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Abstract

For the past nine decades Hotelling’s rule, implied by optimal consumption of a
known finite supply of a commodity, has been the theoretical core of the economics of
nonrenewable resources. Yet typical markets for a nonrenewable commodity include,
besides known "proven" reserves, a finite quantity of resources available for exploration
to find additional reserves. Four decades ago, Arrow and Chang proposed a model
including identical reserve deposits Poisson distributed across an unexplored resource,
explorable at constant cost with infinite speed, but its full implications remain unclear.
We completely solve a dynamic stochastic model of this type for socially optimal ex-
ploration, consumption and price. We prove that there is a frontier of critical proven
reserves, increasing in explored resources. Given reserves above this frontier, explo-
ration is zero and price follows Hotelling’s rule, until consumption reduces reserves to
the critical frontier. Then exploration occurs instantaneously across the resource until
new discoveries raise reserves above the frontier and price drops, or unexplored area
is exhausted and price jumps up to the Hotelling path. The expected price path rises
at the rate of interest, and is an upper bound on the expected path conditional on
positive unexplored resources, consistent with many tests of Hotelling’s rule. Starting
with resources below an endogenous threshold, every path of price realizations prior to
exhaustion lies below this bound.
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The seminal paper by Hotelling (1931) showed that the price of an exhaustible resource
with zero extraction cost will rise at the rate of interest in both the competitive equilibrium
and social optimum. There is an active literature arguing that empirical price series of
exhaustible resources violate the Hotelling rule, and what model modifications are necessary.
When fitting quadratic time trends to the price path of many exhaustible resources, Slade
(1982) found that for a large fraction of resources, there is no positive trend. Several papers
have suggested reasons why resource prices initially might not rise over time. First, if
there is a positive marginal extraction cost, the rent, defined as the difference between
the price and the marginal cost will rise at the rate of interest. A declining price might still
result in increasing rents if extraction cost are falling at an even faster rate than the price.
Applying a cost function approach to historic price series, Halvorsen and Smith (1991) still
reject the Hotelling rule. Second, Berck and Roberts (1996) point out that both demand
shocks (energy consumption is co-integrated with GDP, which is itself difference stationary)
and supply shocks (e.g., new discoveries) lead to permanent price shocks. The price series
is difference and not trend stationary and fitting time trends in the price level will give
biased test results. While negative price shocks are possible, a declining price path for many
decades would suggest a succession of negative shocks in a row, which eventually will appear
unlikely. Third, exploratory activity is sometimes allowed to increase reserves. Pindyck
(1978) models exploration as potentially yielding unlimited reserves, but given amounts of
exploratory activity result in ever smaller discoveries. The result in this deterministic model
is a U-shaped price path where the initially cheap technology is used to build up reserves
before further exploration becomes too costly and reserves are drawn down again. The
deterministic model implies a smooth price-path, which does not fit realized price series
as well. Our paper examines the implication of a costly stochastic exploration process that
resolves how many reserves are available. We expand on the proposed model setup of (Arrow
and Chang 1982) that assumes there is unexplored area, which we standardize without loss
of generality to the the interval [0, 1]. Arrow and Chang (1982) conclude that “The price
history will show fluctuations with little upward trend when X is large; presumably the
upward trend is stronger as X approaches zero, but this requires a probabilistic analysis not
yet performed.” We present such a probabilistic analysis. This unexplored area harbors an
unknown amount of reserves, which are assumed to be Poisson distributed. Equivalently,
the amount of unexplored area between successive finds of constant size a is exponentially
distributed. Costly exploration will reveal how many reserves are “hidden” in this unexplored
area. Knowing the exact amount of reserves would allow optimal allocation of the stock
over time. On the other hand, delaying costly exploration into the future allows them to
be further discounted. The model solves for the optimal time when to engage in costly
exploration activity to further reduce this uncertainty. We purposefully assume constant
marginal extraction cost to illustrate the economic incentive on when to explore. Convex
exploration cost would give an incentive to spread the exploration activity over time and
obfuscate the economic value of information obtained from the search process.

Before we present and solve this model, we would like to highlight the importance of
new discoveries for exhaustible resources, sometimes also called the cake eating problem.
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The Limit to Growth Literature in the 1970s emphasized that keeping current consumption
rates would deplete them by 2030 the latest. This prediction has not materialized. The
reason was not that we were using less of these resources over time. Quite to the contrary,
for most minerals, consumption has increased over time and the cumulative use since 1970
was larger than the proven reserves in 1970. To the contrary, new discoveries resulted in
additional reserves, pushing the current reserve level to higher levels than what was available
in 1970 as new discoveries exceeded cumulative consumption. In the following we refer to
the unexplored area that can yield new discoveries as resources, and the proven reserve stock
simply as reserves.

We provide one specific example: Rystad Energy provides historic field-level estimates
of proven reserves for crude oil. This micro-level data set has been used to study the mis-
allocation of oil production around the world (Asker, Collard-Wexler and De Loecker 2019)
and the effects of a carbon tax on oil prices and CO2 emissions (Heal and Schlenker 2020).
Figure 1 plots the level of reserves from 1950-2019 as well as annual production. For reserves,
we merge each asset, the unit of analysis in the data set that are “producing,” “Discovery,”
or “Under development” with estimates of the size of the reserve to obtain the red line. The
blue line shows production per year (note the different scale by a factor of 33). Overlapping
lines suggest that 33 years at current production levels are left. The striking feature is
twofold: first, cumulative production from 1970 onward (area under the blue curve) far
exceeds reserves in 1970, i.e., the Limits to Growth literature prediction that current reserves
would run out in the early 2000s was correct. Second, the proven reserves do not decrease
over time, suggesting that new discoveries far outpaced production level.1 New discoveries
and the effect on the reserve stock are an important empirical component of some exhaustible
resources, and we study the discovery process further in this paper.

Before we dive into the formal technical details of the model, some intuition might be
helpful. The optimal exploration policy balances two countervailing effects: On the one
hand one would like to delay the exploration process as long as possible to defer these costs
to the future. On the other had one would like to start the exploration process as soon
as possible to reduce uncertainty about the remaining reserve stock and improve the inter-
temporal allocation of consumption. When reserves, and hence consumption, are abundant,
the cost of not knowing the exact amount of the reserves becomes less severe as marginal
utility is low and changing the optimal consumption path would not impact the overall value
tremendously. On the other hand, when reserve stocks are very low, it becomes imperative
to know how much is left in the ground for the optimal consumption pathway, as changes
in the consumption rate have a higher marginal value. We establish below that there are
critical reserve and price levels. If reserves exceed the critical level, or price is lower than the
critical level, one follows the standard Hotelling path of consumption, where price rises at
the rate of interest, reserves are drawn down, and there is no exploration. Once the critical
level, which depends on the unexplored area, is reached, exploration starts. Since marginal

1The separation into what are “proven reserve” and what are estimates of remaining “undiscovered re-
serves” is somewhat arbitrary, but the qualitative finding that reserve levels are increasing over time is
common across data sources. For example, another data set, BP Statistical Review of World Energy, found
that proven oil reserves increased even more, from 682 billion barrels in 1980 to 1.7 trillion barrels in 2019.
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exploration costs are zero, exploration happens at an infinite rate in zero time. The explored
area until the next discovery is exponentially distributed. Once a new reserve of constant
size a is found, there are two possibilities: first, if the new discovery pushes the known
reserve level above the critical threshold, which itself might have increased as it is a function
of the explored area, exploration stops and one reverts to consuming the reserve until it
is drawn down to the critical level again. Second, if the size of the new discovery is lower
than the increase in the critical reserve level compared to when exploration was started, the
new reserve level remains below the critical level and one will immediately start the next
exploration process.

There are several important implications of the model. First, the critical level when
exploration starts is increasing in the explored area. As a result, proven reserves will increase
over time as long as the unexplored area is not exhausted. The reserve stock is not a viable
indicator of scarcity, i.e., the fact that reserves are increasing over time, as is observed for
oil, does not imply that scarcity decreases.

Second, while prices rise at the rate of interest in expectation, the distribution of future
prices is highly skewed. Imagine a case where there is a lot of unexplored area left. The
probability of not finding any further discoveries is very low, as the amount of area until the
next discovery is exponentially distributed. While this case is very rare, it would constitute
a large surprise with a very large price jump. The other extreme is that almost no area
is required to find the new reserve of constant size a. Price would drop, but the drop is
bound by having additional reserves in the amount of a. This leads to a highly asymmetric
distribution of future prices. This is comparable to a roulette game with 36 numbers, where
the payoff is 36 times the bet, i.e., it is fair in expectations. While the expected winning is
zero, a player will loose with very high probability, i.e., 35 out of 36 times.

Third, we show that in the limit as the unexplored area approaches zero, finding another
reserve will lead to a price drop, while running out of unexplored area will lead to a price
increase. Going backward, conditional on not having run out of unexplored area (which
eliminates the largest price increases), the observed price path rises at less than the rate of
interest. This gives an explanation why forward-looking tests of the Hotelling rule generally
due not reject it (Miller and Upton 1985), while backward looking tests do (Halvorsen and
Smith 1991).

