system (2.15)-(2.16)-(2.17)-
(2.18), in the sense that:

• β = f(m1 +m2) so that φi is a weak subsolution of (2.15),

• for i = 1, 2, wi = −mi∇pHi(.,∇φi)) so that (2.16) holds in the sense
of distributions,

• for i = 1, 2, one has

−
∫
Td
φi(0, x)m0

i (x)dx+

∫ T

0

∫
Td
mi

(
αi + f(m1 +m2) +Li(x,

wi
mi

)
)

= 0

• (2.17)-(2.18) hold for a.e. t ∈ (0, T ).

Proof. If (m,w) ∈ K solves (3.11) and (φ, α, β) ∈ Ã solves (3.24), one should

have E(m,w) + G̃(φ, α, β) = 0 so that (3.26), (3.29) and (3.30) should all
be equalities implying wi = −mi∇pHi(.,∇φi)), β = f(m1 + m2) and that
(2.17)-(2.18) hold for a.e. t.

As for the existence of a solution to the relaxed problem (3.24), again
following closely [9], we get:

Theorem 3.4. The relaxed problem (3.24) admits at least one solution. In
particular, the MFG system (2.15)-(2.16)-(2.17)-(2.18) admits a weak solu-
tion in the sense of corollary 3.3

Proof. In what follows, M will denote a positive constant which may vary
from one line to another. Let us start with (φn, αn), a minimizing sequence
for the unrelaxed problem (3.7). Set then

βn := max(0,max
i=1,2

(−∂tφni − νi∆φni +Hi(x,∇φni )− αni ))

so that (φn, αn, β
n) is minimizing for (3.24). Let us then define

α̃n2 (y) := min
x∈Td
{c(x, y)− αn1 (y)}, α̃n1 (x) := min

y∈Td
{c(x, y)− α̃n2 (y)} (3.31)
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it is easy to see that α̃ni ≥ αni and α̃n1⊕α̃n2 ≤ c so that (φn, α̃n, βn) is admissible
for (3.24), but the advantage of using α̃ni instead of αni is that these functions
are uniformly continuous in space:

|α̃ni (t, x)− α̃ni (t, y)| ≤ ωc(distTd(x, y)), ∀(t, x, y) (3.32)

where ωc is a modulus of continuity of c. Now thanks to the invariance
property of remark 3.1, we can normalize α̃n1 in such a way that −µn(t) :=∫
Td α̃

n
1 (t, x)dt = 0, (up to replacing α̃n2 by α̃n2 + µn and modifying φni accord-

ingly, see (3.25)). Since α̃n1 now has zero spatial mean, (3.32) gives a uniform
bound on α̃n1 , but also on α̃n2 thanks to (3.31):

‖α̃ni ‖L∞((0,T )×Td) ≤M. (3.33)

Now, since α̃ni and βn are continuous, let φ̃n be the viscosity solution of

− ∂tφ̃ni − νi∆φ̃ni +Hi(x,∇φ̃ni ) = α̃ni + βn, φ̃ni (T, .) = 0 (3.34)

by comparison φ̃ni ≥ φni and thanks to βn + α̃ni ≥ −M , we also have by

comparison that φ̃ni is uniformly bounded from below, φ̃ni ≥ −M . Moreover

since Hi(x, .) is convex, (3.34) also holds in the weak sense, (φ̃n, α̃n, βn) ∈ Ã
and it is also minimizing since φ̃ni (0, .) ≥ φni (0, .). In particular, we have∫ T

0

∫
Td
G(βn)−

2∑
i=0

∫
Td
φ̃ni (0, x)m0

i (x)dx ≤M. (3.35)

But multiplying (3.34) by m0
i , and using (3.2), (3.33) and (2.1), we get

1

M

∫ T

0

∫
Td
|∇φ̃ni |ri +

∫
Td
φ̃ni (0, x)m0

i (x)dx ≤M(1 +

∫
Td
βn) (3.36)

which together with (3.35) gives

‖βn‖Lr((0,T )×Td) + ‖∇φ̃ni ‖Lri ((0,T )×Td) ≤M. (3.37)

