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Abstract

The aim of this paper is to study problems of the form:

inf
u∈V

J(u) with J(u) :=

∫ 1

0
L(s, yu(s), u(s))ds + g(yu(1))

where V is a set of admissible controls and yu is the solution of the
Cauchy problem:

{
ẋ(t) = 〈f(., x(.)), νt〉 + u(t), t ∈ (0, 1),
x(0) = x0,

and each νt is a nonnegative measure with support in [0, t]. After
studying the Cauchy problem, we establish existence of minimizers,
optimality conditions (in particular in the form of a nonlocal version
of the Pontryagin principle) and prove some regularity results. We
also consider the more general case where the control also enters the
dynamics in a nonlocal way.
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1 Introduction and examples

The aim of this paper is to study deterministic optimal control problems of
the form

inf
u∈V

J(u) with J(u) :=

∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1)). (1)

Here, u is the control variable and the state equation governing the dynam-
ics of the state variable y = yu is an integrodifferential equation modelling
memory or delay effects. More precisely, yu is the solution of the Cauchy
problem





ẋ(t) =

∫

[0,t]

f(s, x(s))dνt(s) + u(t) = 〈f(., x(.)), νt〉 + u(t), t ∈ (0, 1),

x(0) = x0.

In the state equation above, (νt)t denotes a given measurable family of non-
negative measures such that νt has its support in [0, t] (i.e. only the past
of the trajectory is taken into account). Let us remark that in the previous
equation, the control enters the dynamics only through its current value u(t)
and not through its past values. The case of a more general state equation
of the form:

ẋ(t) = 〈f(., x(.)), νt〉 + 〈u(.), µt〉 (2)

((µt)t being a measurable family of nonnegative measures) may also be rele-
vant in applications and will also be treated in the paper. There are of course
many variants of controlled dynamics of the form (2) like:

ẋ(t) = F (t, x(t), u(t), 〈f(t, ., x(.)), νt〉 , 〈g(t, ., u(.)), µt〉). (3)

For the sake of simplicity, we will restrict ourselves to (2) and claim that the
main ideas of the paper can be adapted to the more general case of (3).

Problems of the form above arise in different applied settings both in en-
gineering and decision sciences. It is typically the case when studying the
optimal performances of a system in which the response to a given input
occurs not instantaneously but only after a certain elapse of time. Such
problems have in general been modelled by delayed or deviating arguments
differential equations (see examples below). Let us remark that such equa-
tions are particular cases of the equations dealt with in the present paper.
Before going further, let us consider some examples.

Example 1 Problems with lags or deviating arguments.
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The simplest case is the case of a delayed equation of the form

ẏ(t) =

{
u(t) if t < τ
f(y(t − τ)) + u(t) if t ≥ τ

where τ > 0 is a given delay. This corresponds of course to

νt =

{
0 if t < τ
δt−τ if t ≥ τ

The study of delayed differential equations and their control may be traced
back to the early 60’s (in particular the book of Bellman and Cooke [2], see
also Oguztöreli [13]) and there is nowadays a huge literature on the subject.

A natural generalization of time delayed equations is the case of deviating
argument equations of the form

ẏ(t) = f(y(θ(t))) + u(t)

where θ is a given deviation function (with 0 ≤ θ(t) ≤ t say). In this case
νt = δθ(t). More generally, one can consider the superposition of several (or
even a continuum of) deviations, this corresponds to νt of the form:

νt :=

k∑

i=1

αi(t)δθi(t) or more generally νt :=

∫

A

α(t, a)δθ(t,a)dµ(a).

The study of general deviating arguments problems has started in the
60’s (see the book of El’sgol’ts [9]). More recently, in a calculus of variations
framework, Drakhlin and Stepanov [5] obtained lower semi-continuity results
for integral functionals with deviating arguments and Samassi and Tahraoui
[16] obtained optimality conditions for such functionals (see also Samassi’s
thesis [15]). Let us also mention that problems with deviating arguments
where the deviation is unknown a priori and determined by optimizing some
functional give rise to additional difficulties (see Jouini, Koehl and Touzi [11],
[12] for a problem of this type arising in economics).

Example 2 A deterministic advertising model.

Arguing that there is a time lag between advertising expenditure and the
corresponding effect on the goodwill level, Gozzi and Marinelli proposed in
[10] a stochastic optimal control advertising model with delay. The state
variable y is the stock of advertising goodwill and the control variable u
models the intensity of advertising spending. The dynamics of y is assumed
to be governed by a stochastic delay differential equation of the form




dyt =

[
a0y(t) + b0u(t) +

∫ r

0

(a1(s)y(t − s) + b1(s)u(t − s))ds

]
dt + σdWt

(y, u) prescribed on [−r, 0].
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where Wt stands for the standard one-dimensional Brownian motion, a0 ≤ 0,
b0 ≥ 0 are given constants, a1 and b1 are given L2 functions on [−r, 0] with
b1 ≥ 0. In the deterministic case, σ = 0, and we are left with a special case
of the dynamics (2).

Example 3 Variants of Ramsey’s economic growth model.

In [14], Ramsey proposed a celebrated model of economic growth. In
finite horizon, it reads as:

sup

∫ T

0

e−δtU(c(t))dt + g(k(T )) : k̇(t) = f(t, k(t)) − c(t), k(0) = k0.

The state variable k is the capital, the control c is the consumption rate,
and f is the production function. In the original model i(s) := f(s, k(s)) −
c(s) represents the investment at time t and writing k̇(t) = f(t, k(t)) − c(t)
amounts to assuming that saving instantaneously converts into capital. This
is a strong assumption and it is more realistic to assume that the capital
growth depends on past investments according to a relation of the form

k̇(t) =

∫ t

0

i(s)dνt(s) =

∫ t

0

(f(s, k(s)) − c(s))dνt(s).

We refer to Boucekkine et al.[3] for a variant of Ramsey’s model with delays.
There are actually many related problems in economics, management of nat-
ural resources and finance (optimal harvesting, models with age-structured
populations...). For extensions to the stochastic control framework and more
applications, we refer for instance to Elsanosi, Øksendal and Sulem [8].

