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Abstract: Starting from a model of traffic congestion, we introduce a minimal-flow–like vari-
ational problem whose solution is characterized by a very degenerate elliptic PDE. We precisely
investigate the relations between these two problems, which can be done by considering some weak
notion of flow for a related ODE. We also prove regularity results for the degenerate elliptic PDE,
which enables us in some cases to apply the DiPerna-Lions theory.

Résumé: Partant d’un problème de transport congestionné, nous introduisons un problème
vartiationnel vectoriel dont la solution est caractérisée par une EDP elliptique très dégénérée. Nous
étudions précisément les relations entre ces deux problèmes grâce à une notion faible de flot pour
une certaine EDO. Nous établissons aussi des résultats de régularité pour l’EDP dégénérée, ce qui
nous permet dans certains cas d’utiliser la théorie de DiPerna-Lions.
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1 Introduction

Traffic congestion issues have received a lot of attention from engineers since the 50’s mainly in
network models (see [21], [4] and the references therein). In such (finite-dimensional) network
models, congestion effects are captured through the fact that the travel time of each arc of the
network is an increasing function of the flow on this arc. In [21], Wardrop defined a concept of
equilibrium for such congested networks that has been very popular since. Roughly speaking, a
Wardrop equilibrium is a flow configuration that satisfies natural mass preservation constraints
(Kirchhoff’s law and compatibility with the given distribution of sources and sinks) and such that
every actually used (i.e. where the flow is positive) path connecting a source and destination should
be a shortest path (taking into account the congestion effects). Recently, in [7], a model of continuous
congested traffic equilibrium has been proposed as well as a generalization of Wardrop’s equilibrium
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to a continuous setting. In this model, an equilibrium is a probability measure over a set of paths
that gives full mass to geodesics for a metric that itself depends on the measure due to congestion
effects.

One aim of the present paper is to construct such equilibria as measures supported in some sense
on the integral curves of some non-autonomous vector field (not regular in general). For the sake of
completeness and to motivate what follows, we will briefly explain the model and some of the results
of [7]: there, a domain Ω ⊂ RN and two probability measures µ0 and µ1 on Ω are given (distribution
of sources and sinks or residents and services, say, in a urban region). In the framework of [7], an
equilibrium is in fact a probability measure Q on C([0, 1]; Ω) that solves the following variational
problem:

inf
Q∈Qp(µ0,µ1)

∫
Ω
H(iQ(x)) dx (1.1)

where H : R+ → R+ is some convex increasing function with a p−th power growth at infinity,
Qp(µ0, µ1) is the set of probability measures on C([0, 1]; Ω) concentrated on absolutely continuous
curves satisfying compatibility conditions with the distributions of sources and sinks (i.e. (e0)#Q =
µ0 and (e1)#Q = µ1, where the maps et : C([0, 1]; Ω) → Ω are the evaluation maps at time t) and
such that iQ is an Lp function, where iQ is the traffic intensity associated to Q defined by∫

Ω
ϕ(x) diQ(x) :=

∫
C([0,1];Ω)

(∫ 1

0
ϕ(γ(t))|γ′(t))| dt

)
dQ(γ), for every ϕ ∈ C(Ω).

In this formulation, iQ represents the total cumulated traffic and H is defined by H(0) = 0, H ′(i) =
g(i) where g is an increasing function that models the congestion effect: that is, roughly speaking,
if the intensity of traffic is iQ then the congested metric is g(iQ). Once again, we refer to [7] for
more details and in particular the existence of a solution to (1.1) as soon as Qp(µ0, µ1) 6= ∅ and
the precise sense in which the Euler-Lagrange equation of (1.1) corresponds to the fact that Q is a
Wardrop equilibrium (i.e. Q-a.e. γ is a geodesic for the metric g(iQ), a metric which, by the way,
is typically given by an Lq function only, with q = p/(p − 1), so that one has to properly define
distances and geodesics in such a non-continuous setting, and this is one of the main issues solved
by [7]).

As already mentioned, one aim of this paper is to construct solutions of (1.1). A first ingredient
to achieve this goal, is to introduce a minimal-flow–like problem and to relate it to the scalar problem
(1.1) as follows. First, for Q ∈ Qp(µ0, µ1), define the vector-valued measure σQ by:∫

Ω
ϕ(x) dσQ(x) :=

∫
C([0,1];Ω)

(∫ 1

0
〈ϕ(γ(t)), γ′(t)〉 dt

)
dQ(γ), for every ϕ ∈ C(Ω,RN ),

i.e. sort of a vector version of iQ. It is immediate to check that |σQ| ≤ iQ so that σQ ∈ Lp(Ω,RN )
and that

divσQ = µ0 − µ1, σQ · ν = 0 on ∂Ω,
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in the sense of distributions. Since H is increasing, this implies that the infimum of (1.1) is larger
than that of the minimal flow problem:

inf
σ∈Lp(Ω;RN )

{∫
Ω
H(σ) dx : divσ = µ0 − µ1, σ · ν = 0 on ∂Ω

}
, (1.2)

where H(σ) := H(|σ|). In the sequel, problem (1.2) will be often referred to as the “vector” problem
while problem (1.1) as the “scalar” problem.

If, conversely, σ solves (1.2) and if we are able to construct Q ∈ Qp(µ0, µ1) such that iQ = |σ|,
then Q will be a solution to (1.1). Heuristically (i.e. ignoring regularity issues) a natural candidate
Q is given by Q :=

∫
δX(. ,x) dµ0(x) where X(. , x) is the flow of the non-autonomous ODE:

∂tX(t, x) = σ̂(X(t, x), t), X(0, x) = x, σ̂(x, t) :=
σ(x)

(1− t)µ0(x) + tµ1(x)
, (1.3)

with σ solving (1.2), according to a deformation argument which essentially dates back to Moser (see
[19]) and which has also been exploited by Evans and Gangbo in the context of mass transportation
problems (see [14]) . If σ̂ is Lipschitz, this flow can be defined in a classical sense and the situation
is relatively easy to understand. This leads us to the study of the regularity of σ̂ and hence of σ:
unfortunately, we will see that requiring σ to be Lipschitz will be unrealistic for the models of traffic
congestion we are interested in. Formally (see section 2 for details and precise assumptions), by
duality, the solution of (1.2) is σ = ∇H∗(∇u) where H∗ is the Legendre transform of H and u solves
the PDE: {

div∇H∗(∇u) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω.

(1.4)

Hence, the question immediately becomes a question on regularity properties for the solutions of
this equation.

For instance, if one takes H(σ) = |σ|p/p, then it is easy to see that we have ∇H∗(z) = |z|q−2z,
so that (1.4) simply becomes a homogeneous Neumann problem for the q-Laplacian operator. This
degenerate elliptic equation has been widely studied in literature and in general one cannot hope
for better results than C1,α regularity for u (i.e. σ ∈ C0,α, see for instance [11, 17]).

