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Abstract

We study a dynamic and infinite–dimensional model with incomplete
multiple prior preferences. In interior efficient allocations, agents share
a common risk–adjusted prior and subjective interest rate. Interior ef-
ficient allocations and equilibria coincide with those of economies with
subjective expected utility and priors from the agents’ multiple prior
sets. A specific model with neither risk nor uncertainty at the aggre-
gate level is considered. Risk is always fully insured. For small levels
of ambiguity, there exists an equilibrium with inertia where agents
also insure fully against Knightian uncertainty. When the level of
ambiguity exceeds a critical threshold, full insurance no longer pre-
vails and there exist equilibria with inertia where agents do not insure
against uncertainty at all. We also show that equilibria with inertia
are indeterminate.
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1 Introduction

Some contingencies have relatively stable probability distributions. Mortal-
ity rates, health care cost, and car accidents are a case in point. For others,
the bankruptcy risk of an individual firm ranked “BB” to give a current ex-
ample, the probabilities are unknown and rather difficult to estimate. The
economic literature distinguishes between risk – where the outcomes are un-
known, but the probabilities are known — and uncertainty — where even
the distribution of outcomes is not known exactly. Many models of deci-
sion under uncertainty have been proposed within the past ten years, mostly
with complete preferences (see Rigotti, Shannon, and Strzalecki (2008) for an
overview). Models with incomplete preferences are scarcer but have raised re-
cent interest (see, e.g., Bewley (2002), Rigotti and Shannon (2005), Nehring
(2009), Faro (2010), Gilboa, Maccheroni, Marinacci, and Schmeidler (2010),
Nascimento and Riella (2011), Ok, Ortoleva, and Riella (2012)).

With incomplete preferences, market clearing and utility maximization
alone do not preclude situations where agents end up with a consumption
bundle they cannot compare to their initial endowment. Bewley (2002) sug-
gests to exclude such unmotivated betting by an inertia principle: agents
never trade to a plan whose expected utility is not comparable to their ini-
tial endowment. The market implications of the Bewley approach in the
static setting have been worked out in Rigotti and Shannon (2005)1. In this
paper, we extend their analysis to a dynamic and infinite dimensional setting.

We first analyze the economy at a general equilibrium level adding new
proof techniques. We then study a class of economies without aggregate un-
certainty in order to highlight the differences between incomplete preferences
with inertia on the one side and classic expected utility and/or pessimistic
multiple prior models on the other. Equilibria with inertia are neither unique
nor determinate; low ambiguity will lead to an infinite set of equilibria with
inertia almost fully insured while high ambiguity yields equilibria with inertia
with little or no insurance against Knightian uncertainty.

We generalize Rigotti and Shannon’s result that an allocation is efficient
if and only if the agents share some marginal rate of substitution. In contrast
to the static setup, the construction of risk–adjusted priors is not a trivial
normalization in the dynamic context. In fact, both the risk–adjustment at

1Easley and O’Hara (2010) translate the approach into a static mean–variance world,
study conditions for no trade in that setting, and relate it to the recent liquidity crisis.
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an allocation and the discounting induced by the marginal rates of substitution
have to be distinguished in a dynamic context. To determine these two
effects, one has to go backwards through the “tree” by taking the available
information into account. We decompose the marginal rate of substitution
into a martingale and a predictable process in order to construct the risk–
adjusted priors and the subjective discount rates. We show that an allocation
is efficient if and only if the agents agree on a risk–adjusted prior and an
interest rate. The role of interest rates is pertinent to dynamic models.

We then show that an interior allocation-price pair is an equilibrium if and
only if it is an equilibrium in a corresponding economy where each agent has
expected utility preferences for one specific subjective belief picked from his
set of priors. As a consequence, one usually has an abundance of equilibria.

Following Rigotti and Shannon, we add inertia as an equilibrium refine-
ment. We provide a new, shorter proof for the existence of equilibria with
inertia with the help of an auxiliary utility function which might be useful
in other contexts as well. This auxiliary utility function belongs to the class
of variational preferences (Maccheroni, Marinacci, and Rustichini (2006)). If
P i denotes an agent’s set of priors, ωi her endowment and U i the utility
index, we introduce variational preferences anchored2 at ωi given by

min
P∈Pi

EP
(
U i(x)− U i(ωi)

)
.

It is easy to show that an equilibrium in the economy with the above varia-
tional preferences is an equilibrium with inertia in the Bewley economy. With
the help of the same auxiliary utility function, one can also study when initial
endowments are the unique equilibrium allocation with inertia, generalizing
a result by Rigotti and Shannon (2005).

We next analyze a model without aggregate uncertainty nor risk. When
agents have the same objective or subjective priors and are risk averse, they
fully insure in equilibrium, and the equilibrium allocation is unique. This
result carries over to uncertainty averse agents if they share a common prior,
as Billot, Chateauneuf, Gilboa, and Tallon (2000) and Dana (2002) have
shown. The situation is different with incomplete preferences and inertia.

In our model, the risky part of the market is fully insured in any equi-
librium. Hence, we do have trade in the part of the market where agents
buy insurance against risk. When the level of ambiguity is sufficiently small,

2These preferences have, independently, been axiomatized and studied by Mihm (2010);
an application to development economics can be found in Bryan (2010).
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the full insurance equilibrium — where agents also insure the uncertain part
of their endowment fully — is an equilibrium with inertia. As soon as am-
biguity exceeds a critical threshold, this holds no longer true. With high
ambiguity, each agent has some very optimistic prior in his belief set; under
this prior, the agent prefers the uncertain part of his endowment to the full
insurance allocation. The inertia constraint – which requires that the agent
trades only if the new consumption plan is preferred to the endowment for
all priors — then inhibits trade in uncertain assets. We identify a specific
equilibrium where agents do not trade at all in the uncertain assets (they do
trade away their risk, though) — we have a market “freeze” for insurance
against uncertain events.

Inertia is not sufficient to yield uniqueness or even determinacy of equi-
libria. With low levels of ambiguity, in a neighborhood of the full insurance
equilibrium, there are infinitely many equilibria with inertia where agents
keep some uncertainty. With high levels of ambiguity, there is a continuum
of equilibria with very limited trade for uncertain assets. Our example thus
highlights that both with small and large levels of ambiguity, the refinement
of inertia is not sufficient to yield determinate equilibria.

The paper is organized as follows. The next section sets up the model.
Section 2 discusses the dynamic market with incomplete preferences and in-
ertia in general. Section 3 contains our specific model with no aggregate
uncertainty nor risk. Proofs for Section 2 are collected in the first of two ap-
pendices; the other one studies Mackey–continuity of variational preferences
anchored at endowment.

2 Efficiency, Equilibria, Inertia

This section contains our analysis of general dynamic multiple prior
economies with incomplete expected utility preferences. After setting up the
model, we first characterize efficient allocations before moving on to equilib-
ria with and without inertia. As we explain most of our results in words, we
have put all proofs into Section A.1.

2.1 Model

We consider a pure exchange economy with I agents who face Knightian un-
certainty. Time is discrete from 0 to T and there is one consumption good in
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each state of the world. Information is described by a filtration (Ft)t=0,...,T on
a probability space (Ω,F , P0). Let A be the σ–field on Ω×{0, . . . , T} gener-
ated by all adapted processes, and let ζ be the uniform probability measure on
{0, . . . , T}. The commodity space is given by the set of essentially bounded,
adapted processes X = L∞ (Ω× {0, . . . , T},A , P0 ⊗ ζ), and consumption
plans are the nonnegative elements in X+ = L∞+ (Ω× {0, . . . , T},A , P0 ⊗ ζ).
Each agent comes with an endowment ωi = (ωit)t=0,...,T ∈X+ that is bounded

away from 0. ω :=
∑I

i=1 ω
i is aggregate endowment.

