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Abstract

We are given a list of tasks Z and a population divided into several
groups Xj of equal size. Performing one task z requires constituting a
team with exacly one member xj from every group. There is a cost (or
reward) for participation: if type xj chooses task z, he receives pj (z);
utilities are quasi-linear. One seeks an equilibrium price, that is, a
price system that distributes all the agents into distinct teams. We
prove existence of equilibria and fully characterize them as solutions
to some convex optimization problems. The main mathematical tools
are convex duality and mass transportation theory. Uniqueness and
purity of equilibria are discussed. We will also give an alternative
linear-programming formulation as in the recent work of Chiappori,
McCann and Nesheim [2].
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1 Introduction

Consider a population divided into several equal groups Xj, 0 ≤ j ≤ N .
We have to divide the total population X = ∪Xj into teams, each team
comprising exactly one member of each group. For N = 1 this is the classical
marriage problem: there is a group of men and a group of women, and they
have to be paired one-to-one. As in the marriage problem, the matching will
have to maximize some overall criterion for fitness.

This will be done by letting each individual pick a point z in a set Z,
independently of the others: more precisely, a set of prices (or costs) pj (z) ,
0 ≤ j ≤ N , will be assigned to each z, and individuals in the category Xj will
pick their z by maximizing a quasi-linear utility. Individuals which choose
the same z will be put in the same team.

The functions pj (z) will be found as the solutions of an optimization
problem, so our result can be seen as giving a decentralized procedure for
solving the matching problem. Alternatively, it can be seen as showing the
existence of equilibrium prices in competitive markets where trading is not a
two-sided interaction between buyer and seller, but requires the intervention
of several types of agents. To build a new house, for instance, one has to
hire (and pay) a wide variety of professionals (the architect) and tradesmen
(the plumber, the mason), all of whom come in independently of the others
and require market prices. Buying an existing house is not so simple a deal
either: typically the buyer will have to borrow part of the money, so that the
bank comes in as a third party into the deal. This approach was initiated
in [3] for the case N = 1 (the marriage problem), although the method used
did not lend itself to such an extension.

The purpose of this paper is to generalize the results of [3] to the case
N ≥ 2 by means of convex duality arguments. Recently and independently,
Chiappori, McCann and Nesheim in [2] formulated the matching problem as
a linear programming problem and noticed that their approach also covers
the multiple agents case. In section 6, following a suggestion of Robert J.
McCann, we will give a linear formulation of the problem as in [2].

The structure of the paper is as follows. Section 2 introduces the model;
and in section 3 matching equilibria are defined. In section 4, we introduce
two optimization problems which are naturally related to the matching prob-
lem. In section 5, we use convex duality to prove existence of equilibria and
we give a variational characterization. An alternative formulation via linear
programming is given in section 6. Uniqueness and purity of equilibria are
discussed in section 7. Finally, in section 8, we extend our results to the case
where a team does not necessarily consist of a finite number of agents but is
given by a general measured space.
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2 The model

We consider a market where there is single, indivisible good which comes in
different qualities z ∈ Z. In the sequel, we will refer to Z as the quality space.

2.1 Buyers/Consumers

Each consumer buys one unit of the good. Consumer are heterogeneous: each
of them is characterized by the value of some parameter x0 ∈ X0, henceforth
referred to as her type. Utilities are assumed to be quasi-linear with respect
to prices: a consumer of type x0 buying one unit of quality z and paying p0

derives the utility:
u0(x0, z) − p0.

Consumers’ types are assumed to be distributed in the population according
to some probability µ0 on some σ-algebra of X0. We normalize the size of
the population of consumers to 1.

2.2 Producers

There are N categories of producers denoted by i = 1, ..., N . The production
requires specialized labor from every category of producers. Specifically, to
produce one unit of good (whatever its quality), one must assemble a team
of one representative from each category, and each producer can participate
in the production of one unit only.

Each category of producers is heterogeneous. In category i, each producer
is characterized her type xi ∈ Xi (skill parameters say) and a cost function
ci : Xi × Z → R. The population Xi size is assumed to be 1, and types are
assumed to be distributed in the population according to some probability
µi on some σ-algebra of Xi.

2.3 Teams and nonlinear transfers

For a good of a given quality to be traded, it is necessary in our model
to gather a team consisting exactly of one consumer, corresponding to the
additional category j = 0, and one producer of each category j = 1, ..., N .
Note that this is consistent with our assumption that all the populations
have the same size.

Given a tariff z ∈ Z → p0(z) ∈ R, consumers of type x0 ∈ X0 purchase
qualities z which solve the program:

sup
z∈Z

{u0(x0, z) − p0(z)}.
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Similarly, given a wage pattern z ∈ Z → wi(z) ∈ R for category i = 1, ..., N ,
type xi producers offer qualities z which minimize net cost:

inf
z∈Z

{ci(xi, z) − wi(z)}. (1)

It will be convenient in the sequel not to distinguish between the con-
sumers’ category (j = 0) and the producers’ categories ( j = 1, ..., N) and to
formulate everything in terms of costs and transfers. For notational conve-
niency, we therefore set

c0 := −u0

and for for j = 0, ..., N we define the transfer functions ϕj by:

ϕ0(z) = −p0(z), ϕi(z) = wi(z), 1 ≤ i ≤ N

For given transfers, optimal qualities for type xj are determined by the
program

ϕ
cj

j (xj) := inf
z∈Z

{cj(xj, z) − ϕj(z))}. (2)

which is the indirect utility which type xj derives from the transfer ϕj. In the
sequel, we shall refer to ϕ

cj

j as the cj-transform of the transfer function ϕj.
Note that for every (xj, z) ∈ Xj ×Z, one has the so-called Young’s inequality