Yet, the situation in the cases which are motivated by traffic congestion is even worse. Indeed,
let us recall that H ′ = g where g is the congestion function relating the metric to the traffic intensity.
It is therefore natural to have g(0) > 0 : the metric is positive even if there is no traffic, so that
the radial function H is not differentiable at 0 and then its subdifferential at 0 contains a ball. By
duality, this implies ∇H∗ = 0 on this ball which makes (1.4) very degenerate. A reasonable model
of congestion is g(t) = λ+ tp−1 for t ≥ 0, with p > 1 and λ > 0, so that

H(σ) =
1
p
|σ|p + λ|σ|, H∗(z) =

1
q
(|z| − λ)q

+, with q =
p

p− 1
. (1.5)

In this very degenerate case, one will not look for the regularity of u but only of σ = ∇H∗(∇u).
Regularity for this term should not be astonishing, as far as one notices that Ω can be, roughly
speaking, divided into two zones, one where σ = 0, the other where the equation is less degenerate
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(but obviously the two regions are not open sets and one has to make rigorous this idea). Assuming
µ0 and µ1 have Lipschitz densities bounded from below by positive constants, if one can prove
Sobolev regularity of ∇H∗(∇u) as well as an L∞ bound on ∇u for the PDE (1.4), then one can
define a flow for (1.3) in the sense of the DiPerna-Lions theory. Such regularity results have, in our
opinion, their own interest and have not been treated a lot in the literature. Lipschitz regularity of
u is almost classical since it is clear that estimates on high values of |∇u| should only involve the
region where the equation is strongly elliptic. Anyway, they are not evident especially if one deals
with global results up to ∂Ω or with variable coefficients. We will refer to a paper of Fonseca, Fusco
and Marcellini ([15]), where the results we need are proven for variational purposes. Section 5 will
just explain how to use these results with the regularity assumptions we have. On the contrary,
Section 4 will give a detailed proof of the Sobolev regularity of ∇H∗(∇u). The proof is mainly
based on simple variants of usual schemes for the p−Laplacian and follows what is done in a paper
by Carstensen and Müller, [9], where similar results are proven for relaxations of certain nonconvex
functionals. The main differences between our proof and that in [9] lie in some pointwise inequalities
on the operator which appears in the divergence, so that we are able to deal with some more general
growth cases. Moreover, we will explicitly address in the Sobolev proof the use of the L∞ result of
Section 5, which allows to deal quite easily with one of the terms which appear in the estimates.

Let us also mention the recent work [20], where continuity of the same term ∇H∗(∇u) is proved
in dimension 2. Actually this kind of regularity results is not necessary for the purpose of our
paper, i.e. defining the flow of σ̂, but still finds applications in congestion, proving for instance the
continuity of the equilibrium metrics ([7, 20]) .

In general, as explained in subsection 3.2, when very little regularity is available on the velocity
field σ̂, it is still possible to relate (1.1) to (1.2) and (1.3) by using the notion of superposition
solutions and the superposition principle (see [2]).

The plan of the paper is as follows: Section 2 is devoted to a precise characterization of the
minimal flow problem. In Section 3, different notions of flows for (1.3) are considered and the
precise connection between the scalar problem (1.1) to (1.2) and (1.3) is given as well as the proof of
the equality of the values of (1.1) and (1.2) by using the concept of superposition solutions. Then,
focusing on the case of (1.5), we prove Sobolev regularity of ∇H∗(∇u) in Section 4 and we address
Lipschitz regularity of u in Section 5 for the degenerate PDE (1.4).

2 Minimal flow model

Let Ω ⊂ RN be a bounded open set with a smooth (in a sense made precise later on) boundary and
let µ0, µ1 ∈ P(Ω) be two given probability measures over its closure. We consider the following
minimization problem

inf
σ∈Lp(Ω;RN )

{∫
Ω
H(σ(x)) dx : divσ = µ0 − µ1, σ · ν = 0 on ∂Ω

}
, (2.1)

where H : RN → R satisfies:
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(i) H is a strictly convex radially symmetric function, with H(0) = 0;

(ii)
a|σ|p ≤ H(σ) ≤ b(|σ|p + 1), σ ∈ RN ,

for some p ∈ (1,∞) and a, b positive constants;

(iii) H is differentiable in RN \ {0} and there exists a positive constant c such that

|∇H(σ)| ≤ c(|σ|p−1 + 1), σ ∈ RN \ {0}.

Example 1. Taking H(σ) = |σ|, then (2.1) becomes the continuous transportation model

inf
σ∈M(Ω;RN )

{‖σ‖L1 : divσ = µ0 − µ1, σ · ν = 0 on ∂Ω} ,

which is nothing but an equivalent formulation of the Monge’s problem, with cost equal to the
distance (see [3]).

Example 2. Another interesting case, more related to the case of congested dynamics, is given by
the choice H(σ) = |σ|2, for which the minimal value (2.1) is given by (see [8] for the details)

C(µ0, µ1) =
{
‖µ0 − µ1‖2

X∗ , if µ0 − µ1 ∈ X∗

+∞, otherwise.

where X∗ indicates the dual of the Hilbert space X = W 1,2
� (Ω) = {ϕ ∈ W 1,2(Ω) :

∫
Ω ϕ = 0},

equipped with the scalar product

〈ϕ,ψ〉X =
∫

Ω
〈∇ϕ,∇ψ〉 dx.

Even for this simple problem with quadratic cost, it is only thanks to the results in the present
paper that one gets a rigorous equivalence between the “vector” problem used in [8] and the models
suggested by Beckmann ([3]) which are better interpreted with a “scalar” construction.

In what follows, we will mainly confine our analysis to the case in which

H(σ) =
1
p
|σ|p + λ|σ|, σ ∈ RN , (2.2)

with p ∈ (1, 2] and λ > 0 a positive constant. The reasons for the restriction on the exponent p are
twofold: on the one hand, the scalar problem of [7] is fully understood under the extra assumption
p < N/(N − 1) (i.e. p < 2 in two dimensions, which is the most relevant case in applications); on
the other hand we will see extra difficulties arise concerning elliptic regularity whenever we are in
the singular case q = p/(p− 1) < 2.
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Theorem 2.1. Suppose that the infimum in (2.1) is finite and let σ0 be its unique optimizer, then
there exists ϕ0 ∈W 1,q(Ω) such that

σ0 = ∇H∗(∇ϕ0), (2.3)

and ϕ0 is a weak solution of {
div∇H∗(∇u) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(2.4)

where H∗ is the Legendre transform of H and q = p/(p− 1).

Proof. We first observe that problem (2.1) consists in minimizing a strictly convex and coercive
functional on Lp subject to a convex and closed constraint: then an optimizer σ0 exists and must
be unique. It is well known that problem (2.1) has a dual formulation, given by the convex analysis
formula (see for instance [13])

sup
{∫

Ω
ϕ d(µ1 − µ0)−

∫
Ω
H∗(∇ϕ) dx

}
= inf

{∫
Ω
H(σ) : divσ = µ0 − µ1, σ · ν = 0

}
.

Due to the superlinear growth and the strict convexity of H, we get that H∗ ∈ C1 and it verifies
the following growth conditions

B(|z|q − 1) ≤ H∗(z) ≤ A|z|q,

where q = p/(p− 1), then using the Direct Methods of the Calculus of Variations it is not difficult
to show that the dual problem admits at least a solution ϕ0 belonging to W 1,q

� (Ω), where

W 1,q
� =

{
ϕ ∈W 1,q(Ω) :

∫
Ω
ϕ(x) dx = 0

}
.

We observe further that the Euler-Lagrange equation of

F(ϕ) =
∫

Ω
H∗(∇ϕ(x)) dx−

∫
Ω
ϕ(x) d(µ1 − µ0),

is given by (2.4), so that ϕ0 solves it, in distributional sense. Moreover, ϕ0 and σ0 verifies∫
Ω
H(σ0) =

∫
Ω
ϕ0(µ1 − µ0)−

∫
Ω
H∗(∇ϕ0) =

∫
Ω
∇ϕ0 · σ0 −

∫
Ω
H∗(∇ϕ0),

where we have used the fact that divσ0 = µ0 − µ1 and σ0 · ν = 0. The previous can be written as∫
Ω
H(σ0) +

∫
Ω
H∗(∇ϕ0) =

∫
Ω
∇ϕ0 · σ0,

which, by means of the so called Legendre reciprocity formula, implies that

σ0(x) ∈ ∂H∗(∇ϕ0(x)), for L N -a.e. x ∈ Ω.

Using the fact that H∗ ∈ C1, we obtain that actually the subgradient set ∂H∗ is made of just an
element, namely the gradient ∇H∗, concluding the proof.
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3 Different meanings and equivalences

In this section we discuss how to connect the “scalar” problem on measures on paths to the “vector”
problem on fields with prescribed divergence: in which sense and when they are equivalent and how
to pass from one minimizer to the other.