Agents have incomplete expected utility preferences that are induced by
a set of priors (probability measures) P i on (Ω,F , P0). Agent i prefers
consumption plan c to consumption plan d, or c �i d, if and only if

EQU i(c) ≥ EQU i(d) for all priors Q ∈P i,

where the intertemporal preferences of agents are described by an additively
separable utility function of the form

U i(c) =
T∑
t=0

ui(t, ct)

for some continuous function ui : {0, . . . , T}×R+ → R that is strictly increas-
ing, strictly concave, and continuously differentiable in its second variable.
The derived strict preference relation �i satisfies c �i d if and only if c �i d
and we have

EQU i(c) > EQU i(d) for some prior Q ∈P i .

In order to have a short name, we call these preferences B-preferences (B
for Bewley) and the corresponding economy a B-economy. We frequently
compare this economy with incomplete preferences to some economy with
heterogeneous priors Qi ∈P i, but complete preferences. We call that econ-
omy the S -economy with priors3 Q = (Q1, . . . , QI).

As the priors are defined on the probability space (Ω,F , P0), all priors
Q ∈P i are absolutely continuous with respect to the reference probability4

3We prefer the name S-economy (for Savage economy) to the name risk economy that
has been used elsewhere because we interpret the economy with priors Q = (Q1, . . . , QI)
as an economy under uncertainty where agents’ preferences conform to Savage’s axioms
that allow to derive a unique prior Qi. In a risk economy, the probabilities are objectively
given, and all agents use the same prior.

4The assumption of absolute continuity is discussed in Epstein and Marinacci (2007).
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P0. We assume throughout that they are even equivalent to P0, and that P i

is weakly compact5 in the space L1 (Ω,F , P0) for all agents i.

2.2 Efficient Allocations

We study efficient allocations in B–economies. Let us start by fixing the
concepts.

An allocation x ∈X I
+ is a family of I contingent consumption processes.

The allocation x = (xi)i=1,...,I is feasible if
∑
xi = ω. It is efficient if it is

feasible and there is no other feasible allocation y = (yi)i=1,...,I such that
yi �i xi for all agents i = 1, . . . , I and yi �i xi for some i.

In order to prepare our main results we discuss now the marginal rates
of substitution. In contrast to Rigotti and Shannon’s static setup, the con-
struction of risk–adjusted priors is not a trivial normalization in the dynamic
context. In fact, both the risk–adjustment at an allocation and the discount-
ing induced by the marginal rates of substitution have to be distinguished in
a dynamic context. To determine these two effects, one has to go backwards
through the “tree” by taking the available information into account. We
will use a Doob–type martingale decomposition to identify the risk–adjusted
prior and the subjective interest rates.

Fix a prior Qi ∈ P i for every agent i. We denote by (qit) the density
process of Q with respect to P0. We can rewrite the utility with prior Qi as
a state–dependent expected utility function with respect to P0:

EQiU i(xi) = EQi
T∑
t=0

ui(t, xit) = EP0

T∑
t=0

ui(t, xit)q
i
t .

The marginal rate of substitution between date 0 and date t is given by

MRSit(x
i, Qi) =

uix(t, x
i
t)q

i
t

uix(0, x
i
0)

.

We denote the set of all (processes of) marginal rates of substitution at some
consumption plan xi by

Ψi(xi) =
{
MRSi(xi, Qi)|Q ∈P i

}
. (1)

5By the Dunford-Pettis theorem, this assumption is satisfied for closed convex sets Pi

if the densities in D are bounded by a P0–integrable random variable. In particular, the
assumption is satisfied for closed convex sets Pi whenever the state space Ω is finite.
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One can use the marginal rates of substitution to define a pricing proba-
bility Qi(xi) — the so–called risk–adjusted probability — for agent i and a
subjective interest rate process rit that defines a price functional supporting
efficient allocations. They are defined in such a way that we have

EQi
T∑
t=0

MRSit(x
i, Qi)xt = EQi(xi)

T∑
t=0

exp

(
−

t∑
u=1

ris

)
xt (2)

for all x ∈X . The next lemma shows that the last equation determines the
risk–adjusted prior and the subjective interest rate in a unique way.

Lemma 2.1 Let (xi) be a feasible, interior allocation. Then there exist pre-
dictable subjective interest rate processes (rit)t=1,...,T,i=1,...,I and strictly posi-
tive P0–martingales (M i

t ) with expectation 1 such that

MRSit(x
i, Qi) = M i

t exp

(
−

t∑
s=1

ris

)
.

ri and M i are uniquely determined.

Note that the subjective interest rates ri and martingales M i depend both
on Qi and xi, so we write ri(Qi, xi) or M i(Qi, xi) to emphasize this depen-
dence when necessary. The martingales M i identified in the previous lemma
define a probability measure Qi(xi) that is equivalent to P0 and satisfies (2).
These probabilities are the suitable generalization of Rigotti and Shannon’s
risk–adjusted priors ; we denote agent i’s set of risk–adjusted priors at con-
sumption xi by Πi(xi).

We have now collected the relevant tools to state our main theorem on
interior efficient allocations. At an efficient allocation, agents share a risk–
adjusted prior. In contrast to the static framework of Rigotti and Shannon
(2005), this condition is only necessary, but not sufficient for efficiency. Only
if the agents also agree on the interest rate used to discount future consump-
tion, the allocation is efficient. We also show that efficiency with incomplete
preferences is equivalent to having efficiency in some S-economy for some
choice of priors Qi ∈P i.

Theorem 2.2 The following assertions are equivalent for an interior allo-
cation x:
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1. x is efficient,

2. the agents’ sets of marginal rates of substitution intersect,

I⋂
i=1

Ψi(xi) 6= ∅

3. the agents share a risk–adjusted prior

I⋂
i=1

Πi(xi) 6= ∅

and for a common risk–adjusted prior Q ∈
⋂I
i=1 Πi(xi) all subjective

interest rates are equal, i.e.

ri(Q, xi)t = rj(Q, xj)t

for all i, j = 1, . . . , I and t = 1, . . . , T ,

4. for some selection of priors Qi ∈P i, i = 1, . . . , I, x is efficient in the
S–economy with priors Q = (Q1, . . . , QI).

2.3 Equilibria with and without Inertia

We study now equilibrium allocations and prices for B-economies. There are
usually infinitely many equilibria as any S-economy equilibrium leads to an
equilibrium in the B-economy. We then adapt Rigotti and Shannon’s version
of Bewley’s inertia criterion as a refinement.

A price for our economy is given by an adapted, integrable, positive pro-
cess (pt) ∈ L1 (Ω× {0, . . . , T},A , P0 ⊗ ζ). Let P be the set of price processes.
We denote by

p.x := EP0

T∑
t=0

ptxt

the linear functional associated with the price (pt).
A feasible allocation x∗ ∈X I

+ and a price p∗ ∈ P form an equilibrium if, for
every i, p∗.x∗i = p∗.ωi and if xi � x∗i implies p∗.xi > p∗.ωi (there is no budget
feasible consumption plan that strictly dominates x∗i ). A feasible allocation
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x∗ ∈ X I
+ and a price p∗ ∈ P is a equilibrium with transfer payments if

xi � x∗i implies p∗.xi > p∗.x∗i for all i.
Before we start our analysis, let us remark that the first welfare theorem

trivially holds true for a B-economy6. A weak7 form of the second welfare the-
orem follows from the next proposition. It also proves existence of equilibria
without needing any abstract general existence theorem.

Proposition 2.3 1. Let (x∗, p∗) be an equilibrium for an S-economy with
priors Qi ∈ P i, i = 1, . . . , I. Then (x∗, p∗) is an equilibrium in the
B-economy. Similarly, any equilibrium with transfer payments for an
S-economy with priors Qi ∈ P i, i = 1, . . . , I is an equilibrium with
transfer payments in the B-economy.

2. Any interior efficient allocation (x∗) is the allocation of a equilibrium
with transfer payments.

3. Any interior equilibrium (x∗, p∗) in the B-economy is an interior equi-
librium for an S-economy with priors Qi ∈P i, i = 1, . . . , I.