Lastly, there is also a methodological innovation: Continuous Exploration region, smooth
pasting price

1 Model Setup
Consider the familiar cake-eating problem (Hotelling 1931). There is a single, infinite-lived
consumer, who discounts future utilities at the constant rate r > 0. There is a single, non-
renewable, good, available in finite quantity R0 > 0. If the agent consumes quantity c in the
infinitesimal time interval [t, t+ dt], he/she derives utility u (c) dt. In Hotelling’s paper the
utility is measured in monetary units (as a social value drawn from consumption) and it is
assumed that the rate of time preference r coincides with the market rate of interest. The
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agent’s problem then is to adjust his/her consumption so as to maximise his/her aggregate
utility. Mathematically speaking, this translates into the optimization problem:

U(R0) = max
c(·)

∫ ∞
0

u (c (t)) e−rtdt subject to

dR

dt
= −c, c (t) ≥ 0

R (0) = R0.

Here U(R0) is the present value of the future utility the agent draws from the quantity
R0 of the good, c(t) is the rate of consumption at time t, R(t) is the remaining quantity of
the good, r is the interest rate and the utility function u : (0, ∞)→ R is concave, increasing
and C2, with u′′ (c) < 0 for c > 0. The optimal solution c (t) is easily found by the method
of Lagrange multipliers:

u′ (c (t)) = λert, (1)

where the Lagrange multiplier λ is determined from the condition that the lifetime consump-
tion must be equal to the initial quantity of the good:∫ ∞

0

c (t) dt = R0. (2)

By standard arguments, the Lagrange multiplier λ is equal to the derivative of the value
function, and since the utility is measured in monetary units, it can also be interpreted as
the price of the good at time t = 0:

U ′(R0) = λ = p0.

Repeating the same argument at time t, the price at time t may be found:

pt = U ′(Rt) = λert = p0r
rt.

In the words of Hotelling, “It is a matter of indifference to the owner whether he receives
for a unit of his product a price p0 now or a price p0e

rt after time t”. In this simple Hotelling
model of optimal consumption of a finite stock of reserves R, rising price and falling reserves
are both signals of increasing scarcity.

We extend this model to include a known stock of a potentially mineral-bearing resource,
identified for example by its observable geological characteristics, containing an unknown
number of deposits. This dynamic stochastic problem of optimization of social welfare entails
choices regarding both the rate of consumption and the timing of exploration.

Exploration of the unit interval of the resource [0, 1] proceeds from left to right. There
are two state variables, 0 < x < 1, the space already explored, and R > 0, the reserves
already discovered (henceforth called the reserves).
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We assume that exploration is instantaneous. During exploration, there is zero consump-
tion; during consumption, nothing is explored.

If exploration starts from x, explored resources move immediately to x′ = inf {x+ h, 1}
where h > 0 is the first jump time of a Poisson process with parameter λ. If x′ = 1, unex-
plored resources are exhausted, no additional deposits are found, and the model transitions
to the deterministic Hotelling consumption regime, with initial resources R. If x′ < 1, then
a deposit of a > 0 of reserves has been found at x′, and the system moves immediately from
(x,R) to the new state (x′, R + a) . If exploration is costless, the whole resource is explored
at the outset, allowing optimization of subsequent consumption exploiting knowledge of the
total stock of reserves by following the deterministic Hotelling path. Henceforth, we assume
a cost k > 0 for exploration of the resource: if we start exploring at x and find a deposit
at x′, then the exploration cost incurred is k (x′ − x) . We completely solve the consumption
and exploration problem for this initial regime.

Our results are as follows. The agent’s strategy is completely determined by the critical
reserve level as function of unexplored area R∗ : [0, 1] → (0,∞), such that it is optimal to
consume when the reserves are above this critical level and explore otherwise. This critical
reserve level is a smooth increasing function of the unexplored area. For given unexplored
area x, there is a one-to-one correspondence between reserves and price, hence one can also
define the critical price level, such that it is optimal to consume when price is below the
critical level and explore otherwise. The optimal strategy is represented in Figure 4, where
the critical levels are shown in blue. If the initial reserves are above the critical reserve level
(point A), the agent consumes until both price and reserve level hit their respective critical
levels (point B), after which an exploration period starts (segment BC). Upon finding a new
deposit, the reserve level increases by amount a (segment CD). If the new deposit is found
quickly, the new reserve level (point D) will be well above the critical level, consequently
the new price level (point D) will be well below the critical level and below its previous
value (point B), so that new find leads to a price drop. If the new deposit takes a long time
to find (segment EF), the new reserve level (point G) may end up just above the critical
level and the new price (point G) will be just below the critical level and above its previous
value (point E), so that the new find leads to a price rise. It may also happen that the
new reserve level will still be below the critical level; in this case exploration will continue
without consumption. Finally, it may happen that the entire area is explored and no new
deposit is found (segment HI): in this case the new price (point I) will be above the critical
level, thus the price always jumps upward at the end of the exploration regime.

In finite time the entire interval [0, 1] is explored, and society recognizes that there
are no undiscovered reserves. After an upward price jump the model transitions from the
exploratory regime to the deterministic regime in which the price path follows the Hotelling
rule.

This regime-ending jump occurs with positive probability in any exploratory episode.
This fact has important implications for price behavior within the exploratory regime in
which x < 1. In this regime, the expected price path follows the Hotelling rule as the
horizon recedes past the next exploratory episode. Since price jumps upward if the regime
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ends at that episode, it must jump down in expectation, conditional on remaining within
the exploratory regime, and then rise smoothly at the discount rate to the next exploratory
episode. In general, realized price in the exploratory regime has this sawtooth pattern.
However, if a new deposit is discovered after a very large interval of unsuccessful exploration,
price may also jump up upon discovery.

When the probability of finding a deposit is high, we can further distinguish two stages
in the exploration regime. First, when the unexplored area is likely to still contain many
deposits, reserves are abundant, the cost of not knowing the exact amount of reserves is less
severe and it is optimal to defer costly exploration. In this stage, the critical reserve level
is very close to zero and all new discoveries are immediately consumed (see Figure 15). As
the uncertainty over the remaining amount of resources grows, at some point it is no longer
optimal to consume all discoveries immediately and the reserves start to accumulate, as a
sign of increasing scarcity.

Starting in a state with resources above an endogenous resource threshold, the realized
price path might jump above the initial Hotelling path of expected prices if multiple deposits
are discovered in a single exploratory episode, a perhaps counter-intuitive negative signal of
total consumable reserves, reflecting at least one unusually large interval of unsuccessful
exploration in that episode. Starting with resources below this threshold, the fluctuating
price path is bounded above by the expected path, until resource exhaustion. Taken together,
these two results falsify a conjecture of Arrow and Chang that the upward trend in realized
price in a similar model is strongest as unexplored resources approach exhaustion. This

para-
graph
re-
mains
un-
clear

The structure of the paper is as follows. In section 2 we define the value function V (x,R)
and we characterize it as the solution of a suitable HJB equation (Theorem 1). In section
3, we prove the existence of a free boundary R∗ (x) separating the exploration region below
from the consumption region above (Proposition 2) and we prove that 0 < R∗ (x) < ∞ for
all x < 1 (as long as there is an unexplored region, there is a level of reserves above which
one consumes and below which one explores). We also prove that R∗ (x) is an increasing
function of x and that the smooth pasting condition holds across the free boundary. It
is this result that implies that the price path realized in the exploratory regime becomes
bounded above by the path of price expectations when exploratory resources pass below an
endogenous fixed threshold. In section 4, we investigate the intersection of the free boundary
R∗ (x) with x = 1. We compute the point of intersection R∗ (1) and the tangent dR∗

dx
(1): we

find that it is positive, in line with our general result that R∗ is increasing. These data allow
us to check the numerics, that is, the accuracy of the algorithm we are using to compute
V (x,R).

Finally, we check that E[pt] = p0e
rt, the conditional expectation of price follows the

Hotelling rule. This does NOT mean that every realization will follow the Hotelling rule,
even loosely, as our simulations show. Indeed, the last section is devoted to numerical
simulations, and shows a wide range of behaviours with minimum reserves increasing, and
sawtooth price paths realized in the exploration region falling below the the path of price
expectations as explorable resources decline.

In a concluding section, we relate our results to the literature and address their generality.
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Throughout the paper, we will take u (c) = 1
α
cα, with 0 < α < 1, and sometimes α = 1/2.

This is to make computations easier, but there is no reason our results would not hold for
more general u with u′′ (c) > 0 for c > 0.

2 Solving the Model

2.1 The HJB equation

In this section we characterize the value function of our optimal stopping problem as the
solution of a variant of the Hamilton-Jacobi-Bellman equation. Let N denote a Poisson
process on the interval [0, 1] with intensity λ, which models our stochastic exploration process.
The jump times of N , which correspond to the locations of the deposits, will be denoted by
(xk)k≥0, with x0 = 0, and the interarrival times of N , which correspond to the area that has
to be explored before finding the next deposit, will be denoted by Λn := xn−xn−1 for n ≥ 1.
Finally, we let (Fk)k≥0 be the discrete filtration generated by (xk)k≥0. A consumption-
exploration strategy is an increasing (Fk)-adapted sequence of random variables (θk)k≥0

(moments where the exploration starts) and a sequence of Fk × B(R+)-measurable maps
ck : Ω× R+ → R+, where the consumption process of the agent is given by

ct =
∑
k≥0

ckt 1θk<t≤θk+1
.

We say that the consumption-exploration strategy (c, θ) is admissible for initial data (x,R)
if it satisfies the budget constraint

R−
∫ t

0

csds+ a

N1−x∑
n=1

1θn≤t ≥ 0 (3)

a.s. for all t ≥ 0. Equation (3) ensures that the reserve level remains positive at all times.
The value function is defined by

V (x,R) = sup
c,θ

E

[∫ ∞
0

e−rtu(ct)dt− k
∞∑
n=1

e−rθnΛn ∧ (1− x(θn))

]
(4)

where the supremum is evaluated over admissible consumption-exploration strategies.
The following lemma provides an priori upper bound for V , instrumental in the proof of

the HJB equation.