Thanks to the fact that φ̃ni is uniformly bounded from below, (3.15) also

gives an Lγi bound for φ̃ni . Passing to a subsequence if necessary, we may

therefore assume that the minimizing sequence (φ̃n, α̃n, βn) weakly converges

(in the sense of (3.18)-(3.19)), we have already observed that Ã is sequentially

weakly closed and that G̃ is sequentially weakly lsc (see (3.22)) which enables
us to conclude that (3.24) admits at least one solution.
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4 Quadratic Hamiltonians

We now specialize to the quadratic Hamiltonian case:

Li(x, v) =
θi
2
|v|2, Hi(x, p) =

1

2θi
|p|2, ∀(x, v, p) ∈ Td × Rd × Rd, (4.1)

where θi > 0 captures the (inverse) mobility of workers and firms (one can
think that θ2 > θ1). In this case, thanks to the Hopf-Cole transform, one can
use the arguments of section 4 of [10] to obtain a priori bounds and construct
classical solutions of the system (2.15)-(2.16)-(2.17)-(2.18). Another special
feature of the quadratic case is that it can be reformulated as an entropy
minimization problem at the level of the path space and this formulation will
be the starting point of our numerical scheme in section 5. This Lagrangian
viewpoint was already used in the MFG setting in [4].

4.1 A Lagrangian formulation

Let us start with the Eulerian problem (3.11) which in the quadratic Hamil-
tonian setting, takes the form

inf
(m,w)∈K

2∑
i=1

θi
2

∫ T

0

∫
Td

|wi|2

mi

+

∫ T

0

(C + F)(m1(t, .),m2(t, .))dt. (4.2)

The Lagrangian formulation of this problem, relies on the following result
of Dawson and Gärtner [16] (also see section II.1.4 in Föllmer [17]). Given
ν > 0 a diffusivity parameter let Rν be the reversible Wiener measure, i.e.
the Borel probability measure on the path space Ω := C([0, T ],Td)

Rν :=

∫
Td

Law(x+
√

2νB)dx

where B is the standard Brownian motion (on 1√
2ν
Td) starting at 0. Given

Q ∈ P(Ω) another Borel probability measure on Ω, we denote by H(Q|Rν)
the relative entropy of Q with respect to Rν :

H(Q|Rν) :=

{∫
Ω

log
(
dQ
dRν

)
dQ if Q� Rν

+∞ otherwise

where dQ
dRν

stands for the Radon-Nikodym derivative of Q with respect to Rν .
For t ∈ [0, T ], we denote by et the evaluation at time t i.e. et(ω) := ω(t) for
every ω ∈ Ω, hence for Q ∈ P(Ω) and t ∈ [0, T ], Qt := et#Q is the marginal of
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Q at time t. Given a flow of marginals t ∈ [0, T ] 7→ m(t, .) ∈ P(Td), Dawson
and Gärtner [16], in connection with large deviation principles, established
the following

inf
w

{
1

2

∫ T

0

∫
Td

|w(t, x)|2

m(t, x)
dx dt : ∂tm− ν∆m+ div(w) = 0

}
= inf

Q∈P(Ω)

{
H(Q|Rν), et#Q = mt, ∀t ∈ [0, T ]

}
−H(m0|R0

ν). (4.3)

Setting Ri := Rνi , this enables us to reformulate (4.2) as

inf
(Q1,Q2)∈P(Ω)2 : e0#Qi=m

0
i

H(Q1, Q2) := θ1H(Q1|R1) + θ2H(Q2|R2)

+

∫ T

0

(C + F)(et#Q1, et#Q2)dt. (4.4)

Note that (4.4) being a strictly convex minimization problem, its solution is
unique hence so is the solution of (4.2) since the optimal measures mi(t, .) for
(4.2) are the time-marginals of the optimal measures on paths Qi in (4.4).

4.2 Beyond the potential case

One strong limitation of the variational approach for MFG involving several
population of players is that it imposes symmetric interactions. However,
it is reasonable to assume that there are non-symmetric externalities (the
disutility of living close to a polluting factory for instance). A more general
situation allowing for such non symmetric externalities, is to assume that
these are given by two potentials Vi: (m1,m2) ∈ P(Td) 7→ Vi[m1,m2] ∈
C(Td) which are regular in the sense that

Vi ∈ C((P(Td),W1)2, C(Td)) (4.5)

where W1 denotes the 1-Wasserstein metric on P(Td). This leads to the MFG
system

−∂tφi−νi∆φi+
1

2θi
|∇φi|2 = f(m1+m2)+αi+Vi[m1,m2], φi(T, .) = 0, (4.6)

