# OPTIMAL TRANSPORT AND THE GEOMETRY OF $L^1(\mathbb{R}^d)$

#### IVAR EKELAND AND WALTER SCHACHERMAYER

ABSTRACT. A classical theorem due to R. Phelps states that if C is a weakly compact set in a Banach space E, the strongly exposing functionals form a dense subset of the dual space E'. In this paper, we look at the concrete situation where  $C \subset L^1(\mathbb{R}^d)$  is the closed convex hull of the set of random variables  $Y \in L^1(\mathbb{R}^d)$  having a given law  $\nu$ . Using the theory of optimal transport, we show that every random variable  $X \in L^\infty(\mathbb{R}^d)$ , the law of which is absolutely continuous with respect to Lebesgue measure, strongly exposes the set C. Of course these random variables are dense in  $L^\infty(\mathbb{R}^d)$ .

#### 1. Introduction

Throughout this paper we deal with a fixed probability space  $(\Omega, \mathcal{F}, P)$ . It will be assumed that  $(\Omega, \mathcal{F}, P)$  has no atoms. The space of d-dimensional random vectors will be denoted by  $L^0(\Omega, \mathcal{F}, P; \mathbb{R}^d)$ , and the space of p-integrable ones by  $L^p(\Omega, \mathcal{F}, P; \mathbb{R}^d)$ , shortened to  $L^0$  and  $L^p$  if there is no ambiguity. The  $law \mu_X$  of a random vector X is the probability on  $\mathbb{R}^d$  defined by:

$$\forall f \in C^{b}(\mathbb{R}^{d}), \ \int_{\Omega} f(X(\omega)) dP = \int_{\mathbb{R}^{d}} f(x) d\mu_{X}$$

where  $C^b(\mathbb{R}^d)$  is the space of continuous and bounded functions on  $\mathbb{R}^d$ . The last term is, as usual, denoted by  $\mathbb{E}_{\mu_X}[f]$ . Clearly,  $X \in L^p(\mathbb{R}^d)$  iff  $E_{\mu_X}[|x|^p] < \infty$ . Our aim is to prove the following result:

**Theorem 1.** Let  $X \in L^1(\mathbb{R}^d)$  be given, and let  $C \subset L^1(\mathbb{R}^d)$  be the closed convex hull of all random variables Y such that  $\mu_X = \mu_Y$ . Take any  $Z \in L^\infty(\mathbb{R}^d)$  the law of which is absolutely continuous with respect to Lebesgue measure. Then there exists a unique  $\overline{X} \in C$  where Z attains its maximum on C. The law of  $\overline{X}$  is  $\mu_X$ , and for every sequence  $X_n \in C$  such that

$$\langle Z, X_n \rangle \to \langle Z, \overline{X} \rangle$$

we have  $||X_n - \overline{X}||_1 \to 0$ .

This will be proved as Theorem 17 at the end of this paper. In addition, Theorem 18 will provide a converse.

## 2. Preliminaries

2.1. Law-invariant subsets and functions. We shall write  $X_1 \sim X_2$  to mean that  $X_1$  and  $X_2$  have the same law. This is an equi-valence relation on the space of random vectors. A set  $C \subset L^0$  will be called *law-invariant* if:

$$[X_1 \in C \text{ and } X_1 \sim X_2] \implies X_2 \in C,$$

Date: May 2012.

and a function  $\varphi: L^0 \to R$  is law-invariant if  $\varphi(X_1) = \varphi(X_2)$  whenever  $X_1 \sim X_2$ . Given  $\mu \in \mathcal{P}(\mathbb{R}^d)$ , we shall denote by  $M(\mu)$  the equivalence class consisting of all X with law  $\mu$ :

$$M(\mu) := \{X \mid \mu_X = \mu\}$$

The set  $M(\mu)$  is not convex in general.

**Lemma 2.** If  $\mu$  has finite p-moment,  $\int |x|^p d\mu < \infty$ , for  $1 \le p \le \infty$  set  $M(\mu)$  is closed in the  $L^p$ -norm.

*Proof.* If  $X_n \in M(\mu)$  and  $||X_m - X||_p \to 0$ , then we can extract a subsequence which converges almost everywhere. If  $f \in C^b(\mathbb{R}^d)$ , applying Lebesgue's dominated convergence theorem, we have  $\int f(X)dP = \lim_n \int f(X_n)dP$ . But the right-hand side is equal to  $\int f(x)d\mu$  for every n.