Lemma 1. Assume that u(c) = cα

α
with 0 < α < 1. Then, for all x,R ∈ [0, 1]× R+ and all

h > 0,

V (x,R + h) ≤ V (x,R) +

(
1−

(
1− h

R

)α)
E[U(R + h+ aN1−x)], h ≥ 0,

and in particular,

V (x,R + h) ≤ V (x,R) +
αh

R
E[U(R + h+ aN1−x)], h ≥ 0.
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Proof. Let (c, θ) be a consumption-exploration strategy with

R + h−
∫ t

0

csds+ a

N1−x−1∑
n=0

1θn≤t ≥ 0 (5)

a.s. for all t ≥ 0. Then, clearly,

R−
∫ t

0

R

R + h
csds+ a

N1−x−1∑
n=0

1θn≤t ≥ 0

a.s. for all t ≥ 0, so that
(

R
R+h

c, θ
)
is an admissible consumption-exploration strategy for

(x,R). Then,

V (x,R + h)− V (x,R) ≤ sup
c,θ

E
[∫ ∞

0

e−rt
(
u(ct)− u

(
R

R + h
ct

))
dt

]
=

(
1−

(
R

R + h

)α)
sup
c,θ

E
[∫ ∞

0

e−rtu(ct)dt

]
,

where the supremum is taken over consumption-stopping strategies satisfying equation (5).
Since in this optimization problem there is no cost, it is optimal to explore all remaining
area immediately, and we have

sup
c,θ

E
[∫ ∞

0

e−rtu(ct)dt

]
= E[U(R + h+ aN1−x)].

We now proceed as usual to show that the value function satisfies a variant of the HJB
equation. First we formulate without proof the following dynamic programming principle
for our value function. The proof can be done along the lines of Theorem A.1 in Pham and
Tankov (2009).

Lemma 2 (Dynamic programming principle). The value function satisfies:

V (x,R) = sup
c,θ1≥0

∫ θ1

0

e−rtu(ct)dt+ e−rθ1MV (x,R−
∫ θ1

0

cs ds),

where the sup is taken over all measurable deterministic functions c : R+ → R+ and constants
θ1 ∈ R+ such that

∫ θ1
0
csds ≤ R, and the operator M is defined by

Mf(x,R) =

∫ 1−x

0

f(x+ h,R + a)λe−λhdh+ f(1, R)e−λ(1−x) − k1− e−λ(1−x)

λ
.

Corollary 1. For all h > 0, ĉ : [0, h]→ R+, such that
∫ h

0
ĉsds ≤ R,

V (x,R) ≥
∫ h

0

e−rtu(ĉt)dt+ e−rhV

(
x,R−

∫ h

0

ĉsds

)
.
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Proof. Let c̃ : R+ → R+ and θ̃1 ∈ R+. Applying the dynamic programming principle to

c : R+ → R+, t 7→ ĉt1t<h + c̃t+h1t≥h

θ1 = h+ θ̃1,

we get:

V (x,R) ≥
∫ h

0

e−rtu(ĉt)dt+

∫ h+θ̃1

h

e−rtu(c̃t+h)dt+ e−r(h+θ1)MV

(
x,R−

∫ h

0

ĉtdt+

∫ h+θ̃1

h

c̃t+hdt

)

=

∫ h

0

e−rtu(ĉt)dt+ e−rh

{∫ θ̃1

0

e−rtu(c̃t)dt+ e−rθ1MV

(
x,R−

∫ h

0

ĉtdt+

∫ θ̃1

0

c̃tdt

)}
.

Taking the sup over c̃ and θ̃1, we get the statement of the corollary.

Corollary 2. The value function satisfies:

V (x,R) = sup
0≤Q≤R,θ1≥0

{Ũ(θ1, Q) + e−rθ1MV (x,R−Q)},

where

Ũ(θ1, Q) =
Qα

α

(
1− α
r

)1−α

(1− e−
rθ1
1−α )1−α.

Proposition 1. The value function V (x,R) is the solution of the HJB equation

max

{
u∗
(
∂V

∂R

)
− rV,MV − V

}
= 0, V (1, R) = U(R),

meaning that

i. For all R ≥ 0, x ∈ [0, 1], V (x,R) ≥MV (x,R).

ii. For all R > 0, x ∈ [0, 1],

u∗
(

lim inf
h→0

V (x,R + h)− V (x,R)

h

)
≤ rV (x,R).

iii. At all points (x,R) such that R > 0 and V (x,R) > MV (x,R), V is differentiable in
R and satisfies

u∗
(
∂V

∂R

)
= rV.

Conversely, if a function Ṽ (x,R) is locally Lipschitz continuous in R on (0,∞) for every
x ∈ [0, 1], satisfies the properties i.-iii. above, and admits the bound

Ṽ (x,R) ≤ C(1 + U(R)), R ≥ 0,

for some C <∞, it is given by equation (4).
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Proof. First part. It follows from Lemma 2 that V ≥MV . Let us prove the property ii. In
other words, we need to show that for all c > 0,

u(c)− c lim inf
h→0

V (x,R + h)− V (x,R)

h
≤ rV. (6)

Fix h < R and c̄ > 0. From Corollary 1,

V (x,R) ≥
∫ h/c̄

0

e−rtu(c̄)dt+ e−rh/c̄V (x,R− h),

and therefore

V (x,R + h)− V (x,R)

h
≥ u(c̄)

1− e−rh/c̄

hr
− 1− e−rh/c̄

h
V (x,R),

from which equation (6) follows by passing to the limit.
Let us now turn to property iii. By Corollary 2 and continuity of V andMV , there exists

ε > 0 such that V (x,R′) > MV (x,R′) for all R′ with |R−R′| < ε and

V (x,R) = sup
ε≤Q≤R,θ1≥0

{Ũ(θ1, Q) + e−rθ1MV (x,R−Q)}.

Then,

V (x,R) = sup
c,θ1≥0:

∫ θ1
0 csds>ε

∫ θ1

0

e−rtu(ct)dt+ e−rθ1MV (x,R−
∫ θ1

0

cs ds)

= sup
c,θ1≥τ :

∫ τ
0 csds=ε

∫ τ

0

e−rtu(ct)dt+

∫ θ1

τ

e−rtu(ct)dt+ e−rθ1MV (x,R− ε−
∫ θ1

τ

cs ds)

= sup
c,ττ :

∫ τ
0 csds=ε

∫ τ

0

e−rtu(ct)dt+ e−rτV (x,R− ε)

= sup
τ≥0
{Ũ(τ, ε) + e−rτV (x,R− ε)).

Remark that
Ũ(τ,Q) ≤ Qα

αr1−α (1− e−rτ )1−α.

Thus,

V (x,R) ≤ sup
τ
{ εα

αr1−α (1− e−rτ )1−α + e−rτV (x,R− ε)}

The first-order condition for the maximization in the RHS writes:

1− e−rτ = ε

(
V (x,R− ε)αr1−α

1− α

)− 1
α

,
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which provides an upper bound:

V (x,R)− V (x,R− ε)
ε

≤
(

α

1− α
rV (x,R− ε)

)α−1
α

.

On the other hand, from part ii., we have

lim inf
ε→0

V (x,R)− V (x,R− ε)
h

≥
(

α

1− α
rV (x,R− ε)

)α−1
α

.

Together, the two inequalities show the differentiability of V and complete the proof of the
first part.

Second part. Assume now that the function satisfies the assumptions of the proposi-
tion and let us show that it coincides with the value function. Let (θ, c) be an admissible
consumption and stopping strategy. We define the dynamics of the state variables:

x(t) = x+N−1(nt) ∧ (1− x), where nt = max{n : θn ≤ t},

R(t) = R−
∫ t

0

csds+ a(nt ∧N1−x).

e−rT Ṽ (x(T ), R(T ))− Ṽ (x,R) =

∫ T

0

e−rt(−rṼ (x(t), R(t))− ∂Ṽ

∂R
ct)dt

+
∞∑
n=1

1θn≤T e
−rθn{Ṽ ((x(θn−) + Λn) ∧ 1, R(θn−) + a1x(θn−)<1)− Ṽ (x(θn−), R(θn−))}

so that

Ṽ (x,R) ≥ E

[∫ T

0

e−rtu(ct)dt

]
+ E[e−rT Ṽ (x(T ), R(T ))]

−E

[ ∞∑
n=1

1θn≤T e
−rθnE[Ṽ ((x(θn−) + Λn) ∧ 1, R(θn−) + a1x(θn−)<1)− Ṽ (x(θn−), R(θn−))|Fn−1]

]

= E

[∫ T

0

e−rtu(ct)dt

]
+ E[e−rT Ṽ (x(T ), R(T ))]

−E

[ ∞∑
n=1

1θn≤T e
−rθn{MṼ (x(θn−), R(θn−))− Ṽ (x(θn−), R(θn−)) + k

1− e−λ(1−x(θn−))

λ
}

]

≥ E

[∫ T

0

e−rtu(ct)dt− k
∞∑
n=1

1θn≤TΛn ∧ (1− x(θn−))

]
+ E[e−rT Ṽ (x(T ), R(T ))],

where we have used the fact that θn ∈ Fn−1 and Λn is independent from Fn−1. As T →∞,

0 ≤ lim
T→∞

E[e−rT Ṽ (x(T ), R(T ))]

≤ lim
T→∞

CE[e−rT (1 + U(R(T )))] ≤ lim
T→∞

CE[e−rT (1 + U(R + aN1−x))] = 0,
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so that

Ṽ (x,R) ≥ E

[∫ ∞
0

e−rtu(ct)dt− k
∞∑
n=1

Λn ∧ (1− x(θn−))

]
,

and since the consumption-exploration strategy was arbitrary,

Ṽ (x,R) ≥ V (x,R).