3.1 Cauchy-Lipschitz flow

Let us consider a non-autonomous vector field v : [0, 1]×Ω → RN such that v ·ν = 0, where ν stands
for the outer normal vector to ∂Ω. It is well-known that if v is sufficiently smooth, say Lipschitz
with respect to the spatial variable, then for every µ0 the unique solution of the Cauchy problem

∂

∂t
µ(t, x) + divx(v(t, x)µ(t, x)) = 0, (t, x) ∈ [0, 1]× Ω,

µ(0, x) = µ0(x), x ∈ Ω,

(3.1)

is given by
µ(t, ·) = (X(t, ·))#µ0, (3.2)

where X : [0, 1] × Ω → Ω is the flow of v, that is X is the map that to every (s, x) ∈ [0, 1] × Ω
assigns the position at time s of the curve γ satisfying{

γ′(s) = v(s, γ(s))
γ(0) = x

(3.3)

This is a particular case of the method of characteristics which basically says that the solution of
(3.1) is given by the evolution, through the flow of v, of the initial measure µ0 (see [2] for a clarifying
exposition of this theory).

We now take two probability measures µ0 and µ1 on Ω, absolutely continuous w.r.t to L N and
having density given by f0 and f1, respectively.

Using the above remarks on ODEs and the continuity equation, we now illustrate our general
strategy to prove the equivalence between the two problems

inf
Q∈Qp(µ0,µ1)

∫
Ω
H(iQ) dx and inf

σ∈Lp(Ω;RN )

{∫
Ω
H(σ) dx : divσ = f0 − f1, σ · ν = 0

}
. (3.4)

We already know that in general the value of the vector minimization problem (right hand side of
(3.4)) is less than or equal to the value of the scalar one. The key point is to show that, given the
optimizer σ of the vector problem, we can construct a Q ∈ Qp(µ0, µ1) such that |σ| = iQ. Then
(3.4) is a straightforward consequence of the monotonicity assumptions on H.

As we already mentioned, the main idea will be the use of the deformation argument due to
Moser and used later by Evans and Gangbo: for the moment we make the further assumption that
f0 and f1 are Lipschitz continuous and bounded from below, that is f0, f1 ≥ c > 0 on Ω.
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If σ is the unique solution of the convex optimization problem (2.1), we construct the non-
autonomous vector field

σ̂(t, x) =
σ(x)

(1− t)f0(x) + tf1(x)
, (t, x) ∈ [0, 1]× Ω. (3.5)

The latter will not have any Lipschitz continuity property in general, unless the optimizer σ itself
is regular: anyway, if we assume that one can prove σ ∈ Lip(Ω), then the flow X : [0, 1] × Ω → Ω
of σ̂ is well-defined and we can take µt as in (3.2). In this way, we have obtained the solution of
(3.1), with v = σ̂ and initial datum f0. Moreover, the same Cauchy problem is solved by the linear
interpolating curve

ρt(·) := (1− t)f0(·) + tf1(·), (3.6)

which implies, due to well-posedness of (3.1), that ρt and µt must coincide. This in turn yields that

(X(1, ·))#f0 = f1, (3.7)

which ensures that X(1, ·) transports µ0 on µ1. If we now consider the probability measure concen-
trated on the flow, i.e. Q =

∫
δX(· ,x) dµ0(x), then thanks to (3.7) this is admissible and it is not

difficult to see that iQ = |σ| (we will give all the details in Theorem 3.2 below), which finally implies
that the minimum of the two problems coincide. Moreover, this construction provides a transport
map (that is X(1, ·)) from µ0 to µ1, whose transport “rays” (i.e. integral curves) evidently do not
cross and which is monotone on transport rays (as a consequence of Cauchy-Lipschitz Theorem).

Remark 1. We point out that in this setting, where everything is sufficiently smooth, property
(3.7) can be proved at a Lagrangian level, without mentioning the well-posedness of the continuity
equation: indeed one can use a trick of Dacorogna and Moser (see [10]) to show that the quantity

h(t, x) = det∇xX(t, x)[(1− t)f0(X(t, x)) + tf1(X(t, x))],

is actually constant in time. Then using the fact that X(0, x) = x we get that

f0(x) = f1(X(1, x)) det∇xX(1, x),

which in turn implies (3.7) by means of the area formula.

Anyway, recalling the optimality condition for σ provided by Theorem 2.1, the reader can easily
convince himself that our choice for the function H rules out any possibility of Lipschitz regularity
for σ. So the previous construction of Q is purely formal: we will see in the next subsections how
(and in what sense) one can still construct a flow X and make this construction a rigorous one.

Remark 2. On the contrary, when one takes H(z) = |z|2, standard elliptic theory allows to prove
Lipschitz regularity for σ and this concept of Cauchy-Lipschitz flows may be used.
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3.2 Superposition of flows

For a general vector field v under very mild assumptions, the most general meaning that we can
give to the flow of v is in terms of the so-called superposition principle, that we now explain in some
details. As far as we can see, this provides a very weak concept of flow (a probabilistic one, let’s say),
which anyway is strong enough to still give sense to the construction of the previous subsection.

Definition 1. Let Q ∈ P(C([0, 1]; Ω)) be concentrated on the absolutely continuous solutions of
(3.3), in the sense that∫

C([0,1];Ω)

∣∣∣∣γ(t)− γ(0)−
∫ t

0
v(s, γ(s)) ds

∣∣∣∣ dQ(γ) = 0, for every t ∈ [0, 1]. (3.8)

If we define the curve of measures µQ
t through∫

Ω
ϕ(x) dµQ

t (x) :=
∫

C([0,1];Ω)
ϕ(γ(t)) dQ(γ), for every ϕ ∈ C(Ω), (3.9)

then this curve µQ
t is called superposition solution of Problem (3.1): µQ

t is actually a distributional
solution of the continuity equation, with initial datum µ0 = µQ

0 .

Remark 3. It is not hard to see that when v is smooth, formula (3.9) is exactly equivalent to
(3.2). Indeed in this case, for every x ∈ Ω, there exists a unique curve X(·, x) solving (3.3), so that
Q =

∫
Qx dµ0(x) with Qx a Dirac mass concentrated on this curve, that is Qx = δX(·,x), and (3.9)

now becomes ∫
Ω
ϕ(x) dµQ

t (x) =
∫

Ω
ϕ(X(x, t)) dµ0(x) =

∫
Ω
ϕ(x) d(X(t, ·))#µ0(x).

In this way, we can think of the concept of superposition solutions as a probabilistic version of the
method of characteristics.

The most valuable fact of this theory is that, under suitable integrability conditions of the
vector field v, every positive measure-valued distributional solution of (3.1) can be realized as a
superposition solution: a proof can be found in [2] (Theorem 12).

Theorem 3.1 (Superposition principle). Let µt be a positive measure-valued solution of the conti-
nuity equation

∂

∂t
µt + div(vµt) = 0,

with the vector field v satisfying the following condition∫ 1

0

∫
Ω
|v(t, x)| dµt(x) dt < +∞, (3.10)

then µt is a superposition solution.
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Using the concept of superposition solution, it is now a straightforward fact to provide a rigorous
proof of the equivalence between the two problems in (3.4).

Theorem 3.2. Let µ0, µ1 ∈ P(Ω) having Lp density w.r.t. to L N , given by f0 and f1, respectively.
Then equality of values of the two problems in (3.4) holds true.

Proof. As before, we take the minimizer σ of the vector problem and we consider the non-autonomous
vector field defined by (4.15). We point out that the Lp assumption on the densities has been chosen
in order to guarantee finiteness of the infima of both problems (see [7]). With this choice of σ̂, the
linear interpolating curve µt = (1 − t)µ0 + tµ1 is a positive measure-valued distributional solution
of the continuity equation

∂

∂t
µt + div(σ̂µt) = 0,

with initial datum µ0. Moreover, σ̂ satisfies hypothesis (3.10), so that µt is a superposition solution:
this means that there exists a probability measure Q ∈ P(C([0, 1]; Ω)) such that (3.8) holds and∫

Ω
ϕ(x) dµt(x) =

∫
Ω
ϕ(x) dµQ

t (x), for every ϕ ∈ C(Ω),

with µQ
t given by (3.9) (observe that in the Cauchy-Lipschitz case, this amounted to say that ρt

defined by (3.6) had to coincide with the solution given by (3.2)). This Q is admissible, that is
Q ∈ Q(µ0, µ1) and moreover, using Fubini Theorem and the disintegration Q =

∫
Qx dµ0(x), we get∫

Ω
ϕ(x) diQ(x) =

∫
C

∫ 1

0
ϕ(γ(t))|γ′(t)| dt dQ(γ) =

∫ 1

0

∫
C
ϕ(γ(t))|γ′(t)| dQ(γ) dt

=
∫ 1

0

∫
Ω

∫
C
ϕ(γ(t))|γ′(t)| dQx(γ) dµ0(x) dt

=
∫ 1

0

∫
Ω
ϕ(x)|σ̂(t, x)| dµt(x) dt =

∫ 1

0

∫
Ω
ϕ(x)|σ(x)| dx dt,

so that ∫
Ω
ϕ(x) diQ(x) =

∫
Ω
ϕ(x)|σ(x)| dx, for every ϕ ∈ C(Ω).