We shall say that  $\sigma: \Omega \to \Omega$  is a measure-preserving transformation if it is a bijection,  $\sigma$  and  $\sigma^{-1}$  are measurable, and  $P\left(\sigma^{-1}(A)\right) = P(A) = P\left(\sigma(A)\right)$  for all  $A \in \mathcal{A}$ . The set  $\Sigma$  of all measure-preserving transformations is a group which operates on random vectors and preserves the law:

$$\forall \sigma \in \Sigma, \forall X \in L^0, X \sim X \circ \sigma.$$

The converse is not true: given two variables  $X_1$  and  $X_2$  with  $X_1 \sim X_2$ , there may be no  $\sigma \in \Sigma$  such that  $X_1 \circ \sigma = X_2$ . However, it comes close. By Lemma A.4 from [2], we have:

**Proposition 3.** Let C be a norm-closed subset of  $L^p(\Omega, \mathcal{A}, P; \mathbb{R}^d)$ ,  $1 \leq p \leq \infty$ . Then C is law-invariant if and only if it is transformation-invariant. As a consequence:

$$\forall X \in M(\mu), \quad M(\mu) = \overline{\{X \circ \sigma \mid \sigma \in \Sigma\}}$$

the closure being taken in the  $L^p$ -norm.

2.2. Choquet ordering of probability laws. Denote by  $\mathcal{P}(\mathbb{R}^d)$  the space of probability laws on  $\mathbb{R}^d$ , and endow it with the weak\* topology induced by  $C^0(\mathbb{R}^d)$ , the space of continuous functions on  $\mathbb{R}^d$  which go to zero at infinity. It is known that there is a complete metric on  $\mathcal{P}(\mathbb{R}^d)$  which is compatible with this topology:

$$[\mu_n \to \mu \text{ weak*}] \iff \left[ \forall f \in C^0(R^d), \int f_n d\mu \to \int f d\mu \right]$$

Denote by  $\mathcal{P}_1\left(\mathbb{R}^d\right)$  the set of probability laws on  $\mathbb{R}^d$  which have finite first moment:

(2.1) 
$$\mu \in \mathcal{P}_1\left(\mathbb{R}^d\right) \Longleftrightarrow \int_{\mathbb{R}^d} |x| \, d\mu < \infty$$

Note that  $\mathcal{P}_1\left(\mathbb{R}^d\right)$  is convex, but not closed in  $\mathcal{P}\left(\mathbb{R}^d\right)$ . If  $\mu \in \mathcal{P}_1\left(\mathbb{R}^d\right)$ , every linear function  $f\left(x\right)$  is  $\mu$ -integrable. The point:

$$x := \int_{\mathbb{R}^d} y d\mu(y)$$

will be called the *barycenter* of the probability  $\mu$ .

Since every convex function on  $\mathbb{R}^d$  is bounded below by an affine function, we find that  $\mathbb{E}_{\mu}[f]$  is well-defined (possibly  $+\infty$ ) for every real convex function. So the following definition makes sense:

**Definition 4.** For  $\nu$  and  $\mu$  in  $\mathcal{P}_1\left(\mathbb{R}^d\right)$ , we shall say that  $\nu \leq \mu$  if, for every convex function  $f: \mathbb{R}^d \to \mathbb{R}$ , we have:

$$\int_{\mathbb{R}^{d}} f(x) d\nu \le \int_{\mathbb{R}^{d}} f(x) d\mu$$

For technical reasons, in order to avoid infinities, we shall introduce an equivalent definition. Denote by  $\mathcal{C}$  the set of convex functions  $f: \mathbb{R}^d \to \mathbb{R}$  which are the pointwise supremum of finitely many affine functions, i.e.  $f(x) = \max_{i \in I} \{\langle y_i, x \rangle - a_i \}$ , for some finite family  $(y_i, a_i) \in \mathbb{R}^d \times \mathbb{R}$ . Because of (2.1), if  $f \in \mathcal{C}$  and  $\mu \in \mathcal{P}_1(\mathbb{R}^d)$ , then  $\int f(x) d\mu < \infty$ .

Clearly, for any convex function g, there is an increasing sequence  $f_n \in \mathcal{C}$  such that  $g = \sup_n f_n$ .

