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Background references (partial)
Rigidity methods, uniqueness in nonlinear elliptic PDE’s:
(B. Gidas, J. Spruck, ’81), (M.-F. Bidaut-Véron, L. Véron, ’91)
Probabilistic methods (Markov processes), semi-group theory and
carré du champ methods (Γ2 theory): (D. Bakry, M. Emery,
1984), (Bakry, Ledoux, 1996), (Demange, 2008), (JD, Esteban,
Loss, 2014 & 2015) → D. Bakry, I. Gentil, and M. Ledoux.
Analysis and geometry of Markov diffusion operators (2014)
Entropy methods in PDEs
B Entropy-entropy production inequalities: Arnold, Carrillo,
Desvillettes, JD, Jüngel, Lederman, Markowich, Toscani,
Unterreiter, Villani..., (del Pino, JD, 2001), (Blanchet, Bonforte,
JD, Grillo, Vázquez) → A. Jüngel, Entropy Methods for Diffusive
Partial Differential Equations (2016)
B Mass transportation: (Otto) → C. Villani, Optimal transport.
Old and new (2009)
B Rényi entropy powers (information theory) (Savaré, Toscani,
2014), (Dolbeault, Toscani)
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Some preliminaries
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Figure: The Bakry-Emery method... Courtesy: Nassif Ghoussoub
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An interpolation inequality on the sphere

An example of interpolation by flows and entropy methods∫
Sd
|∇u|2 dµ ≥ d

p− 2

[(∫
Sd
|u|p dµ

) 2
p

−
∫
Sd
|u|2 dµ

]

(W. Beckner, 1993), (M.-F. Bidaut-Véron, L. Véron,1991)
Conditions u ∈ H1(Sd), p ≥ 1, p 6= 2, p < 2∗ if d ≥ 3.

With ρ = |u|p∫
Sd
|∇ρ

1
p |2 dµ ≥ d

p− 2

[(∫
Sd
ρ dµ

) 2
p

−
∫
Sd
ρ

2
p dµ

]

J. Dolbeault Flows, linearization, entropy methods
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The Bakry-Emery method on the sphere
Entropy functional

Ep[ρ] := 1
p−2

[(∫
Sd ρ dµ

) 2
p −

∫
Sd ρ

2
p dµ

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖L1(Sd)

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

Bakry-Emery (carré du champ) method: use the heat flow
∂ρ

∂t
= ∆ρ

and compute d
dtEp[ρ] = − Ip[ρ] and d

dtIp[ρ] ≤ − d Ip[ρ] to get
d

dt
(Ip[ρ]− dEp[ρ]) ≤ 0 =⇒ Ip[ρ] ≥ dEp[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2

J. Dolbeault Flows, linearization, entropy methods
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The evolution under the fast diffusion flow
To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p ∈ [1, 2∗]

Kp[ρ] := d

dt

(
Ip[ρ]− dEp[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
J. Dolbeault Flows, linearization, entropy methods
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...
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... and the ultra-spherical operator

Change of variables z = cos θ, v(θ) = f(z), dνd := ν
d
2−1 dz/Zd,

ν(z) := 1− z2

The self-adjoint ultraspherical operator is

L f := (1− z2) f ′′ − d z f ′ = ν f ′′ + d

2 ν
′ f ′

which satisfies 〈f1,L f2〉 = −
∫
Rd f

′
1 f
′
2 ν dνd

Proposition

Let p ∈ [1, 2) ∪ (2, 2∗], d ≥ 1. For any f ∈ H1([−1, 1], dνd),

−〈f,L f〉 =
∫
Rd
|f ′|2 ν dνd ≥ d

‖f‖2Lp(Sd) − ‖f‖
2
L2(Sd)

p− 2

J. Dolbeault Flows, linearization, entropy methods
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The heat equation ∂g
∂t = L g for g = fp can be rewritten in terms of f

as
∂f

∂t
= L f + (p− 1) |f

′|2

f
ν

−1
2
d

dt

∫
Rd
|f ′|2 ν dνd = 1

2
d

dt
〈f,L f〉 = 〈L f,L f〉+(p−1)

〈
|f ′|2

f
ν,L f

〉
d

dt
I[g(t, ·)] + 2 d I[g(t, ·)] = d

dt

∫
Rd
|f ′|2 ν dνd + 2 d

∫
Rd
|f ′|2 ν dνd

= − 2
∫
Rd

(
|f ′′|2 + (p− 1) d

d+ 2
|f ′|4

f2 − 2 (p− 1) d− 1
d+ 2

|f ′|2 f ′′

f

)
ν2 dνd

is nonpositive if

|f ′′|2 + (p− 1) d

d+ 2
|f ′|4

f2 − 2 (p− 1) d− 1
d+ 2

|f ′|2 f ′′

f

is pointwise nonnegative, which is granted if[
(p− 1) d− 1

d+ 2

]2
≤ (p−1) d

d+ 2 ⇐⇒ p ≤ 2 d2 + 1
(d− 1)2 = 2# <

2 d
d− 2 = 2∗

J. Dolbeault Flows, linearization, entropy methods
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Bifurcation point of view

2 4 6 8 10

2

4

6

8

The interpolation inequality from the point of view of bifurcations

‖∇u‖2L2(Sd) + λ ‖u‖2L2(Sd) ≥ µ(λ) ‖u‖2Lp(Sd)

Taylor expansion of u = 1 + εϕ1 as ε→ 0 with −∆ϕ1 = dϕ1

µ(λ) ≤ λ if (and only if) λ >
d

p− 2

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

The Bakry-Emery method on the sphere
Rényi entropy powers
Self-similar variables and relative entropies
The role of the spectral gap

Euclidean space: Existence, classical results
Fast diffusion and porous medium equation

ut = ∆um x ∈ Rd , t > 0
Self-similar (Barenblatt) function: U(t) = O(t−d/(2−d(1−m))) as
t→ +∞
(Friedmann, Kamin, 1980) ‖u(t, ·)− U(t, ·)‖L∞ = o(t−d/(2−d(1−m)))

d−1
d

m

fast diffusion equation
porous media equation

heat equation

1d−2
d

global existence in L1extinction in finite time

Existence theory, critical values of the parameter m
J. Dolbeault Flows, linearization, entropy methods
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Inequalities without weights and fast
diffusion equations

B Rényi entropy powers

B Self-similar variables and relative entropies

B Equivalence of the methods ?