This clearly implies that iQ = |σ| and thus Q ∈ Qp(µ0, µ1) and it solves the scalar problem in (3.4),
concluding the proof.

Notice that the regularity of the curves which are charged by the measure Q corresponding to
a superposition solution is very poor. On the contrary, if one knows that v is continuous, these
curves are C1 and they solve their ODE in a classical sense. The forthcoming paper [20] will prove
a C0 result in two spatial dimensions for the vector field we are interested in. Obviously, continuity
without Lipschitz continuity or similar conditions is not sufficient for ensuring any kind of uniqueness
result. We will see in a while that some kind of uniqueness may be recovered by an intermediate
concept of solution.
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3.3 DiPerna-Lions flow

As far as now, we have seen that everything goes well if we face a Lipschitz vector field v and that
we can at least prove equality of the minima if, instead, v is only integrable. In the latter case, it is
not evident to add anything else to this equality and in particular one has no real clue to construct a
minimizer for the scalar problem from a minimizer for the vector one. The problem is mainly linked
to the lack of uniqueness. We will see in this section an intermediate concept, for vector fields which
are not Lipschitz but much better than just integrable.

If v(t, ·) ∈W 1,1(Ω) and the vector field has bounded divergence, we can enforce the conclusion of
Theorem 3.2 and guarantee that the optimal Q associated to the optimizer σ is actually concentrated
on a uniquely defined flow X (possibly in a.e. sense), trasporting µ0 to µ1.

In fact in this setting, it is still possible to give sense to formula (3.2), through the DiPerna-Lions
theory of flows of weakly differentiable vector fields: we recall the following fundamental result (see
Theorem III.2 of [12]; the same results are also presented in [2] where the language is more similar
to ours).

Theorem 3.3. Let v ∈ L1([0, 1];W 1,1(Ω)) and such that divxv ∈ L1([0, 1];L∞(Ω)). Then there
exists a unique X ∈ C0([0, 1]× [0, 1];L1(Ω; RN )) which leaves Ω invariant and such that:

(i) if we set A(t) =
∫ t
0 ‖divxv(τ, ·)‖∞ dτ , then

e−|A(t)−A(s)|L N ≤ (X(t, s, ·))#L N ≤ e|A(t)−A(s)|L N , for every t ∈ [0, 1];

(ii) X satisfies the group property

X(t3, t1, x) = X(t3, t2, X(t2, t1, x)), for L N -a.e. x ∈ Ω, for every t1 < t2 < t3 ∈ [0, 1];

(iii) for every s ≥ 0 and for L N -a.e. x ∈ Ω, X is an absolutely continuous integral solution of
(3.3), that is

X(t, s, x) = x+
∫ t

s
v(r,X(r, s, x)) dr, for L N -a.e. x ∈ Ω, t ≥ s.

Moreover, if µ0 = ρ0L N with ρ0 ∈ Lp(Ω), then for every s ∈ [0, 1)

µ(t, ·) = X(t, s, ·)#µ0, s ≤ t ∈ [0, 1],

is the unique renormalized solution in C0([s, 1];Lp(Ω)) of the continuity equation, with initial datum
µ(s, x) = µ0(x).

Definition 2. We recall that µ is said to be a renormalized solution of the continuity equation if
there holds

∂

∂t
β(µ) + v · ∇xβ(µ) + (divxv)µβ′(µ) = 0, in (0, 1)× Ω, (3.11)

in the sense of distributions, for every β ∈ C1(R).
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Clearly, every renormalized solution is a distributional solution (just take β ≡ 1 in (3.11)), while
in general the converse does not hold true. It is a remarkable fact of the DiPerna-Lions theory
that when v has a Sobolev regularity in x, then v has the renormalization property, that is every
distributional solution is actually a renormalized one. Moreover, renormalized solutions are the
right class in which existence, uniqueness and stability of solutions to the continuity equation can
be proved: this is crucial for our construction. Indeed, as already observed in the subsection on
Cauchy-Lipschitz flow, well-posedness of the continuity equation guarantees that the flow at time 1
transports µ0 on µ1, so that the measure Q associated to σ is admissible.

Finally, we just point out that the renormalization property can be proved also for vector fields
with BV regularity (with respect to the space variable), as shown by Ambrosio ([1]): some L∞

bounds on the divergence of the vector field are again essential.

Due to the previous facts, the rest of the paper is devoted to provide Sobolev and L∞ estimates
for the optimizer σ under the following assumptions:

(i) µi = fiL N , with fi ∈ Lip (Ω) and fi ≥ c > 0, for i = 0, 1;

(ii) Ω open connected bounded subset of RN having smooth boundary.

In fact with these assumptions, the vector field σ̂ given by (4.15) is well-defined and satisfies the
hypotheses of DiPerna-Lions Theorem, once we know that σ ∈W 1,r ∩ L∞, for some r ≥ 1. Indeed,
the Sobolev regularity of σ̂ is equivalent to that of σ, once f0 and f1 are Lipschitz. For the condition
on the divergence one may see that we have

div σ̂ =
div σ
ρt

− 〈σ,∇ρt〉
ρ2

t

.

Lipschitz regularity and lower bounds on ρt = (1− t)f0 + tf1 (i.e. on f0 and f1) and L∞ on σ seem
compulsory for getting the assumption on the divergence of σ̂.

Moreover, (i) guarantees that then (1 − t)µ0 + tµ1 is a renormalized solution of (3.1) and so it
must coincide with X#µ0.

We will achieve these results strongly relying on the optimality condition for σ provided by
Theorem 2.1, which ensures that σ = ∇H∗(∇u), where u ∈ W 1,q(Ω) is a distributional solution of
the degenerate elliptic equation

div(∇H∗(∇u)) = f0 − f1, (3.12)

under homogeneous Neumann boundary conditions.

4 Sobolev regularity of the vector field

In order to apply the DiPerna-Lions theory, first of all we have to show that σ is weakly differentiable:
we will indeed show that σ ∈W 1,r(Ω), for a suitable r. Observe that, in general, if one looks at the
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solution u itself, no more than C0,1 regularity should be expected for equation (3.12). Indeed, with
the choice

H(σ) =
1
p
|σ|p + |σ|, σ ∈ RN ,

we get
∇H∗(z) = (|z| − 1)q−1

+

z

|z|
, z ∈ RN ,

so that every 1−Lipschitz function is a solution of the homogeneous equation. Moreover, we have

(|∇u| − 1)q−1
+

|∇u|
|ξ|2 ≤ 〈D2H∗(∇u)ξ, ξ〉 ≤ (q − 1)(|∇u| − 1)q−2

+ |ξ|2, ξ ∈ RN , (4.1)

that is the ellipticity constants degenerate in the region {|∇u| ≤ 1}.
We will confine our analysis to the non-singular case q ≥ 2, which is anyway relevant for the

applications to minimization problems in traffic congestion.

First of all, we need the following pointwise inequalities. This is the main point where the precise
structure of H∗ plays a role.