In section 2, the Cauchy problem is studied in details. Section 3 deals
with the existence of optimal controls, the material of these sections is rather
standard but is included for the sake of completeness. The main novelty
consists of the derivation of optimality conditions obtained in section 4. In
the case of an unconstrained control, we first establish the Euler-Lagrange
equations of the problem, then apply the optimality conditions to obtain some
regularity results. We then consider the case of (convex) constraints on the
control and prove that in this case, the optimality conditions can be written
in the form of a Pontryagin principle with a nonlocal Hamiltonian. Finally,
section 5 extends the previous result to the more general state equation (2).

2 On the Cauchy problem

Our first aim is to solve the Cauchy problem:
{

ẋ(t) = 〈f(., x(.)), νt〉 + v, t ∈ (0, 1),
x(0) = x0.

(4)
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Let us consider the following assumptions:

• (H1) f ∈ C0([0, 1] × R
d, Rd), and there exists (a, b) ∈ R

2
+ such that

|f(t, x)| ≤ a|x| + b, for all (t, x) ∈ [0, 1] × R
d,

• (H’1) for every r > 0, there exists k such that for all (t, x, y) ∈ [0, 1]×
R

d × R
d such that |x| ≤ r and |y| ≤ r, |f(t, x) − f(t, y)| ≤ k|x − y|,

• (H2) for each t ∈ [0, 1], νt is a nonnegative finite measure such that
νt((t, 1]) = 0 and t 7→ νt is measurable in the sense that t 7→ 〈g, νt〉 is
measurable for every g ∈ C0([0, 1], R),

• (H3) defining α(t) := νt([0, 1]) = νt([0, t]), we assume α ∈ L1(0, 1).

In the sequel, we shall simply write C0, Lp, W 1,p, BV instead respectively
of C0([0, 1], Rd), Lp((0, 1), Rd), W 1,p((0, 1), Rd), BV((0, 1), Rd). For x and y
in R

d, the usual inner product of x and y will be denoted x · y.

2.1 Existence, uniqueness

Before we go further, under assumption (H3), we have the following Lemma:

Lemma 1 Let λ > 0 and define for every t ∈ [0, 1],

ϕλ(t) :=

∫ t

0

eλ(s−t)α(s)ds

then ϕλ converges uniformly to 0 on [0, 1] as λ → +∞.

Proof. Let ε > 0, and let δ > 0 be such that
∫

A
α ≤ ε for every Borel set

A with Lebesgue measure less than δ. Then for every t ∈ [0, δ], ϕλ(t) ≤ ε
and for t ∈ [δ, 1], one has:

0 ≤ ϕλ(t) =

∫ t−δ

0

eλ(s−t)α(s)ds +

∫ t

t−δ

eλ(s−t)α(s)ds ≤ e−λδ‖α‖L1 + ε.

The desired conclusion follows.

Proposition 1 Let us assume that v ∈ L1, that (H1), (H2) (H3) hold and
let us denote by Sv the set of W 1,1 solutions of (4). We then have :

1. Sv 6= ∅, and for all x ∈ Sv, ‖x‖∞ ≤ M for some constant M =
M(|x0|, a, b, ‖α‖L1, ‖v‖L1),
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2. Sv is compact for both C0 and W 1,1 topologies,

3. if, in addition (H’1) is satisfied then Sv consists of a single point yv

and the map v ∈ L1 7→ yv ∈ W 1,1 is locally Lipschitz.

Proof. 1. For v ∈ L1 and x ∈ C0, define for all t ∈ [0, 1]:

Tvx(t) := x0 +

∫ t

0

(〈f(., x(.)), νs〉 + v(s))ds.

It is obvious under our assumptions that Tv(C
0) ⊂ W 1,1 ⊂ C0. Let x and y

be in C0, we have:

‖Tvx − Tvy‖∞ ≤ ‖α‖L1‖f(., x(.)) − f(., y(.))‖∞

which proves that Tv is continuous (for the uniform topology of C0).

Let λ > 0 and define for every x ∈ C0:

‖x‖λ := sup
t∈[0,1]

e−λt|x(t)|. (5)

Of course, (C0, ‖.‖λ) is a Banach space. Let x ∈ C0, we have:

〈|f(., x(.))|, νs〉 ≤ 〈a|x| + b, νs〉 ≤ (a|x0| + a‖x − x0‖λe
λs + b)α(s)

defining C := ‖v‖L1 + (a|x0| + b)‖α‖L1, we then get:

|Tvx(t) − x0| ≤ C + a‖x − x0‖λ

∫ t

0

eλsα(s)ds

this yields:
‖Tvx − x0‖λ ≤ C + a‖x − x0‖λ max

t∈[0,1]
ϕλ(t). (6)

Let us denote by Bλ(x0, r) the closed ball of C0 with center x0 and radius
r for the norm ‖.‖λ. It then follows from (6) and lemma 1 that for any
r > C, Tv(Bλ(x0, r)) ⊂ Bλ(x0, r) when λ is chosen sufficiently large. Now,
let x ∈ Bλ(x0, r) and t2 > t1 be in [0, 1], we have for some nonnegative
constant C ′:

|Tvx(t2) − Tvx(t1)| ≤

∫ t2

t1

(C ′α(s) + |v(s)|)ds.

This proves that Tv(Bλ(x0, r)) is uniformly equicontinuous, we thus deduce
from Ascoli’s Theorem that Tv(Bλ(x0, r)) is relatively compact in C0. From
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Schauder’s fixed point Theorem we deduce that Tv admits at least one fixed
point in Bλ(x0, r) which proves that Sv is nonempty. Sv is obviously closed
in C0 since Tv is continuous. Choosing λ such that maxt∈[0,1] ϕλ(t) ≤ 1/(2a),
we deduce from (6) that Sv ⊂ Bλ(x0, 2C) which establishes the first claim of
the proposition.

2. Since Sv = Tv(Sv) and Tv(Bλ(x0, 2C)) is relatively compact in C0, we
can conclude that Sv is compact in C0. We claim that Sv is also compact
in W 1,1, indeed let (xn)n be a sequence of elements of Sv, up to some subse-
quence we may assume that xn converges uniformly to some x ∈ Sv. Since,
one has:

|ẋ − ẋn| ≤ α‖f(., x(.)) − f(., xn(.))‖∞

it thus follows that xn converges uniformly to x in W 1,1.