B The role of the spectral gap

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

The Bakry-Emery method on the sphere
Rényi entropy powers
Self-similar variables and relative entropies
The role of the spectral gap

Rényi entropy powers and fast diffusion

B Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

B faster rates of convergence: (Carrillo, Toscani), (JD, Toscani)
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The fast diffusion equation in original variables
Consider the nonlinear diffusion equation in Rd, d ≥ 1

∂v

∂t
= ∆vm

with initial datum v(x, t = 0) = v0(x) ≥ 0 such that
∫
Rd v0 dx = 1 and∫

Rd |x|
2 v0 dx < +∞. The large time behavior of the solutions is

governed by the source-type Barenblatt solutions

U?(t, x) := 1(
κ t1/µ

)d B?( x

κ t1/µ

)
where

µ := 2 + d (m− 1) , κ :=
∣∣∣ 2µm
m− 1

∣∣∣1/µ
and B? is the Barenblatt profile

B?(x) :=


(
C? − |x|2

)1/(m−1)
+ if m > 1(

C? + |x|2
)1/(m−1) if m < 1

J. Dolbeault Flows, linearization, entropy methods
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The Rényi entropy power F

The entropy is defined by

E :=
∫
Rd
vm dx

and the Fisher information by

I :=
∫
Rd
v |∇p|2 dx with p = m

m− 1 v
m−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that
∂p
∂t

= (m− 1) p ∆p + |∇p|2

F := Eσ with σ = µ

d (1−m) = 1+ 2
1−m

(
1
d

+m− 1
)

= 2
d

1
1−m−1

has a linear growth asymptotically as t→ +∞
J. Dolbeault Flows, linearization, entropy methods
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The concavity property

Theorem

(Toscani-Savaré) Assume that m ≥ 1− 1
d if d > 1 and m > 0 if d = 1.

Then F (t) is increasing, (1−m) F′′(t) ≤ 0 and

lim
t→+∞

1
t

F(t) = (1−m)σ lim
t→+∞

Eσ−1 I = (1−m)σ Eσ−1
? I?

(Dolbeault-Toscani) The inequality

Eσ−1 I ≥ Eσ−1
? I?

is equivalent to the optimal Gagliardo-Nirenberg inequality

‖∇w‖θ2 ‖w‖1−θq+1 ≥ CGN ‖w‖2q

if 1− 1
d ≤ m < 1. Hint: vm−1/2 = w

‖w‖2q
, q = 1

2m−1

J. Dolbeault Flows, linearization, entropy methods
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The proof

Lemma

If v solves ∂v
∂t = ∆vm with 1

d ≤ m < 1, then

I′ = d

dt

∫
Rd
v |∇p|2 dx = − 2

∫
Rd
vm
(
‖D2p‖2 + (m− 1) (∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2 − 1
d

(∆p)2 =
∥∥∥∥D2p− 1

d
∆p Id

∥∥∥∥2

There are no boundary terms in the integrations by parts (! ?)

J. Dolbeault Flows, linearization, entropy methods
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Remainder terms
F′′ = −σ (1−m) R[v]. The pressure variable is P = m

1−m vm−1

R[v] := (σ − 1) (1−m) Eσ−1
∫
Rd
vm

∣∣∣∣∆P−
∫
Rd v |∇P|2 dx∫

Rd v
m dx

∣∣∣∣2 dx
+ 2 Eσ−1

∫
Rd
vm

∥∥D2P− 1
d ∆P Id

∥∥2
dx

Let

G[v] := F[v]
σ (1−m) =

(∫
Rd
vm dx

)σ−1 ∫
Rd
v |∇P|2 dx

The Gagliardo-Nirenberg inequality is equivalent to G[v0] ≥ G[v?]

Proposition

G[v0] ≥ G[v?] +
∫ ∞

0
R[v(t, ·)] dt

J. Dolbeault Flows, linearization, entropy methods
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What’s next ?
We redo the computation for the Rényi entropy power F in terms of
self-similar variables using (in some sense) the less accurate notion of
relative entropie but...
B we can justify the integrations by parts
B a (very nice) spectral gap appears
B the spectral gap explains why the Bakry-Emery method is so
accurate

J. Dolbeault Flows, linearization, entropy methods
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Self-similar variables and relative entropies
The large time behavior of the solution of ∂v∂t = ∆vm is governed by
the source-type Barenblatt solutions

v?(t, x) := 1
κd(µ t)d/µ

B?

(
x

κ (µ t)1/µ

)
where µ := 2 + d (m− 1)

where B? is the Barenblatt profile (with appropriate mass)

B?(x) :=
(
1 + |x|2

)1/(m−1)

A time-dependent rescaling: self-similar variables

v(t, x) = 1
κdRd

u
(
τ,

x

κR

)
where dR

dt
= R1−µ , τ(t) := 1

2 log
(
R(t)
R0

)
Then the function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2x

) ]
= 0

J. Dolbeault Flows, linearization, entropy methods
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Free energy and Fisher information

The function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2x

) ]
= 0

(Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

F[u] :=
∫
Rd

(
−u

m

m
+ |x|2u

)
dx− F0

Entropy production is measured by the Generalized Fisher
information

d

dt
F[u] = −I[u] , I[u] :=

∫
Rd
u
∣∣∇um−1 + 2x

∣∣2 dx

J. Dolbeault Flows, linearization, entropy methods
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Relative entropy and entropy production
Stationary solution: choose C such that ‖u∞‖L1 = ‖u‖L1 = M > 0

u∞(x) :=
(
C + |x|2

)−1/(1−m)
+

Relative entropy: Fix F0 so that F[u∞] = 0
Entropy – entropy production inequality (del Pino, J.D.)