∂tmi − νi∆mi − div(mi∇φi) = 0, mi(0, .) = m0
i , (4.7)

supplemented by conditions (2.17)-(2.18) relating α1, α2 to m1,m2. Thanks
to (4.3) this can easily be reformulated as a fixed-point problem at the

18



Lagrangian level. Let us equip P(Ω) with the narrow topology. Given

(Q̃1, Q̃2) ∈ P(Ω)2 let

T (Q̃1, Q̃2) := argmin
{
HQ̃1,Q̃2

(Q1, Q2) : (Q1, Q2) ∈ P(Ω)2 : e0#Qi = m0
i

}
(4.8)

where

HQ̃1,Q̃2
(Q1, Q2) := H(Q1, Q2) +

2∑
i=1

∫ T

0

∫
Td
Vi[et#Q̃1, et#Q̃2]det#Qi(x)dt

andH is as in (4.4). It is easy to see that T is well-defined and by construction

T (P(Ω)2) ⊂ {(Q1, Q2) ∈ P(Ω)2 : HQ̃1,Q̃2
(Q1, Q2) ≤ HQ̃1,Q̃2

(R1, R2)}

hence for some M > 0

T (P(Ω)2) ⊂ KM :=
{

(Q1, Q2) ∈ P(Ω)2 : H(Qi|Ri) ≤M, e0#Qi = m0
i

}
since KM is a uniformly integrable subset of L1(R1)×L1(R2) it is tight hence
T (P(Ω)2) is relatively compact for the narrow topology. Moreover, the weak
lower-semi-continuity of H together with (4.5) implies that T is narrowly
continuous. It therefore follows from Schauder’s fixed point Theorem that T
admits at least a fixed point (Q1, Q2). The flow of marginals mi(t, .) := et#Qi

therefore (at least formally, or in the weak sense) solves (4.6) for some φi and
αi such that (4.7)-(2.17)-(2.18) hold.

5 An IPFP scheme

The Lagrangian formulation of the problem is amenable to a numerical strat-
egy that is a direct generalization of the famous Sinkhorn algorithm [31], also
known as Iterative Proportional Fitting Procedure, which has received a lot
of interest in recent years for its many applications related to optimal trans-
port – see notably [15], [28], [3], [26], [12], [4]. The algorithm presented here
is an extension of the algorithm used in [4], which itself can be viewed as a
variant of the general form presented in [12].

5.1 Discretization, optimality system

To simplify exposition, we discretize (4.4) both in time and space. As ex-
plained in [27], a good way to view the IPFP procedure is to understand it as
alternate maximization on the dual. Hence, we shall first derive a convenient
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expression for the discretized dual problem and explain how each block op-
timization is performed in practice. This will allow us to give a simple form
for Sinkhorn iterations; the primal-dual conditions also give a very compact
form for the optimal measures as diagonal scalings of a kernel.

We denote by S the discretized space grid – throughout we will only refer
to indices i ∈ S but it is to be understood that this corresponds to points xi
on a grid. The time interval [0, T ] is discretized with N + 1 steps ; similarly
we will refer to the time indices k ∈ {0, 1, ..., N} where it is to be understood
that they map to the discretized time grid {0, T

N
, ..., T}. Denote dt := T

N
the

size of one step on the time grid.
We denote by RN

i the discretization of the reversible Wiener measure
on SN+1 (path measures becoming tensors in this framework) with viscosity
parameter νi. Similary the path measures Qi become discrete probability
measures in P(SN+1). Throughout this section we adopt the convention that
Qk

1 denotes the k-th marginal of Q1 in the canonical projection. Similarly
for other variables, we will generally reserve subscripts to denote population
{1, 2}, use superscripts for the time dimension, and write the space dimension
as an input. For example Qk

1(i) denotes the mass of population 1 on grid
point i at time k ; Q2(i0, ..., iN) denotes the mass of population 2 moving
from i0 to i1 ... to iN along the dynamics. Define the discrete analog of the
relative entropy (or Kullback-Leibler divergence) :

H(p|q) :=
∑
i

(
pi

(
log

(
pi
qi

)
− 1

)
+ qi

)
,

where, with a slight abuse of notation, we do not specify the underlying space
of integration/summation.