Lemma 4.1. For every q ≥ 2, let us define the following vector field

G(z) = |∇H∗(z)|
p
2
z

|z|
= (|z| − 1)

q
2
+

z

|z|
, z ∈ RN . (4.2)

Then for every z, w ∈ RN we get

〈∇H∗(z)−∇H∗(w), z − w〉 ≥ 4
q2
|G(z)−G(w)|2 , (4.3)

|∇H∗(z)−∇H∗(w)| ≤ (q − 1)
(
|G(z)|

q−2
q + |G(w)|

q−2
q

)
|G(z)−G(w)| . (4.4)

Proof. We first observe that if max{|z|, |w|} ≤ 1, then (4.3) and (4.4) are trivially true. Secondly, in
the case min{|z|, |w|} ≤ 1, supposing for example that |w| ≤ 1 and |z| > 1, using Cauchy-Schwarz
inequality we get

〈∇H∗(z), z − w〉 =
(|z| − 1)q−1

+

|z|
〈z, z − w〉 ≥ (|z| − 1)q−1

+ |z| − (|z| − 1)q−1
+ = (|z| − 1)q

+,

which proves (4.3), while (4.4) is easily seen to be true in this case, too.
Let us now suppose that |z| > 1 and |w| > 1. Now, we recall the inequality (see [17])

〈|s|q−2s− |t|q−2t, s− t〉 ≥ 4
q2

∣∣∣|s| q−2
2 s− |t|

q−2
2 t
∣∣∣2 , s, t ∈ RN , (4.5)
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and we see that if we are able to prove the following〈
|s|q−2s− |t|q−2, (|s|+ 1)

s

|s|
− (|t|+ 1)

t

|t|

〉
≥ 〈|s|q−2s− |t|q−2t, s− t〉, (4.6)

then choosing
s = (|z| − 1)+

z

|z|
, t = (|w| − 1)+

w

|w|
,

and using (4.6) in combination with (4.5), we obtain (4.3). So, we are left to prove inequality (4.6):
one sees that this is equivalent to

|s|q−1 + |t|q−1 − 〈s, t〉
[
|s|q−2

|t|
+
|t|q−2

|s|

]
≥ 0,

which is just a simple consequence of Cauchy-Schwarz inequality 〈s, t〉 ≤ |s||t|.

In order to prove (4.4), it is enough to start from the inequality (see [17])

||s|q−2s− |t|q−2t| ≤ (q − 1)(|s|
q−2
2 + |t|

q−2
2 )
∣∣∣|s| q−2

2 s− |t|
q−2
2 t
∣∣∣ ,

which is valid for every t, s ∈ RN and then take s and t as before.

Notice that the pointwise estimates proved in the lemma above are not of the same kind of those
that are used in [9], which involved |∇H∗(z)−∇H∗(w)|2.

4.1 Interior Sobolev estimates

For the sake of clarity, we will first prove, thanks to an adaption of an argument used by Bojarski
and Iwaniec (see [5]) for the p−Laplacian operator, a local result that we will modify later in order
to arrive up to ∂Ω.

Theorem 4.2. Let Ω ⊂ RN be an open set and take f ∈W 1,p(Ω), with p = q/(q−1). If u ∈W 1,q(Ω)
is a local weak solution of

−div (∇H∗(∇u)) = f, in Ω, (4.7)

then we get G ∈W 1,2
loc (Ω), where the function G is defined by

G(x) := G(∇u(x)) = (|∇u(x)| − 1)
q
2
+

∇u(x)
|∇u(x)|

, x ∈ Ω. (4.8)

More precisely, for every Σ ⊂⊂ Ω there exists a constant C = C(N, q) such that

‖∇G(x)‖2
L2(Σ) ≤

C

dist (Σ, ∂Ω)2
‖∇u‖q

Lq(Ω) + C ‖∇f‖p
Lp(Ω).
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Proof. We fix two subsets compactly contained in Ω, that is Σ ⊂⊂ Σ0 ⊂⊂ Ω and such that 0 <
h0 = dist (Σ, ∂Ω) = 2 dist (Σ0, ∂Ω): we aim to prove that G ∈ W 1,2(Σ), using integrated difference
quotients. First of all, we observe that∫

Ω
〈∇H∗(∇u(x)),∇ϕ(x)〉 dx =

∫
Ω
f(x)ϕ(x) dx, for every ϕ ∈W 1,q

0 (Ω).

In particular, for every h such that |h| < h0/2, taking a ϕ ∈W 1,q
0 (Σ0), we get that∫

Ω
〈∇H∗(∇u(x+ hω)),∇ϕ(x)〉 dx =

∫
Ω
f(x+ hω)ϕ(x) dx,

for any direction ω ∈ SN−1. Hence subtracting and dividing by h, we obtain∫
Ω
〈δh,ω∇H∗(∇u),∇ϕ〉 dx =

∫
Ω
δh,ωf ϕ dx, (4.9)

for every ϕ ∈W 1,q
0 (Σ0), where we have used the notation δh,ωg(x) for (g(x+ hω)− g(x))/h.

We now want to exploit (4.9) for a suitable choice of the test function ϕ, in order to obtain W 1,2

estimates on G. At this end, let us take a smooth cut-off function ζ ∈ C1
0 (Σ0), such that: 0 ≤ ζ ≤ 1,

ζ ≡ 1 on Σ and ‖∇ζ‖∞ ≤ C(dist (Σ, ∂Ω))−1. Then we choose the test function ϕ = ζ2 δh,ωu for every
pair (h, ω) ∈ R × SN−1 such that |h| < h0/2: observe that with this choice, this is an admissible
test function in (4.9). We now develop ϕ and use Cauchy-Schwarz inequality, getting∫

Ω
〈δh,ω∇H∗(∇u), δh,ω∇u〉 ζ2 dx ≤ 2

∫
Ω
|δh,ω∇H∗(∇u)| ζ |∇ζ| |δh,ωu| dx

+
∫

Ω
ζ2 |δh,ωf | |δh,ωu| dx.

An application of the pointwise inequalities (4.3) and (4.4) yields∫
Ω
|δh,ωG|2ζ2 dx ≤ C

∫
Ω

(
|Gh,ω|

q−2
q + |G|

q−2
q

)
|δh,ωG| ζ |∇ζ||δh,ωu| dx

+
(∫

Ω
ζp|δh,ωf |p dx

) 1
p
(∫

Ω
ζq|δh,ωu|q dx

) 1
q

where the constant C depends on q only. By means of Young’s inequality, we get for every ε > 0(
|Gh,ω|

q−2
q + |G|

q−2
q

)
|δh,ωG| ζ |∇ζ||δh,ωu| ≤ ε |δh,ωG|2 ζ2

+
1
ε

(
|Gh,ω|

q−2
q + |G|

q−2
q

)2
|∇ζ|2|δh,ωu|2,

so that choosing ε small enough, the term on the right-hand side containing δh,ωG can be absorbed
by the term on the left hand-side. Up to now, we have shown∫

Ω
|δh,ωG|2ζ2 dx ≤ C

∫
Ω

(
|Gh,ω|

q−2
q + |G|

q−2
q

)2
|∇ζ|2|δh,ωu|2 dx

+
1
p

∫
Ω
ζp|δh,ωf |p dx+

1
q

∫
Ω
ζq|δh,ωu|q dx.

15



A simple application of Hölder’s inequality to the first term on the right-hand side, yields∫
Ω
|δh,ωG|2 ζ2 dx ≤ C

(∫
Σ0

(
|Gh,ω|

q−2
q + |G|

q−2
q

) 2q
q−2

dx

) q−2
q (∫

Ω
|∇ζ|q|δh,ωu|q dx

) 2
q

+
1
p

∫
Ω
ζp|δh,ωf |p dx+

1
q

∫
Ω
ζq|δh,ωu|q dx.

(4.10)

It is now sufficient to observe that(∫
Σ0

(
|G|

q−2
q + |Gh,ω|

q−2
q

) 2q
q−2

dx

) q−2
q

≤ 2
(∫

Ω
|G|2 dx

) q−2
q

,

so that inserting the latter in (4.10), we easily get∫
Ω
|Gh − G|2ζ2 dx ≤ C

dist (Σ, ∂Ω)2

(∫
Ω
|G|2 dx

) q−2
q
(∫

Σ0

|δh,ωu|q dx
) 2

q

+
1
p

∫
Ω
ζp|δh,ωf |p dx+

1
q

∫
Ω
ζq|δh,ωu|q dx.