Theorem
d ≥ 3, m ∈ [ d−1

d ,+∞), m > 1
2 , m 6= 1

I[u] ≥ 4F[u]

Corollary
(del Pino, J.D.) A solution u with initial data u0 ∈ L1

+(Rd) such that
|x|2 u0 ∈ L1(Rd), um0 ∈ L1(Rd) satisfies

F[u(t, ·)] ≤ F[u0] e− 4 t

J. Dolbeault Flows, linearization, entropy methods
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A computation on a large ball, with boundary terms

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2x

) ]
= 0 τ > 0 , x ∈ BR

where BR is a centered ball in Rd with radius R > 0, and assume that
u satisfies zero-flux boundary conditions(

∇um−1 − 2x
)
· x
|x|

= 0 τ > 0 , x ∈ ∂BR .

With z(τ, x) := ∇Q(τ, x) := ∇um−1 − 2x, the relative Fisher
information is such that

d

dτ

∫
BR

u |z|2 dx+ 4
∫
BR

u |z|2 dx

+ 2 1−m
m

∫
BR

um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

=
∫
∂BR

um
(
ω · ∇|z|2

)
dσ ≤ 0 (by Grisvard’s lemma)

J. Dolbeault Flows, linearization, entropy methods
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Another improvement of the GN inequalities
We recall the definitions of the relative entropy

E[u] := − 1
m

∫
Rd

(
um − Bm? − mBm−1

? (u− B?)
)
dx

the relative Fisher information

I[u] :=
∫
Rd
u |z|2 dx =

∫
Rd
u
∣∣∇um−1 − 2x

∣∣2 dx
and R[u] := 2 1−m

m

∫
Rd
um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

Proposition

If 1− 1/d ≤ m < 1 and d ≥ 2, then

I[u0]− 4E[u0] ≥
∫ ∞

0
R[u(τ, ·)] dτ

J. Dolbeault Flows, linearization, entropy methods
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Entropy – entropy production and GN inequality

4E[u] ≤ I[u]

Rewrite it with p = 1
2m−1 , u = w2p, um = wp+1 as

1
2

(
2m

2m− 1

)2 ∫
Rd
|∇w|2dx+

(
1

1−m − d
)∫

Rd
|w|1+pdx−K ≥ 0

for some γ, K = K0
(∫

Rd u dx =
∫
Rd w

2p dx
)γ

w = w∞ = v
1/2p
∞ is optimal for the Gagliardo-Nirenberg inequality

Theorem
[Del Pino, J.D.] With 1 < p ≤ d

d−2 (fast diffusion case) and d ≥ 3

‖w‖L2p(Rd) ≤ CGN
p,d ‖∇w‖θL2(Rd) ‖w‖

1−θ
Lp+1(Rd)

CGN
p,d =

(
y(p−1)2

2πd

) θ
2
(

2y−d
2y

) 1
2p
(

Γ(y)
Γ(y− d2 )

) θ
d , θ = d(p−1)

p(d+2−(d−2)p) , y = p+1
p−1

J. Dolbeault Flows, linearization, entropy methods
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Sharp rates of convergence
Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0
(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable
D ∈ [D1, D0]

Theorem

(Blanchet, Bonforte, J.D., Grillo, Vázquez) Under Assumptions
(H1)-(H2), if m < 1 and m 6= m∗ := d−4

d−2 , the entropy decays
according to

F[v(t, ·)] ≤ C e−2 (1−m) Λα,d t ∀ t ≥ 0

where Λα,d > 0 is the best constant in the Hardy–Poincaré inequality

Λα,d
∫
Rd
|f |2 dµα−1 ≤

∫
Rd
|∇f |2 dµα ∀ f ∈ H1(dµα)

with α := 1/(m− 1) < 0, dµα := hα dx, hα(x) := (1 + |x|2)α
J. Dolbeault Flows, linearization, entropy methods
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The linearized problem: exponential decay
The Hardy–Poincaré inequality

Λα,d
∫
Rd
|f |2 dµα−1 ≤

∫
Rd
|∇f |2 dµα ∀ f ∈ H1(dµα)

is the entropy – entropy production inequality associated with the
evolution equation after linearization around the Barenblatt profile
If we consider the scalar product

〈f1, f2〉 =
∫
Rd
f1 f2 dµα−1

where dµα−1 = (1 + |x|2)α−1 dx = hα−1 dx and the linearized operator

Lf := h1−α∇ · (hα∇f)

then the solution of ∂tf = Lf is such that

d

dt
〈f, f〉 = − 2 〈Lf, f〉 = − 2

∫
Rd
|∇f |2 dµα ≤ − 2 Λα,d 〈f, f〉

J. Dolbeault Flows, linearization, entropy methods
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Plots (d = 5)

λ01 = −4 α − 2 d

λ10 = −2 α

λ11 = −6 α − 2 (d + 2)

λ02 = −8 α − 4 (d + 2)

λ20 = −4 α

λ30

λ21 λ12

λ03

λcont
α,d := 1

4(d + 2 α − 2)2

α = −d

α = −(d + 2)

α = −d+2
2

α = −d−2
2

α = −d+6
2

α

0

Essential spectrum of Lα,d

α = −
√

d − 1 − d
2

α = −
√

d − 1 − d+4
2

α = − − d+2
2

√
2 d

(d = 5)

Spectrum of Lα,d

mc = d−2
d

m1 = d−1
d

m2 = d+1
d+2

m̃1 = d
d+2

m̃2 = d+4
d+6

m

Spectrum of 
(1 − m) L1/(m−1),d

(d = 5)

Essential spectrum

of (1

1

− m) L1/(m−1),d

2

4

6
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Improved asymptotic rates
(Bonforte, J.D., Grillo, Vázquez) Assume that m ∈ (m1, 1), d ≥ 3.
Under Assumption (H1), if v is a solution of the fast diffusion
equation with initial datum v0 such that

∫
Rd x v0 dx = 0, then the

asymptotic convergence holds with an improved rate corresponding to
the improved spectral gap.