We also regularize the instantaneous optimal transport (representing labour
market equilibrium) problem by introducing an entropy term – this has sev-
eral advantages. First, it makes the computation of the transport cost also
amenable to a Sinkhorn-like approach, hence it allows us to rewrite the whole
problem as a nested entropy minimization problem and perform all iterations
jointly. Second, it is a well-known result that for a small regularization pa-
rameter the solution of the regularized problem tends to the classical optimal
transport solution, hence we can recover the solution of (4.4). Third, it is
also well-known that entropic regularization of optimal transport can be in-
terpreted as adding noise in the coupling – which can be a heuristically
desirable feature, as it can be interpreted as e.g. resulting from random
preference shocks, which is common in the economics literature on matching
models (see e.g. [18]). The discrete regularized optimal transport problem
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for given measures m1 and m2 writes as:

Cσ(m1,m2) := inf
γ∈Π(m1,m2)

∑
(i,j)∈S2

γ(i, j)c(i, j)+σ
∑

(i,j)∈S2

γ(i, j)(log(γ(i, j))−1),

where c is the ground cost and σ the regularization parameter and we write
everything in grid coordinates. This rewrites (up to a constant), as an entropy
minimization problem :

Cσ(m1,m2) := σ inf
γ∈Π(m1,m2)

H(γ|ξ),

where ξ is the Gibbs kernel ξ:

ξ(i, j) := e−c(i,j)/σ.

We also rewrite the running cost functions F and F in a discretized equivalent
of (3.4)

F(m1,m2) =

{∑
i∈S F (m1(i) +m2(i)) if m1,m2 ≥ 0

+∞ otherwise.

The Lagrangian problem (4.4) thus rewrites in discretized form as :

min
Q1,Q2∈P(SN+1)

Q0
1=m0

1

Q0
2=m0

2

θ1H(Q1|RN
1 )+θ2H(Q2|RN

2 )+dt
N∑
k=0

Cσ(Qk
1, Q

k
2)+dt

N∑
k=1

F(Qk
1, Q

k
2)

(5.1)
which is a strictly convex finite dimensional problem. For convenience in
writing the dual problem, furthermore define F0 := χ{m0

1}×{m0
2} the indicator

(in the convex analysis sense F0(m1,m2) = 0 if m1 = m0
1 and m2 = m0

2

and +∞ otherwise) for the initial condition. By a standard Lagrangian
duality argument (note that (5.1) is a convex minimization problem with
finitely many linear marginal constraints), we arrive at the following dual
formulation which will be essential for the algorithm.
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Proposition 5.1. The dual problem of (5.1) is given by :

sup
uk1 ,u

k
2 ,v

k
1 ,v

k
2∈RS

k=0,...,N

− θ1

∑
(i0,...,iN )∈SN+1

exp

(
N∑
k=0

(vk1(ik)−
dtσ

θ1

uk1(ik))

)
RN

1 (i0, ..., iN)

− θ2

∑
(i0,...,iN )∈SN+1

exp

(
N∑
k=0

(vk2(ik)−
dtσ

θ2

uk2(ik))

)
RN

2 (i0, ..., iN)

− dtσ
N∑
k=0

∑
(i,j)∈S2

eu
k
1(i)eu

k
2(j)ξ(i, j)

− dt
N∑
k=1

F∗
(
−θ1

dt
vk1 ,−

θ2

dt
vk2

)
−F∗0 (−θ1v

0
1,−θ2v

0
2).

(5.2)
Moreover, strong duality holds in the sense that the (attained) value of (5.2)
coincides with the minimum in (5.1).

We have used the same convention for potentials in the dual problem that
superscripts denote time – e.g. uk1 is the vector (or tensor) over the space
grid for potential u1 at time k. The expression above may seem daunting and
notationally cumbersome; it can however be decomposed in rather familiar
terms and is directly analogous to e.g. Theorem 3.2. in [12] or Proposi-
tion 5.1. in [4]. The dual potentials uk1 and uk2 are similar to Kantorovitch
potentials in the optimal transport problem (instantaneous matching) and
represent Lagrange multipliers for the first and second marginal constraints
on the coupling γk. The usual primal-dual relations give us that the optimal
transport plan γk between Qk

1 and Qk
2 can be expressed as a diagonal scaling

of the Gibbs kernel ξ:

γk(i, j) := eu
k
1(i)eu

k
2(j)ξ(i, j). (5.3)

Hence the third line in the dual problem simply corresponds to integration
of the plans γk over space and time. Similarly, the potential vk1 correspond
to an indirect marginal constraint on Qk

1 the k-th marginal of Q1, where
optimality conditions on the marginals are captured in the Legendre conju-
gate F∗. The optimal measure Q1 is also expressed as a diagonal scaling
of the associated Wiener measure RN

1 by the tensor products of exponential
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potentials – primal-dual conditions give :

Q1(i0, ..., iN) = exp

(
N∑
k=0

vk1(ik)−
dtσ

θ1

uk1(ik)

)
RN

1 (i0, ..., iN) (5.4)

Q2(i0, ..., iN) = exp

(
N∑
k=0

vk2(ik)−
dtσ

θ2

uk2(ik)

)
RN

2 (i0, ..., iN). (5.5)

Notice that the optimal measure depend on both potentials – this is intuitive,
because the u potentials capture the transport cost, whereas the v capture
the congestion cost and both combine to define the optimal scaling. It is cus-
tomary in the literature to simplify notations by using direct sums or tensor
products – in our setup where different dimensions are at play, it seemed that
explicit notations, although cumbersome at first glance, ultimately improve
expositional clarity.

5.2 IPFP scheme

The originality of the problem above with respect to related problems in [12]
or [4] is twofold – because we are looking at a two-populations problem, the
set of potentials is doubled once; because we introduced an extra coupling in
the cost function, the set of potentials is doubled a second time. The overall
structure of the problem, however, remains similar and lends itself directly to
application of an Iterative Proportional Fitting Procedure scheme (or gener-
alized Sinkhorn algorithm, or Dykstra algorithm) by block optimization for
the potentials. The scheme we propose is nothing but alternate maximiza-
tion (coordinate ascent) on the dual problem (5.2). For general convergence
results for block coordinate optimization, a recent and complete reference is
Beck and Tetruashvili [2]. We now proceed to detail the iterations.

Optimization with respect to uk1 or uk2: Updates of uk1, u
k
2 correspond

to traditional Sinkhorn iterations. For instance, uk1 is determined by the
marginal constraint that the first marginal of γk is Qk

1. Solving the first-
order conditions with respect to uk1 in the dual problem indeed gives the
Sinkhorn-like scaling update :

eu
k
1(i) =

 ev
k
1 (i)κk1(i)∑

j∈S
eu

k
2(j)ξ(i, j)


θ1

θ1+dtσ

, (5.6)
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where :

κk1(i) =
∑

(i0,...,ik−1,ik+1,...,iN )∈SN
exp

 N∑
l=0
l 6=k

(vl1(il)−
dtσ

θ1

ul1(il))


×RN

1 (i0, ..., ik−1, i, ik+1, ..., iN)

is a (rescaled) projection of Q1. This is a pure scaling step which can easily
be vectorized and is in fact computationally inexpensive. The only numerical
difficulty resides with computations of integrals against the Wiener measure;
however, using the decomposition of the Wiener measure, this step can be
reduced to successive convolutions against the heat kernel. By using this
trick, we can avoid having to store the whole Wiener measure tensor and
operate instead only on the heat kernel over S. Update steps for uk2 are fully
identical.

Updating the v potentials: To simplify notations, take the exponential
transform of the potentials :

ak1(i) := eu
k
1(i) ak2(i) := eu

k
2(i).

The optimal measures are given with this notation by :

γk(i, j) = ak1(i)ξ(i, j)ak2(j) (5.7)

Q1(i0, ..., iN) =

(
N⊗
k=0

ev
k
1 (ak1)

− dtσ
θ1

)
(i0, ..., iN)×RN

1 (i0, ..., iN) (5.8)

Q2(i0, ..., iN) =

(
N⊗
k=0

ev
k
2 (ak2)

− dtσ
θ2

)
(i0, ..., iN)×RN

2 (i0, ..., iN), (5.9)

where
⊗

denotes the tensor product :
(⊗N

k=0 a
k
1

)
(i0, ..., iN) = a0

1(i0) ×
a1

1(i1) × ... × aN1 (iN). Note that it will be convenient not to take the expo-
nential transform for the v potentials.