Finally, we just observe that, by means of the characterization of Sobolev spaces in terms of inte-
grated difference quotients (see [6]), we have∫

Σ0

|δh,ωu|q dx ≤ CN

∫
Ω
|∇u|q dx, and

∫
Σ0

|δh,ωf |p dx ≤ CN

∫
Ω
|∇f |p dx,

and moreover by the very definition of G we have∫
Ω
|G|2 dx ≤

∫
Ω
|∇u|q dx,

so that in the end we get∫
Σ
|δh,ωG|2 dx ≤

C

dist (Σ,Ω)2

∫
Ω
|∇u|q dx+ C

∫
Ω
|∇f |p dx,

that is G has a square-integrable weak derivative along the direction given by ω ∈ SN−1.

Remark 4. We observe that as an easy consequence of Theorem 4.2 and Sobolev Imbedding The-
orems, we get a gain of integrability for ∇u: indeed, in the case N > 2, we get G ∈ L2∗

loc(Ω) and
then ∫

Ω
(|∇u(x)| − 1)

qN
N−2
+ dx =

∫
Ω
|G(x)|

2N
N−2 dx < +∞,

which ensures that
∇u ∈ L

q N
N−2

loc (Ω), (4.11)

while if N = 2 we get that G (and so |∇u|) is in every Ls
loc, with s < ∞. Moreover, in the case

q > N − 2, then we can assure that u ∈ C0,α
loc (Ω), with α = 1− (N − 2)/q.
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Going back to our vector field σ = H∗(∇u), Theorem 4.2 easily implies the following.

Corollary 4.3. Under the assumptions of Theorem 4.2, we get

σ = ∇H∗(∇u) = |G|
q−2

q G ∈W 1,r
loc (Ω), (4.12)

for suitable exponents r = r(N, q) given by

r(N, q) =


2, if N = q = 2,
any value < 2, if N = 2, q > 2,

Nq
(N−1)q+2−N , if N > 2.

Proof. The case q = 2 is clearly trivial, in fact in this case σ = G ∈W 1,2
loc (Ω). Let us begin with the

case N > 2: using inequality (4.4) with z = ∇u(x+ hω) and w = ∇u(x), we get

|δh,ωσ| ≤ (q − 1)
(
|Gh(x)|

q−2
q + |G(x)|

q−2
q

)
|δh,ωG|.

and we already observed that G ∈ L2∗
loc(Ω), so that |G|

q−2
q ∈ L

2∗q
(q−2)

loc (Ω) and the right hand side in
the previous inequality belongs to Lr

loc(Ω), with r being given by the relation

1
r

=
(q − 2)

2∗q
+

1
2
.

This clearly implies that we can control the integrated difference quotients∫
|δh,ωσ(x)|r dx,

thus proving the assertion. Finally, when N = 2 and q > 2, we can proceed as before, taking into
account the fact that G ∈ Ls

loc(Ω) for every s < ∞. Notice also that, should G be bounded, one
would automatically get σ ∈W 1,2

loc (Ω).

Remark 5. The same arguments in the proof of Theorem 4.2 may obviously be applied to the case
of uniformly elliptic equations, such as −div(∇K(∇u)) = f with

λ|ξ|2 ≤ 〈D2K(z)ξ, ξ〉 ≤ Λ|ξ|2.

In this case they provide the well-known local W 2,2 regularity estimates, under the sole assumption
that f ∈ L2 (see [16], Theorem 8.8). This last observation could suggest that actually we asked
for a stronger regularity assumption on f , than what is really needed: as one can easily guess, this
is strongly linked to the degeneracy of our operator ∇H∗. Actually, in non-degenerate equations,
when we arrive to the term ∫

δh,ωf δh,ωu dx,
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we can pass all the increments on the function u, that is we can use the trick∫
δh,ωf δh,ωu dx = −

∫ (∫ 1

0
f(x+ thω) dt

)
δh,ω∇u dx,

thus getting something that may be estimated again by the L2 norm of δh,ω∇u (but to the power
of one, while at the left hand side it is to the power of two). Yet, here this is no more useful,
since G is not invertible as a function of ∇u: this is why we asked for higher regularity on f , which
could somehow shock the experienced reader. It is worthwhile noticing that even in the case of the
q−Laplacian, where the corresponding quantity G is given by |∇u|

q−2
2 ∇u, the difference quotients

technique seems to work only with a Sobolev assumption on f and it is not clear (and interesting
to be investigated) if the following implication holds

f ∈ Ls ?=⇒ |∇u|
q−2
2 ∇u ∈W 1,2(Ω),

for a suitable exponent s ≥ p = q′. We end up recalling that even with a very regular datum f , in
the case of the q−Laplacian with q > 2, the weak differentiability of ∇u can be guaranteed only in
a fractional sense: once you prove that G ∈W 1,2, this is just a consequence of the fact that

|∇u(x)−∇u(y)| ≤ C
∣∣∣|∇u(x)| q−2

2 ∇u(x)− |∇u(y)|
q−2
2 ∇u(y)

∣∣∣ 2q ,
so that ∇u ∈W

2
q
−ε,q, for every ε > 0. Again, such a kind of result fails in the case of our operator

∇H∗.

4.2 Sobolev estimates up to the boundary

Under suitable assumptions on the domain Ω and on the boundary datum, Theorem 4.2 can be
enforced, thus obtaining a global W 1,2 estimate. This is exactly the content of the next result.

Theorem 4.4. Let us suppose that Ω is a C3,1 domain and take f ∈ W 1,p
� (Ω), with p = q/(q − 1).

If u ∈W 1,q
� (Ω) is a weak solution of the following Neumann boundary problem{

−div (∇H∗(∇u)) = f, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(4.13)

then we get G ∈W 1,2(Ω), where G is defined by (4.2).

Proof. Let x0 ∈ ∂Ω and V be a neighborhood of x0. We set B+ = {x = (x′, xN ) : |x| < 1, xN ≥ 0},
and observe that our assumptions on Ω are more than sufficient to guarantee the existence of a
diffeomorphism Ψ sending B+ on V + = V ∩Ω and the flat part of ∂B+ on V ∩∂Ω (we will see later
why we need higher regularity on Ω). Let us set B− = RB+, R being the reflection with respect to
the hyperplane {xN = 0}, then we define

û(y) =
{

u(Ψ(y)), if y ∈ B+,
u(Ψ(Ry)), if y ∈ B−,
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f̂(y) =
{

f(Ψ(y))|detDΨ(y)|, if y ∈ B+,
f(Ψ(Ry))|detDΨ(Ry)|, if y ∈ B−,

and observe that û ∈ W 1,q(B) and f̂ ∈ W 1,p(B), with B := B+ ∪ B−. Moreover, we will use the
fact that u ∈ W 1,∞(Ω) (see next Section, Theorem 5.2), so that the same is true for û, that is
û ∈ W 1,∞(B). This an important and peculiar point of the proof, that we did not find in other
strategies in the literature: we need L∞ regularity on the gradient, to prove Sobolev regularity of
a nonlinear function of the gradient itself. We now want to find the equation satisfied by û in the
unit ball: using the change of variables x = Ψ(y) and the fact that u satisfies∫

Ω
〈∇H∗(∇u(x)),∇ϕ(x)〉 dx =

∫
Ω
f(x)ϕ(x) dx, for every ϕ ∈W 1,p(Ω),

it is easy to see that û satisfies∫
B+

〈A(y,∇û(y)),∇ϕ(y)〉 dy =
∫

B+

f̂(y)ϕ(y) dy, for every ϕ ∈W 1,p
0 (B),

where the function A is defined by

A(y, p) = |detDΨ(y)|∇H∗(p [DΨ(y)]−1)
(
[DΨ(y)]−1

)t
, (y, p) ∈ B+ × RN .