ϕ
cj

j (xj) + ϕj(z) ≤ cj(xj, z). (3)

Let us also remark that, given the transfers ϕj for category j, the demand set
Dj (xj) for agents of type xj, that is, the set of optimal qualities in problem
(2), is defined by:

Dj (xj) :=
{

z ∈ Z | ϕ
cj

j (xj) + ϕj(z) = cj(xj, z)
}

. (4)

Each team is assumed to be self-financed. In other words, in a team that
produces z, the price paid by the consumer, p0(z), is the sum of the wages
paid to the producers, wi(z) for i = 1, ..., N . Equivalently, the transfers
satisfy the balance condition

N
∑

j=0

ϕj(z) = 0, ∀z ∈ Z. (5)

Since we are dealing with a quality good, note that, even if the quality
space has a linear structure, the transfers are inherently nonlinear.
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2.4 Data and assumptions

To sum up, the data of the model are the type spaces of each category
X0, X1, ...., XN , the probability distributions of types µ0, ..., µN , and the cost
functions c0, ...., cN (recall that c0 = −u0). Throughout the paper, we will
assume the following:

• Xj is a compact metric space equipped with its Borel σ-algebra for
j = 0, ...., N ,

• Z is a compact metric space

• µj is a Borel probability measure on Xj for j = 0, ...., N ,

• cj ∈ C0(Xj × Z,R) for j = 0, ...., N .

We shall denote by ∆(Xj) the set of probabilities on Xj, so that µj ∈
∆(Xj). For probabilities on product spaces, γj ∈ ∆(Xj × Z), we denote by
πXj

γj ∈ ∆(Xj) and πZγj ∈ ∆(Z) respectively the first and second marginal
of the joint probability γj. In other words, for every f ∈ C0(Xj,R) and
g ∈ C0(Z,R) one has:
∫

Xj×Z

(f(xj) + g(z))dγj(xj, z) =

∫

Xj

f(xj)dπXj
γj(xj) +

∫

Z

f(xj)dπZγj(z).

3 Equilibria

3.1 Couplings and product lines

Of course, there is not reason why the demand set Dj (xj) should be a single-
ton, that is, that the optimization problem (2) should have a unique solution.
We will therefore allow agents of type xj to randomize their choices between
the several optimal solutions. Alternatively, we can consider that not all
agent of type xj pick the same optimal quality, so that there is for each
element of Dj (xj) a certain proportion of agents which choose it

We will define a coupling γj between the type space Xj and the quality
space Z as any probability measure on the graph of Dj ⊂ Xj × Z which
projects down to µj:

πXj
γj = µj

ϕ
cj

j (xj) + ϕj(z) = cj(xj, z) γj-a.s on Xj × Z

For every Borel subsets Aj ⊂ Xj and B ⊂ Z, we interpet γj(Aj × B)
as the probability that an agent of category j has her type in Aj and an
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optimal quality in B. At equilibrium, the distribution of the demand for the
quality good and the distribution of the supply for the quality good for each
category should coincide, which means that

πZγj = ν

for some ν ∈ ∆(Z) which is independent of the category j. The probability
ν ∈ ∆(Z) will naturally be interpreted as a quality line. For ν ∈ ∆(Z), we
define

Π(µj, ν) :=
{

γ ∈ ∆(Xj × Z) | πXj
γ = µj, πZγ = ν

}

.

so that the equilibrium condition on the good market means that there is a
product line ν such that

γj ∈ Π(µj, ν), j = 0, ..., N.

3.2 Definition of matching equilibria

An equilibrium consists of (quality dependent) transfers, (quality and type
dependent) couplings and a probabilty measure on the quality space (the
product line) such that:

• for each quality, the balance condition (5) is satisfied,

• consumers of each type choose maximizing utility qualities,

• producers of each category and each type choose minimizing cost qual-
ities,

• there is equilibrium on the market for the good: the demand probability
distribution equals the supply probability distribution for each category
of producer’s.

This gives the following precise definition

Definition 1 A matching equilibrium consists of a family of transfers ϕj ∈
C0(Z,R), a family of probabilities γj ∈ ∆(Xj × Z), j = 0, ...., N and a
quality line ν ∈ ∆(Z) such that:

1. For all z ∈ Z:
d
∑

j=0

ϕj(z) = 0,

2. γj ∈ Π(µj, ν) for every j = 0, ...., N ,

3. for every j = 0, ..., N , one has:

ϕ
cj

j (xj) + ϕj(z) = cj(xj, z) γj-a.s on Xj × Z
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4 Two related optimization problems

The aim of this section is to prove that matching equilibria are solutions
of a certain optimization problem. To achieve this goal, we first need some
basic results from optimal transportation theory that are recalled in the next
paragraph. Indeed, the Monge-Kantorovich duality is of particular interest
in our equilibrium context since the last two conditions in the definition of
an equilibrium exactly are the extremality conditions for this duality.

4.1 Mass transportation and Kantorovich Duality

Given two compact metric spaces X and Z, probability measures µ ∈ ∆(X),
ν ∈ ∆(Z), and a cost function c ∈ C0(X × Z,R), the Monge-Kantorovich
optimal tranportation problem consists in finding a transport plan γ with
least cost:

(Mµ,ν) Wc(µ, ν) := inf

{
∫

X×Z

c(x, z)dγ(x, z) : γ ∈ Π(µ, ν)

}

Here Π(µ, ν) denotes the set of probability measures on X × Z having µ
and ν as marginals. If γ ∈ Π(µ, ν) solves (Mµ,ν), it is called an optimal trans-
portation plan between µ and ν for the cost c. Slightly abusing notations,
we shall say that γ solves Wc(µ, ν).