�m1 = d
d+2

m1 = d− 1
d

�m2 = d+4
d+6

m2 = d+1
d+2

4

2

m

1

mc = d− 2
d

(d = 5)

γ (m)

0
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Higher order matching asymptotics
(J.D., G. Toscani) For some m ∈ (mc, 1) with mc := (d− 2)/d, we
consider on Rd the fast diffusion equation

∂u

∂τ
+∇ ·

(
u∇um−1) = 0

Without choosing R, we may define the function v such that

u(τ, y + x0) = R−d v(t, x) , R = R(τ) , t = 1
2 logR , x = y

R

Then v has to be a solution of

∂v

∂t
+∇ ·

[
v
(
σ
d
2 (m−mc)∇vm−1 − 2x

)]
= 0 t > 0 , x ∈ Rd

with (as long as we make no assumption on R)

2σ− d2 (m−mc) = R 1−d (1−m) dR

dτ
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Refined relative entropy
Consider the family of the Barenblatt profiles

Bσ(x) := σ−
d
2
(
CM + 1

σ |x|
2) 1

m−1 ∀ x ∈ Rd (1)

Note that σ is a function of t: as long as dσ
dt 6= 0, the Barenblatt

profile Bσ is not a solution (it plays the role of a local Gibbs state) but
we may still consider the relative entropy

Fσ[v] := 1
m− 1

∫
Rd

[
vm −Bmσ −mBm−1

σ (v −Bσ)
]
dx

The time derivative of this relative entropy is

d

dt
Fσ(t)[v(t, ·)] = dσ

dt

(
d

dσ
Fσ[v]

)
|σ=σ(t)︸ ︷︷ ︸

choose it = 0
⇐⇒ Minimize Fσ[v] w.r.t. σ ⇐⇒

∫
Rd |x|

2Bσ dx =
∫
Rd |x|

2 v dx

+ m

m− 1

∫
Rd

(
vm−1 −Bm−1

σ(t)

) ∂v
∂t

dx
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The entropy / entropy production estimate
Using the new change of variables, we know that

d

dt
Fσ(t)[v(t, ·)] = −mσ(t) d2 (m−mc)

1−m

∫
Rd
v
∣∣∣∇ [vm−1 −Bm−1

σ(t)

]∣∣∣2 dx
Let w := v/Bσ and observe that the relative entropy can be written as

Fσ[v] = m

1−m

∫
Rd

[
w − 1− 1

m

(
wm − 1

)]
Bmσ dx

(Repeating) define the relative Fisher information by

Iσ[v] :=
∫
Rd

∣∣∣ 1
m− 1 ∇

[
(wm−1 − 1)Bm−1

σ

] ∣∣∣2Bσ w dx

so that d

dt
Fσ(t)[v(t, ·)] = −m (1−m)σ(t) Iσ(t)[v(t, ·)] ∀ t > 0

When linearizing, one more mode is killed and σ(t) scales out
J. Dolbeault Flows, linearization, entropy methods
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Improved rates of convergence

Theorem (J.D., G. Toscani)

Let m ∈ (m̃1, 1), d ≥ 2, v0 ∈ L1
+(Rd) such that vm0 , |y|2 v0 ∈ L1(Rd)

F[v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

where
γ(m) =


((d−2)m−(d−4))2

4 (1−m) if m ∈ (m̃1, m̃2]

4 (d+ 2)m− 4 d if m ∈ [m̃2,m2]

4 if m ∈ [m2, 1)
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Spectral gaps and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2
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Comments

A result by (Denzler, Koch, McCann)Higher order time
asymptotics of fast diffusion in Euclidean space: a dynamical
systems approach
The constant C in

F[v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

can be made explicit, under additional restrictions on the initial
data (Bonforte, J.D., Grillo, Vázquez) + work in
progress(Bonforte, J.D., Nazaret, Simonov)
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Symmetry and symmetry breaking
results

B The critical Caffarelli-Kohn-Nirenberg inequality

B A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

B Linearization and spectrum

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities
Linearization and spectrum

Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd, |x|−b dx

)
: |x|−a |∇v| ∈ L2 (Rd, dx)}

(∫
Rd

|v|p

|x|b p
dx

)2/p
≤ Ca,b

∫
Rd

|∇v|2

|x|2 a
dx ∀ v ∈ Da,b

holds under the conditions that a ≤ b ≤ a+ 1 if d ≥ 3, a < b ≤ a+ 1 if
d = 2, a+ 1/2 < b ≤ a+ 1 if d = 1, and a < ac := (d− 2)/2

p = 2 d
d− 2 + 2 (b− a) (critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x|(p−2) (ac−a)
)− 2

p−2 and C?a,b =
‖ |x|−b v? ‖2p
‖ |x|−a∇v? ‖22

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?
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Critical CKN: range of the parameters
Figure: d = 3(∫

Rd

|v|p

|x|b p
dx

)2/p
≤ Ca,b

∫
Rd

|∇v|2

|x|2 a
dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

a ≤ b ≤ a+ 1 if d ≥ 3
a < b ≤ a+ 1 if d = 2, a+ 1/2 < b ≤ a+ 1 if d = 1
and a < ac := (d− 2)/2
p = 2 d

d− 2 + 2 (b− a)
(Glaser, Martin, Grosse, Thirring (1976))

(Caffarelli, Kohn, Nirenberg (1984))
(F. Catrina, Z.-Q. Wang (2001))
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) := d (ac − a)
2
√

