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Abstract

We consider an evolution equation similar to that introduced by
Vese in [10] and whose solution converges in large time to the convex
envelope of the initial datum. We give a stochastic control repre-
sentation for the solution from which we deduce, under quite general
assumptions that the convergence in the Lipschitz norm is in fact ex-
ponential in time. We then introduce a non-autonomous gradient flow
and prove that its trajectories all converge to minimizers of the convex
envelope.

Keywords: convex envelope, viscosity solutions, stochastic control rep-
resentation, non-autonomous gradient flows, global minimization.

1 Introduction

In an interesting paper [10], L.Vese considered the following PDE:

∂tu =
√

1 + |∇u|2 min(0, λ1(D2u)), u|t=0 = u0 (1.1)

where λ1(D2u) denotes the smallest eigenvalue of the Hessian matrix D2u.
Vese proved, under quite general assumptions on the initial condition u0, that
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the viscosity solution of (1.1) converges as t→∞ to u∗∗0 the convex envelope
of u0. Starting from this result, Vese developed an original and purely PDE
approach to approximate convex envelopes (which is in general a delicate
problem as soon as the space dimension is larger than 2). More recently,
A. Oberman [6], [7], [8], noticed that the convex envelope can be directly
characterized via a nonlinear elliptic PDE of obstacle type and developed
this idea for numerical computation of convex envelopes as well. As noticed
by Oberman, the solution of the PDE he introduced naturally has a stochastic
control representation. This is of course also the case for the evolutionary
equation of L.Vese and, as we shall see, this representation will turn out to
be very useful to obtain convergence estimates.

In the present paper, we will focus on an evolution equation similar to
(1.1) and will study some of its properties thanks to the stochastic control
representation of the solution. Under natural assumptions on the initial
datum, our first main result is that u(t, .) converges to the convex envelope
of u0 exponentially fast in the Lipschitz norm. From this convergence, we
deduce that trajectories of the non-autonomous gradient flow

ẋ(t) = −∇u(t, x(t))

all converge to a minimizer of the convex envelope.

The paper is organized as follows. In section 2, we introduce the convexi-
fying evolution equation and recall some basic facts about convex envelopes.
In section 3, we give a stochastic control representation for the solution of the
convexifying evolution equation. Section 4 gives some regularity properties
of the solution. Our exponential convergence result is then proved in section
5 by simple probabilistic arguments. Finally, convergence of the trajectories
of the non-autonomous gradient flow are proved in section 6.

2 A convexifying evolution equation

In the present paper, we will consider a slight variant of (1.1), namely:

∂tu(t, x) = min(0, λ1(D2u(t, x))), (t, x) ∈ (0;∞)× Rd, u|t=0 = u0 (2.1)

In the sequel, we shall refer to (2.1) as the convexifying evolution equation.
Following the same arguments of the proof of Vese [10] (also see remark
3.4 below), one can prove under mild assumptions on u0 that the solution
converges pointwise to the convex envelope u∗∗0 of the initial condition. Our
aim will be to quantify this convergence and this goal will be achieved rather
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easily by using a stochastic representation formula for the solution of (2.1).
Before we do so, let us recall some basic facts about the convex envelope.

Given a continuous (say) and bounded from below function u0 defined
on Rd, the convex envelope of u∗∗0 is the largest convex function that is
everywhere below u0. The convex envelope is a very natural object in many
contexts and in particular in optimization since u0 and u∗∗0 have the same
infimum but u∗∗0 is in principle much simpler to minimize since it is convex.
One can also define u∗∗0 as the supremum of all affine functions that are
below u0 and thus define u∗∗0 as the “Legendre Transform of the Legendre
Transform” of u0 (and this is where the notation “∗∗” comes from). Rather
than iterating the Legendre transform, let us recall the well-known formula:

u∗∗0 (x) = inf

{
d+1∑
i=1

λiu0(xi) : λi ≥ 0,
d+1∑
i=1

λi = 1,
d+1∑
i=1

λixi = x

}
, ∀x ∈ Rd

(2.2)
(the fact that one can restrict to d + 1 points follows from Carathéodory’s
theorem) which can also be written in probalistic terms as

u∗∗0 (x) = inf
{

E(u0(x+X)) : E(X) = 0
}
. (2.3)

The latter formula strongly suggests that a good approximation for the con-
vex envelope should be

u(t, x) := inf
σ : |σ|≤1

{
E
(
u0(x+

∫ t

0

√
2σsdWs)

)}
(2.4)

for large t where (Ws)s≥0 is a standard Brownian motion, σs is a d×d-matrix
valued process that is adapted to the Brownian filtration and |σ| stands for
the matrix norm |σ| :=

√
Tr(σσT ).