Let us apply the above result to economies without aggregate uncertainty
(where the aggregate endowment is a deterministic process). It is well known
that in S-economies with homogenous priors, agents fully insure in equilib-
rium. Combined with the previous proposition, we obtain an existence result
for full insurance equilibria in B-economies. In our dynamic setting, a full
insurance allocation x ∈ X I

+ is a family of I deterministic consumption
processes (that may depend on time, but not on states of the world).

Corollary 2.4 Assume that there exists no aggregate uncertainty and that
agents share at least one prior,

I⋂
i=1

P i 6= ∅.

Then there exists an equilibrium allocation with full insurance.

6Indeed let (x∗, p∗) be an equilibrium. If x∗ is not efficient, then from Lemma A.2,
there exist y feasible such that yi �i x∗i for all i. But then we must have p∗.yi > p∗.ωi

for all i, contradicting Walras law.
7As it requires interior allocations.
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It also follows from Proposition 2.3 that the set of equilibria is monotone
with respect to the set of priors: the larger the set of priors, the larger is the
set of equilibria.

Proposition 2.3 also shows that one usually has a plethora of B-equilibria
as every equilibrium of some S-economy is an equilibrium. It is plausible
that this leads typically to a continuum of equilibria when the sets of priors
are not singletons. Therefore, indeterminacy of equilibrium allocations and
prices is the rule, not the exception for B-economies8.

On the other hand, many of these equilibria lead to consumption plans
that the agents cannot compare with their endowment because they have
incomplete preferences. In this case, one might well ask why these agents
should decide to take these plans in the first place. Following in spirit Rigotti
and Shannon9, we impose the additional condition of inertia. An equilibrium
(x∗, p∗) satisfies the inertia condition if for all agents i with x∗i 6= ωi, we have
x∗i �i ωi.

Given the additional constraint, it is no longer obvious that equilibria
satisfying this refinement exist. Rigotti and Shannon provide a sophisticated
proof based on Gale and Mas-Colell’s (1975) fixed point theorem to estab-
lish existence. We provide here a simple and shorter proof for existence of
equilibria with inertia based on an auxiliary economy with complete static
variational preferences as axiomatized in Maccheroni, Marinacci, and Rus-
tichini (2006). We construct uncertainty–averse preferences such that any
equilibrium of the auxiliary economy with those preferences is an equilib-
rium with inertia.

Definition 2.5 We call a utility function of the form

V i(x) = min
Q∈Pi

EQ
(
(U i(x)− U i(ωi))

)
(3)

variational utility anchored at ωi.

An agent of the above type compares the expected gain from moving away
from her endowment ωi to the new consumption plan xi. Variational utility

8A detailed analysis of indeterminacy in the static setting is in Rigotti and Shannon
(2005).

9Our definition of inertia is slightly different from Rigotti and Shannon’s because we
require strict preference of the new consumption bundle over the status quo whereas Rigotti
and Shannon use only weak preference (see p. 210 in their paper).
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functions anchored at ωi belong to the class of variational preferences that
generalize the Gilboa–Schmeidler preferences; they have been axiomatized10

in Maccheroni, Marinacci, and Rustichini (2006).
In our case, these (complete) preferences are useful because equilibria in

economies with such agents are also equilibria with inertia in our B–economy.

Theorem 2.6 Any equilibrium of an economy with variational utilities an-
chored at endowments V i(x) = minQ∈Pi EQ ((U i(x)− U i(ωi))) is an equilib-
rium with inertia. In particular, equilibria with inertia exist.

Remark 2.7 In the previous theorem, the specific form of the auxiliary util-
ity function is not important. We could as well have used

Ṽ i(x) = min
Q∈Pi

EQU i(x)

EQU i(ωi)
,

for all agents, e.g., or even V i for some agents, and Ṽ i for others, leading to
other equilibria with inertia, in general. From the economic point of view, the
crucial point is to have a dependence on endowment. The important point
on the technical side is Mackey–continuity of the employed utility functional.

Inertia is a very strict requirement, and can lead to market breakdown in
the sense that the initial endowment is the unique equilibrium allocation. Our
above argument leads easily to a characterization of such no trade situations.

Corollary 2.8 (ωi) is the unique equilibrium allocation with inertia if and
only if (ωi) is a no trade equilibrium allocation in the economy with com-
plete preferences given by variational utilities anchored at endowments as in
Equation (3).

3 A Model without Aggregate Uncertainty

Nor Risk

Several authors have already pointed out, through no-trade results, that
ambiguity modeled with Bewley preferences could explain the breakdown of

10In order to get the variational representation for our anchored utilities, one has to
introduce the cost or penalty function on the set ∆ of all probability measures. One has
to set c(P ) =∞ for P /∈Pi and c(P ) = −EPU i(ωi) for P ∈Pi.
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markets. Moreover Rigotti and Shannon have proved that if no trade is an
equilibrium, then it is the unique equilibrium with inertia. This raises the
following natural questions. How robust are these properties? Suppose that
there is risk and uncertainty. Is it true that for ambiguity large enough, there
will be a breakdown of the uncertainty market? Can we provide conditions
for equilibrium with inertia to be unique?

We address these questions in an economy without aggregate uncertainty
whose individual endowments are subject to both a risky and an uncertain
source.

As is well known, with expected utility and homogenous priors, all risk
and uncertainty is fully insured. The equilibrium is also unique in that case.
The same holds true for pessimistic multiple prior preferences if agents share
at least one prior (Billot, Chateauneuf, Gilboa, and Tallon (2000), although
prices need not be determinate).

In the B–economy,

• risk is completely insured, and thus there is always trade,

• if ambiguity is small, full insurance is a robust equilibrium: for
any ε > 0, there are infinitely many equilibria with inertia with
agents’consumptions bounded by ε,

• when ambiguity exceeds a certain critical level, the full insurance allo-
cation (where also the uncertain part of the endowment is fully insured)
is not an equilibrium with inertia,

• in this case, there is an equilibrium with inertia where subjective uncer-
tainty is not traded at all and there are infinitely many equilibria with
inertia with very little trading of uncertainty around this equilibrium,

• finally, although inertia is a strong equilibrium refinement, we never-
theless have indeterminacy of equilibria with inertia11.

We now introduce the formal model. The basic building block is a prob-
ability space (Ω,F , P0). Whenever we write the expectation operator E
below, we mean the expectation under our reference measure P0.

11Bewley (2002) sketches the lack of insurance incentives and the possibility of no trade
equilibria in Section 6 of his paper. No trade equilibria are also discussed in Rigotti and
Shannon (2005). Here, we do always have trade (in the risk market), and a market freeze
in the uncertain part of the market.
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On (Ω,F , P0), there are two independent random walks

Rt =
t∑

s=1

ρs and Ut =
t∑

s=1

νs (4)

for t ≥ 1 and R0 = U0 = 0. Under our reference measure P0, the (ρt) and
(νt) are independent and identically distributed with common distribution
F = N(0, 1), the standard normal distribution.

The information filtration is the natural filtration generated by the two
processes R and U , i.e.

Ft = σ (R1, . . . , Rt, U1, . . . , Ut) .

We also introduce the information generated by U alone,

FU
t = σ (U1, . . . , Ut) .

Let us assume that there are two agents who use the same class of priors
P. The priors Q ∈ P are such that all agents agree that the (ρt) are
standard normal and independent of U .

In contrast, agents are uncertain about the distribution of the νt that
generate the random walk U . For the sources of uncertainty νt, we model
the idea that they come from identical experiments, but we use multiple
priors. One way to do this in such a way that we can later compare the
results with ambiguity–averse decision makers is to use the following model
of “independent experiments with identical ambiguity”12.