Now consider the specific consumption-exploration strategy defined as follows:

ct = I

(
∂Ṽ

∂R
(x(t), R(t))

)
1Ṽ (x(t),R(t))>MṼ (x(t),R(t))

θn = inf{t ≥ θn−1 : Ṽ (x(t), R(t)) = MṼ (x(t), R(t))}.

Then the inequalities above hold as equalities and we conclude that

Ṽ (x,R) = V (x,R).

2.2 Characterization of Consumption and Exploration Regions

We denote by u∗ the convex conjugate of u and by u1 the inverse of u∗. Recall that the
operator M is defined by

Mf(x,R) =

∫ 1−x

0

f(x+ h,R + a)λe−λhdh+ f(1, R)e−λ(1−x) − k1− e−λ(1−x)

λ
.

In particular,

MV (x, 0) ≥ (1− e−λ(1−x))

(
U(a)− k

λ

)
.

In the following we make the natural assumption that U(a) > k
λ
. This assumption guarantees

that it is optimal to explore at zero reserve level, and therefore the set {(x,R) : R = 0}
belongs to the exploration region and V (x, 0) = MV (x, 0) > 0 for all x ∈ [0, 1).

Lemma 3. For all (x,R) ∈ [0, 1]× R+, MV (x,R) is infinitely differentiable and satisfies

MV (x,R) = E[V (x(τC), R(τC))− k(x(τC)− x)]

MV
(n)
R (x,R) = E[V

(n)
R (x(τC), R(τC))], n ≥ 1,

where R(k) = R + a(k ∧ N1−x), x(k) = x + θk ∧ (1 − x), (θk)k≥1 is the sequence of jump
times of a Poisson process (Nt)t≥0 with intensity λ and τC = inf{k ≥ 1 : V (x(k), R(k)) >
MV (x(k), R(k))}.
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Proposition 2. Assume that u(c) = cα

α
. Then for every x ∈ [0, 1) there exists R∗(x) ∈

[0,∞] such that V (x,R) > MV (x,R) for all R > R∗(x) and V (x,R) = MV (x,R) for all
R ≤ R∗(x).

Proof. Let C = {R : V (x,R) > MV (x,R)}. Since V and MV are continuous in R, the set
C is open, and is therefore a union of disjoint open intervals. To prove the proposition it is
enough to show that none of these intervals is bounded. By way of contradiction, assume
that (a, b) ⊂ C is a bounded interval such that V (x, a) = MV (x, a) and V (x, b) = MV (x, b).
Consider the function f : [a, b]→ R+ defined by f(R) = V (x,R)−MV (x,R). By Proposition
1 and Lemma 3, f is infinitely differentiable on (a, b), hence there exists R̄ ∈ (a, b) such that
f ′(R̄) = 0 and f ′′(R̄) ≤ 0. By Lemma 3, this means that

V ′R(x,R) = E[V ′R(x(τC), R(τC))]

V ′′R(x,R) ≤ E[V ′′R(x(τC), R(τC))],

and by Proposition 1, this is equivalent to

V (x,R)1− 1
α = E[V (x(τC), R(τC))1− 1

α ]

V (x,R)1− 2
α ≥ E[V (x(τC), R(τC))1− 2

α ].

Let Z = V (x(τC), R(τC))1− 1
α . The above estimates imply that

E[Z
2−α
1−α ] ≤ E[Z]

2−α
1−α ,

and since Z is positive and the function x 7→ x
2−α
1−α is convex on R+, Jensen’s inequality

implies that Z is deterministic, which is a contradiction unless x = 1.

Proposition 3. Assume that u(c) = cα

α
and that U(a) > k

λ
. There exists a function R∗ :

[0, 1) 7→ (0,∞), such that for every x ∈ [0, 1), the points {(x,R) : R ≤ R∗(x)} belong to the
exploration region.

Proof. In view of our assumption V (x, 0) = MV (x, 0) > 0 for x < 1: when there are no
reserves left, it is optimal to explore since exploration ensures positive utility. Let us define

R∗(x) = max{R > 0 : (1− e−λ(1−x))(U(R + a)− k/λ)− {e
αλ
1−α (1−x) − e−λ(1−x)}U(R) > 0}

It is easy to see that R∗(x) > 0. When x converges to 1, R∗(x) converges to the nonzero
limit given by

R∗(0) = max{R > 0 : (1− α)(U(R + a)− k/λ) > U(R)}.

With the aim of arriving to a contradiction, assume that there exists a point (x, R̂) with
R̂ ≤ R∗(x) and V (x, R̂) > MV (x, R̂). In other words, this point belongs to the consumption
region. Let R = max{R < R̂ : V (x,R) = MV (x,R)}. In view of the above remark, R ≥ 0.
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The points between R and R̂ belong to the consumption region, and therefore, the value
function satisfies the equation

∂V (x,R)

∂R
= u1(rV (x,R))

on (R, R̂). Since u1 is decreasing, for R ∈ (R, R̂),

u1(rV (x,R)) ≤ u1(rV (x,R))

= u1(rMV (x,R))

≤ u1

(
r(1− e−λ(1−x))

(
U(R + a)− k

λ

)
+ re−λ(1−x)U(R)

)
,

and we have that

V (x,R) ≤MV (x,R) + (R−R)u1

(
r(1− e−λ(1−x))

(
U(R + a)− k

λ

)
+ re−λ(1−x)U(R)

)
.

On the other hand, since V is increasing in R,

MV (x,R)−MV (x,R) = λ

∫ 1−x

0

e−λhdh
{
V (x+ h,R+ a)− V (x+ h,R+ a)

}
+ e−λ(1−x)(U(R)− U(R))

≥ e−λ(1−x)(U(R)− U(R))

Combining the above estimates, passing to the limit R ↓ R, we get

lim inf
R↓R

MV (x,R)− V (x,R)

R−R
≥ e−λ(1−x)U ′(R)− u1

(
r(1− e−λ(1−x))

(
U(R+ a)− k

λ

)
+ re−λ(1−x)U(R)

)
.

On the other hand,
U ′(R) = u1(rU(R)),

and by definition of R∗(x),

e−λ(1−x)u1(rU(R)) > u1

(
r(1− e−λ(1−x))

(
U(R + a)− k

λ

)
+ re−λ(1−x)U(R)

)
,

which contradicts the assumption that V (x, R̂) > MV (x, R̂).

The following proposition shows that under the assumption of power utility, the agent
always consumes at large reserve level.

Proposition 4. Assume that u(c) = cα

α
with 0 < α < 1. Then there exists a constant

Ř <∞ such that the set {(x,R) : x ∈ [0, 1], R ≥ Ř} belongs to the consumption region.

Proof. It it enough to show that for all R > Ř, MV (x,R) < V (x,R). Since V is decreasing
in the first argument, the following estimate holds true.

MV (x,R) ≤ V (x,R) + (1− e−λ(1−x))

{
V (x,R + a)− V (x,R)− k

λ

}
.
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From Lemma 1 and concavity of U , it follows then that,

MV (x,R) ≤ V (x,R) + (1− e−λ(1−x))

{
h

R
E[U(R + a+ aN1−x)]−

k

λ

}
≤ V (x,R) + (1− e−λ(1−x))

{
h

R
U(R + a+ aλ(1− x))− k

λ

}
≤ V (x,R) + (1− e−λ(1−x))

{
h

R
U(R + a+ aλ)− k

λ

}
.

Since U(x) = Cxα for some constant C, there exists Ř such that for all R ≥ Ř,

αa

R
U(R + a+ aλ) <

k

λ
,

and the proof is complete.

Proposition 5. Assume that u(c) = cα

α
with 0 < α < 1. Then the value function V (x,R) is

concave and continuously differentiable in R on [0, 1]× (0,∞).

Proof. The statement is obviously true for x = 1; fix x < 1 and let R∗(x) be the boundary
between consumption and exploration regions whose existence was shown in Proposition 2.
By Proposition 1 and Lemma 3, the value function is concave and continuously differentiable
on (0, R∗(x)) and on (R∗(x),∞). It remains then to check that the right and left derivatives
at R∗(x) coincide. We may assume without loss of generality that R∗(x) ∈ (0,∞). Since, on
[0, R∗(x)], V (x,R) = MV (x,R), the left-hand derivative satisfies

V ′−(x,R) = MV ′(x,R),

while for the right-hand derivative we have,

V ′+(x,R) = u1(rV (x,R)).

Remark that, by the HJB equation,

MV ′(x,R) ≥ u1(rV (x,R)),

and since V ′+(x,R) ≥MV ′(x,R), we also have

u1(rV (x,R)) ≥MV ′(x,R),

so that
MV ′(x,R) = u1(rV (x,R)) = V ′+(x,R).

Proposition 6. Assume that u(c) = cα

α
and U(a) > k

λ
. Then the function R∗(x) defined in

Proposition 2 is increasing and continuously differentiable.
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Proof. Fix x ∈ [0, 1). By Proposition 1, MV ′R(x,R) ≥ u1(MV (x,R)) for R ≤ R∗(x). On
the other hand, for R > R∗(x), the argument used in the proof of Proposition 2 shows that
V ′R(x,R) > MV ′R(x,R). Since, in this region, V ′R(x,R) = u1(rV (x,R)) < u1(rMV (x,R)),
we have thatMV ′R(x,R) < u1(rMV (x,R)) and thus the consumption region is characterized
as follows.