It is customary in the Monge-Kantorovich theory to consider also the dual
problem:

(Dµ,ν) sup
ϕ∈C0(Z,R)

{
∫

X

ϕc(x)dµ(x) +

∫

Z

ϕ(z)dν(z)

}

.

where by definition ϕc is the ”c-concave transform” of ϕ. I it is defined for
all x ∈ X by:

ϕc(x) := inf
z∈Z

{c(x, z) − ϕ(z)}. (6)

It is immediate to check that if ϕ is bounded on Z, then ϕc ∈ C0(X,R).The
main results from optimal transportation theory (we refer to [5] and [6] for
proofs) that we shall need are summarized in the following:

Theorem 1 Assume µ ∈ ∆(X), ν ∈ ∆(Z), and c ∈ C0(X × Z,R). Then:

1. the supremum in (Dµ,ν) is attained by some ϕ ∈ C0(Z,R), the infimum
in (Mµ,ν) is attained by some γ ∈ Π(µ, ν),

2. the duality relation Wc(µ, ν) = inf(Mµ,ν) = sup( Dµ,ν) holds,
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3. ϕ solves (Dµ,ν) and γ solves (Mµ,ν) if and only if:

ϕc(x) = c(x, z) − ϕ(z) γ-a.e on X × Z

In the Monge-Kantorovich problem, note that we allow to split the mass
at x ∈ X to different destinations z ∈ Z. Indeed, we can write a coupling γ ∈
Π(µ, ν) as γ = γx⊗µ where γx is the conditional probability of the destination
z given the source x. One may therefore view the Monge-Kantorovich as a
stochastic problem where one source x can be sent to several destinations
z according to a conditional probability γx. If one does not allow such a
splitting of mass and imposes instead that x is sent to a single destination
z = σ(x) (in other words if one imposes that γx is the Dirac mass at σ(x)
or that γ is supported by the graph of some function σ: X → Z) then one
obtains the so-called Monge problem. The requirement that the probability
distribution ν is a prescribed target may be expressed by

σ]µ = ν

where σ]µ is the push-forward (or image measure) of µ through σ and given
by

σ]µ(B) := µ(σ−1(B))

for every Borel subset B of Z. A Borel σ : X → Z such that σ]µ = ν is
called a transport map between µ and ν. The Monge problem then reads as:

inf

{
∫

X

c(x, σ(x))dµ(x) : σ]µ = ν

}

. (7)

Let us remark that transport maps between µ and ν may not exist; for
instance, this is the case if µ is a Dirac mass whereas ν is not. Even when
there exist transport maps, there may not exist an optimal one. In fact,
the Monge problem is much more complicated than the (linear) Monge-
Kantorovich problem and in general it does not admit solutions unless further
assumptions are imposed on the data, especially on the cost function. More
precisely, let us assume the following:

• X = Ω, with Ω an open bounded subset of R
d,

• µ ∈ ∆(X) is absolutely continuous with respect to the Lebesgue mea-
sure, such that µ(∂Ω) = 0,

• the cost function c is continuous and Lipschitz ”in x uniformly in z” (i.e.
there exists a constant C such that |c(x1, z) − c(x2, z)| ≤ C‖x1 − x2‖,
∀(x1, x2, z) ∈ X2 × Z),
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• c(., z) is differentiable on Ω for every z ∈ Z and satisfies the Generalized
Spence-Mirrlees condition:

if (x, z1, z2) ∈ X × Z2 satisfy ∇xc(x, z1) = ∇xc(x, z2) then z1 = z2.

(8)

Theorem 2 Under the conditions above, the Monge-Kantorovich problem
(Mµ,ν) admits a unique solution γ which is of the form γ = (id, σ)]µ where
σ is the unique (up to µ-a.e. equivalence) solution of the Monge problem (7).

In other words, under the Spence-Mirrlees assumption (and the other
regularity assumptions listed above), optimal transportation plans are unique
and in fact given by an optimal transport map. We refer to [1] for a proof of
this result. This will be useful when we will discuss uniqueness and purity of
equilibria in section 7.

Finally, let us note a duality result, which is much in the spirit of what is
to come. Denote by ∆(Z) the space of Radon measures on Z, which is the
dual of C0(Z,R). Define for all ϕ ∈ C0(Z,R):

F (ϕ) := −

∫

X

ϕc(x)dµ(x). (9)

Corollary 1 F is a convex continuous function on C0(Z,R). The Fenchel
transform of F is given for every ν ∈ M(Z) by:

F ∗(ν) =

{

Wc(µ, ν) if ν ∈ ∆(Z)
+∞ otherwise.

As an immediate consequence, the function ν 7−→Wc(µ, ν) is convex and
weakly ∗ l.s.c.. The proof is given in the Appendix.

4.2 Optimization properties of equilibria

Let us assume that (ϕj, γj, ν) is a matching equilibrium. It then follows from
the last two conditions in the definition of an equilibrium and from Theorem
1 that each coupling γj solves (Mµj ,ν), and that ϕj solves its dual (Dµj ,ν).
So, for all j = 0, ...., N , one has:

Wcj
(µj, ν) =

∫

Xj×Z

cj(xj, z)dγj(xj, z) =

∫

Xj

ϕ
cj

j dµj +

∫

Z

ϕjdν.

