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Abstract

We show that minimizing the difference of squared Wasserstein
distances to two reference probability measures in a suitable set of
probability measures is equivalent to a linear programming problem
posed on set of convex functions (problem which has its own interest
and motivations). This is naturally related to Toland’s duality for
the minimization of the difference of convex (DC for short) functions.
We therefore end the paper by some remarks on DC problems with a
convex (or concave) dual in the sense of Toland.
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1 Introduction

Toland’s duality (see [7], [8]) concerns minimization problems of the form:

(Q) inf
x∈V

{F (x) − G(x)}

where V is a real normed vector space and F and G are two convex lower semi-
continuous proper (i.e. not identically +∞) functions on V with values in
R∪{+∞}. Such problems where the objective is the difference of two convex
functions (henceforth DC) has received a lot of attention in the literature and
Toland’s duality states that the value of the DC problem (Q) coincides with
that of its dual:

(Q∗) inf
p∗∈V ∗

{G∗(p∗) − F ∗(p∗)}

where V ∗ stands for the topological dual of V , G∗ and F ∗ denote the Fenchel-
Legendre transform of F and G:

F ∗(p) := sup
x∈V

{p(x) − F (x)}, G∗(p) := sup
x∈V

{p(x) − G(x)}, ∀p ∈ V ∗.

Toland’s duality also enables one, under appropriate subdifferentiability con-
ditions, to construct solutions of (Q) from solutions of (Q∗) and vice versa.
This duality for DC minimization, as convex duality, is particularly useful
when (Q∗) is simpler to study than (Q). It is not surprising that Toland’s
duality as well as other forms of nonconvex duality have proved to be efficient
tools for a variety of applications, in particular in mechanics (the initial work
of Toland was motivated by the motion of a heavy rotating chain). It is not
our purpose here to give a complete list of references on nonconvex duality,
we rather refer the interested reader to [4], [5], [7], [8] and the references
therein. Let us remark that, at least formally, the Euler-Lagrange equation
of (Q) reads as

0 ∈ ∂F (x) − ∂G(x)

and that of (Q∗) reads as

0 ∈ ∂G∗(p) − ∂F ∗(p).

In [1], Michel and Hedy Attouch developed a general duality principle for
equations of the form 0 ∈ Ax − Bx for general operators A and B which
enabled them to recover as a particular case Toland’s duality.

The present article is concerned with special DC problems for which the
dual (or predual) is convex (or equivalent to a convex problem). Although
this is a very particular situation, we give various applications through the
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paper (related to optimal transport, convexity constraint, balayages of mea-
sures, Moreau-Yosida approximation). In particular, we study in details a
particular case of such a situation in section 3 in which we relate precisely
the problem of minimizing the difference of squared Wasserstein distances
to a simple linear programming problem posed on set of convex functions
(motivation for this linear programming problem being given in section 2).
In section 4, we make some remarks on DC problems with a convex dual.

2 Convexity constraint

Variational problems subjet to a convexity constraint arise in various areas
(Newton’s problem of least resistance [3], economics [9]...). In general, such
problems are difficult to study, we will therefore restrict here to the case of
a cost functional that ”does not depend on ∇u”. Let us consider then as
model problem

inf
u∈A

∫

Ω

F (x, u(x))dx (1)

where Ω is some bounded open convex subset of R
d and given K, some

compact subset of R
d, A is the set of convex functions defined by:

A := {u : Ω → R, u convex and ∇u ∈ K a.e. in Ω}. (2)

Firstly, let us remark that u ∈ A if and only if it can be written in the form
u = v∗

K for some v ∈ C0(K, R) with

v∗

K(x) := sup
y∈K

{y · x − v(y)}. (3)

Secondly, let us note that as soon as F is continuous (we do not look for
minimal assumptions here) and satisfies a coercivity assumption of the form

F (x, t) ≥ f(t) with f(t) → ∞ as |t| → ∞

then (1) possesses at least a solution (this follows at once from the compact-
ness of K, Ascoli’s theorem and the fact that A is closed in the C0 topology).