On the other hand, using the change of variables x = Ψ(y) := Ψ(Ry) we obtain∫
B−
〈A(∇û(y)),∇ϕ(y)〉 dy =

∫
B−

f̂(y)ϕ(y) dy, for every ϕ ∈W 1,p
0 (B),

with A given by

A(y, p) = |detDΨ(y)|∇H∗(p [DΨ(y)]−1)
(
[DΨ(y)]−1

)t
, (y, p) ∈ B− × RN .

Observe that we have

|detDΨ(y)| = |detDΨ(Ry)| and [DΨ(y)]−1 = R[DΨ(Ry)]−1,

then let us assume for a moment the existence of O ∈ C1,1(B+; RN×N ) such that for every y ∈ B+,
O(y) is an orthogonal matrix verifying

[DΨ(y′, 0)]−1 = R[DΨ(y′, 0)]−1O(y′, 0), y′ ∈ ∂B+ ∩ ∂B−. (4.14)

Setting for simplicity

M̂(y) =
{

[DΨ(y)]−1, if y ∈ B+

R[DΨ(Ry)]−1O(Ry), if y ∈ B−

the previous discussion, together with asssumption (4.14) and the fact that

∇H∗(zO) = ∇H∗(z)O,
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tells us that û is a weak solution in B of the equation

−divH(y,∇û) = f̂ , (4.15)

where the operator H is defined by

H(y, p) = |det M̂(y)|−1∇H∗(p M̂(y))M̂(y)t, (y, p) ∈ B × RN .

Observe that having assumed (4.14), is crucial to obtain that H(·, p) is continuous across the hy-
perplane {xN = 0}, which in turn implies that H(·, p) is Lipschitz.

So let us verify the existence of such a matrix field O: by polar decomposition, we know that
OU = DΨ, with O orthogonal and U symmetric and positive definite. This implies that O =
DΨU−1 and [DΨ]tDΨ = U2, that is

O = DΨ([DΨ]tDΨ)−
1
2 , (4.16)

which is our candidate for the C1,1 matrix field. We now have to make an explicit choice for the
diffeomorphism Ψ, in order to obtain that this O further verifies (4.14): we can suppose, up to a
translation, that x0 = 0 and moreover that, up to a rotation, the set V ∩ ∂Ω can be represented as
the graph of a g ∈ C3,1 defined on {|y| ≤ 1 : yN = 0}, that is V ∩ ∂Ω = {(y′, g(y′)) : |y′| ≤ 1}.
Then we see that taking Ψ of the following form

Ψ(y′, yN ) = (y′, g(y′))− yN (∇g(y′),−1),

we get that Ψ is diffeomorphism between the interior of B+ and V ∩ Ω (up to redefine the neigh-
borhood V , without changing its intersection with ∂Ω). Moreover, we have the following expression
for the Jacobian matrix

DΨ(y) =

 IdN−1 − yN D2g(y′) ∇g(y′)

−(∇g(y′))t 1


where IdN−1 stands for the (N − 1)× (N − 1) identity matrix. Then it is easily seen that with the
choice (4.16), property (4.14) is equivalent to require that

[DΨ(y′, 0)]tDΨ(y′, 0) = (DΨ(y′, 0)R)2,

and this is a straightforward consequence of the structure of DΨ. We point out that despite the
hypothesis on ∂Ω of being C3,1, the diffeomorphism we have provided is only of class C2,1 (we use
the gradient of g in the definition of Ψ). This need of an extra - somehow unnatural - regularity on
Ω is in common with [9] : on the one hand we need a diffeomorphism having a Jacobian matrix with
a special structure (condition (4.14)), which asks for one extra degree of regularity on the boundary,
and on the other hand, at some point of the proof, we need this diffeomorphism to have a C1,1

Jacobian matrix and not only Lipschitz. This asks for the other extra degree of regularity; it could
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seem strange but we feel that it corresponds to the fact that also f is supposed to be more regular
than what is usually required, and this is due to the degeneracy of the equation. Anyway, we stress
that the matrix field M̂ that we get in the end is piecewise C1,1 (on the two sides of the boundary)
and globally no more than C0,1 (since the reflection does not respect this kind of higher regularity).
This lack of global C1,1 regularity will be fixed by means of global boundedness of ∇û.

We now aim to show that Ĝ(y) = G(∇û(y) M̂(y)) ∈ W 1,2
loc (B), then this will clearly imply that

G ∈W 1,2 in a neighborhood of x0, thus concluding the proof. Let us begin with some manipulations:
in order to simplify the notations, we set d(y) = |det M̂(y)|−1, then we begin applying (4.3), so that
as in Theorem 4.2 we obtain∣∣∣δh,ωĜ

∣∣∣2 ≤ 〈δh,ω∇H∗(∇û M̂), δh,ω(∇û M̂)〉,

where as always δh,ω denotes the incremental ratio in the direction ω ∈ SN−1. Then with some
algebraic manipulations, the right-hand side can we re-written as

〈δh,ω∇H∗(∇û M̂), δh,ω(∇û M̂)〉 = 〈δh,ω

(
∇H∗(∇û M̂)M̂ t

)
, δh,ω∇û〉

− 〈∇H∗(∇û M̂)(δh,ωM̂
t), δh,ω∇û〉 − 〈δh,ω∇H∗(∇û M̂),∇û δh,ωM̂〉,

and multiplying by dh we obtain

dh|δh,ωĜ|2 ≤ 〈δh,ωH, δh,ω∇û〉 − 〈∇H∗(∇û M̂)(δh,ωd M̂ t), δh,ω∇û〉 − dh〈δh,ω∇H∗(∇û M̂),∇û δh,ωM̂〉.

We can now as always take a smooth cut-off function ζ supported in some smaller ball B′ ⊂ B,
multiply the previous inequality by ζ2 and then integrate over supp ζ, so that we get∫

|δh,ωĜ|2 dy ≤
∫
|δh,ωH| |∇ζ| ζ |δh,ωû| dy −

∫
〈∇H∗(∇û M̂)δh,ω(d M̂), δh,ω∇û〉 ζ2 dy

+
∫
|dh||δh,ω∇H∗(∇û M̂)| |∇û| |δh,ωM̂ | ζ2 dy +

∫
|δh,ωf̂ | |δh,ωû|ζ2 dy :=

4∑
i=1

Ii,

where we have used the fact that û is a solution of (4.15) and d ∈ L∞ and d ≥ c > 0. For simplicity,
we now discuss separately the estimates of every integral:

Estimate for I1 We would like to use the basic inequality (4.4): we first observe that

δh,ωH(y,∇û) =
[
∇H∗(∇û(y + hω) M̂(y + hω))

]
δh,ω(d M̂ t) +

[
d(y)M̂ t(y)

]
δh,ω∇H∗(∇û M̂),

so that

I1 ≤
∫ ∣∣∣∇H∗(∇û(y + hω) M̂(y + hω))

∣∣∣ |δh,ω(d M̂ t)| |∇ζ| ζ |δh,ωû| dy

+
∫ ∣∣∣d M̂ t

∣∣∣ |δh,ω∇H∗(∇û M̂)| |∇ζ| ζ |δh,ωû| dy,
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and it is easily seen that the first term does not present any problem, thanks to the fact that
û ∈ W 1,q, d M̂ t ∈ W 1,∞ and ∇H∗(∇û M̂) ∈ Lp. On the contrary, the second integral is a kind of
term that has already been estimated in the proof of Theorem 4.2, once one takes care of the fact
that d M̂ t ∈W 1,∞: indeed, in this case it is only left to estimate∫

|δh,ω∇H∗(∇û M̂)| |∇ζ| ζ |δh,ωû| dy,

and it is now sufficient to apply (4.4), so that the previous integral can be majorized by∫
Ω

(
|Ĝh,ω|

q−2
q + |Ĝ|

q−2
q

)
|δh,ωĜ| ζ |∇ζ||δh,ωû| dx

then one can use the ε−Young inequality in order to absorbe a term of the kind
∫
|δh,ωĜ|2ζ2, and

finally one is left with an integral∫
Ω

(
|Gh,ω|

q−2
q + |G|

q−2
q

)2
|∇ζ|2|δh,ωu|2 dx,

which can be easily estimated just as in the proof of Theorem 4.2.