The family of priors is defined by their density processes with respect to
P0; they are of the form

qt = exp

(
t∑

s=1

(
αsνs −

1

2
α2
s

))
12This model is discussed at length in Epstein and Schneider (2003) where it is called ”in-

dependent and indistinguishably distributed”. We use the name coined by Riedel (2009).
For Gilboa–Schmeidler preferences, time–consistency is an issue. Indeed, not every convex
set of priors leads to time–consistent preferences. Epstein and Schneider have identified
the property of rectangularity, or as it has been called elsewhere, stability under pasting,
as necessary and sufficient for time–consistency. Our set of priors is rectangular.
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for some FU–predictable process (αt) with values in the interval [−κ, κ] for
some κ > 013. Note that αt depends only on the values of U1, . . . , Ut−1 as
it is FU–predictable. Note also that (ρt) are standard normal under all
priors with such density processes (as the density depends only on U) and
independent of U . It is also worthwhile to remark that the set of densities
that we use here is not convex14.

We assume that the two agents have period utilities

ui(t, c) := exp(−ρt)vi(c) := − exp(−ρt− c)

for some subjective discount rate15ρ. Agents thus have constant absolute risk
aversion 1.

Let endowments be

ω1
t = Rt + Ut and ω2

t = −ω1
t .

Aggregate endowment is thus zero, or one can say we look at net trades. the
the arguments go through with a deterministic aggregate endowment Kt0 in
period t; as we are in a framework with normal distributions and constant
absolute risk aversion, the constant Kt cancels in the calculations16.

Initially, both agents are affected by risk and uncertainty. As there is
no aggregate risk (nor uncertainty), one might expect rational agents to
insure perfectly in equilibrium. This is indeed the case for Gilboa–Schmeidler
preferences; we recall here the result of Billot, Chateauneuf, Gilboa, and
Tallon (2000) and Dana (2002) that translates easily to the dynamic setting.

13Readers familiar with the continuous–time literature recognize here the usual Girsanov
transform for a change of measure; our model is thus a discrete–time counterpart of κ–
ambiguity as in Chen and Epstein (2002), except that we have both risk and uncertainty,
and the risky part does not appear in the density (because its distribution has to remain
the same for all priors)

14In order to fully mimic the results of the preceding section, one would thus have to pass
to the closed convex hull of this set of priors. Note that, by linearity of the expectation
operator, the closed convex hull induces the same preference relation as the original class.
We do not develop this further here because it is not the main point of this section.

15The case of different discount rates leads to the same results. Here, a (deterministic)
trade pattern appears to the different degrees of time preferences. As we are interested in
the insurance aspect, we take homogenous discount rates.

16We allow here for negative consumption and take the commodity space to be the space
of all square–integrable adapted processes. Even though this does not fit into our general
framework of the previous subsection, the basic results carry over. We give details below
when needed.
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Proposition 3.1 In every equilibrium of the Gilboa–Schmeidler economy
where preferences are given by

min
Q∈P

EQ

T∑
t=0

vi(t, cit) ,

there is full insurance.

Let us now come to the B–economy. Our first point is that equilibria are
independent of R. To this end, we show that any allocation which contains
R in a nontrivial way is strictly dominated by its conditional expectation
with respect to the σ-field generated by (U1, . . . , Ut).

Theorem 3.2 In every equilibrium (x, p) of the B–economy, risk is fully
insured in the sense that the equilibrium allocation x depends only on U not
on R.

Proof: The fact that risk is completely insured is due to the fact that
agents share a common prior for the distribution of the risky random walk
R. Whenever there is a feasible allocation x = (x1, x2) that contains R in a
nontrivial way, agents can pass to the corresponding (conditional) expecta-
tion y1

t = E[x1
t |U1, . . . , Ut], y

2
t = E[x2

t |U1, . . . , Ut] . Note that we do not use
different priors here because the distribution of R is the same under every
prior. As there is no aggregate uncertainty, the allocation y = (y1, y2) is still
feasible, and by risk aversion, both agents are better off. 2

We next describe a subset of the set of all equilibria, namely those which
are obtained as equilibria of Savage economies with heterogeneous priors
picked in agents’ sets of priors. There are even more equilibria than the
ones constructed here because one can also form convex combinations of our
priors. However the subset we describe is large enough for the indeterminacy
argument we shall develop.

Proposition 3.3 Let (αs), (βs) be two FU–predictable processes with values
in [−κ, κ]. The allocations (c,−c) with

ct − c0 =
1

2

(
t∑

s=1

(αs − βs) νs +
β2
s − α2

s

2

)
(5)

15



and the price

pt = exp

(
−ρt+

1

2

(
t∑

s=1

(αs + βs)νs +
β2
s + α2

s

2

))
. (6)

form an equilibrium for a properly chosen c0.
In particular for |α| ≤ κ, the allocation (αUt,−αUt) with the deterministic
price pt = exp (−(ρ+ 1/2α2)t) is an equilibrium.

Proof: Let (q1
t ) , (q

2
t ) be two priors’ density processes for the two agents

defined respectively by (αt), (βt). Let (ct) be a consumption process for
agent 1. If the marginal rates of substitution between time 0 and time t of
the agents are equal,

exp(−ρt− (ct − c0))q1
t = exp(−ρt+ (ct − c0))q2

t ,

then the allocation (c,−c) is efficient. Equivalently ct − c0 = 1
2

log
q1t
q2t

and we

obtain (5). The common marginal rate of substitution being a supporting

price, we have pt = exp(−ρt − (ct − c0))q1
t = exp(−ρt)

√
q1
t q

2
t and therefore

we obtain (6). From the equilibrium budget constraint, we must finally have

T∑
s=0

E

[
pt

(
Ut +Rt − c0 −

1

2
log

q1
t

q2
t

)]
= 0 . (7)

(7) determines c0. The corresponding equilibrium consumption process is
obtained from (5).
When αs = −βs = α, (5) yields ct − c0 = αUt. The corresponding price
process pt = exp (−(ρ+ 1/2α2)t) is a deterministic process. As E(Rt) =

E(Ut) = 0 and E log
q1t
q2t

= E(2αUt) = 0, we obtain c0 = 0 from (7). 2

Remark 3.4 (i) The above proposition highlights an interesting indeter-
minacy of the interest rate in equilibrium. The supporting price process
for the above equilibria implies an interest of ρ + α2

2
for α ∈ [−κ, κ].

The interest rate is thus quite indeterminate, with interesting implica-
tions for the term structure. We will see below that the indeterminacy
of the interest rate, while reduced by the inertia condition, persists.

(ii) Clearly the equilibria constructed above are independent of R.
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It follows from Proposition 3.3 that there is a plethora of equilibrium
allocations in B–economies. We shall now on focus on two specific equilibria,
the full insurance allocation x1 = x2 = 0 (choose α = β = 0 e.g.) and the
equilibrium with no insurance of uncertainty ( α = β = 1 ).
.

Let us first prove a useful lemma.

Lemma 3.5 Let Q be an agent’s prior associated to the process (αs). Then
.

exp

((
γ2

2
+ κ|γ|

)
t

)
≥ EQ exp(−γUt) ≥ exp

((
γ2

2
− κ|γ|

)
t

)
(8)

We are now in the position to study the inertia property for our two focal
equilibria. We start with the full insurance allocation.

Theorem 3.6 For sufficiently small levels of ambiguity, namely κ ≤ 1, the
full insurance allocation x1 = x2 = 0 is an equilibrium allocation with inertia.
If ambiguity is sufficiently large, κ > 1, the full insurance allocation x1 =
x2 = 0 is not an equilibrium allocation with inertia.

Proof: From Proposition 3.3, the full insurance allocation x1 = x2 = 0 is
an equilibrium of the B–economy. Let us first prove that the inertia condition
is verified if κ < 1. Let us show that for every Q ∈P and t = 1, . . . , T

−1 > −EQ(exp(−Rt))E
Q(exp(−Ut)) = − exp

(
t

2

)
EQ(exp−Ut) (9)

Indeed from (8),

EQ(exp(−Ut)) ≥ exp

(
(
1

2
− κ)t

)
> exp(− t

2
)

If κ = 1, from (8), EQ(exp(−Ut)) ≥ exp(− t
2
) for every Q ∈ P and t =

1, . . . , T , hence

−1 ≥ −EQ(exp(−Rt))E
Q(exp(−Ut)) .