Finally, if we further assume that F is differentiable with respect to its
second argument and that ∂uF is continuous (say), then any solution u of
(1) satisfies the variational inequality

∫

Ω

∂uF (x, u(x))(v(x) − u(x))dx ≥ 0, ∀v ∈ A. (4)
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Taking v = u ± 1 in the previous we immediately find that ∂uF (., u(.)) has
integral 0, we then define

µ+ := (∂uF (., u(.)))+ = max(0, ∂uF (., u(.))),

µ− := (∂uF (., u(.)))− = max(0,−∂uF (., u(.))

so that µ+ and µ− are nonnegative functions (continuous here) with same
total mass. Now the variational inequality (4) can be expressed as

∫

Ω

u(µ+ − µ−) = inf
u∈A

∫

Ω

u(µ+ − µ−). (5)

3 Linear programming with a convexity con-

straint and optimal transport

The aim of this section is to study the linear programming problem arising
from the variational inequality (5)

inf
u∈A

∫

Ω

u d(µ+ − µ−). (6)

where µ+ and µ− are nonnegative measures on Ω of same total mass and
which we assume absolutely continuous with respect to the Lebesgue mea-
sure. Using the representation of elements of A in the form (3), we may
rewrite in an equivalent way (6) as the (nonlinear and not even convex but
unconstrained) problem:

(P) inf
v∈C0(K,R)

∫

Ω

v∗

K d(µ+ − µ−).

Before, we go further, we need the following definition:

Definition 1 Let µ be a nonnegative finite Borel measure on Ω and σ be
a Borel map Ω → R

d, the push forward of µ through σ is the finite Borel
measure on R

d denoted σ#µ defined by

(σ#µ)(A) = µ(σ−1(A)), for every A Borel subset of R
d.

Note that σ#µ can also be defined by
∫

Rd

h(y)d(σ#µ)(y) =

∫

Ω

h(σ(x))dµ(x), ∀ h continuous and bounded.

A first optimality condition for (6) is given by
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Proposition 1 If u is a solution of (6) then ∇u#µ+ = ∇u#µ−.

Proof. Let us write u in the form u = v∗
K for some v ∈ C0(K, R). Let

h ∈ C0(K, R) for ε > 0, define uε := (v + εh)∗K. By construction, uε ∈ A,
and a result of Gangbo [6] implies that for every point of differentiability x
of u one has

lim
ε→0+

1

ε

(

uε(x) − u(x)
)

= −h(∇u(x)). (7)

Since µ± are absolutely continuous with respect to the Lebesgue measure
and u is convex, u is differentiable µ± a.e. so that (7) holds µ± a.e.. Now,
since u solves (6), we have for every ε > 0

1

ε

∫

Ω

(uε − u)(µ+ − µ−) ≥ 0.

Using Lebesgue’s dominated convergence theorem, (7), and passing to the
limit in the previous inequality, we obtain

∫

Ω

h(∇u) d(µ+ − µ−) ≤ 0.

Since h ∈ C0(K, R) is arbitrary, the previous inequality is in fact an equality,
which yields ∇u#µ+ = ∇u#µ−.

The condition ∇u#µ+ = ∇u#µ− is not very informative (it is satisfied
for every affine u) and is certainly not a sufficient condition for (6) (it is
also satisfied by the maximizers of

∫

Ω
u(µ+ − µ−) over A or more generally

by any u = v∗
K with v a critical point of v 7→

∫

Ω
v∗

K(µ+ − µ−)). At this
point, it is natural to expect a variational characterization of the measure
ν := ∇u#µ+ = ∇u#µ−. To get this variational characterization, we need
to recall some results on optimal transportation.

Given two nonnegative finite Borel measures on R
d, µ and ν having finite

second moments and the same total mass, the squared Wasserstein distance
between µ and ν is by definition:

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫

Rd×Rd

|x − y|2dγ(x, y) (8)

where Π(µ, ν) is the set of transport plans between µ and ν i.e. the set of
nonnegative finite Borel measures on R

d × R
d having µ and ν as marginals.
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In other words γ ∈ Π(µ, ν) if for every continuous and bounded test functions
g and h one has:

∫

Rd×Rd

(

g(x) + h(y)
)

dγ(x, y) =

∫

Rd

g(x)dµ(x) +

∫

Rd

h(y)dν(y).