Estimate for I2 This is the most delicate integral: indeed, we have to integrate by parts in order
to avoid the difference quotients of ∇u. As a drawback, this will let appear second-order difference
quotients of d M̂ , which in principle can not be easily managed, due to the fact that this is only
a Lipschitz function: anyway, thanks to our construction, we know that d M̂ is a function which
is C1,1 out of {xN = 0} and globally C0,1 : this means that its second-order difference quotients
δ2h,ω(d M̂) (see below for their definition) are uniformly bounded if one stays out of a strip of size h
around the hyperplane {xN = 0} and are bounded by Ch−1 in that strip (whose measure is of the
order of h), which implies

∫ ∣∣∣δ2h,ω(d M̂)
∣∣∣ ≤ C.

First of all, we separate the two terms ∇û(y + hω) and ∇û(y) and we perform the change of
variable z = y + hω in the first integral, thus obtaining

I2 =
1
h

∫
〈∇H∗(∇û(y − hω) M̂(y − hω))δ−h,ω(d M̂),∇û(y)〉 ζ2(y − hω) dy

+
1
h

∫
〈∇H∗(∇û M̂)δh,ω(d M̂),∇û(y)〉 ζ2 dy,

which can be recast into

I2 =
∫
〈H∗(∇û(y − hω) M̂(y − hω)) δ2h,ω(d M̂),∇û〉ζ2(y − hω) dy

+
∫
〈H∗(∇û(y − hω) M̂(y − hω)) δh,ω(d M̂),∇û〉 δ−h,ωζ

2 dy +
∫
〈δ−h,ωH∗(∇û M̂),∇û〉 ζ2(y) dy,

where
δ2h,ω(d M̂) =

d(y + hω)M(y + hω) + d(y − hω)M(y − hω)− 2d(y)M(y)
h2

.
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We now observe that the last two terms can be easily estimated as already seen (see the discussion
for I1 and I3), while the first contains second-order differential quotients of d M̂ : since all the other
factors in the integral are bounded (because ∇û is bounded), this integral may be estimated with
C
∫ ∣∣∣δ2h,ω(d M̂)

∣∣∣, and this integral is indeed bounded.

Estimate for I3 Using the fact that M̂ is Lipschitz, together with estimate (4.4), yields

I4 ≤ C lip(M̂)
∫ ∣∣∣δh,ω∇H∗(∇û M̂)

∣∣∣ |∇û| ζ2 dy ≤
∫ ∣∣∣δh,ωĜ

∣∣∣ (|Ĝ| q−2
q + |Ĝ|

q−2
q

)
|∇û| ζ2 dy,

and this can be estimated as before (see the estimation for I1), absorbing the difference quotients
of Ĝ in the left-hand side, thanks to Young’s inequality.

Estimate for I4 This is clearly the easy part: it is sufficient to use Hölder’s inequality and the fact
that f̂ ∈W 1,p and û ∈W 1,q.

Finally, we get the desired global Sobolev estimate on the optimizer σ: the proof is a straight-
forward extension of that of Corollary 4.3.

Corollary 4.5. Under the assumptions of Theorem 4.4, the conclusions of Corollary 4.3 are global.

5 L∞ estimates for the gradient

The proof of the Lipschitz regularity result will easily follow from results of Fonseca-Fusco-Marcellini
[15] that we now recall (under slightly stronger assumptions which will be sufficient for our purpose).
Let U be an open subset of RN and L : (y, ξ) ∈ U ×RN 7→ L(y, ξ) be continuous and bounded from
below and such that:

• there is a C > 0 such that

L(y, ξ) ≤ C(1 + |ξ|q), ∀(y, ξ) ∈ U × RN , (5.1)

• there exists R > 0 and ν > 0 such that L(y, .) is C2(RN \BR) for every y ∈ U and

〈D2
ξ,ξL(y, ξ)λ, λ〉 ≥ ν(1 + |ξ|2)

q−2
2 |λ|2, ∀(y, ξ, λ) ∈ U × RN \BR × RN , (5.2)

• for |ξ| > R, y ∈ U 7→ Lξ(y, ξ) is weakly differentiable with

|DxLξ(y, ξ)| ≤ C(1 + |ξ|q−1), ∀(y, ξ) ∈ U × RN \BR. (5.3)
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For v ∈W 1,q
loc (U) and A ⊂⊂ U open, set

F (v,A) :=
∫

A
L(y,∇v(y))dy.

Then v ∈W 1,q
loc (U) is said to be a local minimizer of F in U whenever F (v,Br(x0)) ≤ F (w,Br(x0))

as soon as Br(x0) ⊂⊂ U and w ∈ v+W 1,q
0 (Br(x0)). The following result of Fonseca-Fusco-Marcellini

[15] will be extremely useful to derive the Lipschitz estimate on the solutions of (4.13) .

Theorem 5.1. Under the assumptions above, if v ∈W 1,q
loc (U) is a local minimizer of F in U then it is

locally Lipschitz. More precisely there is a constant C0 = C0(q, C, ν,R) such that ||∇v||qL∞(Br/2(x0)) ≤
C0(1 + −

∫
Br(x0) |∇v|

q) as soon as Br(x0) ⊂⊂ U .

We are now in position to prove the second regularity result we needed to apply DiPerna-Lions
theory, i.e. the L∞ estimate for ∇u. The following theorem will be actually applied, for the sake of
this paper’s applications, to the case of a C3,1 domain with f = µ0 − µ1 being a Lipschitz function.

Theorem 5.2. Let Ω ⊂ RN be a C2,1 domain. Given α ∈ (0, 1] and f ∈ C0,α with zero-mean, every
solution u ∈W 1,q

� (Ω) of the Neumann boundary value problem (4.13) is a Lipschitz function.

Proof. Interior Lipschitz regularity directly follows from Theorem 5.1 (recalling q ≥ 2 and (4.1)).
To prove Lipschitz regularity up to the boundary, we proceed as in the proof of Theorem 4.4 and
define û, f̂ and M̂ on B as previously. Then, let us introduce the function ϕ̂ solving the Poisson
equation ∆ϕ̂ = f̂ with ϕ̂ = 0 on ∂B. By standard elliptic regularity ϕ̂ ∈ C2,α and in particular
∇ϕ̂ is Lipschitz. The utility of introducing ϕ̂ is the following : the result in Theorem 5.1 concerns
minimizers of functionals of the form

∫
L(y,∇u)dy with no explicit dependence on u; actually, our

solution u is the minimizer of the functional
∫
H∗(∇u)− fu; when we pass to û the structure stays

variational but we need to deal with the term in f̂ û. This term may be absorbed in the other one,
if we integrate by parts, since

∫
B f̂(v − û) = −

∫
B ∇ϕ̂ · ∇(v − û) for every v ∈ û+W 1,q

0 (B). Hence,
let us then define for every (y, ξ) ∈ B × RN :

L(y, ξ) := |det M̂(y)|−1H∗(M̂(y) ξ) +∇ϕ̂ · ξ and F (v) :=
∫

B
L(y,∇v(y))dy, ∀v ∈W 1,q(B).

Since F is convex and û satisfies (4.15), û is actually a local minimizer of F on B. Now the fact that
L satisfies (5.2) directly follows from (4.1) and to check that it also satisfies (5.3) it is enough to
recall that ∇ϕ̂ is Lipschitz and that M̂ is Lipschitz as soon as Ω is C2,1. Invoking again Theorem 5.1,
we deduce that û ∈W 1,∞

loc (B). Since ∂Ω is compact, by a straightforward finite covering argument,
we conclude that u is globally Lipschitz on Ω.

Notice that this proof passing through the results of [15] asks for regularity on f , namely f ∈ C0,α.
This was not restrictive in this paper because, for other reasons due to the computation of the
divergence of σ̂, f should already be supposed Lipschitz continuous. Yet, it is a matter of fact that
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the sharp assumption for this L∞ result should be f ∈ LN+ε, an assumption which does not fit into
this (shorter) strategy.
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