R∗(x) = inf{R : MV ′R(x,R) < u1(rMV (x,R))}.

Letting g(x,R) = d
dR

(MV (x,R)
1
α ), we can also write R∗(x) as follows.

R∗(x) = inf{R : g(x,R) < c}, c =
1

α

(
αr

1− α

) 1
α
−1

.

Therefore, R∗(x) is increasing if and only if g is increasing in x and, by the implicit function
theorem, R∗(x) is continuously differentiable at the point x if g is continuously differentiable
in the two variables at the point (x,R∗(x)) and

∂g(x,R∗(x)

∂R
< 0.

We now proceed to compute the derivatives of g. A direct computation using the formula
for MV shows:

∂MV (x,R)

∂x
= k + λ(MV (x,R)− V (x,R + a))

∂MV ′R(x,R)

∂x
= λ(MV ′R(x,R)− V ′R(x,R + a)),

and in particular,

∂MV (x,R∗(x))

∂x
= k + λ(V (x,R)− V (x,R + a))

∂MV ′R(x,R∗(x))

∂x
= λ(V ′R(x,R)− V ′R(x,R + a)).

Denoting by ∼ equality up to a multiplicative constant, we then have

∂g(x,R∗(x))

∂x
∼ 1− α

α
V ′R(x,R∗(x))V

1−2α
α (x,R∗(x))

∂MV (x,R∗(x))

∂x

+V
1−α
α (x,R∗(x))

∂MV ′R(x,R∗(x))

∂x

∼ 1− α
α

V −1(x,R∗(x)){k + λ(V (x,R∗(x))− V (x,R∗(x) + a))}

+V
1−α
α (x,R∗(x))λ(V

α−1
α (x,R∗(x))− V

α−1
α (x,R∗(x) + a))

∼ 1− α
α

{
k

λV (x,R∗(x))
+ 1− V (x,R∗(x) + a)

V (x,R∗(x))

}
+1−

(
V (x,R∗(x) + a))

V (x,R∗(x))

)α−1
α

.
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Recall that

V (x,R∗(x) + a) = {V (x,R∗(x)) + ca}α , c =
1

α

(
1− α
rα

) 1−α
α

,

so that

∂g(x,R∗(x))

∂x
∼ (1− α)

k

λV (x,R∗(x))
+ 1− (1− α)

{
1 +

ca

V (x,R∗(x))
1
α

}α
− α

{
1 +

ca

V (x,R∗(x))
1
α

}α−1
≥ (1− α)

{
k

λV (x,R∗(x))
+ 1−

{
1 +

ca

V (x,R∗(x))
1
α

}α}
≥ 1− α

V (x,R∗(x))

{
k

λ
− (ca)α

}
=

1− α
V (x,R∗(x))

{
k

λ
− U(a)

}
> 0.

This shows that R∗(x) is strictly increasing. On the other hand, the derivative of g with
respect to R satisfies

∂g(x,R)

∂R
=

1

α
MV

1−2α
α (x,R)

{
1− α
α

(MV ′R(x,R))2 +MV (x,R)MV ′′R(x,R)

}
.

At the point (x,R∗(x)),MV ′R(x,R) = V ′R(x,R), and by the same argument as in Proposition
2, MV ′′(x,R) < V ′′(x,R). Together with the smooth pasting, this leads to the following
estimate.

∂g(x,R∗(x))

∂R
<

1

α
V

1−2α
α (x,R)

{
1− α
α

(V ′R(x,R))2 + V (x,R)V ′′R(x,R)

}
= 0,

since in the consumption region,

V ′R(x,R) =

(
αrV (x,R)

1− α

)α−1
α

.

3 Behavior Near Exhaustion
This section provides a more in-depth analysis when the unexplored area approaches zero.

3.1 Computing the Point of Intersection

In this subsection, we will study the particular case:

u (c) = 2
√
c
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The results can be extended immediately to u (c) = 1
α
cα with 0 < α < 1. We then have

u∗ (p) = 1
p
and the problem becomes:

max

{
1− rV ∂V

∂R
, MV − V

}
= 0 (7)

V (1, R) = U (R)

We have U ′ (R)U (R) = 1/r and it follows immediately that, for some constant C, we have
U (R) =

√
C + 2

r
R. Normalizing by U(0)=0 , we get:

U (R) =

√
2

r
R

We wish to investigate the solution on the band (1− ε ≤ x ≤ 1, R ≥ 0). To do this, we will
assume that the solution V (x,R) is C1, which is the classical smooth pasting condition. We
have V (1, R) = U (R) and both sides of 7 are satisfied simultaneously at x = 1, namely
rV ∂V

∂R
= 1and V = MV . Expanding to the first order in y = 1 − x > 0 , we define two

regions in [0, ∞):

3.2 The Exploration Region

. This is the set of R where MV (1− y, R) = V (1− y, R) and rV ∂V
∂R
≥ 1 for all y> 0 small

enough.
Expanding MV to the first order wrt to y at y = 0 , and taking into account that the

probability of hitting oil between 1− y and y is λy , we get:

MV (1− y, R) = (1− λy)U (R) + λyU (R + a)− ky

The equation MV (1− y, R) = V (1− y, R) then becomes:

V (1− y, R) = (1− λy)U (R) + λyU (R + a)− ky

Differentiating wrt R, we get:

∂

∂R
MV = (1− λy)U ′ (R) + λyU ′ (R + a)

We have to check that rV ∂V
∂R
≥ 1 . This becomes:

1 ≤ r ((1− λy)U (R) + λyU (R + a)− ky) ((1− λy)U ′ (R) + λyU ′ (R + a))

Substituting U ′ (R) = (rU (R))−1, this becomes:

U (R)

(
1− U (R)

U (R + a)

)
≤ U (R + a)− U (R)− k

λ
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Simplifying, we get:

2− U (R)

U (R + a)
− U (R + a)− k/λ

U (R)
≤ 0

Finally, substituting U (R) =
√

2
r
R , this becomes:

√
R√

R + a
+

√
R + a√
R
− k

λ
√
R

√
r

2
≥ 2 (8)

Setting t =
√

2
r
R,the inequality becomes:

t√
t2 + 2a

r

+

√
t2 + 2a

r

t
− k

λt
≥ 2

t2√
t2 + 2a

r

+ t2 +
2a

r
− k

λ
≥ 2t

So
(
2t2 + 2a

r

)2 ≥
(
k
λ

+ 2t
)2 (

t2 + 2a
r

)
and we end up with the algebraic inequality:

4krλt3 + k2rt2 + 8akλt ≤ 2a

(
2a

r
λ2 − k2

)
(9)

If
√
a ≤ k

λ

√
r
2
, the inequality is never satisfied. If

√
a ≥ k

λ

√
r
2
denote by t0 the non-negative

root of the equation:

4krλt3 + k2rt2 + 8akλt = 2a

(
2a

r
λ2 − k2

)
(10)

Then inequality (9) is satisfied for 0 ≤ t ≤ t0 and inequality (8) is satisfied for 0 ≤ R ≤
R0 = r

2
t2.

3.3 The Consumption Region

This is the set of R such that where MV (1− y, R) ≤ V (1− y, R) and rV ∂V
∂R

= 1 for all
y > 0 small enough.

As before, we have:

MV (1− y, R) = (1− λy)U (R) + λyU (R + a)− ky

Take R > R1 with both in the consumption region. Integrating rV ∂V
∂R

= 1 wrt R, we get,
for x close enough to 1:

V (x,R) =

√
f (x) +

2

r
R
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with f (1) = 0. Note that, as a consequence, U (R) =
√

2
r
R =

√
U (R1)2 + 2

r
(R−R1) We

can estimate f (x) by using the fact that MV (1− y ,R1) ≤ V (1− y ,R1), namely:

(1− λy)U (R1) + λyU (R1 + a)− ky ≤
√
f (1− y) +

2

r
R1

This yields f (1− y) ≥ ((1− λy)U (R1) + λyU (R1 + a)− ky)2 − 2
r
R1 and hence:

V (1− y,R) ≥
√

((1− λy)U (R1) + λyU (R1 + a)− ky)2 +
2

r
(R−R1)

Equality holds for y = 0. Since MV (1− y, R)− V (1− y, R) ≤ 0, we have:

(1− λy)U (R)+λyU (R + a)−ky−
√

((1− λy)U (R1) + λyU (R1 + a)− ky)2 +
2

r
(R−R1) ≤ 0

Since equality holds for y = 0, the derivative wrt y at y = 0 must be non-positive, namely:

λ (U (R + a)− U (R))− k ≤ U (R1)√
U (R1)2 + 2

r
(R−R0)

[λ (U (R0 + a)− U (R0))− k] (11)

Remembering that U (R)2 = U (R1)2 + 2
r

(R−R0) this becomes

U (R)

(
U (R + a)− U (R)− k

λ

)
≤ U (R0)

(
U (R0 + a)− U (R0)− k

λ

)
Equality holds for R = R0. For the inequality to hold for R ≥ R1, it is sufficient to prove
that the function:

R→≤
√

2

r
R

(√
2

r
(R + a)−

√
2

r
R− k

λ

)
is decreasing. Changing variables, by setting t =

√
2
r
R, we obtain the function:

f (t) = t

√
t2 +

2a

r
− t2 − k

λ
t

Its derivative is computed to be:

f ′ (t) =
2t2 + 2a

r√
t2 + 2a

r

− 2t− k

λ

Writing f ′ (t) ≤ 0 we obtain the algebraic inequality:

4krλt3 + k2rt2 + 8akλt ≥ 2a

(
2a

r
λ2 − k2

)
(12)

We recognize the reverse of inequality 9. It is satisfied for all t ≥ 0 when
√
a ≤ k

λ

√
r
2
, and

for t ≥ t0 when
√
a > k

λ

√
r
2

Let us summarize our findings:
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Lemma. Suppose
√
a > k

λ

√
r
2
and the solution V of the HJB equation with V (1, R) = U (R)

is C. Let R0 be the positive solution of the equation:
√
R√

R + a
+

√
R + a√
R
− k

λ
√
R

√
r

2
= 2 (13)

Then the consumption region is R ≥ R0 and the exploration region is 0 ≤ R < R0.