(ac − a)2 + d− 1
+ a− ac

a

b

0

(Smets), (Smets, Willem), (Catrina, Wang), (Felli, Schneider)
The functional

C?a,b
∫
Rd

|∇v|2

|x|2 a
dx−

(∫
Rd

|v|p

|x|b p
dx

)2/p

is linearly instable at v = v?
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Symmetry versus symmetry breaking:
the sharp result in the critical case

(JD, Esteban, Loss (Inventiones 2016))

a

b

0

Theorem
Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Flows, linearization, entropy methods
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The Emden-Fowler transformation and the cylinder

B With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Euclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r, ω) = ra−ac ϕ(s, ω) with r = |x| , s = − log r and ω = x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

‖∂sϕ‖2L2(C) + ‖∇ωϕ‖2L2(C) + Λ ‖ϕ‖2L2(C) ≥ µ(Λ) ‖ϕ‖2Lp(C) ∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) = 1
Ca,b

with a = ac ±
√

Λ and b = d

p
±
√

Λ
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Linearization around symmetric critical points

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1
p−2

is a critical point of

H1(C) 3 ϕ 7→ ‖∂sϕ‖2L2(C) + ‖∇ωϕ‖2L2(C) + Λ ‖ϕ‖2L2(C)

under a constraint on ‖ϕ‖2Lp(C)

ϕ? is not optimal if the Pöschl-Teller operator

−∂2
s −∆ω + Λ− ϕp−2

? = −∂2
s −∆ω + Λ− 1

(cosh s)2

has a negative eigenvalue

J. Dolbeault Flows, linearization, entropy methods
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Subcritical Caffarelli-Kohn-Nirenberg inequalities
Norms: ‖w‖q,γ :=

(∫
Rd |w|

q |x|−γ dx
)1/q, ‖w‖q := ‖w‖q,0

(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

‖w‖2p,γ ≤ Cβ,γ,p ‖∇w‖ϑ2,β ‖w‖1−ϑp+1,γ (CKN)

Here Cβ,γ,p denotes the optimal constant, the parameters satisfy

d ≥ 2 , γ−2 < β < d−2
d γ , γ ∈ (−∞, d) , p ∈ (1, p?] with p? := d−γ

d−β−2

and the exponent ϑ is determined by the scaling invariance, i.e.,

ϑ = (d−γ) (p−1)
p
(
d+β+2−2 γ−p (d−β−2)

)
Is the equality case achieved by the Barenblatt / Aubin-Talenti

type function

w?(x) =
(
1 + |x|2+β−γ)−1/(p−1) ∀x ∈ Rd ?

Do we know (symmetry) that the equality case is achieved among
radial functions?

J. Dolbeault Flows, linearization, entropy methods
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Range of the parameters
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Symmetry and symmetry breaking

(JD, Esteban, Loss, Muratori, 2016)

Let us define βFS(γ) := d− 2−
√

(d− γ)2 − 4 (d− 1)

Theorem

Symmetry breaking holds in (CKN) if

γ < 0 and βFS(γ) < β <
d− 2
d

γ

In the range βFS(γ) < β < d−2
d γ

w?(x) =
(
1 + |x|2+β−γ)−1/(p−1)

is not optimal
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The grey area corresponds to the admissible cone. The light grey area
is the region of symmetry, while the dark grey area is the region of
symmetry breaking. The threshold is determined by the hyperbola

(d− γ)2 − (β − d+ 2)2 − 4 (d− 1) = 0
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A useful change of variables
With

α = 1 + β − γ
2 and n = 2 d− γ

β + 2− γ ,

(CKN) can be rewritten for a function v(|x|α−1 x) = w(x) as
‖v‖2p,d−n ≤ Kα,n,p ‖Dαv‖ϑ2,d−n ‖v‖1−ϑp+1,d−n

with the notations s = |x|, Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
. Parameters are in

the range

d ≥ 2 , α > 0 , n > d and p ∈ (1, p?] , p? := n

n− 2
By our change of variables, w? is changed into

v?(x) :=
(
1 + |x|2

)− 1
p−1 ∀x ∈ Rd

The symmetry breaking condition (Felli-Schneider) now reads

α < αFS with αFS :=
√
d− 1
n− 1
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The second variation

J[v] := ϑ log (‖Dαv‖2,d−n) + (1− ϑ) log (‖v‖p+1,d−n)
+ log Kα,n,p − log (‖v‖2p,d−n)

Let us define dµδ := µδ(x) dx, where µδ(x) := (1 + |x|2)−δ. Since v? is
a critical point of J, a Taylor expansion at order ε2 shows that

‖Dαv?‖22,d−n J
[
v? + ε µδ/2 f

]
= 1

2 ε
2 ϑQ[f ] + o(ε2)

with δ = 2 p
p−1 and

Q[f ] =
∫
Rd |Dαf |2 |x|n−d dµδ − 4 pα2

p−1
∫
Rd |f |

2 |x|n−d dµδ+1

We assume that
∫
Rd f |x|

n−d dµδ+1 = 0 (mass conservation)
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Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Let d ≥ 2, α ∈ (0,+∞), n > d and δ ≥ n. If f has 0 average, then∫
Rd
|Dαf |2 |x|n−d dµδ ≥ Λ

∫
Rd
|f |2 |x|n−d dµδ+1

with optimal constant Λ = min{2α2 (2 δ − n), 2α2 δ η} where η is the
unique positive solution to η (η + n− 2) = (d− 1)/α2. The
corresponding eigenfunction is not radially symmetric if
α2 > (d−1) δ2

n (2 δ−n) (δ−1)

Q ≥ 0 iff 4 pα2

p−1 ≤ Λ and symmetry breaking occurs in (CKN) if

2α2 δ η <
4 pα2

p− 1 ⇐⇒ η < 1

⇐⇒ d− 1
α2 = η (η + n− 2) < n− 1 ⇐⇒ α > αFS
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Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg

inequalities
B Entropy and Caffarelli-Kohn-Nirenberg inequalities

B Large time asymptotics and spectral gaps

B Optimality cases
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CKN and entropy – entropy production inequalities
When symmetry holds, (CKN) can be written as an entropy – entropy
production inequality

1−m
m (2 + β − γ)2 F[v] ≤ I[v]

and equality is achieved by Bβ,γ . Here the free energy and the
relative Fisher information are defined by

F[v] := 1
m− 1

∫
Rd

(
vm −Bm

β,γ −mBm−1
β,γ (v −Bβ,γ)

) dx

|x|γ

I[v] :=
∫
Rd
v
∣∣∣∇vm−1 −∇Bm−1

β,γ

∣∣∣2 dx

|x|β
.