The optimal transportation problem defining the Wasserstein distance in (8)
was solved by Brenier (see [2]) who proved that provided µ is absolutely con-
tinuous with respect to the Lebesgue measure, the infimum in (8) is uniquely
attained by a transport plan of the form γ = (id,∇u)#µ with u convex. Con-
versely, if ν = ∇u#µ with u convex then (id,∇u)#µ is the solution of (8). In
particular, if, u solves (6), by proposition 1, we have ∇u#µ+ = ∇u#µ− =: ν,
then we get

1

2
W 2

2 (µ±, ν) =
1

2

∫

Ω

|x −∇u(x)|2 dµ±(x)

=
1

2

∫

Ω

|x|2 dµ±(x) +
1

2

∫

Ω

|∇u(x)|2 dµ±(x) −

∫

Ω

x · ∇u(x)dµ±(x)

=
1

2

∫

Ω

|x|2 dµ±(x) +
1

2

∫

K

|y|2 dν(y) −

∫

Ω

(

u(x) + u∗(∇u(x))
)

dµ±(x)

(u∗ denotes the Legendre-Fenchel transform of u and we have used above the
identity x · ∇u(x) = u(x) + u∗(∇u(x)) µ±-a.e.). We then get

1

2
W 2

2 (µ±, ν) =
1

2

∫

Ω

|x|2 dµ± +
1

2

∫

K

|y|2 dν −

∫

Ω

u dµ± −

∫

K

u∗ dν(y). (9)

This yields:

∫

Ω

u d(µ+−µ−) =
1

2
W 2

2 (µ−, ν)−
1

2
W 2

2 (µ+, ν)+
1

2

∫

Ω

|x|2 d(µ+−µ−)(x). (10)

Denoting M+(K) the set of nonnegative Borel measures on K with total
mass µ+(Ω) = µ−(Ω), let us consider the variational problem

(P∗) inf
ν∈M+(K)

{

1

2
W 2

2 (µ−, ν) −
1

2
W 2

2 (µ+, ν)

}

.

We thus deduce from (10)

inf(P) =

∫

Ω

u d(µ+ − µ−) ≥ inf(P∗) +
1

2

∫

Ω

|x|2 d(µ+ − µ−)(x). (11)

We are now in position to prove the main result of this section.
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Theorem 1

inf(P) = inf(P∗) +
1

2

∫

Ω

|x|2 d(µ+ − µ−)(x). (12)

Moreover,

1. u ∈ A solves (6) if and only if ∇u#µ+ = ∇u#µ− = ν where ν ∈
M+(K) solves (P∗),

2. ν ∈ M+(K) solves (P∗) if and only if ν = ∇u#µ+ = ∇u#µ− where
u ∈ A solves (6).

Proof. Let ν ∈ M+(K), by Brenier’s results recalled above, there exists
u+ ∈ A such that ν = ∇u+#µ+ (and (id,∇u+)#µ+) is an optimal plan
between µ+ and ν), by the same computation as in (9), we have

1

2
W 2

2 (µ+, ν) =
1

2

∫

Ω

|x|2 dµ++
1

2

∫

K

|y|2 dν−

∫

Ω

u+ dµ+−

∫

K

u∗

+ dν(y). (13)

Now Young’s inequality yields

1

2
|x|2 +

1

2
|y|2 − u+(x) − u∗

+(y) ≤
1

2
|x − y|2 ∀(x, y) ∈ Ω × K,

so that for every γ ∈ Π(µ−, ν)

∫

Rd×Rd

1

2
|x − y|2dγ(x, y) ≥

1

2

∫

Ω

|x|2 dµ− +
1

2

∫

K

|y|2 dν

−

∫

Ω

u+ dµ− −

∫

K

u∗

+ dν(y)

which yields

1

2
W 2

2 (µ−, ν) ≥
1

2

∫

Ω

|x|2 dµ−+
1

2

∫

K

|y|2 dν−

∫

Ω

u+ dµ−−

∫

K

u∗

+ dν(y). (14)

With (13), we then have:

∀ν ∈ M+(K),
1

2
W 2

2 (µ−, ν) −
1

2
W 2

2 (µ+, ν) +
1

2

∫

Ω

|x|2 d(µ+ − µ−)

≥

∫

Ω

u+d(µ+ − µ−) ≥ inf(P)

we then deduce (12) from the previous inequality and (11). Assertion 1. and
the ”if part” of assertion 2. then easily follow from proposition 1, (10) and
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(12). Finally, if ν solves (P∗), as previously, we write ν = ∇u+#µ+ with
u+ ∈ A, with (12) and the same inequality as above, we get:

inf(P) =
1

2
W 2

2 (µ−, ν)−
1

2
W 2

2 (µ+, ν)+
1

2

∫

Ω

|x|2 d(µ+−µ−) ≥

∫

Ω

u+d(µ+−µ−)

so that u+ solves (6) and then, by proposition 1, ν = ∇u+#µ−, which
completes the proof.