In order to keep things as elementary as possible, from now on, we shall
always assume that u0 satisfies:

u0 ∈ C1,1(Rd), lim
|x|→∞

u0(x)

|x|
= +∞, ∃R0 > 0 : u0 = u∗∗0 outside BR0 . (2.5)

The coercivity assumption guarantees that the infimum in formula (2.2) is
actually achieved. The assumption that u0 is C1,1 implies that so is u∗∗0 (see
[5]) and we will see that it also implies that u(t, .) remains C1,1. Finally, the
assumption that u0 and u∗∗0 agree outside of some ball, eventhough not as
essential as the previous ones, will be convenient and allow us to work mainly
on a ball instead of on the whole space.
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3 Stochastic control representation

As we shall see (but this should already be clear to stochastic control-oriented
readers), the value function of (2.4) is in fact characterized by the PDE:

∂tv = min(0, λ1(D2v)) (3.1)

in the viscosity sense that we now recall (for the sake of simplicity, we will
restrict ourselves to the framework of continuous solutions which is sufficient
in our context):

Definition 3.1. Let Ω be some open subset of Rd and let v be continuous on
(0,+∞)× Ω, then v is :

• a viscosity subsolution of (3.1) on (0,+∞) × Ω if for every smooth
function ϕ ∈ C2((0,+∞) × Ω) and every (t0, x0) ∈ (0,+∞) × Ω such
that (u− ϕ)(t0, x0) = max(0,+∞)×Ω(u− ϕ) one has

∂tϕ(t0, x0) ≤ min(0, λ1(D2ϕ(t0, x0))),

• a viscosity supersolution of (3.1) on (0,+∞) × Ω if for every smooth
function ϕ ∈ C2((0,+∞) × Ω) and every (t0, x0) ∈ (0,+∞) × Ω such
that (u− ϕ)(t0, x0) = min(0,+∞)×Ω(u− ϕ) one has

∂tϕ(t0, x0) ≥ min(0, λ1(D2ϕ(t0, x0))),

• a viscosity subsolution of (3.1) on (0,+∞)× Ω if it is both a viscosity
subsolution and a viscosity supersolution.

We then have the following stochastic representation formula for (2.1):

Theorem 3.2. There is a unique continuous function u on [0,+∞) × Rd

that agrees with u0 at t = 0, that is a viscosity solution of (2.1) and that
agrees with u∗∗0 outside BR0. It admits the following representation

u(t, x) = inf
σ : |σ|≤1

{
E
(
u0(x+

∫ t

0

√
2σsdWs)

)}
, t ≥ 0, x ∈ Rd (3.2)

where (Ws)s≥0 is a standard Brownian motion and |σ| stands for the matrix
norm |σ| :=

√
Tr(σσT ).
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Proof. Recalling that for every symmetric matrix S one has

min(0, λ1(S)) = min
|σ|≤1

Tr(σσTS),

the fact that formula (3.2) actually defines a viscosity solution is a classical
fact from stochastic control theory (see for instance [4] or [9]) and unique-
ness follows from well-known comparison principles (e.g Theorem 4.1 in [2]).
Continuity (Lipschitz continuity in fact) of the value function u will be es-
tablished in section 4.