If v solves the Fokker-Planck type equation

vt + |x|γ ∇ ·
[
|x|−β v∇

(
vm−1 − |x|2+β−γ)] = 0 (WFDE-FP)

then
d

dt
F[v(t, ·)] = − m

1−m I[v(t, ·)]
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Proposition

Let m = p+1
2 p and consider a solution to (WFDE-FP) with

nonnegative initial datum u0 ∈ L1,γ(Rd) such that ‖um0 ‖1,γ and∫
Rd u0 |x|2+β−2γ dx are finite. Then

F[v(t, ·)] ≤ F[u0] e−(2+β−γ)2t ∀ t ≥ 0

if one of the following two conditions is satisfied:
(i) either u0 is a.e. radially symmetric
(ii) or symmetry holds in (CKN)
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A useful change of variables
With

α = 1 + β − γ
2 and n = 2 d− γ

β + 2− γ ,

(CKN) can be rewritten for a function v(|x|α−1 x) = w(x) as
‖v‖2p,d−n ≤ Kα,n,p ‖Dαv‖ϑ2,d−n ‖v‖1−ϑp+1,d−n

with the notations s = |x|, Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
. Parameters are in

the range

d ≥ 2 , α > 0 , n > d and p ∈ (1, p?] , p? := n

n− 2
By our change of variables, w? is changed into

v?(x) :=
(
1 + |x|2

)−1/(p−1) ∀x ∈ Rd

The symmetry breaking condition (Felli-Schneider) now reads

α > αFS with αFS :=
√
d− 1
n− 1
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Towards a parabolic proof
For any α ≥ 1, let DαW =

(
α∂rW, r

−1∇ωW
)
so that

Dα = ∇+ (α− 1) x

|x|2
(x · ∇) = ∇+ (α− 1)ω ∂r

and define the diffusion operator Lα by

Lα = −D∗αDα = α2
(
∂2
r + n− 1

r
∂r

)
+ ∆ω

r2

where ∆ω denotes the Laplace-Beltrami operator on Sd−1
∂g
∂t = Lαgm is changed into

∂u

∂τ
= D∗α (u z) , z := Dαq , q := um−1−Bm−1

α , Bα(x) :=
(

1 + |x|
2

α2

) 1
m−1

by the change of variables

g(t, x) = 1
κnRn

u
(
τ,

x

κR

)
where


dR
dt = R1−µ , R(0) = R0

τ(t) = 1
2 log

(
R(t)
R0

)
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If the weight does not introduce any singularity at x = 0...
m

1−m
d

dτ

∫
BR

u |z|2 dµn

=
∫
∂BR

um
(
ω ·Dα|z|2

)
|x|n−d dσ (≤ 0 by Grisvard’s lemma)

− 2 1−m
m

(
m− 1 + 1

n

) ∫
BR

um |Lαq|2 dµn

−
∫
BR

um
(
α4m1

∣∣∣q′′ − q′
r −

∆ωq
α2 (n−1) r2

∣∣∣2 + 2α2

r2

∣∣∣∇ωq′ − ∇ωq
r

∣∣∣2) dµn
− (n− 2)

(
α2

FS − α2) ∫
BR

|∇ωq|2

r4 dµn

A formal computation that still needs to be justified
(singularity at x = 0 ?)

Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds

[...]
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Fast diffusion equations with
weights: large time asymptotics
Relative uniform convergence
Asymptotic rates of convergence
From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

vt + |x|γ ∇ ·
[
|x|−β v∇

(
vm−1 − |x|2+β−γ)] = 0 (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

Relative uniform convergence

ζ := 1−
(
1− 2−m

(1−m) q
) (

1− 2−m
1−m θ

)
θ := (1−m) (2+β−γ)

(1−m) (2+β)+2+β−γ is in the range 0 < θ < 1−m
2−m < 1

Theorem

For “good” initial data, there exist positive constants K and t0 such
that, for all q ∈

[ 2−m
1−m ,∞

]
, the function w = v/B satisfies

‖w(t)− 1‖Lq,γ(Rd) ≤ K e− 2 (1−m)2
2−m Λ ζ (t−t0) ∀ t ≥ t0

in the case γ ∈ (0, d), and

‖w(t)− 1‖Lq,γ(Rd) ≤ K e− 2 (1−m)2
2−m Λ (t−t0) ∀ t ≥ t0

in the case γ ≤ 0
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0

Λ0,1

Λ1,0

Λess

Essential spectrum

δδ4δ1 δ5δ2

Λ0,1

Λ1,0

Λess

Essential spectrum

δ4 δ5:=
n

2−η

The spectrum of L as a function of δ = 1
1−m , with n = 5. The

essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola δ 7→ Λess(δ). The two eigenvalues Λ0,1
and Λ1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

Existence of weak solutions, L1,γ contraction, Comparison
Principle, conservation of relative mass

Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t, x) := v(t, x)/B(x) solves|x|

−γ wt = − 1
B ∇ ·

(
|x|−βBw∇

(
(wm−1 − 1)Bm−1) ) in R+ × Rd

w(0, ·) = w0 := v0/B in Rd

Regularity, relative uniform convergence (without rates) and
asymptotic rates (linearization)

The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

A Duhamel formula and a bootstrap
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Regularity (1/2): Harnack inequality and Hölder
We change variables: x 7→ |x|α−1 x and adapt the ideas of
F. Chiarenza and R. Serapioni to

ut + D∗α
[

a (Dαu+ Bu)
]