3.4 Computing the Tangent

Proposition 7. As x→ 1, the exercise frontier satisfies

R∗(x) = R0 + (1− x)R1 +O((1− x)2),

where R0 is the solution of

U(R0)

U(R0 + a)
+
U(R0 + a)

U(R0)
− k/λ

U(R0)
− 2 = 0.

and R1 is negative and given by

R1

r

{
ξ − ξ−1

U2(R0)
− ξ − ξ−1

U2(R0 + a)
+

k/λ

U3(R0)

}
+
λ

2
{ξ − 1}3 {ξ + 2} = 0,

where ξ = U(R0)
U(R0+a)

.

Proof. Let R∗(y) be the exercise frontier. Then,

V (y,R∗(y)) = MV (y,R∗(y)) =

∫ y

0

λe−λ(y−h)V (h,R∗(y) + a)dh+ U(R∗(y))e−λy − k

λ
(1− e−λy) (14)

This implies that V (y,R∗(y)) = U(R∗(y)) +O(h). On the other hand, for R > R∗(y),

V (y,R) =

√
V 2(y,R∗(y)) +

2

r
(R−R∗(y)) =

√
U2(R∗(y)) +

2

r
(R−R∗(y))+O(h) = U(R)+O(y).

Substituting this into equation (14) yields

V (y,R∗(y)) =

∫ y

0

λe−λ(y−h)U(R∗(y) + a)dh+ U(R∗(y))e−λy − k

λ
(1− e−λy) +O(y2)

= U(R∗(y)) + λy(U(R∗(y) + a)− U(R∗(y))− k/λ) +O(y2),

and also

V (y,R) =

√
(U(R∗(y)) + λy(U(R∗(y) + a)− U(R∗(y))− k/λ))2 +

2

r
(R−R∗(y))

=
√
U(R)2 + 2λyU(R∗(y))(U(R∗(y) + a)− U(R∗(y))− k/λ)

= U(R) + λyU(R∗(y))
(U(R∗(y) + a)− U(R∗(y))− k/λ

U(R)
+O(y2). (15)
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and

V (h,R∗(y)+a) = U(R∗(y)+a)+λhU(R∗(y))
(U(R∗(y) + a)− U(R∗(y))− k/λ

U(R∗(y) + a)
+O(y2). (16)

Substituting this back into equation (14) now yields

V (y,R∗(y)) = U(R∗(y))+(U(R∗(y)+a)−U(R∗(y))−k/λ)

[
λy +

λ2y2

2

{
U(R∗(y))

U(R∗(y) + a)
− 1

}]
+O(y3).

On the other hand, by the smooth pasting property,

V ′(y,R∗(y)) = MV ′(y,R∗(y)) =

∫ y

0

λe−λ(y−h)V ′(h,R∗(y) + a)dh+ U ′(R∗(y))e−λy,

which is equivalent to

1

V (y,R∗(y))
=

∫ y

0

λe−λ(y−h)

V (h,R∗(y) + a)
dh+

e−λy

U(R∗(y))
.

From equation (15),

1

V (h,R∗(y) + a)
=

1

U(R∗(y) + a) + λhU(R∗(y)) (U(R∗(y)+a)−U(R∗(y))−k/λ
U(R∗(y)+a)

+O(y2)

=
1

U(R∗(y) + a)
− λhU(R∗(y))

(U(R∗(y) + a)− U(R∗(y))− k/λ
U3(R∗(y) + a)

+O(y2),

and therefore

1

V (y,R∗(y))
=

λy − λ2y2

2

U(R∗(y) + a)
− λ2y2

2
U(R∗(y))

(U(R∗(y) + a)− U(R∗(y))− k/λ
U3(R∗(y) + a)

+
1− λy + λ2y2

2

U(R∗(y))
+O(y3).

Computing the product of the two second order expansions, and performing some simplifi-
cations, we get:

U(R∗(y))

{
1− λy

2

U(R∗(y) + a)
− λy

2
U(R∗(y))

(U(R∗(y) + a)− U(R∗(y))− k/λ
U3(R∗(y) + a)

+
−1 + λy

2

U(R∗(y))

}

+(U(R∗(y) + a)− U(R∗(y))− k/λ)

{ 3
2
λy

U(R∗(y) + a)
+

1− 3
2
λy

U(R∗(y))

}
= O(y2)

or, in other words,

U(R∗(y))

U(R∗(y) + a)
− 1 +

U(R∗(y) + a)− U(R∗(y))− k/λ
U(R∗(y))

+
λy

2

{
1− U(R∗(y))

U(R∗(y) + a)

}
+
λy

2
(U(R∗(y) + a)− U(R∗(y))− k/λ)

{
− U2(R∗(y))

U3(R∗(y) + a)
+

3

U(R∗(y) + a)
− 3

U(R∗(y))

}
= O(y2).
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Let R∗(y) = R0 +R1y +O(y2). Then, R0 may be found from the following equation.

U(R0)

U(R0 + a)
+
U(R0 + a)

U(R0)
− k/λ

U(R0)
− 2 = 0.

To identify R1 we compute the first order term in the Taylor series.

R1
d

dR

{
U(R)

U(R + a)
− 1 +

U(R + a)− U(R)− k/λ
U(R)

} ∣∣∣
R=R0

+
λ

2

{
1− U(R0)

U(R0 + a)

}
+
λ

2

U(R0 + a)− U(R0)− k/λ
U(R0)

{
− U3(R0)

U3(R0 + a)
+

3U(R0)

U(R0 + a)
− 3

}
= 0,

which is equivalent to

R1

r

{
ξ − ξ−1

U2(R0)
− ξ − ξ−1

U2(R0 + a)
+

k/λ

U3(R0)

}
+
λ

2
{ξ − 1}3 {ξ + 2} = 0,

where ξ = U(R0)
U(R0+a)

. Since U is increasing, we conclude that ξ > 1 and therefore R1 < 0.

Zero-order expansion for general α As before, the expansion of the value function and
its derivative up to O(y2) yield

V (y,R∗(y)) = U(R∗(y)) + λy(U(R∗(y) + a)− U(R∗(y))− k/λ) +O(y2)

V (y,R∗(y))
α−1
α = U(R∗(y))

α−1
α + λy(U(R∗(y) + a)

α−1
α − U(R∗(y))

α−1
α ) +O(y2)

Combining these equations and passing to the limit y → 0 then leads to the following
equation for R0 := R∗(0).

α

(
U(R0 + a)

U(R0)

)α−1
α

+ (1− α)
U(R0 + a)

U(R0)
− k(1− α)

λU(R0)
= 1

3.5 Hotelling in Expectations

In the proof of Proposition 1, we have seen that the optimal consumption-stopping strategy
may be defined in feeedback form by

ct = I

(
∂V

∂R
(x(t), R(t))

)
1V (x(t),R(t))>MV (x(t),R(t))

θn = inf{t ≥ θn−1 : V (x(t), R(t)) = MV (x(t), R(t))}.

where

x(t) = x+N−1(nt) ∧ (1− x), with nt = max{n : θn ≤ t},

R(t) = R−
∫ t

0

csds+ a(nt ∧N1−x).
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Considering an agent with utility u, this consumption trajectory is optimal for the price
trajectory given by

pt =
∂V

∂R
(x(t), R(t))1V (x(t),R(t))>MV (x(t),R(t)).

We therefore shall use this formula as the definition of the price.

Remark 1. Since, during consumption, the explored area variable x(t) does not change,
the strategy consists in consuming until the reserve level R(t) hits the critical reserve level
R∗(x(t)). Since, as we have seen above, the critical reserve level R∗(x) is increasing in x, as
the unexplored are shrinks, the agents start exploring at higher reserve levels. Alternatively,
one can argue that during consumption the price pt goes up, and hence the strategy consists
in consuming until the price pt hits the critical price given by ∂V

∂R
(x(t), R∗(x(t))). As the

unexplored area shrinks, the critical price level at which agents start to explore goes up.
Indeed, by definition of R∗(x) in the proof of Proposition 6, the function g(x,R) is constant
on the exercise frontier. However, this function satisfies

g(x,R∗(x)) =
1

α
MV

1
α
−1(x,R∗(x))MV ′R(x,R∗(x))

=
1

α
V

1
α
−1(x,R∗(x))MV ′R(x,R∗(x)) ∼ MV ′R(x,R∗(x))

p(x,R∗(x))
,

where p(x,R) is the price. Therefore, on the exercise frontier p(x,R∗(x)) ∼ MV ′R(x,R∗(x))
and so

d

dx
p(x,R∗(x)) ∼ d

dx
MV ′R(x,R∗(x)) = λ

(
∂V

∂R
(x,R∗(x))− ∂V

∂R
(x,R∗(x) + a)

)
.

This last term is clearly positive since V is concave in R.