3. Finally, let us assume that f satisfies the local Lipschitz condition and
let x1 and x2 belong to Sv. We already know that Sv ⊂ C0([0, 1], BM) for
some constant M ; let us denote by k the Lipschitz constant of f with respect
to its second argument on [0, 1] × BM . For each t ∈ [0, 1], we then have:

|Tvx1(t) − Tvx2(t)| ≤

∫ t

0

k 〈|x1 − x2|, νs〉 ds ≤ k‖x1 − x2‖λ

∫ t

0

eλsα(s)ds

hence:
‖Tvx1 − Tvx2‖λ = ‖x1 − x2‖λ ≤ ‖x1 − x2‖λk max ϕλ

again choosing λ large enough and using lemma 1, we get x1 = x2.

Let ρ > 0 and v1, v2 be in the centered ball of L1 of radius ρ and set
yi := yui

for i = 1, 2. Since

y2(t) − y1(t) =

∫ t

0

(〈f(., y2(.)) − f(., y1(.), νs〉)ds +

∫ t

0

(u2 − u1),

we deduce from 1. and (H’1), that there exists k = k(ρ) such that for every
λ > 0 and every t ∈ [0, 1], one has:

|y1(t) − y2(t)|e
−λt ≤ k‖y1 − y2‖λϕλ(t) + ‖u1 − u2‖L1 .

Hence for λ large enough (λ ≥ λ(ρ) say), one has:

‖y1 − y2‖λ ≤ 2‖u1 − u2‖L1

Thus, there exists C = C(ρ) such that ‖y1 − y2‖∞ ≤ C(ρ)‖u1 − u2‖L1 . We
deduce the desired result by remarking that

|ẏ1(t) − ẏ2(t)| ≤ |u1(t) − u2(t)| + kα(t)‖y1 − y2‖∞.
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When d = 1 and f is sublinear and nondecreasing (but not locally Lips-
chitz) with respect to its second argument, it is possible (by suitably regular-
izing f from above of from below) to show that the Cauchy problem admits
a unique largest and a unique smallest solution.

2.2 Continuous dependence and linearization

In this paragraph, we always assume (H1), (H’1), (H2) and (H3),

Lemma 2 If a sequence vn converges weakly in L1 to some v then yvn
con-

verges uniformly to yv on [0, 1].

Proof. Let us set yn := yvn
and let us prove that yn is uniformly equicon-

tinuous (we already know that it is bounded in L∞ by proposition 1). On
the one hand, we know from proposition 1 that there exists a constant C
such that for all n and all t, h such that [t, t + h], one has:

|yn(t + h) − yn(t)| ≤

∫ t+h

t

(Cα + |vn|)

On the other hand, vn satisfies Dunford-Pettis criterion hence is uniformly
integrable. We therefore deduce from Ascoli’s Theorem that (yn) is precom-
pact in C0. Let z be some limit point of (yn) for the C0 norm, if we establish
that z = yv, the proof will be complete. To prove that z = yv it is enough to
pass to the limit in:

yn(t) = x0 +

∫ t

0

(〈f(., yn(.)), νs〉 + vn(s))ds

and to invoke the uniqueness result of proposition 1.

For the following result, we further assume that for every t ∈ [0, 1], f(t, .)
is of class C1 on R

d, we denote by Dxf(t, y) the Jacobian matrix of f(t, .) at
the point y and assume that Dxf is a continuous function of both variables
t and x. We then have:

Proposition 2 Let (u, v) ∈ L1 × L1 and ε > 0. Define y := yu and yε :=
yu+εv, then:

yε − y

ε
→ h in W 1,1 as ε → 0+

where h is the solution of the linearized state equation:
{

ḣ(t) = 〈Dxf(., y(.))h(.), νt〉 + v(t), t ∈ (0, 1),
h(0) = 0.

(7)
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Proof. For ε > 0, let us set hε := (yε − y)/ε. We know from proposition
1 that hε is bounded in W 1,1 hence in C0, hence there is a constant k such
that for every ε > 0 and t ∈ (0, 1):

|ḣε(t)| ≤ kα(t) + |v(t)|.

Since the rightmost member of this inequality is L1, the family (hε) is pre-
compact in C0. Let η be some limit point for the C0 norm of (hε), η = limj hεj

and let us prove that η = h. For all t and j, we have:

hεj
(t) =

∫ t

0

(〈
f(., y(.) + εjhεj

(.)) − f(., y(.))

εj

, νs

〉
+ v(s)

)
ds

letting j tend to ∞ we get:

η(t) =

∫ t

0

(〈Dxf(., y(.))η(.), νs〉 + v(s))ds.

Since h is the unique solution of the linearized equation(7), this proves that
h = η and that the whole hε converges to h in C0 as ε tends to 0. To prove
that there is also convergence in W 1,1 we remark that:

‖ḣε − ḣ‖L1 ≤ ‖α‖L1δε

where

δε =

∥∥∥∥
f(., y(.) + εhε(.)) − f(., y(.))

ε
− Dxf(., y(.))h(.)

∥∥∥∥
∞

which tends to 0 as ε → 0+.

3 Existence of optimal controls

From now on, we will always assume (H1), (H’1), (H2) and (H3). In
addition we assume the following:

• (H4) g is l.s.c., L is a normal integrand from [0, 1]×R
d×R

d to R∪+∞
(i.e. L is Borel and for a.e. t ∈ [0, 1], L(t, ., .) is l.s.c.) and L(t, x, .) is
convex for every (t, x) ∈ [0, 1] × R

d,
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• (H5) there exists a convex l.s.c. function Ψ: R
+ → R

+ such that
lim+∞ Ψ(ξ)/ξ = +∞ and G ∈ L1((0, 1), R) such that:

L(t, x, v) ≥ Ψ(|v|) + G(t), ∀(t, x, v) ∈ [0, 1] × R
d × R

d,

• (H6) V is a closed convex subset of L1 and there exists u0 ∈ V such
that J(u0) < +∞.

Under assumptions (H1), (H’1), (H2), (H3), (H4), (H5), (H6), one
easily obtains existence of a solution to (1):

Proposition 3 There exists u ∈ V such that J(u) ≤ J(u) for all u ∈ V .

Proof. Let un ∈ V N be a minimizing sequence of J over V . It follows
from (H5) and Dunford-Pettis theorem that un admits a (not relabeled)
subsequence that converges weakly in L1 to some u, by convexity u ∈ V . It
then follows from lemma 2 that yn := yun

converges uniformly to y := yu. It
then follows from our assumptions and Theorem 2.1, p. 243 of Ekeland and
Temam [7] that:

J(u) ≤ lim J(un)

which proves the result.