Remark 3.3. Optimal feedback control. Very formally, if the solution
u of the PDE were very well-behaved then, as usual in control theory, one
could find an optimal feedback (Markov) control depending on D2u (since
there is no drift). Introduce a time-dependent vector field Z = Z(t, y), as
follows. If λ1(D2u(t, y)) < 0, then let Z(t, y) be a unit eigenvector associated
to λ1(D2u(t, y)) and let Z(t, y) = 0 otherwise. So that in any case:

Tr(σ(t, y)σ(t, y)TD2u(t, y)) = min(0, λ1(D2u(t, y)), and |σ(t, y)| ≤ 1,

where σ is the projector

σ(t, y) := Z(t, y)⊗ Z(t, y).

Of course the problem is that σ is not well-defined: not only u does not
need to be C2 but also it may be the case that λ1 < 0 has multiplicity larger
than 2. Ignoring those serious issues, let us consider the SDE:

dYt =
√

2σ(t, Yt)dWt

then σ is (again very formally) an optimal feedback control. We then have
for t > s ≥ 0

u (t, y) = E [u (s, Yt) |Ys = y] ,

and, formally, the envelope theorem gives

∇u (t, y) = E [∇u (s, Yt) |Ys = y] .

Finally, notice that the drift of u(t, Yt) is the nonpositive quantity given by

∂tu(t, Yt) + Tr(σσTD2u(t, Yt)) = 2 min(0, λ1(D2u(t, Yt)).
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Remark 3.4. One has u∗∗0 ≤ u(t, .) ≤ u0 and u(., x) is nonincreasing and thus
monotonically converges to v(x) := limt→∞ u(t, x) = inft>0 u(t, x). Now, as
shown by Vese in [10], v is necessarily convex (it is a viscosity solution of
the stationary equation) and since u∗∗0 ≤ u(t, .) ≤ u0 this gives v = u∗∗0 . In
other words, u pointwise monotonically converges to the convex envelope of
the initial condition. Of course, in view of the representation formula (3.2)
and (2.2) this convergence is not surprising. We shall see in the next sections
how (3.2) can easily give much more precise informations and provide in a
simple way very strong convergence estimates.

4 Regularity properties of u

Lemma 4.1. If M > 0 is such that u0− M
2
|.|2 is concave then u(t, .)− M

2
|.|2

is concave for every t > 0.

Proof. Set v0 := u0 − M
2
|.|2 and let (Xα)α∈A be a family of centered, Rd-

valued, square integrable random variables, then define

ϕ(x) = inf
α∈A

E(u0(x+Xα)), x ∈ Rd

we then have

ϕ(x)− M

2
|x|2 = inf

α∈A
{E(v0(x+Xα) +

M

2
|Xα|2}

so that ϕ− M
2
|.|2 is concave as an infimum of concave functions. This proves

the desired claim.

Proposition 4.2. Let M := ‖D2u0‖∞, then for every (t, s) ∈ (0,+∞) and
every x ∈ Rd one has

|u(t, x)− u(s, x)| ≤M |s− t| (4.1)

and u(t, .) is C1,1 for every t and more precisely, one has ‖D2u(t, .)‖∞ ≤M .

Proof. Let 0 < t < s, we already know that u(t, .) ≥ u(s, .). Let us assume
for a moment that u0 is smooth and let x ∈ Rd and let σ be an adapted
process with values in the set of matrices with norm less than 1 such that

E
(
u0(x+

∫ s

0

√
2σdW )

)
≤ u(s, x) + ε
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then defining

Yh := x+

∫ h

0

√
2σdW, Zh := u0(Yh), s ≥ h ≥ 0

thanks to Itô’s formula, we thus get:

u(t, x) ≤ E(Zt) ≤ u(s, x) + ε− E(Zs − Zt)

= u(s, x) + ε− E
(∫ s

t

Tr(σσTD2u0(Yh))dh
)

≤ u(s, x) + ε+M(s− t)

and we conclude that (4.1) holds by letting ε → 0+. In the general case,
one applies the same argument to the regularization ρn ? u0 (where ρn is, as
usual, a sequence of mollifyers) and then passes to the limit to obtain (4.1).