Optimization with respect to v0
1 or v0

2: The potentials v0
1 and v0

2

also have direct scaling updates given by the marginal constraint on initial
densities. It is straightforward to see that the update on v0

1 is given by:

ev
0
1 :=

m0
1

α0
1
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where the division and multiplication of vectors is understood pointwise and
we define :

αk1(i) := ak1(i)
− dtσ
θ1

∑
(i0,...,ik−1,ik+1,...,iN )∈SN

(⊗
l 6=k

ev
l
1(al1)

− dtσ
θ1

)
(i0, ...ik−1, ik+1, ..., iN)

×RN
1 (i0, ...ik−1, i, ik+1, ..., iN)

which plays a similar role as κ before, being some scaled projection of Q1

given by integration of potentials over all paths that pass through grid point
i at time k. We define the update on v0

2 and αk2(i) symmetrically.
Optimization with respect to vk1 , v

k
2 : For k ≥ 1, we can perform the

updates on vk1 and vk2 as one block. Indeed, observe that this update amounts
to solving :

sup
vk1 ,v

k
2∈RS

− θ1

∑
(i0,...,iN )∈SN+1

(
N⊗
k=0

ev
k
1 (ak1)

− dtσ
θ1

)
(i0, ..., iN)×RN

1 (i0, ..., iN)

− θ2

∑
(i0,...,iN )∈SN+1

(
N⊗
k=0

ev
k
2 (ak2)

− dtσ
θ2

)
(i0, ..., iN)×RN

2 (i0, ..., iN)

− dtF∗
(
−θ1

dt
vk1 ,−

θ2

dt
vk2

)
.

Defining G := (F + χR+)∗ as before, we have :

F∗
(
−θ1

dt
vk1 ,−

θ2

dt
vk2

)
=
∑
i∈S

G

(
max{−θ1

dt
vk1(i),−θ2

dt
vk2(i)}

)
.

Although it might be suitable numerically to solve for the whole vectorized
problem at once, the problem fully decouples according to each coordinate
due to the local nature of the cost – for expositional purposes, it is clearer
to study the update for vk1(i), vk2(i) for given k, i :

sup
vk1 (i),vk2 (i)

−θ1α
k
1(i)ev

k
1 (i) − θ2α

k
2(i)ev

k
2 (i) − dtG

(
max{−θ1

dt
vk1(i),−θ2

dt
vk2(i)}

)
.

(5.10)
It is straightforward to see that problem (5.10) actually boils down to a
one-dimensional problem:

min
β≥0

θ1α
k
1(i)e

− dt
θ1
β

+ θ2α
k
2(i)e

− dt
θ2
β

+ dtG(β) (5.11)
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from which we recover the potentials using β the solution of this problem :

vk1(i) = −dt
θ1

β

vk2(i) = −dt
θ2

β.

This gives a very tractable form to these updates which is easily amenable
to various numerical solution methods – in particular, taking F to be e.g. a
power function we have an explicit form for G. Furthermore, as previously
mentioned, this minimization step can be vectorized to obtain the vectors
vk1 , v

k
2 in a single step. The steps of the algorithm are summarized in compact

form below in Algorithm 1.

5.3 Numerical results

We now present numerical results3 obtained using the previously introduced
algorithm. Throughout, we use the following conventions for model param-
eters:

• space S is the discretized one-dimensional torus (the circle),

• time horizon is T and the number of time steps is N + 1 (discrete time
is indexed by k = 0, ..., N),

• θ1, θ2 are the mobility parameters (higher θ means higher movement
cost),

• σ is the regularization parameter for labour market equilibrium OT
problem,

• ν1, ν2 are the respective diffusivity parameters for residents and firms,

• the congestion/rent function is given by :

F (x) =
axp

p
,

hence the Legendre transform (F + χR+) is simply :

G(β) =

(
1

a

) 1
p−1
(
p− 1

p

)
β

p
p−1

+

3The Matlab code for the simulations presented in this section is available at https:

//github.com/CesarBarilla/MFG-Cities_Code. Animated GIFs of the simulations
and additional cases are also available online at https://cesarbarilla.github.io/

research/mfg-cities.
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Algorithm 1 Iterative proportionnal fitting algorithm

Input : Initial potentials ak1, ak2, vk1 , vk2 .
for all l ≥ 0 do

for k = 0, ..., N do

ak1 =

 ev
k
1κk1∑

j∈S
ak2ξ(·, j)