4 Optimality conditions

4.1 Euler-Lagrange Equations

In this paragraph, we assume the following:

• (H7) for every t ∈ [0, 1], f(t, .) is of class C1 and Dxf is continuous,

• (H8) g is of class C1, L is continuous and for every t ∈ [0, 1], (x, v) 7→
L(t, x, v) is of class C1 and ∇xL and ∇vL are continuous,

• (H9) there exists p > 1 and c > 0 such that L satisfies (H5) with
Ψ(ξ) = cξp, α ∈ Lp, there exists G1 ∈ Lp′

((0, 1), R) (p′ being the
conjugate exponent of p), G2 ∈ L1((0, 1), R), and for each r > 0 there
exists βr ≥ 0 such that for all (t, x, v) ∈ [0, 1] × Br × R

d:

|∇vL(t, x, v)| ≤ G1(t)+βr(1+|u|p−1), |∇xL(t, x, v)| ≤ G2(t)+βr(1+|u|p).
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We then consider the following problem

inf
u∈Lp

J(u) with J(u) :=

∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1)) (8)

Under our assumptions, let us remark that for every v ∈ Lp, yv ∈ W 1,p

and that, if L is convex in v, then (8) admits at least one solution in Lp.
Under the previous assumptions, we also have, as a direct consequence of
proposition 2:

Lemma 3 J is Gâteaux-differentiable on Lp, and for all (u, v) ∈ Lp × Lp

one has:

〈J ′(u), v〉 =

∫ 1

0

(∇xL(t, yu(t), u(t))hv(t) + ∇vL(t, yu(t), u(t)) · v(t)) dt

+ ∇g(yu(1)) · hv(1)

where hv ∈ W 1,p is the solution of the linearized state equation:

{
ḣ(t) = 〈Dxf(., yu(.))h(.), νt〉 + v(t), t ∈ (0, 1),
h(0) = 0.

(9)

Let us denote by L1 the Lebesgue measure on [0, 1] and let us define
the nonnegative measure γ := νt ⊗ L1 on [0, 1]2, and define ν as the second
marginal of γ. Using test-functions, γ and ν are then defined by:

∫
φ(t, s)dγ(t, s) =

∫ 1

0

(∫ 1

0

φ(t, s)dνt(s)

)
dt, ∀φ ∈ C0([0, 1]2, R),

∫
φ(s)dν(s) =

∫ 1

0

(∫ 1

0

φ(s)dνt(s)

)
dt, ∀φ ∈ C0([0, 1], R).

Using the disintegration theorem (see for instance the book of Dellacherie
and Meyer [6] or the appendix in the lecture notes of Ambrosio [1]) we may
also write γ = ν⊗ν∗

s where ν∗
s is a measurable family of probability measures

on [0, 1]. We recall that φ ∈ L1(γ) if and only if:

• for L1-a.e. t ∈ [0, 1], φ(t, .) ∈ L1(νt), and

• t 7→ 〈φ(t, .), νt〉 ∈ L1(L1)

which is also equivalent to

• for ν-a.e. s ∈ [0, 1], φ(., s) ∈ L1(ν∗
s ), and
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• s 7→ 〈φ(., s), ν∗
s 〉 ∈ L1(ν).

Moreover, if φ ∈ L1(γ), then:

∫

[0,1]2
φ(t, s)dγ(t, s) :=

∫ 1

0

〈φ(t, .), νt〉 dt =

∫ 1

0

〈φ(., s), ν∗
s 〉 dν(s)

Let us finally remark that since νt is supported by [0, t], ν∗
s is supported by

[s, 1]. For every matrix A, we shall denote by AT the transpose of A. The
Euler-Lagrange equation of (8) then reads as:

Theorem 1 Let u be a solution of (8) and y := yu be the corresponding
trajectory. Slightly abusing notations, let us simply denote

Dxf(., y(.))T 〈∇vL(y, u), ν∗
. 〉 : t ∈ [0, 1] 7→ Dxf(t, y(t))T 〈∇vL(., y(.), u(.)), ν∗

t 〉 .

Then the following Euler-Lagrange equation:

d

dt
(∇vL(., y(.), u(.))) = ∇xL(., y(.), u(.)) − (Dxf(., y(.))T 〈∇vL(y, u), ν∗

. 〉)ν

(10)
and the transversality condition:

∇vL(1, y(1), u(1)) = −∇g(y(1)) (11)

are satisfied in the (W 1,p)′ sense, which means that for every x ∈ W 1,p such
that x(0) = 0, one has:

0 =∇g(y(1)) · x(1) +

∫ 1

0

(∇xL(t, y(t), u(t)) · x(t) + ∇vL(t, y(t), u(t)) · ẋ(t)) dt

−

∫ 1

0

((Dxf(s, y(s)))x(s) · 〈∇vL(., y(.), u(.)), ν∗
s 〉) dν(s).

Proof. To shorten notations, let us set:

Π(t) := ∇vL(t, y(t), u(t)), A(t) := Dxf(t, y(t)),

Θ(t) := ∇xL(t, y(t), u(t)). (12)

Since u ∈ Lp, our assumptions imply that Π ∈ Lp′

, Θ ∈ L1 and A ∈ C0.

Let x ∈ W 1,p be such that x(0) = 0 and define:

v(t) := ẋ(t) − 〈A(.)x(.), νt〉
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so that v ∈ Lp and x = hv. By lemma 3 and since 〈J ′(u), v〉 = 0, we get:

∫ 1

0

(Θ · x + Π · (ẋ − 〈A(.)x(.), νt〉))dt + ∇g(y(1)) · x(1) = 0. (13)

Let us define for all (i, j) ∈ {1, ..., d}2, and all (t, s) ∈ [0, 1]2, φij(t, s) :=
Πi(t)Aij(s)xj(s). Since both A and x are continuous on [0, 1], φij(t, .) ∈
L1(νt) for a.e. t and

| 〈φij(t, .), νt〉 | ≤ ‖Aij‖∞‖xj‖∞α(t)|Πi(t)|

since Π ∈ Lp′

and α ∈ Lp, the right-hand side member is L1, we deduce that
φij ∈ L1(γ). Hence φij(., s) ∈ L1(ν∗

s ) for ν-a.e. s , 〈φij(., s), ν
∗
s 〉 ∈ L1(ν), and:

∫ 1

0

(Π(t) · 〈A(.)x(.), νt〉)dt =
∑

1≤i,j≤d

∫

[0,1]2
φij(t, s)dγ(t, s)

=
∑

1≤i,j≤d

∫ 1

0

〈φij(., s), ν
∗
s 〉 dν(s)

=
∑

1≤i,j≤d

∫ 1

0

(Aij(s)xj(s) 〈Πi, ν
∗
s 〉)dν(s)

=

∫ 1

0

x(s) · (A(s)T 〈Π, ν∗
s 〉)dν(s)

With (13), we thus get, for all x ∈ W 1,p such that x(0) = 0

∇g(y(1)) · x(1) +

∫ 1

0

(Θ · x + Π · ẋ) dt −

∫ 1

0

(A(s)x(s) · 〈Π, ν∗
s 〉) dν(s) = 0.

This exactly means that Π satisfies in the (W 1,p)′ sense:

Π̇ = Θ − (A(.)T 〈Π(.), ν∗
. 〉)ν, (14)

Π(1) = −∇g(y(1)). (15)

4.2 Regularity of optimal controls

Assuming as previously that u is a solution of (8), y := yu and defining Π,
Θ and A by (12), let us denote by ν̃Π the vector-valued measure:

dν̃Π := FΠdν where FΠ(s) := A(s)T 〈Π(.), ν∗
s 〉 . (16)
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We recall that Θ ∈ Lp′

, FΠ ∈ L1(ν) and that the optimality conditions
equation of (8) (14)-(15), can be written as:

Π̇ = Θ − ν̃Π, Π(1) = −∇g(y(1)).

This implies that Π ∈ BV((0, 1), Rd) and that for all t ∈ [0, 1]

Π(t) = −∇g(y(1)) −

∫ 1

t

Θ(s)ds + ν̃Π([t, 1]). (17)

We immediately deduce from (17) and (16) that Π is continuous except pos-
sibly on the set of atoms of ν, in particular Π is continuous as soon as ν has
no atoms.

Lemma 4 Let u be a solution of (8), y := yu, and Π be defined by (12).
For all t ∈ [0, 1] such that ν({t}) = 0, Π is continuous at t, hence Π has at
most countably many discontinuity points. In particular, if ν({t}) = 0 for all
t ∈ [0, 1] then Π is continuous on [0, 1].

To deduce the continuity of an optimal control, let us use standard Fenchel
duality:

L∗(t, x, p) := sup
v∈Rd

{p · v − L(t, x, v)}, ∀p ∈ R
d.

Assuming that L∗ is differentiable with respect to p (which is the case if L
is strictly convex and superlinear in v), we then have:

u(t) = ∇pL
∗(t, y(t), Π(t)).

We thus deduce the following:

Proposition 4 Let us further assume that L(t, x, .) is strictly convex for all
(t, x) ∈ [0, 1] × R

d and that ∇pL
∗ is continuous on [0, 1] × R

d × R
d and let

u be any solution of (8). For every t ∈ (0, 1) such that ν({t}) = 0 then
u is continuous at t. In particular, if ν has finitely many atoms then u is
piecewise continuous.

Proposition 4 states that optimal controls are continuous except possibly
on the set of atoms of ν. Remarking that, for every τ ∈ [0, 1],

ν({τ}) =

∫ 1

0

νt({τ})dt,

we thus deduce that optimal controls are continuous at each point τ such
that L1({t ∈ [0, 1] : νt({τ}) > 0}) = 0. As a consequence, if for Lebesgue-
a.e. t, νt is atomless then any optimal control is continuous. In the case
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of a deviating argument (i.e. νt = δθ(t)), ν is the image of the Lebesgue
measure by the deviation function θ and optimal controls are continuous
at each point τ such that L1(θ−1({τ})) = 0. If ν has no atoms, optimal
controls are continuous so that, if, in addition, we assume that t 7→ 〈g, νt〉
is continuous for every continuous g then the corresponding state is of class
C1. Under stronger regularity assumptions on ν, f , L and L∗, one can obtain
higher regularity (C1 or even C∞). When ν has finitely many atoms, one
can also obtain higher piecewise regularity (piecewise C1 or even piecewise
C∞).

Example:

To illustrate the previous results, let us consider the linear-quadratic case,
namely:

L(t, x, v) =
1

2
(|x|2 + |u|2), g = 0, f(t, x) = A(t)x,

where A is a continuous d × d-matrix-valued function. In this case, J is
strictly convex and (8) admits a unique solution u. If we denote by y the
corresponding trajectory, the pair (u, y) is then characterized by the following
linear system

{
ẏ(t) = 〈A(.)y(.)), νt〉 + u(t), y(0) = x0,

u̇ = y − (A(.)T 〈u, ν∗
. 〉)ν, u(1) = 0.

It immediately follows that if ν is atomless (i.e. ν({s}) = 0 for all s ∈ [0, 1])
and t 7→ 〈g, νt〉 is continuous for every continuous g, then u is continuous
and y is of class C1.

4.3 A nonlocal version of Pontryagin principle

In this section, we consider the case of a convex constraint on the control
and prove that the optimality conditions take the form of a nonlocal version
of the Pontryagin principle. More precisely, we consider the problem:

inf
u∈V

J(u) with J(u) :=

∫ 1

0

L(s, yu(s), u(s))ds + g(yu(1)). (18)

For the sake of simplicity we assume that the set of admissible controls V is
defined by:

V := {u ∈ Lp : u(t) ∈ K for a.e. t} (19)

where K := {v ∈ R
d : Φ(v) ≤ 0} and Φ is a differentiable convex function

such that infRd Φ < 0. In the remainder, we assume (H1), (H’1), (H2),
(H3), (H7), (H8), (H9) and, in addition, that L(t, x, .) is strictly convex
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on K for all (t, x) ∈ [0, 1] × R
d. This implies in particular that (18) pos-

sesses solutions and that the differentiability result of lemma 3 holds. Under
our assumptions, the optimality conditions of (18) may be expressed by the
following multiplier rule:

Lemma 5 Let u be a solution of (18) then there exists a nonnegative function
β such that

β(.)∇Φ(u(.)) ∈ Lp′

, β(t)Φ(u(t)) = 0 a.e., and (20)