In proposition 1 and then in theorem 1, we have assumed that µ+ and µ−

are absolutely continuous with respect to the Lebesgue measure and proved,
under this assumption, the duality relation

2 inf
u∈A

∫

Ω

ud(µ+−µ−) = inf
ν∈M+(K)

{

W 2
2 (µ−, ν) − W 2

2 (µ+, ν)
}

+

∫

Ω

|x|2(µ+−µ−).

(15)
We now claim that (15) in fact holds for general nonnegative Borel measures
on Ω with same finite total mass µ+ and µ−. To see this, it is enough to
proceed by approximation (in the weak-? topology of M(Ω)) and to show
that both sides of (15) are continuous functions of (µ+, µ−) in the the weak-?
topology. For the right hand side, it easily follows from the triangle inequal-
ity and the fact that W2 is a metric that metrizes the weak ? topology on
nonnegative measures with a fixed total mass on Ω (see [10]). As for the
left-hand side, it is easy to show that it is 2diam(K)-Lipschitz in the product
Wasserstein W1 metric (which also metrizes the weak-? topology on nonneg-
ative measures with a fixed total mass on Ω, [10]) defined by:

W1(µ, µ′) = sup

{
∫

Ω

ud(µ − µ′), u 1-Lipschitz on Ω

}

.

We end this section by an application of the previous duality to the notion
of balayage that we now recall.

Definition 2 Let µ+ and µ− be two nonnegative finite Borel measures on
(the convex compact set) Ω with same total mass, µ+ is said to be a balayée
of µ− if

∫

Ω

udµ+ ≥

∫

Ω

udµ−

for every convex function u continuous on Ω.
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By standard approximation arguments, it is easy to see that in the previous
definition one can also require the convex test-functions u to be Lipschitz.
So that another way to express that µ+ is a balayée of µ− is that the value of
the linear programming problem (6) is 0 for every compact set K containing
the origin (closed ball centered at the origin with an arbitrarily large radius,
say). We deduce from this remark and the duality relation (15) the following
characterization of balayages.

Theorem 2 Let µ+ and µ− be two nonnegative finite Borel measures on Ω
with same total mass α, then µ+ is a balayée of µ− if and only if:

W 2
2 (µ+, ν) ≤ W 2

2 (µ−, ν) +

∫

Ω

|x|2d(µ+ − µ−)

for every compactly supported Borel measure ν with total mass α.

We end this section by remarking that the duality of theorem 1 is noth-
ing but an application of the Toland’s duality for DC (difference of convex
functions) problems. Indeed, defining

F±(v) :=

∫

Ω

v∗

Kdµ±, ∀v ∈ C0(K, R)

it is easy to check that F+ and F− are convex continuous functionals on
C0(K, R). Let us denote by M(K) the dual of C0(K, R) and recall that
M+(K) is the subset of M(K) consisting of nonnegative measures having
total mass µ±(Ω). Firstly, it is easy to check that if ν ∈ M(K) and ν /∈
M+(K) then

F ∗

±(−ν) = − inf
v∈C0(K,R)

{
∫

K

vdν +

∫

Ω

v∗

Kdµ±

}

= +∞.

Secondly, if ν ∈ M+(K), the Kantorovich duality formula (see for instance
[10] for details) can be written as

F ∗
±(−ν) =

1

2
W 2

2 (µ±, ν) −
1

2

∫

Ω

|x|2dµ±(x) −
1

2

∫

K

|y|2dν(y).

So that finally, using Toland’s duality ([7], [8]), we recover (12)

inf(P) = inf
v∈C0(K,R)

{F+(v) − F−(v)} = inf
ν∈M+(K)

{

F ∗

−(−ν) − F ∗

+(−ν)
}

= inf(P∗) +
1

2

∫

Ω

|x|2 d(µ+ − µ−)(x).
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4 DC problems with a convex dual

In the example of the previous section, we saw that the nonconvex problem
(P∗) is dual in the sense of Toland to (P) which, in turn (making the change
of variable u = v∗

K), is equivalent to the linear programming (6). This
enabled us to characterize all minimizers of (P∗) in terms of solutions of
(6). In this final and independent section, we make some remarks on DC
problems for which the dual problem has special convexity properties (hence
is, in principle, easier to solve) and discuss possible applications of this (very
particular) situation.