Summing these equalities and using the balance condition (5) then yields:

d
∑

j=0

Wcj
(µj, ν) =

d
∑

j=0

∫

Xj

ϕ
cj

j dµj (10)
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Now let ψj ∈ C0(Z,R) be another balanced family of transfers:

N
∑

j=0

ψj(z) = 0, ∀z ∈ Z. (11)

The Monge-Kantorovich duality formula yields:

Wcj
(µj, ν) ≥

∫

Xj

ψ
cj

j dµj +

∫

Z

ψjdν (12)

summing these inequalities and using (11) we then get:

d
∑

j=0

Wcj
(µj, ν) ≥

d
∑

j=0

∫

Xj

ψ
cj

j dµj. (13)

With (10), we deduce that the transfers ϕj’s solve the following (concave)
program:

(P) sup

{

d
∑

j=0

∫

Xj

ϕ
cj

j dµj :

d
∑

j=0

ϕj = 0

}

.

Take some η ∈ ∆(Z). With the Monge-Kantorovich duality formula, the
balance condition (5) and (10), we get

d
∑

j=0

Wcj
(µj, η) ≥

d
∑

j=0

(

∫

Xj

ϕ
cj

j dµj +

∫

Z

ϕjdη

)

=
d
∑

j=0

∫

Xj

ϕ
cj

j dµj =
d
∑

j=0

Wcj
(µj, ν)

So that ν solves

(P∗) inf

{

d
∑

j=0

Wcj
(µj, ν) : ν ∈ ∆(Z)

}

.

It turns out that this is a convex problem as a consequence of Corollary 1.
To sum up, at this point, we haven’t proven anything about the existence

of equilibria, but have discovered that if (ϕj, γj, ν) is a matching equilibrium
then:

• the transfers ϕj’s solve (P),

• the quality line ν solves (P∗),
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• for each j, γj solves Wcj
(µj, ν).

Moreover in this case

min(P∗) =
d
∑

j=0

Wcj
(µj, ν) =

d
∑

j=0

∫

Xj

ϕ
cj

j dµj = max(P). (14)

It follows from (14), that if a matching equilibrium exists then (P) and
(P∗) both possess solutions and achieve the same value. Hence a necessary
condition for the existence of a matching equilibrium is:

max(P) = min(P∗).

We shall prove in the next section that this condition is fulfilled and actually
sufficient for the existence of a solution. Indeed, programs (P) and (P∗) are
in fact dual problems in the usual sense of convex analysis (as developed for
instance in Ekeland and Temam [4]).

5 Existence and characterization of equilibria

5.1 Solving (P) and (P∗)

In accordance with definition (9) we set, for ϕ ∈ C0(Z,R):

Fj(ϕ) := −

∫

Xj

ϕ
cj

j dµj, j = 0, ...N.

These are convex functions, and their inf-convolution H (see [4] for in-
stance) is defined by:

H(ϕ) = (�N
i=0Fj)(ϕ) := inf

{

N
∑

j=0

Fj(ϕj) :

N
∑

j=0

ϕj = ϕ

}

(15)

The inf-convolution is exact if the infimum is attained, that is, if for every
ϕ ∈ C0(Z,R) there exists ϕ0, ....ϕN in C0(Z,R) such that

N
∑

j=0

ϕj = ϕ and

N
∑

j=0

Fj(ϕj) = H(ϕ).

It is well-known that H is a convex function on C0(Z,R) and that the
Legendre-Fenchel transform of H is given by:

H∗ (ν) = (�N
i=0Fj)

∗ (ν) =

N
∑

j=0

F ∗

j (ν) (16)
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Following the standard arguments in [4], we rewrite (P∗) as:

inf
ν∈M(Z)

N
∑

j=0

F ∗

j (ν) = −

(

N
∑

j=0

F ∗

j

)∗

(0) = −H∗∗(0).

Of course, by definition sup(P) = −H(0) hence sup(P) = inf(P) provided
H(0) = H∗∗(0), that is, H is lower semi-continuous at 0 for the strong (or,
since H is convex, equivalently for the weak topology) of C0(Z,R). It is in
fact the case as stated in the next proposition, whose proof can be found in
the appendix.

Proposition 1 Let H be defined by (15), then the following holds:

1. the infimal convolution is exact

2. H is convex and lower semi-continuous, so that:

H = H∗∗ =

(

N
∑

j=0

F ∗

j

)∗

.

The next result states that (P) and (P∗) possess solutions and have the
same value (no duality gap).

Theorem 3
max(P) = min(P∗). (17)

Proof. The fact that (P∗) possesses solutions is easy to see. Indeed, ∆(Z)
is weakly ∗ compact in M(Z) and each function ν → Wcj

(µj, ν) is l.s.c. for
the weak ∗ topology. The fact that the supremum is attained in (P) follows
from proposition 1 (with ϕ = 0). By proposition 1, H = H∗∗ so that in
particular sup(P) = −H(0) = −H∗∗(0) = inf(P∗).

5.2 Existence and characterization of matching equi-

libria

Consider a family of transfers ϕj ∈ C0(Z,R), a family of probabilities γj ∈
∆(Xj × Z), j = 0, ...., N and a quality line ν ∈ ∆(Z). We want to know if
they consitute a matching equilibrium, in the line of definition 1. With the
existence and duality results of Theorem 3 at hand, we have the following
characterization:
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Theorem 4 (ϕj, γj, ν) is a matching equilibrium if and only if:

• the functions ϕj’s solve (P),

• ν solves (P∗),

• for each j = 0, ..., N , γj solves Wcj
(µj, ν).