〈J ′(u), v〉 = −

∫ 1

0

β(t)∇Φ(u(t)) · v(t)dt, ∀v ∈ Lp. (21)

Proof. Let F ∈ Lp′

be such that 〈J ′(u), v〉 =
∫ 1

0
F · v, ∀v ∈ Lp. The

variational inequalities of (18) read as:

∫ 1

0

F · v ≥ 0, ∀v ∈ R+(V − u). (22)

where R+(V − u) denotes the Lp closure of the convex cone R+(V − u). By
Lusin’s Theorem, for all n ∈ N

∗, there exists a compact subset Kn of [0, 1]
whose complement has Lebesgue measure less than n−1 and u is continuous
on Kn. Let us define then for all δ > 0 and n ∈ N

∗:

I0 := {t : Φ(u(t)) = 0}, Iδ := {t : Φ(u(t)) ≤ −δ}, In
δ = Iδ∩Kn, In

0 = I0∩Kn.

In what follows, for A ⊂ [0, 1], 1A will denote the characteristic function of
A. Let v ∈ L∞, there exists ε > 0 such that u + ε1In

δ
v and u − ε1In

δ
v both

belong to V . Hence, by (22), we deduce that
∫ 1

0
1In

δ
F · v = 0. Since v, δ > 0

and n are arbitrary we get F = 0 a.e. on [0, 1] \ I0.

Now let v ∈ L∞ be such that:

∇Φ(u(t)) · v(t) ≤ 0 for a.e. t ∈ I0. (23)

It can be checked easily that for all n ∈ N
∗ and η > 0 there exists ε > 0 such

that u + ε1In
0
(v − η∇Φ(u)) ∈ V . Using (22) again, we get:

∫ 1

0

1In
0
F · (v − η∇Φ(u)) ≥ 0

since n and η are arbitrary, we deduce that
∫ 1

0
1I0F · v ≥ 0 for every v ∈ L∞

that satisfies (23). Since F ∈ Lp′

, we deduce from Lebesgue’s dominated

convergence theorem that
∫ 1

0
1I0F · v ≥ 0 for every v ∈ Lp that satisfies (23).
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By a standard separation argument, we deduce that 1I0F = −1I0β∇Φ(u)
for some nonnegative function β. Together with F = 0 a.e. on [0, 1] \ I0, this
completes the proof.

Combining the previous lemma, with the arguments of the proof of the-
orem 1, we get:

Proposition 5 Let u be a solution of (18), β be as in lemma 5 , Π, Θ and
A be defined by (12) and set

p(t) := −Π(t) − β(t)∇Φ(u(t)), ∀t ∈ (0, 1), (24)

then p ∈ Lp′

∩ BV((0, 1), Rd), satisfies in the (W 1,p)′ sense:

ṗ = −Θ − (A(.)T 〈p(.), ν∗
. 〉)ν, (25)

with the boundary condition p(1) = ∇g(y(1)).

Proof. Let x ∈ W 1,p be such that x(0) = 0 and define:

v(t) := ẋ(t) − 〈A(.)x(.), νt〉

By lemma 3 and lemma 5, we get:
∫ 1

0

(Θ · x − p · (ẋ − 〈A(.)x(.), νt〉)dt + ∇g(y(1)) · x(1) = 0. (26)

Arguing exactly as in the proof of theorem 1, we get the desired result.

We may actually interpret p as a co-state variable and rewrite the previous
conditions as a nonlocal version of the Pontryagin principle. To that end, let
us first define:

H(t, x, p) := min
v∈K

{L(t, x, v) + p · v}, ∀(t, x, p) ∈ [0, 1] × R
d × R

d. (27)

Our assumptions guarantee that for each (t, x, p) ∈ [0, 1] × R
d × R

d, there
exists a unique U(t, x, p) ∈ K such that

H(t, x, p) := L(t, x, U(t, x, p)) + p · U(t, x, p)

It is well-known (see for instance Cannarsa and Sinestrari [4]), under our
assumptions, that U is continuous and the partial gradients ∇xH and ∇pH
exist, are continuous and are given by:

∇xH(t, x, p) = ∇xL(t, x, U(t, x, p)), ∇pH(t, x, p) = U(t, x, p). (28)
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Let v ∈ V , by convexity of Φ, we have:

0 ≥ β(t)(Φ(v) − Φ(u(t)) ≥ ∇Φ(u(t)) · (v − u(t)). (29)

Using the convexity of L(t, y(t), .) and the definition (24) of the co-state, we
also have:

L(t, y(t), v) ≥ L(t, y(t), u(t)) − (β(t)∇Φ(u(t)) + p(t)) · (v − u(t)). (30)

Using (29) and the arbitrarity of v in (30), we then get:

L(t, y(t), u(t)) + p(t) · u(t) = H(t, y(t), p(t))

or, equivalently:

u(t) = U(t, y(t), p(t)) a.e. on (0, 1). (31)

Let us then define for all x ∈ W 1,p and p ∈ Lp′

the (functional or nonlocal)
Hamiltonian of problem (18) by:

H̃(x, p)(t) := H(t, x(t), p(t)) + p(t) · 〈f(., x(.), νt〉 , t ∈ (0, 1). (32)

We then have the following result whose elementary proof is left to the
reader:

Lemma 6 Let x ∈ W 1,p and p ∈ Lp′

,

1. for every ϕ ∈ C0, the following limit

〈
DxH̃(x, p), ϕ

〉
:= lim

ε→0

1

ε

∫ 1

0

(
H̃(x + εϕ, p)(t) − H̃(x, p)(t)

)
dt

exists and is equal to
∫ 1

0

(∇xH(t, x(t), p(t)) · ϕ(t) + p(t) · 〈Dxf(., x(.))ϕ(.), νt〉) dt

=

∫ 1

0

∇xH(t, x(t), p(t)) · ϕ(t)dt +

∫ 1

0

ϕ(s) ·
[
Dxf(s, x(s))T 〈p(.), ν∗

s 〉
]
dν(s).