Using (2.1), we then quite easily obtain that

λ1(D2v(t, x)) ≥ 0 on (0,+∞)× Rd, with v(t, x) := u(t, x) +
M

2
|x|2

in the viscosity sense which means that as soon as ϕ is smooth and v−ϕ has a
(local or global) maximum at (t0, x0) ∈ (0,+∞)×Rd then λ1(D2ϕ(t0, x0)) ≥
0. To see that this implies that v(t, .) is convex, we invoke the same arguments
as in Lemma 1 in [1]. Assume on the contrary that there are t0 > 0, x0, y0 in
Rd and λ ∈ (0, 1) such that v(t0, λx0+(1−λ)y0) > λv(t0, x0)+(1−λ)v(t0, y0).
Without loss of generality, denoting elements of Rd as (x1, x

′) ∈ R × Rd−1,
we may assume that y0 = 0, x0 = (1, 0) and v(t0, 0) = v(t0, (1, 0)) < 0. We
then choose h ∈ (0, t0) and r > 0 such that

v(t, (0, x′)) < 0, v(t, (1, x′)) < 0,∀(t, x′) ∈ [t0 − h, t0 + h]×Br. (4.2)

We then define

Ω := {(x1, x
′) ∈ (0, 1)×Br}, Q := (t0 − h, t0 + h)× Ω

and choose α > 0 such that v(t0, (λ, 0)) > αλ(1−λ)
2

. We then define

ϕ(t, (x1, x
′)) :=

α

2
x1(1− x1) +

β

2
|x′|2 +

γ

2
(t− t0)2

with β and γ chosen so that

βr2 ≥ 2 max
Q

v, γh2 ≥ 2 max
Q

v. (4.3)
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We then have v(t0, (λ, 0))−ϕ(t0, (λ, 0)) > 0 and by (4.2)-(4.3), v−ϕ ≤ 0 on
∂Q, hence v − ϕ achieves its maximum on Q at an interior point of Q, but
at this point one should have 0 ≤ λ1(D2ϕ) = −α which gives the desired
contradiction. This proves that u(t, .) + M

2
|.|2 is convex for every t. Together

with lemma 4.1 this enables us to conclude that u remains semiconvex and
semiconcave is hence C1,1 with the estimate ‖D2u(t, .)‖∞ ≤M .

Proceeding as in the proof of the two previous results and using the fact
that the PDE is autonomous, one gets:

Corollary 4.3. Suppose u0 satisfies (2.5), then Essinfλ1(D2u(t, .)) is non-
decreasing with respect to t and Esssupλd(D

2u(t, .)) is nonincreasing with
respect to t (where λd stands for the largest eigenvalue).

5 Exponential convergence to the convex en-

velope

Before we state our result concerning the convergence of u(t, .) to u∗∗0 , we
need two elementary lemmas.

Lemma 5.1. Let v : Rd → R and M ≥ 0 be such that v + M
2
|.|2 is convex,

then for every r > 0 one has:

‖∇v‖L∞(Br) ≤ 2
(
M‖v‖L∞(Br+r′ )

)1/2

with r′ =
2

Mr
‖v‖L∞(B2r) +

r

2
. (5.1)

Proof. Let r > 0, R > 0, for x ∈ Br a point of differentiability of v (which is
a.e. the case) and h ∈ BR in Rd, one first has

2‖v‖L∞(Br+R) ≥ v(x+ h)− v(x) ≥ ∇v(x) · h− M

2
|h|2. (5.2)

Taking r = R, h = r∇v(x)|/|∇v(x)| and maximizing with respect to x ∈ Br

thus gives

‖∇v‖L∞(Br) ≤
2

r
‖v‖L∞(B2r) +

Mr

2
. (5.3)

We then take R = r′ with r′ defined by (5.1) and set h = ∇v(x)/M , thanks
to (5.3), h ∈ BR, using (5.2) again, we then get

|∇v(x)|2

2M
≤ 2‖v‖L∞(Br+r′ )

, ∀x ∈ Br

which finally gives (5.1).
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Lemma 5.2. Let (Bt) be a standard one-dimensional brownian motion, let
r > 0, x ∈ (−r, r) and

τ := inf{t > 0 : x+Bt /∈ [−r, r]}

then for every t > 0, one has

P(τ ≥ t) ≤ q(r)t−1, with q(r) :=
1√
2π

∫ 2r

−2r

e−
s2

2 ds.