Proof. The ”only if” part has already been proven in paragraph 4.2. As-
sume now that the ϕj’s (P) solve, that ν solves (P∗) and that γj solves
Wcj

(µj, ν) for every j. In particular this implies that the ϕj’s are balanced
and that γj ∈ Π(µj, ν) for all j. Since γj solves Wcj

(µj, ν), one has

Wcj
(µj, ν) =

∫

Xj×Z

cj(xj, z)dγj(xj, z).

using the fact that the ϕj’s solve (P), that ν solves (P∗), using (17), the
balance condition and γj ∈ Π(µj, ν) we then get:

N
∑

j=0

∫

Xj×Z

cj(xj, z)dγj(xj, z) =
N
∑

j=0

Wcj
(µj, ν)

=min(P∗) = max(P) =
d
∑

j=0

∫

Xj

ϕ
cj

j dµj

=
d
∑

j=0

(

∫

Xj

ϕ
cj

j dµj +

∫

Z

ϕjdν

)

=
d
∑

j=0

∫

Xj×Z

(ϕ
cj

j (xj) + ϕj(z))dγj(xj, z).

One thus deduce from Young’s inequalities (3) that for every j one has

ϕ
cj

j (xj) + ϕj(z) = cj(xj, z) γj-a.s. on X × Z,

which proves that (ϕj, γj, ν) is a matching equilibrium.

Since existence of solutions to (P) and (P∗) has already been proven
in Theorem 3 and existence of optimal plans for Wcj

(µj, ν) follows from
Theorem 1, we thus immediately deduce:

Proposition 2 There exist matching equilibria.
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5.3 An example

Let us illustrate the previous characterization results by a simple example.
Consider the unidimensional case where Xj = Z = [a, b] for all j = 0, ..., N
and the cost function of category j is

cj(xj, z) = λj

(

1

2
z2 − xjz

)

,

where the λj’s are positive constants that sum to 1 (this last condition is
of course without loss of generality). Let us further assume for simplicity
that µj,the probability distribution of type xj, is absolutely continuous with
a positive density on [a, b] for every j. Let Fj be the cumulative distribution
function of the type xj. Our assumptions imply that Fj is continuous and
increasing on [a, b] with Fj(a) = 0, Fj(b) = 1, hence Fj is invertible with
an increasing inverse F−1

j : [0, 1] → [a, b]. In this case there is a unique
monotone increasing function σj such that σj]µ0 = µj (of course σ0 = id)
and σj is given by the explicit formula σj = F−1

j ◦ F0. Let us then define

σ :=

(

N
∑

j=0

λjσj

)

]µ0, γj := (σj, σ)]µ0, and ν := σ]µ0,

and for all j and z ∈ [a, b],

ϕj(z) :=

∫ z

a

λj

(

s− σj ◦ σ
−1(s)

)

ds.

We claim that (ϕj, γj, ν) is an equilibrium and that it is the only one
(up to the addition of constants that sum to 0 to the ϕj’s) since the gen-
eralized Spence-Mirrlees condition is satisfied here for all the cost functions
(see section 7 for a more detailed discussion). Indeed, by construction the
family ϕj’s is balanced, γj ∈ Π(µj, ν) solves Wcj

(µj, ν) (the support of γj is
indeed included in the graph of a nondecreasing function and this ensures
the optimality, see [6] for details) and it easy to check that:

ϕcj(σj(x0)) + ϕj(σ(x0)) = λj

(

1

2
σ2(x0) − σj(x0)σ(x0)

)

, ∀x0 ∈ [a, b]

so that ϕcj(xj) + ϕj(z) = λj(
1
2
z2 − xjz) γj-a.s., which proves that (ϕj, γj, ν)

is a matching equilibrium.
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6 Linear programming reformulation

In [2], Chiappori, McCann and Nesheim gave a linear programming formu-
lation of the hedonic price equilibrium problem. In this section, following a
suggestion of Robert J. McCann, we prove that equilibrium product lines,
that is, solutions ν of (P∗), can be obtained by solving a linear programming
problem.

First define X := X0 × ....×XN and for every, x := (x0, ...., xN) ∈ X, the
least cost:

c(x) := c(x0, ..., xN) := inf

{

N
∑

j=0

cj(xj, z), z ∈ Z

}

.

For the sake of simplicity, let us assume that for every x = (x0, ...., xN ) ∈ X

there is a unique cost-minimizing quality z =: z(x):

c(x) =

N
∑

j=0

cj(xj, z(x)).

Now let us consider the multi-marginal Monge-Kantorovich problem

inf
γ∈Π(µ0,...,µN)

∫

X

c(x0, ...., xN)dγ(x0, ...., xN) (18)

where Π(µ0, ..., µN) denotes the set of probability measures on X having
µ0, ..., µN as marginals. Note that this is a linear programming problem in
the variable γ.

The connection between the multi-marginal Monge-Kantorovich problem
(18) and (P∗) is the following (the proof is given in the appendix):

Proposition 3 Under the previous assumptions, one has:

1. the infimum in (18) is attained and its value coincide with inf(P ∗),

2. if γ solves (18) then ν := z]γ solves (P∗),

3. if ν solves (P∗) then there exists a solution of (18), γ, such that ν :=
z]γ.

15



7 On purity and uniqueness of equilibria

This section is devoted to investigate when equilibria are unique, and when
they are pure.. A pure equilibrium is an equilibrium in which agents of the
same type and the same category all choose the same quality:

Definition 2 A matching equilibrium (ϕj, γj, ν) is called pure if and only
if all the couplings γj’s are of the form γj = (id, σj)]µj with σj measurable
Xj → Z.