2. for every ϕ ∈ Lp′

, the following limit

〈
DpH̃(x, p), ϕ

〉
:= lim

ε→0

1

ε

∫ 1

0

(
H̃(x, p + εϕ)(t) − H̃(x, p)(t)

)
dt

exists and is equal to

〈
DpH̃(x, p), ϕ

〉
=

∫ 1

0

(〈f(., x(.)), νt〉 + U(t, x(t), p(t))) · ϕ(t)dt.
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Let us remark that if x ∈ W 1,p and p ∈ Lp′

, then DpH̃(x, p) ∈ Lp and

DxH̃(x, p) is a finite vector-valued measure. Slightly abusing notations, we
may rewrite lemma 6 in the more concise form:

{
DxH̃(x, p) = ∇xL(., x(.), U(., x(.), p(.))) + Dxf(., x(.))T 〈p, ν∗

. 〉 ν,

DpH̃(x, p)(t) = 〈f(., x(.)), νt〉 + U(t, x(t), p(t)).

Finally, we get the following version of the Pontryagin principle:

Theorem 2 Let u be a solution of (8) and y := yu be the corresponding
trajectory, then there exists p ∈ Lp′

∩ BV((0, 1), Rd) such that:

1. for a.e. t ∈ (0, 1),

L(t, y(t), u(t)) + p(t) · u(t) = min
v∈K

{L(t, y(t), v) + p(t) · v} ,

2. (y, p) solves the nonlocal Hamiltonian system:

{
ẏ = DpH̃(y, p),

ṗ = −DxH̃(y, p)

together with the boundary conditions

y(0) = x0, p(1) = ∇g(y(1)).

Proof. Let us define p as in proposition 5, then by construction u(t) =
U(t, y(t), p(t)) for a.e. t ∈ (0, 1), which means that

L(t, y(t), u(t)) + p(t) · u(t) = min
v∈K

{L(t, y(t), v) + p(t) · v} .

Using lemma 6, the optimality condition (25) can be rewritten as:

ṗ = −DxH̃(y, p), p(1) = ∇g(y(1)).

Finally, again using lemma 6, the state equation (4) can be rewritten as

ẏ(t) = 〈f(., y(.), νt)〉 + U(t, y(t), p(t)) = DpH̃(y, p)(t).
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5 The case of a state equation with memory

in the control

This final section is devoted to optimality conditions in the case of a state
equation of the form (2) where the control also enters the dynamics in a
nonlocal way.

5.1 Assumptions and preliminaries

In addition to f and the family (νt)t (that, throughout are assumed to satisfy
(H1), (H’1), (H2) and (H3)), we are now also given a measurable family
of nonnegative measures (µt)t such that t 7→ µt([0, 1]) belongs to L1. For
u ∈ Lp and x0 ∈ R

d, let us consider the Cauchy problem:

{
ẋ(t) = 〈f(., x(.)), νt〉 + 〈u, µt〉 , t ∈ (0, 1),
x(0) = x0.

(33)

In order to be able to apply the results of section 2 (with t 7→ 〈u, µt〉 as new
control), it is enough that the linear map u 7→ (t 7→ 〈u, µt〉) is well-defined
and continuous from Lp to L1. Let us define η := µt ⊗ L1 and define µ as
the second marginal of η, i.e.:

∫ 1

0

φ(s)dµ(s) =

∫ 1

0

〈φ, µt〉 dt, ∀φ ∈ C0([0, 1], R).

By the disintegration theorem (see [6] or [1]), we may also write η = µ ⊗ µ∗
s

for some measurable family of probability measures (µ∗
s)s on [0, 1]. Again,

this means:
∫ 1

0

φ(t, s)dη(t, s) =

∫ 1

0

〈φ(t, .), µt〉 dt

=

∫ 1

0

〈φ(., s), µ∗
s〉 dµ(s), ∀φ ∈ C0([0, 1]2, R).

Now let p ∈ (1, +∞) and let p′ be its conjugate exponent and let us
assume that µ ∈ Lp′

then for every u ∈ C0 one has:

∫ 1

0

| 〈u, µt〉 |dt ≤

∫ 1

0

|u|dµ ≤ ‖µ‖Lp′‖u‖Lp.

Thus, if µ ∈ Lp′

, u 7→ (t 7→ 〈u, µt〉) is a well-defined and continuous mapping
from Lp to L1. In the sequel we will always assume µ ∈ Lp′

and, slightly
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abusing notations, we will also denote by µ the density of µ with respect to
L1. In particular this implies that the Cauchy problem (33) admits a unique
solution that will be denoted zu ∈ W 1,1 in the sequel.

The next paragraphs then deal with the optimal control problem

inf
u∈V

I(u) with I(u) :=

∫ 1

0

L(s, zu(s), u(s))ds + g(zu(1)). (34)

To derive optimality conditions, we further assume that f , L and g satisfy
assumptions (H7), (H8), (H9) and that V is a closed convex subset of Lp.

Finally, for the sake of simplicity, we further assume that ν is atomless (i.e.
ν({t}) = 0 for every t ∈ [0, 1]) where we recall that ν is the second marginal
of γ := νt ⊗ L1 as defined in paragraph 4.1. Still using the notations of
paragraph 4.1, we shall also write γ = ν ⊗ ν∗

s .

5.2 Euler-Lagrange equations

In this paragraph, we consider the unconstrained case, i.e. problem (34)
when V = Lp. Let us assume that u solves (34) and let us set z := zu, and
define:

Π(t) := ∇vL(t, z(t), u(t)), A(t) := Dxf(t, z(t)),

Θ(t) := ∇xL(t, z(t), u(t)), β := ∇g(z(1)). (35)

Using the continuity of u 7→ (t 7→ 〈u, µt〉) and proposition 2, we easily obtain:

∫ 1

0

(Θ · kv + Π · v) + β · kv(1) = 0, ∀v ∈ Lp (36)

where kv ∈ W 1,1 denotes the solution of the linearized equation:

{
k̇(t) = 〈A(.)k(.), νt〉 + 〈v(.), µt〉 , t ∈ (0, 1),
k(0) = 0.

(37)

Now, let us consider the adjoint equation:

{
ṗ = −AT (.) 〈p, ν∗

. 〉 ν − Θ,
p(1) = β

(38)

which can equivalently be rewritten as:

p(t) = β +

∫ 1

t

Θ +

∫ 1

t

AT (s) 〈p, ν∗
s 〉 dν(s).