The strict inequality holds true under P0 since Rt and Ut and normally dis-
tributed with mean 0 and the utility is strictly concave. Hence for κ = 1,
the full insurance allocation is an equilibrium allocation with inertia.
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Finally if κ > 1, we verify that the inertia condition is not satisfied. Consider
the prior with density

qt = exp

(
κUt −

κ2

2
t

)
.

The period utility at date t ≥ 1 of endowment under this prior for agent 1 is
then

− E exp

(
−Rt − Ut + κUt −

κ2

2
t

)
= − exp−

(
κ2t

2

)
E exp(−Rt)E exp((κ− 1)Ut)

= − exp

(
1

2
t+

1

2
(κ− 1)2t− κ2t

2
)

)
= − exp ((1− κ) t) > −1 .

Hence, agent 1’s inertia condition is not satisfied. 2

With large ambiguity, agents have a very optimistic prior for the uncertain
part U in their belief set. Under this prior, the average value of Ut is so high
that they would like to keep it. This offsets their sufferings from keeping the
risky part Rt.

Theorem 3.6 raises a number of questions: what kind of equilibria with
inertia do we get if ambiguity is large? Is the inertia refinement strong enough
to yield determinacy (or uniqueness) of an equilibrium? To answer the first
question, we point out a particular equilibrium with inertia that we consider
to be natural: the market for risk works perfectly in the sense that agents are
fully insured against risk, and there is a freeze on the market for uncertainty.

Theorem 3.7 If ambiguity is sufficiently large, κ ≥ 1, the B–economy has
an equilibrium with inertia (x, p) with allocation

x1
t = Ut = −x2

t

and equilibrium price
pt = exp (−(ρ+ 1/2)t) .

Proof: As κ ≥ 1, from Proposition 3.3, (x, p) is an equilibrium. We
now show that the inertia condition is satisfied. For every prior Q ∈ P we
have by the usual risk aversion (concavity) argument that EQvi(Ut + Rt) =
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−EQ
[
exp(−Ut)EQ [exp(−Rt)]

]
< −EQ [exp(−Ut)] because Rt is indepen-

dent of U under all priors and normally distributed with mean 0 under all
priors Q ∈P.

2

We conclude that the market for insurance of uncertainty can break down
if agent use the inertia criterion in combination with incomplete expected
utility preferences. This may not seem a new result since several authors
have pointed out this phenomenon and discussed the possibility of no-trade
for Bewley preferences. Note, however, that we do not have a no trade
situation here. Agents do trade the risky parts of their endowments.

As a last point in our paper, we now demonstrate that inertia is not
sufficient to determine locally unique equilibria and that the two equilibria
that we focused on are robust: for 0 < κ < 1, in any neighborhood of
full insurance there are infinitely many equilibria where agents are almost
fully insured, and for κ ≥ 1, in any neighborhood of the no insurance of
uncertainty equilibrium, there are infinitely many equilibria where there is a
small trade of uncertainty.

Theorem 3.8 The equilibria with inertia are indeterminate.
For 0 < κ < 1, there exists a continuum of equilibria with inertia with

allocation (c1,−c1) and c1 = εU for sufficiently small ε 6= 0.
For κ ≥ 1, there exists a continuum of equilibria with inertia with alloca-

tion (c1,−c1) and c1 = (1− ε)U for sufficiently small ε 6= 0.

Proof: From Proposition 3.3, for |α| ≤ κ, the allocation (αUt,−αUt)
with the deterministic price pt = exp (−(ρ+ 1/2α2)t) is an equilibrium. It
remains to verify the inertia conditions. To this end, let us show that

EQ exp(−Ut) exp

(
t

2

)
≥ EQ exp(−αUt) (10)

for all Q ∈P and t ≥ 1. From Lemma 3.5, EQ exp(−Ut) ≥ exp ((1/2− κ)t)
and EQ exp(−αUt) ≤ exp(1/2α2 + κ|α|). Hence (10) is verified if

1− κ ≥ 1/2α2 + κ|α| . (11)

For any given κ < 1, (11) is verified by α = 0 with a strict inequality, hence
by continuity of the map α → 1/2α2 + κ|α| it is verified in a neighborhood
of α = 0. The inertia condition for agent 2 is proved in a similar way.
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Now let us look at the case κ ≥ 1. We claim that there exists an ε > 0
such that for all γ ∈ (1 − ε, 1 + ε) the inertia condition is satisfied for both
agents.

Pick any prior Q ∈ P and denote the density with respect to P0 by q.
By Lemma A.9, there exists M > 0 sich that Eq2

t ≤ M for all t = 1, . . . , T .
With the help of Hölder’s inequality, we get∣∣EQ (exp(−γUt)− exp(−Ut))

∣∣ = |Eqt (exp(−γUt)− exp(−Ut))|

Hölder ≤
(
Eq2

t

)1/2 (
E(exp(−γUt)− exp(−Ut))2

)1/2

≤
√
M
(
E(exp(−γUt)− exp(−Ut))2

)1/2
.

As U is normally distributed under the reference measure P0, the last ex-
pression can be computed explicitly. We have

E(exp(−γUt)− exp(−Ut))2

= E(exp(−2γUt)− 2 exp(−(1 + γ)Ut) + exp(−2Ut))

= exp(2γ2t)− 2 exp((1 + γ)2/2 t) + exp(2t) =: f(γ)2 .

Note that f is continuous in γ with f(1) = 0.
Let us finally look at the ratio EQ exp(−γUt)/EQ exp(−Ut). With the

help of the above estimate, we have

EQ exp(−γUt)/EQ exp(−Ut) ≤
EQ exp(−Ut) +

√
Mf(γ)

EQ exp(−Ut)

= 1 +

√
Mf(γ)

EQ exp(−Ut)
Lemma 3.5 ≤ 1 +

√
Mf(γ) exp((κ− 1/2)t)

For γ sufficiently close to 1, the last expression is strictly smaller than
exp(t/2). The inertia inequality follows, and we are done. The proof for
agent 2 runs along the same lines. 2

4 Conclusion

This paper extends the analysis of economies with incomplete multiple prior
preferences to dynamic and infinite–dimensional settings. For every selection
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of priors, the corresponding equilibria of the Savage economy are equilibria
of our economy. The converse holds also true if the set of priors is convex
and (weakly) compact. Agents thus share a common marginal rate of sub-
stitution, as in Rigotti and Shannon (2005). In economic terms, this implies
more than merely sharing a risk–adjusted prior as in the static case; dy-
namic efficiency implies that the agents share also a common discount rate.
We have a new proof of existence of equilibria with inertia that relies on
an interesting tool that we call variational preferences anchored at endow-
ment. These preferences have, independently, been axiomatized and studied
by Mihm (2010).

In a specific model with normally distributed returns and constant abso-
lute risk aversion, we obtain more results. In that economy, which contains
risk and uncertainty on the individual level, but neither risk nor uncertainty
at the aggregate, agents always insure against risk. For small levels of ambi-
guity, full insurance is an equilibrium with inertia while it is not if ambiguity
crosses a critical threshold. Instead, there appears an equilibrium with inertia
where trade breaks down on the uncertainty part of the market.

Although inertia is a strong equilibrium refinement, we nevertheless have
indeterminacy of equilibria with inertia. This shows that Bewley’s original
idea is not sufficient to yield locally unique equilibria in general.

A Appendix

A.1 Proofs for Section 2

This section contains additional details and the proofs for Section 2.
It is often convenient to work with the weak notion of efficiency. An

allocation x = (xi)i=1,...,I is weakly efficient if it is feasible and there is no other
feasible allocation y = (yi)i=1,...,I such that yi �i xi for all agents i = 1, . . . , I.
The following technical result will turn out to be useful. Our concept of strict
preference y �i x allows for the possibility that the expected utility of y is
the same than that of x under some priors. With our assumptions on utility
functions, it is enough to check for strict inequalities here.