Proposition 8. Assume that u(c) = cα

α
with 0 < α < 1. Then pte−rt is a martingale and in

particular for all t ≥ 0, we have E[pt] = p0e
rt.

Proof. The price process is continuous within the consumption region and jumps immediately
when R(t) hits the boundary of the exploration region. Inside the consumption region the
value function is smooth and its second derivative satisfies

∂2V

∂R2
(x(t), R(t)) = −r∂V

∂R
(x(t), R(t))I

(
∂V

∂R
(x(t), R(t))

)−1

= −rptc−1
t

The price therefore can then be written as follows.

e−rTpT = p0 − rptertdt+

∫ T

0

e−rt
∂2V

∂R2
(x(t), R(t))dRt

+
nt∑
i=1

e−rθi{∂V
∂R

(x(θi), R(θi))−
∂V

∂R
(x(θi−), R(θi−))}

= p0 +
nt∑
i=1

e−rθi{∂V
∂R

(x(θi), R(θi))−
∂MV

∂R
(x(θi−), R(θi−))},

25



where we have used the smooth pasting principle in the last line. From the proof of Propo-
sition 5 it follows that

∂MV

∂R
(x,R) =

∫ 1−x

0

λe−λh
∂V (x+ h,R + a)

∂R
dh+ e−λhU ′(R).

Therefore,

E
[
∂V

∂R
(x(θi), R(θi))

∣∣∣Fθi−] =
∂MV

∂R
(x(θi−), R(θi−))

and we conclude that ertpt is a martingale.

4 Numerical Experiments
In the first example we use the following parameters: discovered amount a = 1.5, discovery
intensity λ = 1 and exploration cost k = 3. The utility parameter is α = 0.5 for both
examples and the interest rate is r = 0.02. Figure 6 plots the exploration/consumption region
and the contour of the price function. We see that the agreement between the theoretical
value of R0, the limit of the exercise frontier as x → 1, and the corresponding numerical
value is very good.

Figure 7 plots the exercise boundary and the critical price level as function of the explored
area x. We see that both functions are increasing, as predicted by the theoretical analysis.

Figure 8 plots the evolution of a single representative trajectory of various variables. We
see in particular that finds correspond to downward jumps in the price while the last jump,
when no oil is found, is upward.

Lastly, Figure 9 plots the average evolution and the quantiles of various quantities com-
puted over 1000 simulations. We see that in agreement with the theoretical findings, the
average price grows at the interest rate.

Figures 6–9 plot the same quantities for our second example where we have taken find
size a = 0.5, find intensity λ = 10 and exploration cost k = 1.

5 Discussion
We next compare our findings to early literature that examined costly exploration with
stochastic discoveries. Some of our findings are at odds with earlier publications, and this
section sets out to discuss whether differences in modeling assumptions are responsible for
these discrepancies.

First, we found that the reserve level is decreasing as the unexplored area decreases.
An earlier paper argues that the reverse is true (Quyen 1991). The paper has a slightly
different setup where he discritices the unexplored area into a finite number of cells. Hence
the exploration decision becomes to either explore a cell or not, while in Arrow and Chang
(1982) and our approach, the choice of the exploration area is continuous. However, when the
number of discrete cells approaches infinity, the two solutions should become identical. The
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proof in (Quyen 1991) proof has a sign error and the results are hence not due to different
modelling assumptions. The problem with the proof is that B(ξ∗(x, 2), τ ∗(x, 2), 1) < 0, not
greater than zero as written in equation (10), page 787. To see this note that

B(ξ∗(x, 2), τ ∗(x, 2), 1) = Vξ(ξ
∗(x, 2), τ ∗(x, 2))− e−δτ∗(x,2)Wz(x− ξ∗(2, 1), 1)

< Vξ(ξ
∗(x, 2), τ ∗(x, 2))− e−δτ∗(x,2)Wz(x− ξ∗(2, 1), 2)

= B(ξ∗(x, 2), τ ∗(x, 2), 2)

= 0

The second line follows from the fact that Wz(z, 2) < Wz(z, 1).
Second, Lasserre (1984) follows the same setup as (Arrow and Chang 1982) and us, yet

asserts that the “price of reserves is expected to drop upon exploration.” (Equation (4),
page 197). On the other hand, we have argued that the prices always rises at the rate of
interest in expectation, and since exploration occurs instantaneously, the price is the same
in expectation. However, the proof in Lasserre (1984) uses a strict inequality obtained
for a discrete change in the unexplored area X. When taking the limit for X → 0, this
strict inequality reverses to a weak inequality. Specifically, note equation (21) in (Arrow and
Chang 1982) establishes that VX(R,X) = λ∆V (R,X)−P . Hence VXR(R,X) = λ∆VR(R,X)
and not VXR(R,X) > λ∆VR(R,X) as Lasserre asserts in equation (4). Hence, the expected
price is not dropping but remaining constant as exploration happens in zero time.

6 Conclusion
New stochastic discoveries are an important component of many exhaustible resources -
we don’t know how much of a finite resource is buried in the ground. We are the first to
fully solve the problem of an exhaustible resource with stochastic discoveries that can be
made using an exploration process that has constant marginal cost. The optimal solution
balances delaying exploration cost into the future and getting earlier information on the
exact amount of reserves in the ground. We find that the optimal policy follows a discrete
solution. Once the known the reserve stock drops below a critical level that depends on the
size of the remaining unexplored area, exploration starts at infinite speed until either the
proven reserve stock again exceeds the critical level or the entire remaining unexplored area
is exhausted. We show that the critical reserve level is increasing in the unexplored area.
If proven reserves are above the critical level through new discoveries that follow a Poisson
process, exploration stops and price follows a classical price path that rises at the rate of
interest.

The paper provides several new insights into the price process of exhaustible resources,
many of who have not risen as predicted in the simple deterministic Hotelling model. We
show that while the price path always rises at the rate of interest in expectation, a realized
price path conditional on not having run out of unexplored area rises on average at less than
the rate of interest. This helps explain why forward-looking test cannot refute the Hotel ling
rule, why backward-looking tests generally have. Moreover, since the critical reserve stock is
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increasing as the unexplored area decreases, the level of proven resource is a poor indicator
of the underlying scarcity. An increasing reserve level can just be the result of the decrease
in unexplored area and rather signal an increase in scarcity,
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Figure 1: Proven Crude Oil Reserves and Annual Production Over Time
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Notes : Proven Reserves are plotted in red (left vertical axis) by summing all assets in Rys-
tad’s database that are “Producing,” “Discovery,” or “Under development,” while excluding
“Undiscovered” assets. Annual production of crude oil is plotted in blue (right vertical axis)
on a different scale.
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Figure 2: Sample Exploration, Reserve, Consumption, and Price Paths
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Notes : The left graph motivates the optimal exploration policy by plotting known reserves
(y-axis) against the explored area (x-axis). There exists a critical reserve level shown in yel-
low that increases in the explored area. If known reserves exceed the critical level, exploration
is zero. As soon as consumption decreases the stock of known reserve level, exploration starts
at infinite speed (zero time) until either enough new discoveries are found to push the stock
of known reserves above the critical level or all unexplored area is exhausted. A sample path
is shown by A → B0 → B → C → D0 → D → E → F0 → F → G0 → G → H → K → L.
The right graph plots explored area, known reserves, price and consumption rate (y-axes)
against time (x-axis), using the same letters to mark events. The sample path start at point
A when known reserves are large enough so exploration is zero, price rises at the rate of
interest, and the consumption rate decreases in time until known reserves hit level B0. The
exploration activity in zero time results in a finding (B) which pushes known reserves up by
the size of the discovery (C). Note on the right graph how all variables jump in zero time
to their new levels between B and C. The size of the jumps depend on the random amount
of explored area that is required for the next discovery. The process of no exploration, price
rising at the rate of interest, consumption rate declining than repeats itself C → D0 before
the next exploration starts D0 → E. The exploration that starts at point F0 requires a large
amount of area until the next discovery is made (G0), which is below the critical reserve
level, and hence the next exploration is immediately started until another discovery is made
(H).
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Figure 3: Representation of the optimal consumption-exploration strategy
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Notes : The strategy is determined by the critical price / critical reserve level (shown in
blue). If the initial reserves are above the critical reserve level (point A), the agent consumes
until both price and reserve level hit their respective critical levels (point B), after which
an exploration period starts (segment BC). Upon finding a new deposit, the reserve level
increases by amount a (segment CD). If the new deposit is found quickly, the new reserve
level (point D) will be well above the critical level, consequently the new price level (point
D) will be well below the critical level and below its previous value (point B), so that new
find leads to a price drop. If the new deposit takes a long time to find (segment EF), the
new reserve level (point G) may end up just above the critical level and the new price (point
G) will be just below the critical level and above its previous value (point E), so that the
new find leads to a price rise. It may also happen that the new reserve level will still be
below the critical level; in this case exploration will continue without consumption. Finally,
it may happen that the entire area is explored and no new deposit is found (segment HI): in
this case the new price (point I) will be above the critical level, thus the price always jumps
upward at the end of the exploration regime.
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Figure 4: Representation of the optimal consumption-exploration strategy
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Notes : The strategy is determined by the critical price / critical reserve level (shown in
blue). If the initial reserves are above the critical reserve level (point A), the agent consumes
until both price and reserve level hit their respective critical levels (point B), after which
an exploration period starts (segment BC). Upon finding a new deposit, the reserve level
increases by amount a (segment CD). If the new deposit is found quickly, the new reserve
level (point D) will be well above the critical level, consequently the new price level (point
D) will be well below the critical level and below its previous value (point B), so that new
find leads to a price drop. If the new deposit takes a long time to find (segment EF), the
new reserve level (point G) may end up just above the critical level and the new price (point
G) will be just below the critical level and above its previous value (point E), so that the
new find leads to a price rise. It may also happen that the new reserve level will still be
below the critical level; in this case exploration will continue without consumption. Finally,
it may happen that the entire area is explored and no new deposit is found (segment HI): in
this case the new price (point I) will be above the critical level, thus the price always jumps
upward at the end of the exploration regime.
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Figure 5: Separating Phases of Exploration and Consumption
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Notes : The left graph distinguishes the exploration region (yellow) and consumption region
(violet). The blue vertical line shows the theoretical limit of the exploration frontier as
x → 1. The right graph shows contour plot of the price function. The horizontal axis
corresponds to the reserve level and the vertical axis corresponds to the unexplored area x.
Parameter values are: demand elasticity α− 1 = −0.5, interest rate r = 0.02, discovery size
a = 2.5, discovery intensity λ = 2 and marginal exploration cost k = 5.
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Figure 6: Critical Reserve Level and Price when Exploration Starts
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Notes : The left graph displays the critical reserve stock when exploration starts. Opti-
mal exploration follows a bang-bang solution: it is zero if reserves exceed the critical reserve
level, but start at infinite speed as soon as consumption decreases proven reserves to the
critical level. Exploration stops either if new discoveries bring the known reserves again
above the critical reserve level or if all unexplored area is exhausted. The graph highlights
the crucial role of the form of uncertainty by picking parameters where the expected number
of discoveries a×λ = 5 and the cost per unit of discovery k