θ1

θ1+dtσ

ak2 =

 ev
k
2κk2∑

i∈S
ak1ξ(i, ·)


θ2

θ2+dtσ

end for

ev
0
1 :=

m0
1

α0
1

ev
0
2 :=

m0
2

α0
2

for k = 1, ..., N do
Solve for all i ∈ S :

min
β≥0

θ1α
k
1(i)e

− dt
θ1
β

+ θ2α
k
2(i)e

− dt
θ2
β

+ dtG(β)

Set :

vk1(i) = −dt
θ1

β

vk2(i) = −dt
θ2

β

end for
Q1 =

(⊗N
k=0 e

vk1 (ak1)
− dtσ
θ1

)
×RN

1

Q2 =
(⊗N

k=0 e
vk2 (ak2)

− dtσ
θ2

)
×RN

2

end for
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higher a and p mean stronger congestion,

• the ground cost is taken to be either the geodesic distance (labeled
as linear), either its square root (labeled sqrt) or its square distance
(labeled quadratic).

The simulations below only vary in the parameters (T,N, θ1, θ2, σ, ν1, ν2, p, a)
and the ground cost – all of which are specified for each corresponding plot
at the bottom of the figure.

For interpreting graphs, recall that we take population 1 (blue/solid
curves) as inhabitants and 2 (red/dashed curves) as firms. Generally, we
study cases with θ1 < θ2 i.e it is more costly for firms to relocate and ν1 > ν2

i.e inhabitants diffuse more. This is chosen for consistency with intuition.
Several interesting empirical observations emerge from the simulations:

• Ground cost matters: Transport cost between the densities acts as
an agglomeration force in the model – indeed, total commuting cost is
minimized at zero when the two densities completely overlap. It is no
surprise hence that, all else being equal, a stronger transport cost will
generate more agglomeration effects and overlapping densities in the
long run while a weaker transport cost can let the congestion effect dom-
inate in equilibrium. Figures 1, 2, 3 show three simulations illustrating
this, where all parameters are kept identical except for the ground cost
(respectively square root, linear, quadratic). All three simulations start
from the same initial condition: a single peaked compactly supported
distribution for each population. Clearly, 1 showcases segregation while
3 generates overlapping densities in the long run – 2 is an intermediate
case. Intuitively, a linear or concave commuting cost makes economic
sense: the incremental difference in commuting cost has no particular
reason to be increasing with distance to the workplace; on the contrary,
it seems reasonable that marginal cost of commute would be decreas-
ing in distance (once you live in the suburbs and far enough from the
city center, living just a little further will hardly make a difference in
commuting time). It’s intuitive why such settings would lead to more
segregated city patterns with a centre/suburbs configuration.

• Sensitivity to initial conditions: The kind of equilibrium and city
configurations that arises in the long run appears to be highly sensi-
tive to initial conditions. As an example, consider figures 4a and 4b.
Both have identical parameters but the initial distributions have been
swapped ; the initial densities are mixtures of gaussians such that one
population is centered around one peak while the other has three main
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Figure 1
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Figure 2
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Figure 3
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(a) (b)

Figure 4

peaks. This could for instance be interpreted as an initial situation with
one industrial center and three small villages (or vice-versa). In both
cases, we see the emergence of a center/periphery structure with the
population that was initially more concentrated in the center. Observe
that the asymmetry in the population characteristics nonetheless plays
a part in shaping the solution: although a similar behavior is observed
in terms of formation of a center, when the more mobile population is
not in the center its density becomes relatively closer to a uniform dis-
tribution 4a. In the opposite case, we see a pattern closer to a bimodal
city with two centers emerging.

• Convergence to matching distributions and speed: In general,
if the aggregating effects are high enough relative to segregating effects
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(a) (b)

Figure 5

(high transport cost, high diffusion, low motion cost, low congestion
cost), then the densities will tend to converge quite quickly towards each
other to completely overlap. The speed of that process and the shape of
the final density is determined quite intuitively by the parameters – the
density with least motion cost will tend to converge towards the other
faster, lower overall motion costs speeds up convergence. See notably
Figure 5b and 3 or see online for additional figures and examples4. On
the contrary, figure 5a provides an example where congestion dominates
and the initial segregation is perpetuated in a smoothed fashion in
equilibrium.