= 0 in R+ × Rd

Proposition (A parabolic Harnack inequality)

Let d ≥ 2, α > 0 and n > d. If u is a bounded positive solution, then
for all (t0, x0) ∈ R+ × Rd and r > 0 such that Qr(t0, x0) ⊂ R+ ×B1,
we have

sup
Q−r (t0,x0)

u ≤ H inf
Q+
r (t0,x0)

u

The constant H > 1 depends only on the local bounds on the
coefficients a, B and on d, α, and n := 2 (d−γ)

β+2−γ

By adapting the classical method à la De Giorgi to our weighted
framework: Hölder regularity at the origin
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Regularity (2/2): from local to global estimates

Lemma

If w is a solution of the the Ornstein-Uhlenbeck equation with initial
datum w0 bounded from above and from below by a Barenblatt profile
(+ relative mass condition) = “good solutions”, then there exist
ν ∈ (0, 1) and a positive constant K > 0, depending on d, m, β, γ, C,
C1, C2 such that:

‖∇v(t)‖L∞(B2λ\Bλ) ≤
Q1

λ
2+β−γ

1−m +1
∀ t ≥ 1 , ∀λ > 1 ,

sup
t≥1
‖w‖Ck((t,t+1)×Bcε) <∞ ∀ k ∈ N , ∀ ε > 0

sup
t≥1
‖w(t)‖Cν(Rd) <∞

sup
τ≥t
|w(τ)− 1|Cν(Rd) ≤ K sup

τ≥t
‖w(τ)− 1‖L∞(Rd) ∀ t ≥ 1
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Asymptotic rates of convergence

Corollary

Assume that m ∈ (0, 1), with m 6= m∗ := n−4
n−2 . Under the relative

mass condition, for any “good solution” v there exists a positive
constant C such that

F[v(t)] ≤ C e− 2 (1−m) Λ t ∀ t ≥ 0 .

With Csiszár-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L1,γ(Rd)

Improved estimates can be obtained using “best matching
techniques”
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From asymptotic to global estimates
When symmetry holds (CKN) can be written as an entropy – entropy
production inequality

(2 + β − γ)2 F[v] ≤ m

1−m I[v]

so that

F[v(t)] ≤ F[v(0)] e− 2 (1−m) Λ? t ∀ t ≥ 0 with Λ? := (2+β−γ)2

2 (1−m)

Let us consider again the entropy – entropy production inequality

K(M)F[v] ≤ I[v] ∀ v ∈ L1,γ(Rd) such that ‖v‖1,γ = M ,

where K(M) is the best constant: with Λ(M) := m
2 (1−m)−2 K(M)

F[v(t)] ≤ F[v(0)] e− 2 (1−m) Λ(M) t ∀ t ≥ 0
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Symmetry breaking and global entropy – entropy
production inequalities

Proposition

• In the symmetry breaking range of (CKN), for any M > 0, we have
0 < K(M) ≤ 2

m (1−m)2 Λ0,1

• If symmetry holds in (CKN) then
K(M) ≥ 1−m

m (2 + β − γ)2

(JD, Simonov) In the whole symmetry range,

K(M) = 1−m
m (2 + β − γ)2
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss
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Linearization and scalar products
With uε such that

uε = B?
(
1 + ε f B1−m

?

)
and

∫
Rd
uε dx = M?

at first order in ε→ 0 we obtain that f solves
∂f

∂t
= L f where L f := (1−m)Bm−2

? |x|γ D∗α
(
|x|−β B?Dαf

)
Using the scalar products

〈f1, f2〉 =
∫
Rd
f1 f2 B

2−m
?

dx

|x|γ
and 〈〈f1, f2〉〉 =

∫
Rd

Dαf1·Dαf2 B?
dx

|x|β

1
2
d

dt
〈f, f〉 = 〈f,L f〉 = −

∫
Rd
|Dαf |2 B?

dx

|x|β
= −〈〈f, f〉〉

for any f smooth enough, and
1
2
d

dt
〈〈f, f〉〉 =

∫
Rd

Dαf ·Dα(L f)u dx

|x|β
= −〈〈f,L f〉〉
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Linearization of the flow, eigenvalues and spectral gap
Now let us consider an eigenfunction associated with the smallest
positive eigenvalue λ1 of L

−L f1 = λ1 f1

so that f1 realizes the equality case in the Hardy-Poincaré inequality

〈〈g, g〉〉 = − 〈f,L f〉 ≥ λ1 ‖g − ḡ‖2 , ḡ := 〈g, 1〉 / 〈1, 1〉

− 〈〈g,L g〉〉 ≥ λ1 〈〈g, g〉〉

Proof: expansion of the square :
−〈〈(g − ḡ),L (g − ḡ)〉〉 = 〈L (g − ḡ),L (g − ḡ)〉 = ‖L (g − ḡ)‖2

Key observation:

λ1 ≥ 4 ⇐⇒ α ≤ αFS :=
√
d− 1
n− 1
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Symmetry breaking in CKN inequalities
Symmetry holds in (CKN) if J[w] ≥ J[w?] with

J[w] := ϑ log (‖Dαw‖2,δ) + (1− ϑ) log (‖w‖p+1,δ)− log (‖w‖2p,δ)

with δ := d− n and

J[w? + ε g] = ε2 Q[g] + o(ε2)

where

2
ϑ ‖Dαw?‖22,d−n Q[g]

= ‖Dαg‖22,d−n + p (2+β−γ)
(p−1)2

[
d− γ − p (d− 2− β)

] ∫
Rd
|g|2 |x|

n−d

1+|x|2 dx

− p (2 p− 1) (2+β−γ)2

(p−1)2

∫
Rd
|g|2 |x|n−d

(1+|x|2)2 dx

is a nonnegative quadratic form if and only if α ≤ αFS

Symmetry breaking holds if α > αFS
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Information – production of information inequality
Let K[u] be such that

d

dτ
I[u(τ, ·)] = −K[u(τ, ·)] = − (sum of squares)

If α ≤ αFS, then λ1 ≥ 4 and

u 7→ K[u]
I[u] − 4

is a nonnegative functional
With uε = B?