Proof. Let n be the integer part of t, we then have

P(τ ≥ t) ≤ P(|Bk −Bk−1| ≤ 2r, for k = 1, ..., n)

and since (Bk −Bk−1)k=1,...,n are independent and normally distributed ran-
dom variables, we immediately get the desired estimate.

Our first main result then reads as

Theorem 5.3. There exists C ≥ 0 and λ > 0 such that

‖u(t, .)− u∗∗0 ‖L∞ ≤ Ce−λt,∀t ≥ 0, (5.4)

and
‖∇u(t, .)−∇u∗∗0 ‖L∞ ≤ Ce−λt,∀t ≥ 0. (5.5)

Proof. First let us remark that if x /∈ BR0 , there is nothing to prove. Let
us then remark that, thanks to (2.5), there is some ball BR containing BR0 ,
such that for any x ∈ BR0 , in the formula (2.2), it is enough to restrict the

minimization to points xi in BR. Let then x ∈ BR0 , let (x1, ..., xd+1) ∈ Bd+1

R

and (λ1, ..., λd+1) be nonnegative such that

d+1∑
i=1

λi = 1,
d+1∑
i=1

λixi = x,

d+1∑
i=1

λiu0(xi) = u∗∗0 (x). (5.6)

We shall also assume that the points (x1, ..., xd+1) are affinely independent
(and this is actually without loss of generality for what follows), the coeffi-
cients λi are then uniquely defined and are the unique barycentric coordinates
of x in the simplex K which is the convex hull of the points (x1, ..., xd+1).
We shall also assume that all the coefficients λi are strictly positive (again
this is not a restriction).
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Let ε > 0 and let σs = 0, for s ∈ [0, ε], then set

v1 :=
Wε

|Wε|
, τ1 := inf{t ≥ ε : x+

√
2v1 ⊗ v1(Wt −Wε) /∈ K}

and σs = v1⊗v1 for s ∈ (ε, τ1]. By construction, x+
√

2v1⊗v1(Wτ1−Wε) a.s.
belongs to a facet of K of dimension d−1. Let us denote by K1 this facet and
by E1 the hyperplane parallel to this facet. Let then v2 be Fε-measurable
and uniformly distributed on Sd ∩ E1 and define

τ2 := inf{t ≥ τ1 : x+
√

2v1 ⊗ v1(Wτ1 −Wε) +
√

2v2 ⊗ v2(Wt −Wτ1) /∈ K1}

and σs = v2 ⊗ v2 for x ∈ (τ1, τ2].

We repeat inductively this construction d times and define successive
(random and adapted) times τk, k = 1, ..., d, directions v1, ..., vk, and a piece-
wise constant control σs = vk ⊗ vk for s ∈ (τk−1, τk], in such a way that
x +

∫ t
0

√
2σsdWs belongs to a facet Kk of dimension d − k for t ∈ [τk, τk+1].

Let us extend the control σ by 0 after time τd and set

Yt := x+
√

2

∫ t

0

σsdWs = Yt∧τd .

and remark that at time τd the previous process has hit one of the vertices
of K. By construction (Yt)t is a continuous martingale and it is bounded
since it takes values in the compact K, it therefore converges to Yτd which is
a discrete random variables with values in the vertices of K, {x1, ..., xd+1},
we then have

E(Yτd) = x =
d+1∑
i=1

P(Yτd = xi)xi

which implies that P(Yτd = xi) = λi by uniqueness of the barycentric coordi-
nates. We thus have:

u∗∗0 (x) = E(u0(Yτd)) (5.7)

and then using the fact that Yt takes values in K and that u0 is locally
Lipschitz:

u(t, x) ≤ E(u0(Yt)) ≤ E(u0(Yτd)) + ‖∇u0‖L∞(K)E(|Yt − Yτd |)
≤ u∗∗0 (x) + diam(K)‖∇u0‖L∞(K)P(τd ≥ t)

We then remark that

{τd ≥ t} ⊂
d⋃

k=1

{
Tk ≥

t− ε
d

}
10



where the Tk’s are the times the process (Ys)s spends on the (random) facet
Kk−1 (setting K0 = K), the previous probabilities can therefore be estimated
by the probability that a one-dimensional Brownian motion spends more than
(t−ε)
d

time in the interval [−diam(K), diam(K)]. Using lemma 5.2, we thus
get

P(τd ≥ t) ≤Me−λ(t−ε)

for constants M and λ > 0 that depend only on d and diam(K). Letting
ε→ 0, we then obtain

u(t, x) ≤ u∗∗0 (x) + diam(K)‖∇u0‖L∞(K)Me−λt

since we already know that u(t, .) ≥ u∗∗0 , this terminates the proof of (5.4).