Note in particular that the previous definition implies that σj is a trans-
port map between µj and ν (i.e. σj]µj = ν) but also (by Theorem 4) that it
is an optimal transport between µj and ν, meaning that it solves the Monge
problem:

inf

{

∫

Xj

cj(x, σ(x))dµj(x) : σ]µj = ν

}

. (19)

It thus follows from Theorem 2 that if all the probabilities µj’s and all
the cost functions cj’s satisfy the assumptions preceding Theorem 2 and in
particular the generalized Spence-Mirrlees condition, then every matching
equilibrium is in fact pure.

Now, for uniqueness:

Proposition 4 If some particular j0, µj0 and cj0 satisfy the assumptions
preceding Theorem 2, then the equilibrium product line ν is unique: problem
(P∗) has a unique solution..

Proof. Indeed assume that ν and τ both solve (P∗) and let (ϕ0, ...., ϕN)
be a solution of (P). Let γj and ηj be respectively optimal transportation
plans for Wcj

(µj, ν) and Wcj
(µj, τ). On the one hand, Theorem 4 tells us

that (ϕj, γj, ν) and (ϕj, ηj, τ) are matching equilibria. On the other hand,
Theorem 2 and our assumptions on category j0, imply that γj0 = (id, σj0)]µj0

and ηj0 = (id, tj0)]µj0 for two maps σj0 and tj0 which satisfy

ν = σj0]µj0, τ = tj0]µj0. (20)

By the definition of equilibria, for µj0-a.e. x ∈ Xj0 , the following holds

ϕ
cj0

j0
(x) := inf

z∈Z
{cj0(x, z) − ϕj0(z)}

= cj0(x, σj0(x)) − ϕj0(σj0(x))

= cj0(x, tj0(x)) − ϕj0(tj0(x)).
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Our assumptions imply that ϕ
cj0

j0
is Lipschitz continuous on Xj0, and hence,

by Rademacher’s Theorem, differentiable µj0-a.e.
If ϕ

cj0

j0
is differentiable at x and the equalities above are satisfied at x then

one has:
∇ϕ

cj0

j0
(x) = ∇xcj0(x, σj0(x)) = ∇xcj0(x, tj0(x))

with the generalized Spence-Mirrlees condition this then yields

σj0 = tj0 , µj0-a.s.

with (20) we then have ν = τ which proves the uniqueness of the equilibrium
product line.

8 Extension to a general measured category

space

In this final section, we extend our main results to the case of a general
measured category space that we denote Θ0 := Θ ∪ {0} where θ = 0 again
corresponds to the consumers’ population and Θ is the space of producers’
categories. We assume that Θ0 is a compact metric space equipped with a
nonnegative measure m ∈ ∆(Θ0) of the form m0 = m + δ0. As before, the
quality space is denoted Z and assumed to be a compact metric space. We
also suppose that there is a unique characteristic (compact metric) space X
for both consumers and producers of each category θ. The category θ is char-
acterized by a cost function cθ ∈ C0(X ×Z,R) (with the interpretation that
c0 = −u0, the opposite of the consumers’utility function) and a distribution
of type given by a probability µθ ∈ ∆(X). It is assumed that for a given
quality to be produced, a consumer and a team of producers of the different
sectors has to be formed, drawn according to the measure m. Of course, the
finite case where Θ0 = {0, ...., N} and m0 =

∑N

j=0 δj corresponds to the case
studied in the previous sections.

We will also assume:

• (µθ)θ∈Θ0
is a Borel family of probability measures on X, (i.e. θ →

∫

X
f(x)dµθ(x) is Borel for every Borel bounded f : X → R),

• joint continuity of the cost, i.e. (θ, x, z) ∈ Θ0 × X × Z → cθ(x, z) ∈
C0(Θ0 ×X × Z,R).

Before going further let us recall the definition of a Caratheodory function:

17



Definition 3 Let Y a compact metric space and let (θ, y) 7→ fθ(y) be a real-
valued function defined on Θ0 × Y , (fθ)θ∈Θ0

is a Carathéodory function on
Θ0 × Y if:

• for m0-almost every θ ∈ Θ0, fθ is a continuous function on Y ,

• for all y ∈ Y , θ 7→ fθ(y) is measurable on Θ0.

We shall denote by A(Θ0 ×Y ) the set of bounded Carathéodory functions on
Θ0 × Y .

It is well-known that if (fθ)θ∈Θ0
∈ A(Θ0 × Y ) and (pθ)θ∈Θ0

is a Borel
family of probability measures on Y then the map θ 7→

∫

Y
fθ(y)dpθ(y) is

measurable.

The (unknown) transfers will be given by a family (ϕθ)θ∈Θ0
∈ A(Θ0×Z).

The interpretation is again that ϕ0(z) = −p0(z) (with p0(z) the price of the
quality good z) and ϕθ(z) is the wage paid to producers of category θ ∈ Θ
for producing z. The self-financing budget constraint of the team then reads
as:

∫

Θ0

ϕθ(z)dm0(θ) = 0, for all z ∈ Z. (21)

The natural definition of an equilibrium in this context then reads as:

Definition 4 A matching equilibrium ((ϕθ)θ∈Θ0
, (γ)θ∈Θ0

, ν) consists of a bounded
Carathédory function (ϕθ)θ∈Θ0

∈ A(Θ0×Z), a probability measure ν ∈ ∆(Z)
and a family (γ)θ∈Θ0

of elements of ∆(X × Z) such that:

1. For all z ∈ Z:
∫

Θ0

ϕθ(z)dm0(θ) = 0,

2. γθ ∈ Π(µθ, ν) for m0-almost every θ ∈ Θ0,

3. for m0-almost every θ ∈ Θ0, one has:

ϕcθ

θ (x) = cθ(x, z) − ϕθ(z) γθ-almost everywhere on X × Z.