(
1 + ε f B1−m

?

)
, we observe that

4 ≤ C2 := inf
u

K[u]
I[u] ≤ lim

ε→0
inf
f

K[uε]
I[uε]

= inf
f

〈〈f,L f〉〉
〈〈f, f〉〉

= 〈〈f1,L f1〉〉
〈〈f1, f1〉〉

= λ1

if λ1 = 4, that is, if α = αFS, then inf K/I = 4 is achieved in the
asymptotic regime as u→ B? and determined by the spectral gap of L

if λ1 > 4, that is, if α < αFS, then K/I > 4
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If α ≤ αFS, the fact that K/I ≥ 4 has an important consequence.
Indeed we know that

d

dτ
(I[u(τ, ·)]− 4F[u(τ, ·)]) ≤ 0

so that
I[u]− 4F[u] ≥ I[B?]− 4F[B?] = 0

This inequality is equivalent to J[w] ≥ J[w?], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for α ≤ αFS, the function

τ 7→ I[u(τ, ·)]− 4F[u(τ, ·)]

is monotone decreasing
This explains why the method based on nonlinear flows provides

the optimal range for symmetry

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

References 1

Gagliardo-Nirenberg inequalities by variational methods
M. Del Pino and J. Dolbeault. Best constants for Gagliardo-Nirenberg

inequalities and applications to nonlinear diffusions. J. Math. Pures Appl.
(9), 81(9): 847-875, 2002.

Gagliardo-Nirenberg inequalities by the Bakry-Emery method
J. A. Carrillo and G. Toscani. Asymptotic L1-decay of solutions of the

porous medium equation to self-similarity. Indiana Univ. Math. J., 49(1):
113-142, 2000.

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A.
Unterreiter. Entropy dissipation methods for degenerate parabolic problems
and generalized Sobolev inequalities. Monatsh. Math., 133(1): 1-82, 2001.

F. Otto. The geometry of dissipative evolution equations: the porous
medium equation. Comm. Partial Differential Equations, 26(1-2): 101-174,
2001.

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

References 2

Two reference books
D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of

Markov diffusion operators, volume 348 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer, Cham, 2014.

A. Jüngel. Entropy methods for diffusive partial differential
equations. SpringerBriefs in Mathematics. Springer, [Cham], 2016.

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

References 3
Linearization for Gagliardo-Nirenberg inequalities

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Vázquez.
Asymptotics of the fast diffusion equation via entropy estimates. Archive
for Rational Mechanics and Analysis, 191(2): 347-385, 02 2009.

M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Vázquez. Sharp rates of
decay of solutions to the nonlinear fast diffusion equation via functional
inequalities. Proceedings of the National Academy of Sciences, 107(38):
16459-16464, 2010.

J. Dolbeault and G. Toscani. Fast diffusion equations: matching large
time asymptotics by relative entropy methods. Kinetic and Related Models,
4(3): 701-716, 2011.

Rényi entropy powers
G. Savaré and G. Toscani. The concavity of Rényi entropy power. IEEE

Trans. Inform. Theory, 60(5): 2687-2693, 2014.
J. Dolbeault and G. Toscani. Nonlinear diffusions: Extremal properties

of Barenblatt profiles, best matching and delays. Nonlinear Analysis:
Theory, Methods & Applications, 138: 31-43, 6 2016.

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

References 4

Linearization for Caffarelli-Kohn-Nirenberg inequalities
M. Bonforte, J. Dolbeault, M. Muratori, and B. Nazaret. Weighted fast

diffusion equations (Part I): Sharp asymptotic rates without symmetry and
symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and
Related Models, 10(1): 33-59, 2017.

M. Bonforte, J. Dolbeault, M. Muratori, and B. Nazaret. Weighted fast
diffusion equations (Part II): Sharp asymptotic rates of convergence in
relative error by entropy methods. Kinetic and Related Models, 10(1):
61-91, 2017.

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

References 5

Caffarelli-Kohn-Nirenberg inequalities
J. Dolbeault, M. J. Esteban, and M. Loss. Rigidity versus symmetry

breaking via nonlinear flows on cylinders and Euclidean spaces. Invent.
Math., 206(2): 397-440, 2016.

J. Dolbeault, M. J. Esteban, M. Loss, and M. Muratori. Symmetry for
extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities.
Comptes Rendus Mathématique, 355(2): 133 - 154, 2017.

J. Dolbeault, M. J. Esteban, and M. Loss. Interpolation inequalities,
nonlinear flows, boundary terms, optimality and linearization. Journal of
elliptic and parabolic equations, 2: 267-295, 2016.

J. Dolbeault, M. J. Esteban, and M. Loss. Symmetry and symmetry
breaking: rigidity and flows in elliptic PDEs. Proc. Int. Cong. of Math.
2018, Rio de Janeiro, 3: 2279-2304, 2018.

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

J. Dolbeault Flows, linearization, entropy methods



Entropy methods without weights
Symmetry breaking and linearization

Weighted nonlinear flows and CKN inequalities

A parabolic proof ?
Large time asymptotics and spectral gaps
Linearization and optimality

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !

J. Dolbeault Flows, linearization, entropy methods

https://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/

	Entropy methods without weights
	The Bakry-Emery method on the sphere
	Rényi entropy powers
	Self-similar variables and relative entropies
	The role of the spectral gap

	Symmetry breaking and linearization
	Critical Caffarelli-Kohn-Nirenberg inequality
	Subcritical Caffarelli-Kohn-Nirenberg inequalities
	Linearization and spectrum

	Weighted nonlinear flows and CKN inequalities
	A parabolic proof ?
	Large time asymptotics and spectral gaps
	Linearization and optimality