21



Arguing as in section 2, and using the fact that ν is atomless, the adjoint
equation (38) admits a unique solution p ∈ BV ∩ C0. For every h ∈ W 1,1

such that h(0) = 0, let us also remark that the following integration by parts
formula holds:

〈
h, ṗ

〉
= −

∫ 1

0

ḣ · p + β · h(1). (39)

The Euler-Lagrange equations of (34) are then given by:

Theorem 3 Let u be a solution of (34) and z := zu, then for a.e. t, one
has:

∇vL(t, z(t), u(t)) = −〈p(.), µ∗
t 〉µ(t),

where p ∈ BV ∩ C0 is the solution of the adjoint equation:

{
ṗ = −Λpν −∇xL(., z(.), u(.)),
p(1) = ∇g(z(1))

(40)

and Λp(t) := Dxf(t, z(t))T 〈p, ν∗
t 〉.

Proof. Let v ∈ Lp, and let us use the notations of (35). Using (37), and
(38), we then have:

〈
kv, ṗ

〉
= −

∫ 1

0

(AT (s) 〈p, ν∗
s 〉) · kv(s)dν(s) −

∫ 1

0

Θ · kv

= −

∫ 1

0

(〈Akv, νt〉) · p(t)dt −

∫ 1

0

Θ · kv

= −

∫ 1

0

k̇v · p +

∫ 1

0

〈v, µt〉 · p(t)dt −

∫ 1

0

Θ · kv

= −

∫ 1

0

k̇v · p +

∫ 1

0

v(s) 〈p, µ∗
s〉µ(s)ds −

∫ 1

0

Θ · kv

with (39), we then get:

∫ 1

0

Θ · kv + β · kv(1) =

∫ 1

0

v(s) 〈p, µ∗
s〉µ(s)ds, ∀v ∈ Lp.

Finally, (36) exactly yields Π(t) = ∇vL(t, z(t), u(t)) = −〈p(.), µ∗
t 〉µ(t) for

a.e. t.
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5.3 Pontryagin principle

In this paragraph, we consider the constrained case where V is defined by
(19) as in paragraph 4.3. We recall that K := {v ∈ R

d : Φ(v) ≤ 0} where
Φ is a differentiable convex function such that infRd Φ < 0. As in paragraph
4.3, in addition to the general assumptions of this section, we assume that
L(t, x, .) is strictly convex on K for every (t, x) ∈ [0, 1] × R

d.

Let (x, p) ∈ C0 × C0 and define

H(x, p) := inf
u∈V

∫ 1

0

(L(s, x(s), u(s)) + p(s) · 〈u, µs〉)ds

and let us remark that this Hamiltonian can also be written as:

H(x, p) = inf
u∈V

∫ 1

0

(L(t, x(t), u(t)) + u(t) · 〈p, µ∗
t 〉µ(t))dt

=

∫ 1

0

min
v∈K

{L(t, x(t), v) + v · 〈p, µ∗
t 〉µ(t)}dt

=

∫ 1

0

H(t, x(t), 〈p, µ∗
t 〉µ(t))dt.

where H is defined by (27). Define also:

H̃(x, p) := H(x, p) +

∫ 1

0

p(t) · 〈f(., x(.)), νt〉 dt. (41)

For fixed (x, p) ∈ C0×C0, our assumptions ensure that there exists a unique
u = U(x, p) that solves the minimization problem in the definition of H i.e.
U(x, p)(t) ∈ K and:

L(t, x(t), U(x, p)(t))+U(x, p)(t)·〈p, µ∗
t 〉µ(t) = H(t, x(t), 〈p, µ∗

t 〉µ(t)) for a.e. t.

Moreover, H̃ is Gâteaux-differentiable over C0 × C0, and for every (x, p) ∈
C0 × C0 and (y, q) ∈ C0 × C0, one can easily establish:

〈
DxH̃(x, p), y

〉
=

∫ 1

0

∇xL(., x(.), U(x, p)(.))·y+

∫ 1

0

p(t)·〈Dxf(., x(.))y(.), νt〉 dt,

(42)
and 〈

DpH̃(x, p), q
〉

=

∫ 1

0

(〈f(., x(.)), νt〉 + 〈U(x, p), µt〉) · q(t)dt (43)

which, slightly abusing notations, can be rewritten in the more concise form:
{

DxH̃(x, p) = ∇xL(., x(.), U(x, p)(.)) + Dxf(., x(.))T 〈p, ν∗
. 〉 ν,

DpH̃(x, p)(t) = 〈f(., x(.)), νt〉 + 〈U(x, p)(.), µt〉 .

23



Optimality conditions for (34) when V is defined by (19) are given by the
following variant of the Pontryagin principle.

Theorem 4 Let u be a solution of (34) and z := zu be the corresponding
trajectory, then there exists p ∈ C0 ∩ BV such that:

1. for a.e. t ∈ (0, 1),

L(t, z(t), u(t))+(〈p, µ∗
t 〉µ(t))·u(t) = min

v∈K
{L(t, z(t), v) + (〈p, µ∗

t 〉µ(t)) · v} ,

2. (z, p) solves the nonlocal Hamiltonian system:
{

ż = DpH̃(z, p),

ṗ = −DxH̃(z, p)

(with H̃ defined by (41)) together with the boundary conditions

z(0) = x0, p(1) = ∇g(z(1)).

Proof. Let us again use the notations (35). Arguing as in lemma 5, there
exists a nonnegative function β such that, β(.)∇Φ(u(.)) ∈ Lp′

, β(.)Φ(u(.)) =
0 a.e. and

∫ 1

0

(Θ · kv + Π · v) + β · kv(1) = −

∫ 1

0

β(t)∇Φ(u(t)) · v(t)dt, ∀v ∈ Lp (44)

where kv denotes the solutions of the linearized equation (37). Now let, p be
the solution of the adjoint equation (38). Arguing as in the proof of theorem
3, we obtain:

Π(t) = ∇vL(t, z(t), u(t)) = −〈p, µ∗
t 〉µ(t) − β(t)∇Φ(u(t)), a.e. (45)

which by our convexity assumptions is equivalent to u(t) being for a.e. t, a
solution of

min
v∈K

{L(t, z(t), v) + (〈p, µ∗
t 〉µ(t)) · v} .

We thus have u = U(z, p), so that using (42) and (43), the state equation
and the adjoint equations exactly take the form of the Hamiltonian system:

{
ż = DpH̃(z, p),

ṗ = −DxH̃(z, p).
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