To prove existence and give a characterization of equilibria, one may
follow the same strategy as in the discrete case, by considering the two opti-
mization problems:

(P) sup
(ϕθ)θ∈Θ0

∈E(0)

∫

Θ0

(
∫

X

ϕcθ

θ (x)dµθ(x)

)

dm0(θ)

18



with

E(0) := {(ϕθ)θ∈Θ0
∈ A(Θ0 × Z) :

∫

Θ0

ϕθ(z)dm0(θ) = 0 for all z ∈ Z}.

and its dual:

(P∗) inf
ν∈M1

+
(Z)

∫

Θ0

Wcθ
(µθ, ν)dm0(θ).

Of course, there are measure-theoretic subtleties (like the measurability of
θ → Wcθ

(µθ, ν)) and specific difficulties to generalize Proposition 1, but the
main results basically are the same as in the finite case:

Theorem 5 1. Both (P) and (P∗) possess solutions and

max(P) = min(P∗),

2. let (ϕθ)θ∈Θ0
∈ A(Θ0 × Z), ν ∈ ∆(Z) and (γθ)θ∈Θ0

be a family of ele-
ments of ∆(X × Z), then ((ϕθ)θ∈Θ0

, (γθ)θ∈Θ0
, ν) is a matching equilib-

rium if and only if:

(a) (ϕθ)θ∈Θ0
solves (P),

(b) ν solves (P∗),

(c) for m0-almost every θ ∈ Θ0, γθ is an optimal transportation plan
between µθ and ν for the cost cθ i.e.:

Wcθ
(µθ, ν) =

∫

X×Z

cθ(x, z)dγθ(x, z).

In particular, there exists matching equilibria.

The proof which is omitted here may be obtained from the authors upon
request.

Appendix

On c-concave analysis

Let X and Z be two compact metric spaces. For c ∈ C0(X × Z,R) and
ϕ ∈ C0(Z,R), the c-concave transform of ϕ is the function ϕc defined on
X by formula (6), the c-concave envelope of ϕ is the function denoted ϕcc

defined by:
ϕcc(z) := inf

x∈X
{c(x, z) − ϕc(x)} for all z ∈ Z. (22)
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We then have the following properties (we refer to [1] or [3] for proofs):

ϕcc ≥ ϕ on Z, (ϕcc)c = ϕc on X. (23)

Let us denote by d the distance on Z, and by ωc the modulus of continuity
of c with respect to its second argument:

ω(t) := sup{|c(x, z1) − c(x, z2)| (x, z1, z2) ∈ X × Z2, d(z1, z2) ≤ t} (24)

since X × Z is compact ωc(t) tends to 0 as t → 0+. Regularity of c-concave
envelopes is guaranteed by the following:

Lemma 1 For all z1, z2 ∈ Z2 we have:

|ϕcc(z1) − ϕcc(z2)| ≤ ωc(d(z1, z2)).

This proves that the family {ϕcc, ϕ ∈ C0(Z,R)} is uniformly equicon-
tinuous on Z. Similarly, {ϕc, ϕ ∈ C0(Z,R)} is uniformly equicontinuous on
X.

8.1 Proof of Corollary 1

The claim of continuity immediately follows from the contraction property:

‖ϕc
1 − ϕc

2‖∞,X ≤ ‖ϕ1 − ϕ2‖∞,Z , ∀(ϕ1, ϕ2) ∈ (C0(Z,R))2. (25)

The claim of convexity immediately follows from the definition (6) which
implies that for fixed x ∈ X, ϕc(x) is a concave function of ϕ.

Let ν ∈ M(Z). By the definition of the Fenchel conjugate:

F ∗(ν) = sup
ϕ∈C0(Z,R)

{
∫

X

ϕc(x)dµ(x) +

∫

Z

ϕ(z)dν(z)

}

If ν is not a non-negative measure, there exists ϕ ≤ 0 such that
∫

Z
ϕdν >

0. For every t > 0, we then have (tϕc) ≥ minX×Z c, hence:

F ∗(ν) ≥ sup
t>0

{

t

∫

Z

ϕdν

}

+ min
X×Z

c = +∞.

If ν(Z) 6= 1 = µ(X), we get:

F ∗(ν) ≥ sup
t∈R

{t(ν(Z) − µ(X))} + min
X×Z

c = +∞.

Finally, if ν ∈ ∆(Z), using the duality relation of Theorem 1 we get F ∗(ν) =
Wc(µ, ν).
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Proof of proposition 1

Let us prove first that the infimal convolution is exact. Let (ϕk
0, ...., ϕ

k
N)k be

a minimizing sequence for the minimization problem (15) defining H(ϕ). For
j = 1, ..., N define

ψk
j := (ϕk

j )
cjcj

and

ψk
0 := ϕ−

N
∑

j=1

ψk
j . (26)

By construction (ψk
0 , ..., ψ

k
N) is admissible for H(ϕ), ψk

j ≥ ϕk
j and (ψk

j )cj =
(ϕk

j )
cj for j = 1, ..., N , hence we have

ψk
0 = ϕ−

N
∑

j=1

ψk
j ≤ ϕ−

N
∑

j=1

ϕk
j = ϕk

0

and since the c0-transform is order reversing, we obtain (ψk
0 )c0 ≥ (ϕk

0)
c0.