• Segregation patterns: One of the main interest of the figures pre-

4https://cesarbarilla.github.io/research/mfg-cities
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Figure 6

sented is not so much this or that particular configuration or example
but rather the fact that the model, with a very sparse and stylized set
of explanatory factors is able to generate quite a rich variety of segrega-
tion patterns through the interplay of model parameters. With a simple
geographical labour market and congestion, several usual city patterns
can be obtained in equilibrium – the American-style city with a business
center and residential suburbs in 4a, its inverted (”European”) form in
4b, a bimodal city in 5a, a near-uniform city with several industrial
centers in 6. High sensitivity to parameters and strong dependency
to initial parameters display complex dynamics: for instance, when a
segregated city appears with a clear center/periphery structure, it can
be but is not necessarily centered around the less mobile population –
it tends to be if population are initially spread out enough but it can
also center around the population that was initially more concentrated.
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6 Conclusion

We have proposed a two-populations mean field game model for the evolu-
tion of cities with a coupling related to optimal transport (or its entropically
regularized variant) so as to capture equilibrium on the labour market at
each time. In the case of quadratic Hamiltonians, taking advantage of an
entropy minimization formulation of the problem, we have proposed a nu-
merical scheme in the spirit of the celebrated IPFP/Sinkhorn algorithm.

The variety of patterns that appear in simulations highlights that for all
its sparsity, the model can provide intuitive and somehow realistic city dy-
namics for a rich array of configurations. This underlines the relevance of
the mean-field game approach to model this kind of dynamics. It should
be noted in addition that the algorithm and solution method provided is
efficient and scalable. Lastly, note that although we have focused on a geo-
graphical approach modeling the dynamics of cities, this model could easily
be reinterpreted for any situation that has similar essential ingredients : two
populations constrained to be in an instaneous equilibrium in which some
characteristic is taken as given locally in time, but such that this character-
istic can be continuously altered (at a cost) in time. One prominent example
would be to reinterpret the model in a skill space instead of geographical
space: assume that workers have skill measured on some arbitrary space and
that each firm needs a specific type of worker such that output is decreasing
in the skill-space distance between its ideal worker and the worker actually
hired. Taking skills as given, this is a matching problem that can be viewed
as an optimal transport problem and is formally analogous to our geograph-
ical labour market. Now assume that workers can obtain training to change
their skill and firms can shift their activity and corresponding skill demand
– both of which at a cost. Instantaneously, there still needs to be an equi-
librium but dynamically the distributions of both workers and firms in the
skill space are altered through this process. Furthermore, assume there is an
exogenous demand constraint on each skill – if too many firms/workers are
producing the same good, profits are reduced (equivalently they pay some
cost in profits loss). This corresponds formally to some congestion as intro-
duced in the previous model. Hence the MFG system can almost directly
be reinterpreted in this framework and the results and methods presented
here translated to that framework. More generally, it seems that the multi-
scale intertwined equilibria framework presented here could prove relevant as
a blueprint to model an array of economic interactions – which we did not
exhaustively explore.

The contributions of this paper reside mainly in introducing a mathemati-
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cal and numerical framework which is a combination of mean-field games with
several populations and optimal transport. We proved results guaranteeing
that the model is well-posed, proposed a numerical solution method, and
explored one possible application – leaving space for further developments.
Let us briefly discuss two possible developments in cities modeling. The
observed concentration of activities in cities reflects the existence of strong
production externalities. Positive externalities or spillover effects (absent
from our model) act as a major agglomeration force and thus play a key role
in urban economics. They should therefore be taken into account in more
realistic equilibrium models as in Lucas and Rossi-Hansberg [24]. Another
challenging extension is to add a major player to our model so as to analyze
or design urban public policies.

Acknowledgments: G.C. is grateful to the Agence Nationale de la
Recherche for its support through the projects MAGA (ANR-16-CE40-0014)
and MFG (ANR-16-CE40-0015-01).

References

[1] Yves Achdou, Martino Bardi, and Marco Cirant. Mean field games
models of segregation. Math. Models Methods Appl. Sci., 27(1):75–113,
2017.

[2] Amir Beck and Luba Tetruashvili. On the convergence of block coordi-
nate descent type methods. SIAM J. Optim., 23(4):2037–2060, 2013.

[3] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna,
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