Lemma A.1 An allocation x = (xi)i=1,...,I is weakly efficient if it is feasible
and there is no other feasible allocation y = (yi)i=1,...,I such that EQU i(yi) >
EQU i(xi) for all priors Q ∈P i for all agents i = 1, . . . , I.
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Proof: Clearly if x is weakly efficient, there is no other feasible allocation
y = (yi)i=1,...,I such that EQU i(yi) > EQU i(xi) for all priors Q ∈ P i for
all agents i = 1, . . . , I. Conversely, assume that there is no other feasible
allocation y = (yi)i=1,...,I such that EQU i(yi) > EQU i(xi) for all priors Q ∈
P i for all agents i = 1, . . . , I and there exists another feasible allocation y =
(yi)i=1,...,I such that yi � xi for all agents i = 1, . . . , I. Since yi 6= xi and U i is

strictly concave and priors are equivalent to P0, E
QU i(y

i+xi

2
) > EQU i(xi) for

all priors Q ∈ P i and agents i = 1, . . . , I. As the allocation x+y
2

is feasible,
we obtain a contradiction to the weak efficiency of x. 2

With a compact set of priors and strictly concave Bernoulli utility func-
tions U i, interior weakly efficient allocations are also efficient. We recall that
in our context, an allocation is interior if it is uniformly bounded away from
zero. The argument follows the usual lines, with some technical twinkles as
we are in an infinite–dimensional context.

Lemma A.2 Efficient allocations are weakly efficient. Interior, weakly effi-
cient allocations are efficient.

Proof: Clearly if x is efficient, it is weakly efficient. Conversely, assume
that x is an interior weakly efficient allocation and w.l.o.g. assume that there
exists a feasible allocation y such that y1 � x1 and yi � xi, i 6= 1. As x1 is

interior, it is uniformly bounded below. By considering (y1+x1)
2

instead of y1,
we may also assume that y1 is uniformly bounded below.

For each Q ∈ P, there exists εQ > 0 such that EQU1(y1 − εQ) >
EQU1(x1) as the map x → EQU1(x) is norm-L∞–continuous. For a given
ε > 0, let

Vε =
{
Q ∈P | EQU1(y1 − ε) > EQU1(x1)

}
As Q → EQU1(y1 − ε) − EQU1(x1) is linear and L1–continuous, Vε is
σ(L1, L∞) (relatively) open and from the previous argument ∪εVε = P.
Since P is compact, there exists a finite subcovering of P by (Vεi). Let
ε = mini εi and ε′ = ε

I−1
. We then have

y1 − ε � x1 and yi + ε′ � xi

contradicting the weak efficiency of x. 2

Our main theorem will show that interior allocations are efficient if and
only if they are S-efficient in some S-economy. We start with a general
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observation which holds true for all sorts of incomplete preferences that are
defined by a family of complete preferences. If an allocation is efficient in
some economy with complete preferences in the family, then it is efficient in
the economy with incomplete preferences.

Lemma A.3 If there exist priors Qi ∈ P i such that x∗ is efficient in the
S-economy with priors Q = (Q1, . . . , QI), then x∗ is efficient .

Proof: Suppose that x∗ is efficient in the S-economy with priors Q =
(Q1, . . . , QI). From Lemmata A.2 and A.1, x∗ is efficient if there exists no
allocation y such that

EP iU i(yi) > EP iU i(xi) for all i and all P i ∈P i . (12)

This is obvious since (12) contradicts x being efficient in the S-economy with
priors Q. 2

In S–economies, marginal rates of substitution coincide at interior efficient
allocations. We recall this fact without proof here.

Lemma A.4 An interior allocation c is efficient in the S–economy with pri-
ors Q = (Q1, . . . , QI) if and only if the marginal rates of substitution coincide
for all agents,

MRSit(c
i, Qi) = MRSjt (c

j, Qj), (t = 0, . . . , T, i, j = 1, . . . , I) .

An immediate corollary of the previous two lemmata is the following.
When marginal rates coincide for some priors, we have efficiency in the S–
economy. But by Lemma A.3, we then also have efficiency in the B–economy.

Corollary A.5 Let c be a feasible, interior allocation. If

I⋂
i=1

Ψi(ci) 6= ∅,

then c is efficient.

Proof: If
I⋂
i=1

Ψi(ci) 6= ∅,
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then agents’ marginal rates of substitution coincide for some priors Qi ∈P i.
By Lemma A.4, c is efficient in the Savage economy with priors (Q1, . . . , QI).
Lemma A.3 yields that c is efficient. 2

We now move on to the proofs of the lemmata and theorems in the main
text.
Proof of Lemma 2.1
Proof: This lemma is a version of the multiplicative Doob decompo-
sition. Let (ci) be a feasible, interior allocation, take some ci and write
Zt = MRSit(c

i, Qi). Note that Z is strictly positive, and bounded, because
ci is bounded away from zero. Moreover, Z0 = 1.

If we have a decomposition Zt = Mt exp
(
−
∑t

s=1 rs
)

with a strictly pos-
itive martingale M and a predictable process r, then we must have for
t = 0, . . . , T − 1

1 = EP0

[
Mt+1

Mt

∣∣∣∣Ft

]
= EP0

[
Zt+1

Zt

∣∣∣∣Ft

]
exp(rt+1) ,

because rt+1 is Ft–measurable. So the only possible choice is

rt+1 = − logEP0

[
Zt+1

Zt

∣∣∣∣Ft

]
and

Mt = Zt exp

(
t∑

s=1

rs

)
.

A straightforward calculation shows that M is a martingale with M0 = Z0 =
1. 2

Proof of Theorem 2.2
Proof: 3. is equivalent to 2. Let us first show that 3 implies 2. Let
Q ∈

⋂I
i=1 Πi(ci) and denote by (qt) the corresponding density process with

respect to P0. Let rt = ri(Q, ci)t be the common interest rate. Then we have
for all i

Q = Qi(ci)

for some Qi ∈P i and hence

MRSit(c
i, Qi) = MRSjt (c

j, Qj)
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or
I⋂
i=1

Ψi(xi) 6= ∅ .

Conversely if
⋂I
i=1 Ψi(xi) 6= ∅ or equivalently if MRSit(c

i, Qi) =
MRSjt (c

j, Qj) for all i, j = 1, . . . , I and t = 0, . . . , T from Lemma 2.1,
the martingales and subjective interest rates ri coincide. Hence the agents
share a risk–adjusted prior

⋂I
i=1 Πi(xi) 6= ∅ and ri(Q, ci)t = rj(Q, cj)t for all

i, j = 1, . . . , I and t = 0, . . . , T
2. implies 4. follows from Lemma A.4.
4. implies 1. follows from Lemma A.3.
Let us now show that 1. implies 2.
We will work on the product probability space (S,S , ν) given by

S = Ω× {0, . . . , T},S = A , ν = P0 ⊗ ζ ,

where we recall that A is the σ–field generated by all adapted processes and
ζ the uniform probability measure on {0, . . . , T}.

Take an interior efficient allocation (ci) and form the sets

H i := Φi(ci) :=

{(
MRSit(c

i, Qi)∫
S
MRSi(ci, Qi)dν

)
t=0,...,T

|Qi ∈P i

}
.

If we treat the product space S as our basic state space, these sets are the
risk–adjusted priors as in Rigotti and Shannon (2005). Note that the ratios
are well–defined because (ci) is an interior allocation. The same argument as
in Rigotti and Shannon (2005), Lemma 3, Appendix shows that H i is convex.

H i is σ(L1 (S,S , ν) , L∞ (S,S , ν))–compact because the marginal utili-
ties are bounded above and below and P i is σ(L1 (S,S , ν) , L∞ (S,S , ν))–
compact.