Thus, we get
N
∑

j=0

Fj(ψ
k
j ) ≤

N
∑

j=0

Fj(ϕ
k
j )

so that (ψk
0 , ...., ψ

k
N )k is also a minimizing sequence for the minimization prob-

lem (15). Since the problem (15) is invariant by adding to the ϕj constants
that sum to 0, there is no loss of generality in assuming that minZ ψ

k
j = 0

for every j = 1, ..., N . For j = 1, ..., N defining ωj the modulus of continuity
of c with respect to its second argument:

ωj(t) := sup{|cj(xj, z1)−c(xj , z2)| (xj, z1, z2) ∈ Xj × Z2, d(z1, z2) ≤ t} (27)

and using lemma 1 we then get:

0 ≤ ψk
j ≤Mj := ωj(diam(Z)) on Z, for j = 1, ..., N.

With Lemma 1, the previous bounds and (26), we deduce that the sequence
(ψk

j )k is bounded and uniformly equicontinuous for every j = 0, ..., N . By
Ascoli’s theorem, we may therefore assume, taking subsequences if necessary,
that each ψk

j converges as k → +∞ in C0(Z,R) to some ϕj. By the continuity
of Fj (see corollary 1) we immediately deduce that

N
∑

j=0

ϕj = ϕ and

N
∑

j=0

Fj(ϕj) = H(ϕ).
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so the inf-convolution is exact, as announced. Moreover, let us remark that
the ϕj’s obtained above satisfy

0 ≤ ϕj ≤ Mj, |ϕj(z1) − ϕj(z2)| ≤ ωj(d(z1, z2)), ∀(z1, z2) ∈ Z2, j = 1, ..., N.
(28)

Now it remains to prove that H is l.s.c (convexity is obvious). Assume
that a sequence (ϕk)k converges to some ϕ in C0(Z,R), then one can find
continuous functions (ϕk

0, ..., ϕ
k
N) that satisfy the estimates (28) and such

that
N
∑

j=0

ϕk
j = ϕk and

N
∑

j=0

Fj(ϕ
k
j ) = H(ϕk).

Thanks to (28) and Ascoli’s Theorem again, we may assume, up to some
subsequence, that H(ϕk) converges to lim infH(ϕk) and that (ϕk

j ) converges
to some ϕj in C0(Z,R). Since the ϕj’s sum to ϕ and the Fj’s are continuous,
we get:

H(ϕ) ≤
N
∑

j=0

Fj(ϕj) = lim
N
∑

j=0

Fj(ϕ
k
j ) = lim inf H(ϕk).

Proof of proposition 3

Assertion 1. The fact that the infimum is attained in (18) follows at once
from the weak-∗ compactness of Π(µ0, ..., µN) and the continuity of c. Let
ν ∈ ∆(Z) and γj ∈ Π(µj, ν) for every j. The disintegration theorem allows
to write γj = γz

j ⊗ ν (interpret the family γz
j as conditional probabilities) for

a measurable family of probabilities γz
j on Xj. Now let η ∈ ∆(X × Z) be

defined for every F ∈ C0(X × Z) by:

∫

X×Z

F (x, z)dη(x, z) :=

∫

F (x0, ...., xN , z)dγ
z
0(x0)....dγ

z
N(xN)dν(z).

By construction, the marginal of η on Xj × Z is γj and defining γ as the
projection of η on X one has γ ∈ Π(µ0, ..., µN). Now we have:

N
∑

j=0

∫

Xj×Z

cj(xj, z)dγj(xj, z) =

∫

X×Z

N
∑

j=0

cj(xj, z)dη(x, z)

≥

∫

X×Z

c(x)dη(x, z) =

∫

X

c(x)dγ(x).

Since ν and the γj’s are arbitrary in the previous inequality and since γ ∈
Π(µ0, ..., µN), we deduce that the value of (P∗) is greater than that of (18).
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Assertion 2. Let γ be a solution of (18) and define ν := z]γ and
γj := (πj, z)]γ (where πj(x) := xj). Note that by construction γj ∈ Π(µj, ν).
We then have:

inf(P∗) ≥

∫

X

c(x)dγ(x) =

∫

X

N
∑

j=0

cj(xj, z(x))dγ(x)

=

N
∑

j=0

∫

Xi×Z

cj(xj, z)dγj(xj, z) ≥

N
∑

j=0

Wcj
(µj, ν) ≥ inf(P∗).

This proves that the value of (18) is inf(P∗) and that ν = z]γ solves (P∗).
Assertion 3. Finally assume that ν solves (P∗), let γj ∈ Π(µj, ν) be

such that

Wcj
(µj, ν) =

∫

Xj×Z

cjdγj.

Let us disintegrate each γj by writing γj := γz
j ⊗ ν and define η ∈ ∆(X ×Z)

by:

∫

X×Z

F (x, z)dη(x, z) :=

∫

F (x0, ...., xN , z)dγ
z
0(x0)....dγ

z
N(xN )dν(z)

for all F ∈ C0(X × Z). Finally denote by γ the projection of η on X. By
construction, γ ∈ Π(µ0, ..., µN) and thus the common value of (P∗) and (18)
equals

N
∑

j=0

∫

Xj×Z

cj(xj, z)dγj(xj, z) =

∫

X×Z

N
∑

j=0

cj(xj, z)dη(x, z)

≥

∫

X×Z

c(x)dη(x, z) =

∫

X

c(x)dγ(x).

This proves on the one hand that γ solves (18) and on the other hand that
for η-a.e. (x, z) one has

N
∑

j=0

cj(xj, z) = c(x)

by continuity, this also implies that the support of η is included in the graph
of z. Hence for γ-a.e. x ∈ X, the conditional probability γx is the Dirac
mass at z(x), we thus have η = (idX , z)]γ and, in particular ν = z]γ.
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