Finally, the estimate (5.5) easily follows from (5.4), lemma 5.1 and the
fact that u(t, .)− u∗∗0 remains uniformly semiconcave thanks to lemma 4.1.

Remark 5.4. Let us remark that in the inequality (5.4) in theorem 5.3, the
constant λ only depends on the dimension and the diameter of the faces of
the convex envelope on the set where {u0 > u∗∗0 } whereas the constant C
also depends on the Lipschitz constant of u0 on the set of such faces. In
(5.5), C also depends on ‖D2u0‖L∞ . Note that the fact that u0 is C1,1 is not
necessary to obtain (5.4), it will however be essential for the convergence of
trajectories of the gradient flow introduced in the next section.

6 A non-autonomous gradient flow for global

minimization

In this final section, we apply the previous results to prove convergence results
for the Cauchy problem fo the non-autonomous gradient flow:

ẋ(t) = −∇u(t, x(t)), t > 0, x(0) = x0 (6.1)

where x0 ∈ Rd is an arbitrary initial position. Thanks to proposition 4.2, the
previous Cauchy problem possesses a unique solution that is defined for all
positive times. Our second main result is then the following:

Theorem 6.1. Let x0 ∈ Rd, and let x(.) be the solution of the Cauchy
problem (6.1), then x(t) converges as t → ∞ to some point y∞ that is a
(global) minimum of u∗∗0 .
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Proof. Let us denote by F the (convex and compact) set where u∗∗0 attains
its minimum. Let y ∈ F , since ∇u∗∗0 (y) = 0, using the convexity of u∗∗0 and
(5.5), we get

d

dt

(1

2
|x(t)− y|2

)
= 〈∇u∗∗0 (y)−∇u∗∗0 (x(t)), x(t)− y〉+

〈∇u∗∗0 (x(t))−∇u(t, x(t)), x(t)− y〉
≤ Ce−λt|x(t)− y|.

From which we easily deduce that |x(t)− y|+ C
λ
e−λt is nondecreasing so that

|x(t) − y| converges as t → +∞. There exists therefore some d∞ ≥ 0 such
that

d(x(t), F ) := min
y∈F
|x(t)− y| → d∞ as t→∞.

Now we claim that d∞ = 0; assume on the contrary that d∞ > 0 and let
y ∈ F , we then have

δ := min{〈∇u∗∗0 (x)−∇u∗∗0 (y), x− y〉 : d(x, F ) = d∞} > 0

so that by the same computations as above, we obtain that for large enough
t, one has

d

dt

(1

2
|x(t)− y|2

)
≤ −δ

2

which contradicts the convergence of |x(t) − y| as t → +∞. We thus have
proved that d(x(t), F ) → 0 as t → +∞ so that all limit points of the tra-
jectory x(.) belong to F . Let y1 = limn x(tn) and y2 = limn x(sn) with
tn, sn →∞ be two such limit points, since |x(t)− yi| converges as t→∞ for
i = 1, 2, we deduce that |y1 − y2| = limn |x(tn)− y2| = limn |x(sn)− y2| = 0.
Together with the compactness of F , this proves that x(t) converges to some
y∞ ∈ F as t→∞.

Remark 6.2. Note that in the previous convergence result, the fact that u(t, .)
solves (2.1) or equivalently is given by (3.2) is not important and not even
the full force of the exponential convergence is really needed. What really
matters is

‖∇u(t, .)−∇u∗∗0 ‖L∞ is integrable.

Any approximation that satisfies this requirement will lead to a non-autonomous
gradient flow whose trajectories converge to minimizers of u∗∗0 .
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