Now suppose
⋂
iH

i = ∅. Samet’s Separation Theorem (see Lemma A.6
below for our infinite–dimensional context) then implies that there exist
(gi)ni=1 ∈ (L∞ (S,S , ν))n with

∑
i g

i = 0 such that
∫
S
higi dν > 0 for all

hi ∈ H i and all i. Let di = ci + λgi with λ > 0. For λ small enough,
the allocation (di) is feasible and Pareto–dominates (ci). Indeed, for any
Qi ∈P i,

EQi(Ui(d
i)− Ui(ci)) ≥ λ

∫
S

MRSiu(d
i, Qi)ν(du)

∫
S
MRSiu(d

i, Qi)giν(du)∫
S
MRSiu(d

i, Qi)ν(du)
> 0
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for λ small enough. This is a contradiction to c being efficient. Therefore,
we have

⋂
iH

i 6= ∅, and we can find priors Qi ∈P i such that

MRSit(c
i, Qi)∫

S
MRSiu(c

i, Qi)ν(du)
=

MRSjt (c
j, Qj)∫

S
MRSju(cj, Qj)ν(du)

for all i, j = 1, . . . , I and all t = 0, . . . , T a.s. For t = 0, the marginal rates
of substitution are 1, so we get∫

S

MRSiu(c
i, Qi)ν(du) =

∫
S

MRSju(c
j, Qj)ν(du)

for all agents i, j. This implies

MRSit(c
i, Qi) = MRSjt (c

j, Qj)

and hence
I⋂
i=1

Ψi(xi) 6= ∅ .

2

Let us prove here the version of Samet’s Theorem for infinite–dimensional
spaces that we used above 17.

Lemma A.6 (Samet’s Separation Theorem for L∞) On a prob-
ability space (S,S , ν), let (H i)ni=1 be nonempty, convex, and
σ(L1 (S,S , ν) , L∞ (S,S , ν))–compact subsets of densities in L1

+ (S,S , ν).
Then

⋂n
i=1 H

i = ∅ if and only if there exists (gi)ni=1 ∈ (L∞ (S,S , ν))n with∑
i g

i = 0 such that
∫
S
higi dν > 0 for all hi ∈ H i and all i.

Proof: We write L∞ for L∞ (S,S , ν) and L1 for L1 (S,S , ν) and Eg for∫
S
gdν. Assume that

⋂n
i=1H

i = ∅ and let H = H1 × H2 . . . × Hn and L =
{(h, h, . . . , h), h ∈ L1}. H is σ(L1 ((S,S , ν)n) , L∞ ((S,S , ν)n))–compact
and convex as a product of σ(L1, L∞)–compact and convex sets and L is
a norm–closed vector subspace, hence σ(L1 ((S,S , ν)n) , L∞ ((S,S , ν)n))–
closed. From the separation theorem for convex sets, there exists c ∈
R, (f i)ni=1 ∈ (L∞)n such that∑

i

E(f ihi) > c ≥ E(h
∑
i

f i) for all h ∈ L1 hi ∈ H i, i = 1, . . . , n

17This version of Samet’s theorem may also be obtained as a corollary of Theorem 2 in
Billot, Chateauneuf, Gilboa, and Tallon (2000), but the proof given here is more direct
and much simpler
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From the right hand side of the inequality, we obtain since L is a subspace
that c ≥ 0 = E(h

∑
i f

i) for all h ∈ L1. Hence
∑

i f
i = 0 a.e. From the left

hand side, one obtains that
∑

iE(f ihi) > 0 for all hi ∈ H i, i = 1, . . . , n.
Since h → E(f ih) is σ(L1, L∞)–continuous and H i is σ(L1, L∞) –compact,
there exists h̄i minimizing E(f ihi) on H i. Since

∑
iE(f ih̄i) > 0 for all i,

there exists (mi)ni=1 ∈ Rn such that
∑

im
i = 0 and E(f ih̄i) + mi > 0 for all

i. Let gi = f i +mi. We then have E(gih̄i) = E(f ih̄i) +mi > 0 and therefore
for all hi ∈ H i

E(gihi) = E(f ihi) +mi ≥ E(f ih̄i) +mi > 0

and
∑

i g
i =

∑
i g

i +
∑

im
i = 0 proving one direction of the lemma. The

reverse direction is trivially true. 2

Proof of Proposition 2.3
Proof: Let (x∗, p∗) be an equilibrium for a S-economy with priors
Qi ∈ P i, i = 1, . . . , I. Suppose that yi �i x∗i and p.yi ≤ p.ωi. As al-
ready proven, w.l.o.g. we may assume that EQiU i(yi) > EQiU i(x∗i) for
any Qi ∈ P i. Hence p.yi > p.ωi contradicting the hypothesis that (x∗, p∗)
is an equilibrium for the S-economy with priors (Qi). The proof for equi-
libria with transfer payments is similar. To prove the second claim, from
Theorem 2.2, any interior efficient B-allocation (x∗) is an efficient alloca-
tion, hence an equilibrium with transfer payments for some S-economy with
priors Qi ∈ P i, i = 1, . . . , I. From assertion one, (x∗) is a B-equilibrium
with transfer payments. To prove the third claim, let (x∗, p∗) be an interior
B-equilibrium. By the first welfare theorem, x∗ is efficient. Assume that
λp∗ 6∈ H i for any λ ≥ 0 where H i is defined in the proof of 4 implies 1 of
Theorem 2.2. Since H i is σ(L1 ((S,S , ν)) , L∞((S,S , ν))–compact and con-
vex and p∗λ for λ ≥ 0 is a σ(L1((S,S , ν) , L∞ (S,S , ν))–closed convex cone,
from the separation theorem for a convex closed cone and a convex compact
set, there exists f i ∈ L∞ such that

p∗ḟ i ≤ 0 < min
Hi

f iḣi

Using again the proof of Theorem 2.2, di = x∗i+µf i with µ > 0 small enough
is such that di � x∗i while p∗ḋi ≤ p∗ẋ∗i contradicting the hypothesis that p∗

is a B-equilibrium price. Hence p∗∫
S p

∗dν
∈ H i. Since this is true for each agent,

∩H i 6= ∅ and p∗∫
S p

∗dν
∈ ∩H i. From the proof of Theorem 2.2, we can find
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priors Qi ∈P i such that

p∗t = aMRSit(c
i, Qi), a > 0

for all i = 1, . . . , I and all t = 0, . . . , T a.s. which implies that (x∗, p∗) is an
equilibrium for the S-economy with priors (Qi). 2

Proof of Corollary 2.4
Proof: Let Q ∈

⋂I
i=1 P i. Then the S-economy with common prior Q and

no aggregate risk has a full insurance equilibrium. Corollary 2.4 then follows
from assertion 3 of Proposition 2.3. 2

Proof of Theorem 2.6
Proof: In order to prove existence of an equilibrium with inertia, let

V i(x) = min
P∈Pi

EP
(
U i(x)− U i(ωi)

)
.

By Lemma A.8 in the next section, these preferences are Mackey–continuous.
Hence, the existence theorem of Bewley (1972) may be applied to get an
equilibrium (p̄, x̄) with strictly positive price for the economy with complete
preferences (V i) which will be referred to as the V-economy. Let us show that
(p̄, x̄) is an equilibrium in the B–economy. Budget constraints are trivially
fulfilled. Let xi � x̄i. W.l.o.g, as we already argued, we may assume that
EQU i(xi) > EQU i(x̄i) for any Q ∈P i. Hence V i(xi) > V i(x̄i) and therefore
p̄.xi > p̄.x̄i proving that (p̄, x̄) is an equilibrium in the B–economy. Let us
now show that any equilibrium in the V–economy is an equilibrium in the
B–economy with inertia. We claim that any equilibrium allocation in the V–
economy x̄ verifies V i(x̄i) > V (ωi) = 0 for any i such that x̄i 6= ωi. If not, V i

being strictly concave V i((x̄i+ωi)/2) > V (ωi) = 0 while p̄.(x̄i+ωi)/2 = p̄.x̄i

a contradiction to (p̄, x̄) being an equilibrium of the V-economy. Therefore
EQU i(x̄i) > EQU i(ωi) for any i such that x̄i 6= ωi and any Q ∈ P i. Thus
x̄i �i ωi. Hence any equilibrium in the economy with preferences (V i) is an
equilibrium with inertia. 2