Given V , a normed vector space, V ∗ its topological dual, Γ0(V ) denotes
the set of convex lower semi continuous proper functions on V with values in
R∪{+∞}. For F and G in to Γ0(V ), F ∗ and G∗ denote the Fenchel-Legendre
transforms of F and G respectively, that is F ∗ and G∗ are the elements of
Γ0(V

∗) defined by:

F ∗(p) := sup
x∈V

{p(x) − F (x)}, G∗(p) := sup
x∈V

{p(x) − G(x)}, ∀p ∈ V ∗.

Toland’s duality ([7], [8]) relates the primal DC problem:

(Q) inf
x∈V

{F (x) − G(x)}

to its dual defined by

(Q∗) inf
p∈V ∗

{G∗(p) − F ∗(p)} .

One has to be cautious in the previous problems to handle the case where
both F and G (or G∗ and F ∗) take the value +∞ at the same point, and the
natural way to cope with this case is to adopt the convention +∞− (+∞) =
+∞. With this convention in mind, (Q) and (Q∗) are then understood as

(Q) inf
Dom(F )

{F − G} and (Q∗) inf
Dom(G∗)

{G∗ − F ∗} .

Where as usual, Dom denotes the domain of the function i.e. the set where
it is not +∞. The basic duality results concerning (Q) and (Q∗) can be
summarized as follows:

• inf(Q) = inf(Q∗),

• if x solves (Q) and if G is subdifferentiable at x then any p ∈ ∂G(x)
solves (Q∗),
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• if p solves (Q∗) and if F ∗ is subdifferentiable at p then any x ∈ ∂F ∗(p)
solves (Q).

Now, we are interested in the particular case where the objective function
in the dual problem is itself convex i.e.:

G∗ − F ∗ = H∗, for some H ∈ Γ0(V )

this yields, since G = G∗∗,

G = (F ∗ + H∗)∗

and it is well known that (F ∗ +H∗) = (F � H)∗ where F � H is the infimal
convolution of F and H defined by

F � H(x) = inf
y∈V

{F (x − y) + H(y)}.

We thus deduce from the general duality relation inf(Q) = inf(Q∗) recalled
above, the following relation (for arbitrary F and H in Γ0(V ))

inf
Dom(F )

{F − (F � H)∗∗} = inf
Dom(F ∗)∩DomH∗

H∗ = inf
Dom(F ∗)

H∗. (16)

If, in addition, Dom(F ) = V , Dom(F ∗) = V ∗, p minimizes H∗ (i.e. p ∈
∂H(0)) and x ∈ ∂F ∗(p) then x minimizes F − (F � H)∗∗ over V .

Another particular case is the one where the objective function in the
dual problem is concave i.e.:

F ∗ − G∗ = H∗, for some H ∈ Γ0(V ),

as before, this yields F = (G � H)∗∗. In this case, by Toland’s duality, we
obtain

inf
Dom(F )

{(G � H)∗∗ − G} = inf
Dom(G∗)

−H∗ (17)

or, equivalently

sup
Dom(G � H)∗∗

{G − (G � H)∗∗} = sup
Dom(G∗)

H∗. (18)

We thus have proved the following

Proposition 2 Let F and H be in Γ0(V ), one has

inf
Dom(F )

{F − (F � H)∗∗} = inf
Dom(F ∗)

H∗

and
sup

Dom(F � H)∗∗
{F − (F � H)∗∗} = sup

Dom(F ∗)

H∗.
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Let us illustrate the previous result in the particular case where V is a
Hilbert space (identified with its dual), F ∈ Γ0(V ) and H = Hλ = 1

2λ
‖.‖2 for

some λ > 0. In this case, Fλ := F � Hλ is the Moreau-Yosida approximation
of F . Since Dom(Fλ) = V and H∗

λ = λ
2
‖.‖2, the previous result gives

inf
V
{F − Fλ} =

λ

2
inf

p∈Dom(F ∗)
‖p‖2

and

sup
V

{F − Fλ} =
λ

2
sup

p∈Dom(F ∗)

‖p‖2.

In particular, F−Fλ is bounded from above if and only if Dom(F ∗) is bounded
i.e. F is Lipschitz.
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