λ
= 0.1 are the same in each case.

The only difference is that the uncertainty (standard deviation) of discoveries a
√
λ = 5√

λ
is

decreasing in λ. The right graph displays the price of the resource at the critical level. The
other constant parameters are a demand elasticity α− 1 = −0.5 and interest rate r = 0.02.
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Figure 7: Critical Price and Reserve Level
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Notes: Right graph displays the critical reserve level (exploration frontier) as a function
of the explored area. The left graph shows the corresponding price of the resource when
reserves equal the critical reserve level and exploration starts. Parameter values are: demand
elasticity α − 1 = −0.5, interest rate r = 0.02, discovery size a = 2.5, discovery intensity
λ = 2 and marginal exploration cost k = 5.
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Figure 8: Evolution of Variables under One Model Simulation
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Notes: The four
upper graphs display the evolution of the resource price, explored area, reserve level and the
consumption rate over time under one model run as blue lines. The two lower graphs display
the evolution of price and reserves as function of explored area. Whenever the price is lower
than the critical price (shown in orange), or equivalently reserves are lager than the critical
price (also shown in orange) in the left column, there is no exploration, price rises at the rate
of interest, and consumption decreases. Once the price (or reserve level) hit the critical level,
exploration occurs in zero time until the new discovery (or multiple discoveries) increases
the reserve above the critical level or all area is explored. The different vertical jumps in
the top right graph are the random amount of area that is required for the next discovery.
Discoveries are all of equal size a, the vertical jumps in the bottom left graph. Once all area
is explored (here at t = 52), the price always jumps upward. Parameter values are: demand
elasticity α − 1 = −0.5, interest rate r = 0.02, discovery size a = 2.5, discovery intensity
λ = 2 and marginal exploration cost k = 5.
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Figure 9: Distribution of Variables under 1000 Model Simulations
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Notes: Figure replicates 1000 model runs of Figure 8. Black lines display the average resource
price, explored area, reserve level and the consumption rate over time. The price graph in
the top left also displays a path that rises at the rate of interest in red, which equals the
average price path. Shaded areas display the distribution of outcomes. Note how the median
price is below the average price due to the asymmetry of the distribution, i.e., in most cases
the price will rise at less than the rate of interest. There is no uncertainty until t = 3, the
first time the price equals the critical price and the stochastic exploration starts. Parameter
values are: demand elasticity α − 1 = −0.5, interest rate r = 0.02, discovery size a = 2.5,
discovery intensity λ = 2 and marginal exploration cost k = 5.
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Figure 10: Exploration and Consumption - High Likelihood of Discoveries
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Notes : Figure replicates Figure 6 for different parameter values of the costly stochastic
discovery process. The left graph again distinguishes the exploration region (yellow) and
consumption region (violet). The blue vertical line shows the theoretical limit of the explo-
ration frontier as x → 1. The right graph shows contour plot of the price function. The
horizontal axis corresponds to the reserve level and the vertical axis corresponds to the unex-
plored area x. Parameter values are: demand elasticity α− 1 = −0.5, interest rate r = 0.02,
discovery size a = 0.5, discovery intensity λ = 10 and marginal exploration cost k = 1.
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Figure 11: Critical Price and Reserve Level - High Likelihood of Discoveries
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Notes : Figure replicates Figure 7 for different parameter values of the costly stochastic
discovery process. The right graph again displays the critical reserve level (exploration
frontier) as a function of the explored area. The left graph shows the corresponding price of
the resource when reserves equal the critical reserve level and exploration starts. Parameter
values are: demand elasticity α − 1 = −0.5, interest rate r = 0.02, discovery size a = 0.5,
discovery intensity λ = 10 and marginal exploration cost k = 1.
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Figure 12: Evolution of Variables - High Likelihood of Discoveries
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Notes : Figure
replicates Figure 8 for different parameter values of the costly stochastic discovery process.
The four upper graphs display the evolution of the resource price, explored area, reserve level
and the consumption rate over time under one model run as blue lines, and the two lower
graphs display the evolution of reserves and the price as function of explored area. Whenever
the price is lower than the critical price (shown in orange), or equivalently reserves are lager
than the critical price (also shown in orange) in the left column, there is no exploration, price
rises at the rate of interest, and consumption decreases. Once the price (or reserve level)
hit the critical level, exploration occurs in zero time until the new discovery (or multiple
discoveries) increases the reserve above the critical level or all area is explored. Parameter
values are: demand elasticity α − 1 = −0.5, interest rate r = 0.02, discovery size a = 0.5,
discovery intensity λ = 10 and marginal exploration cost k = 1.41



Figure 13: Distribution of Variables - High Likelihood of Discoveries
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Notes: Figure replicates Figure 9 for different parameter values of the costly stochastic
discovery process. Figure replicates 1000 model runs of Figure 12. Black lines display the
average resource price, explored area, reserve level and the consumption rate over time. The
price graph in the top left also displays a path that rises at the rate of interest in red, which
equals the average price path. Shaded areas display the distribution of outcomes. There is
no uncertainty until t = 3, the first time the price equals the critical price and the stochastic
exploration starts. Parameter values are: demand elasticity α − 1 = −0.5, interest rate
r = 0.02, discovery size a = 0.5, discovery intensity λ = 10 and marginal exploration cost
k = 1.
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Figure 14: Exploration and Consumption - Very High Likelihood of Discoveries
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Notes : Figure replicates Figure 6 for different parameter values of the costly stochastic
discovery process. The left graph again distinguishes the exploration region (yellow) and
consumption region (violet). The blue vertical line shows the theoretical limit of the explo-
ration frontier as x → 1. The right graph shows contour plot of the price function. The
horizontal axis corresponds to the reserve level and the vertical axis corresponds to the unex-
plored area x. Parameter values are: demand elasticity α− 1 = −0.5, interest rate r = 0.02,
discovery size a = 0.125, discovery intensity λ = 40 and marginal exploration cost k = 0.25.
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Figure 15: Critical Price and Reserve Level - Very High Likelihood of Discoveries
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Notes : Figure replicates Figure 7 for different parameter values of the costly stochastic
discovery process. The right graph again displays the critical reserve level (exploration
frontier) as a function of the explored area. The left graph shows the corresponding price of
the resource when reserves equal the critical reserve level and exploration starts. Parameter
values are: demand elasticity α− 1 = −0.5, interest rate r = 0.02, discovery size a = 0.125,
discovery intensity λ = 40 and marginal exploration cost k = 0.25.
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Figure 16: Evolution of Variables - Very High Likelihood of Discoveries
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Notes : Figure
replicates Figure 8 for different parameter values of the costly stochastic discovery process.
The four upper graphs display the evolution of the resource price, explored area, reserve level
and the consumption rate over time under one model run as blue lines, and the two lower
graphs display the evolution of reserves and the price as function of explored area. Whenever
the price is lower than the critical price (shown in orange), or equivalently reserves are lager
than the critical price (also shown in orange) in the left column, there is no exploration, price
rises at the rate of interest, and consumption decreases. Once the price (or reserve level)
hit the critical level, exploration occurs in zero time until the new discovery (or multiple
discoveries) increases the reserve above the critical level or all area is explored. Parameter
values are: demand elasticity α− 1 = −0.5, interest rate r = 0.02, discovery size a = 0.125,
discovery intensity λ = 40 and marginal exploration cost k = 0.25.45



Figure 17: Distribution of Variables - Very High Likelihood of Discoveries
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Notes: Figure replicates Figure 9 for different parameter values of the costly stochastic
discovery process. Figure replicates 1000 model runs of Figure 12. Black lines display the
average resource price, explored area, reserve level and the consumption rate over time. The
price graph in the top left also displays a path that rises at the rate of interest in red, which
equals the average price path. Shaded areas display the distribution of outcomes. There is
no uncertainty until t = 3, the first time the price equals the critical price and the stochastic
exploration starts. Parameter values are: demand elasticity α − 1 = −0.5, interest rate
r = 0.02, discovery size a = 0.125, discovery intensity λ = 40 and marginal exploration cost
k = 0.25.
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