Proof of Corollary 2.8
Proof: If ((ωi), p) is an equilibrium of the V-economy, then from Theorem
2.6, it is an equilibrium of the B–economy. We claim that (ωi) is the unique B-
equilibrium allocation with inertia. Let (xi) be another equilibrium allocation
with inertia. Then we either have xi = ωi or xi 6= ωi and in that case
additionally xi � ωi. For these agents i, we have p.xi > p.ωi because p is an
equilibrium price. Summing up over agents, we obtain a contradiction.
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Conversely, if (ωi) is the unique equilibrium allocation in the B–economy,
then it is efficient and since (ωi) is an interior allocation,

⋂
i Φ

i(ωi) 6= ∅
(where Φi is defined in the proof of Theorem 2.2). Hence, (ωi) is efficient in
the V–economy since any Q ∈P i is a minimizing probability for V i at ωi (by
definition of V i). Since (ωi) is an equilibrium allocation in the B–economy,
there exists a price process p ∈ P such that EQ(U i(x)) > EQ(U i(ωi)) for all
Q ∈ P i implies p.xi > p.ωi. Hence V i(x) > V i(ωi) = 0 implies p.x > p.ωi

and therefore (ωi) is an equilibrium allocation in the V–economy.
2

A.2 Mackey–Continuity of Variational Preferences
Anchored at Endowments

Lemma A.8 which shows Mackey–continuity of a special variational prefer-
ence introduced in the paper, extends a proof in Dana (2002). The reader
may verify that this proof does not extend to general variational preferences
with a lower semi-continuous penalty function. The following estimates for
utility increments will be useful for Lemma A.8.

Lemma A.7 Let u : R+ → R be strictly concave and strictly increasing, C1,
and verify u(0) = 0. Then for any η > 0, x, y ∈ R+, we have

|u(x)− u(y)| ≤ u(η)

η
|x− y|+ 2u(η) (13)

Proof: Let η > 0 be given. If x < η and y > η,

|u(y)− u(x)|
|y − x|

=
u(y)− u(x)

y − x
≤ u(y)

y
≤ u(η)

η

by concavity and monotonicity. If x < η and y < η, |u(x) − u(y)| ≤ 2u(η).
Hence if x < η, we have

|u(x)− u(y)| ≤ u(η)

η
|x− y|+ 2u(η) .

If x > η and y < η, we similarly have |u(x) − u(y)| ≤ u(η)
η
|x − y| while if

x > η and y > η, |u(x)− u(y)| ≤ u′(θ)|x− y| for some θ ∈]x, y[. Hence

|u(x)− u(y)| ≤ u(η)

η
|x− y| ,
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proving (13) . 2

Let τ(L∞, L1) denote the Mackey topology on L∞(Ω×{0, . . . , T},A , P0⊗ζ).

Lemma A.8 Let U : R+
{0,...,T} → R be defined by U(c) =

∑T
t=0 ρ

tu(ct) with
u strictly increasing, strictly concave and C1 and verify u(0) = 0. Let P
fulfill assumption 2.1. Let y ∈ L∞(Ω×{0, . . . , T},A , P0⊗ ζ) be fixed. Then
the utility function V : X+ → R defined by

V (x) = min
Q∈P

EQ (U(x)− U(y))

is τ(L∞, L1)–continuous, strictly concave and monotone.

Proof: For Q ∈P, let q = dQ
dP0
|FT

denote the time-T density with respect

to P0 and let D be the set of densities. Let xα
τ→ x (or equivalently, let

xtα
τ→ xt for all t) and qα be such that

V (xα) = EP0 [qα(U(xα)− U(y))].

Such an qα exists since D is σ(L1, L∞) compact and (U(xα) − U(y)) ∈ L∞.
Since D is σ(L1, L∞) compact, we may assume w.l.o.g. that qα

σ→ q. Let
us show that the restriction to L∞+ (Ω× {0, . . . , T},A , P0 ⊗ ζ)×D endowed
with τ(L∞, L1)×σ(L1, L∞) of the map (x, q)→ E(q(U(x)−U(y))) is jointly
continuous. Let xα

τ→ x and qα
σ→ q. Let us prove that EP0(qα(U(xtα) −

U(x) + (qα − q)(U(xt) − U(y)) → 0. Since qα
σ→ q, the second term goes to

zero. To study the first term, since xtα
τ→ xt and the Mackey topology is

locally solid, |xtα − xt|
τ→ 0. From Lemma A.7, we have for any η > 0

EP0|U(xtα − U(xt)|qα ≤ U(η)[2 +
1

η
EP0(|xtα − xt|qα)] .

For any ε > 0, choose η > 0 such that U(η) ≤ ε and α such that
supq∈D E

P0 [|xtα −xt|q] < η, then the above integral is smaller then 3ε, which
proves the claimed joint continuity.
Hence

V (xα) = EP0 [qα(U(xα)− U(y))]→ EP0 [q(U(x)− U(y))] .

By definition of qα,

EP0 [qα(U(xα)− U(y))] ≤ EP0 [q(U(xα)− U(y))] for all q ∈ D .
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In the limit, we obtain

EP0 [q(U(x)− U(y))] ≤ min
q∈D

EP0 [q(U(x)− U(y))] = V (x) ,

hence

EP0 [q(U(x)− U(y))] = min
q∈D

EP0 [q(U(x)− U(y))] = V (x) ,

proving the continuity of V with respect to the Mackey topology.
Let us prove that V is strictly monotone. As the priors are equivalent to
the reference probability P0, any q ∈ D is strictly positive. As U is strictly
concave, for any z ∈ L∞+ , we have

V (x+ z)− V (x) ≥ EP0 [qx+z(U(x+ z)− U(x))] > EP0 [qx+zU
′(x+ z)z] > 0

where qx+z is a minimizing density for V (x + z). Therefore V is strictly
monotone.
Finally, let us show the strict concavity of V . Let λ ∈]0, 1[ be given. Then
we have

V (λx+ (1− λ)z) ≥ EP0 [qλx+(1−λ)zU(λx+ (1− λ)z)

> λEP0(qxU(x) + (1− λ)qzU(z)) ,

since U is strictly concave and qx is a minimizing probability for V at x. 2

A.3 Auxiliary Proofs for Section 3

Proof of Lemma 3.5
Proof: Let Q be an agent’s prior associated to the process (αs). Then

EQ(exp(−γUt) = EP0(exp(
t∑

s=1

(αs − γ)νs −
α2
s

2
))

= E

[
E

[
exp(

t∑
s=1

(αs − γ)νs −
α2
s

2
) | Ft−1

]]
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As (αt) is a FU–predictable process, we have

EQ(exp(−γUt)) = E

[
exp(

t−1∑
s=1

(αs − γ)νs −
α2
s

2
) exp(

(γ + αt)
2

2
− α2

t

2
)

]

= E

[
exp(

t−1∑
s=1

(αs − γ)νs −
α2
s

2
) exp(

γ

2
+ αtγ)

]

≥ E

[
exp(

t−1∑
s=1

(αs − γ)νs −
α2
s

2
) exp(

γ

2
− κ|γ|)

]
By induction, we thus obtain that

EQ(exp(−γUt)) ≥ exp

(
γ2

2
− κ|γ|

)
t

The upper bound follows from a similar argument. 2

Lemma A.9 Let (qt) be the density process of some Q ∈P. Then we have

Eq2
t ≤ exp(κ2t) .

Proof: Remember that q can be written as

qt = exp

(
t∑

s=1

(
αsνs −

1

2
α2
s

))
for some FU–predictable process (αt) with values in the interval [−κ, κ].
Note that the process

exp

(
t∑

s=1

(
2αsνs −

1

2
4α2

s

))
= exp

(
t∑

s=1

(
2αsνs − 2α2

s

))
is a martingale with expectation 1. We can thus estimate

Eq2
t = E exp

(
t∑

s=1

(
2αsνs −

1

2
4α2

s + α2
s

))

≤ E exp

(
t∑

s=1

(
2αsνs −

1

2
4α2

s + κ2

))
= exp(κ2t) .

2
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