**Lemma 5.** For  $\mu$  and  $\nu \in \mathcal{P}_1(\mathbb{R}^d)$ , we have  $\nu \leq \mu$  iff:

(2.2) 
$$\forall f \in \mathcal{C}, \quad \int f(x) \, d\nu \le \int f(x) \, d\mu$$

*Proof.* For any g convex, we have, by the preceding lemma  $g = \sup_m f_m$ , for some increasing sequence  $f_m \in \mathcal{C}$ . The inequality holds for each  $f_m$ , and we conclude by Lebesghe's monotone convergence theorem.

We note the following, for future use

**Lemma 6.** Suppose we have an equi-integrable sequence  $X_n$  in  $L^1(\mathbb{R}^d)$  such that their laws  $\mu_n$  converge weak\* to  $\bar{\mu}$ . Then:

$$\forall f \in \mathcal{C}, \quad \int f(x) d\mu_n \to \int f(x) d\bar{\mu}$$

*Proof.* If  $f \in \mathcal{C}$ , it must have linear growth at infinity: there are constants m and M such that  $f(x) \leq m + M|x|$ . Let  $\varphi \in C^0(\mathbb{R}^d)$  be such that  $\varphi(x) = 1$  for  $|x| \leq 1$  and  $\varphi(x) = 0$  for  $|x| \geq 2$ , with  $\varphi(x) \geq 0$  everywhere. For any  $\varepsilon > 0$ , by the equi-integrability property, we can find R so large that, for all n,

$$\left| \int f(x) \varphi(xR^{-1}) d\mu_n - \int f(x) d\mu_n \right| \le \varepsilon$$

Since  $\mu_n$  converges weak\* to  $\bar{\mu}$ , the first term converges to  $\int f(x) \varphi(xR^{-1}) d\bar{\mu}$ . Letting  $R \to \infty$ , we find the desired result.

Relation (2.2) defines an (incomplete) order relation on the set of probability measures with finite first moment. It is known in potential theory as the *Choquet ordering* (see [5], chapter XI.2). Note that if f is linear, both f and -f are convex, so that, if  $\nu \leq \mu$ , then:

$$\int_{\mathbb{R}^{d}} f(x) d\nu = \int_{\mathbb{R}^{d}} f(x) d\mu \text{ for all } n$$

In particular, if  $\nu \lesssim \mu$  then  $\nu$  and  $\mu$  have the same barycenter.

Informally speaking,  $\nu \preccurlyeq \mu$  means that they have the same barycenter, but  $\mu$  is more spread out than  $\nu$ . In potential theory, this is traditionally expressed by saying that " $\mu$  est une balayée de  $\nu$ ", that is, " $\mu$  is swept away from  $\nu$ ". The following elementary properties illustrates this basic intuition:

(1) (certainty equivalence) If  $x_0 = E_{\mu}[x]$  ( $x_0$  is the barycenter of  $\mu$ ) and  $\delta_{x_0}$  is the Dirac mass carried at  $x_0$ , then  $\delta_{x_0} \preccurlyeq \mu$ 

(2) (diversification) If  $X_1 \sim X_2$  have law  $\mu$ , and  $Y = \frac{1}{2}(X_1 + X_2)$  has law  $\nu$ , then  $\nu \leq \mu$ . Indeed, if f is convex:

$$\int_{\mathbb{R}^d} f(x) d\nu = \int_{\Omega} f(Y) dP \le \frac{1}{2} \int_{\Omega} f(X_1) dP + \frac{1}{2} \int_{\Omega} f(X_2) dP$$
$$= \left(\frac{1}{2} + \frac{1}{2}\right) \int_{\mathbb{R}^d} f(x) d\mu = \int_{\mathbb{R}^d} f(x) d\mu$$

**Lemma 7.** Let  $\mu \in \mathcal{P}_1(\mathbb{R}^d)$  and let  $I[\mu]$  be the Choquet order interval of  $\mu$  in  $\mathcal{P}_1(\mathbb{R}^d)$ 

$$I[\mu] = \{ \nu \in \mathcal{P}_1(\mathbb{R}^d) : \nu \preccurlyeq \mu \}.$$

Then  $I[\mu]$  is a compact subset of  $\mathcal{P}_1(\mathbb{R}^d)$  with respect to the weak-star topology induced by  $C^0(\mathbb{R}^d)$ .

*Proof.* As the weak\* topology on  $\mathcal{P}_1(\mathbb{R}^d)$  is metrisable it will suffice to show that every sequence  $(\nu_n)_{n=1}^{\infty}$  in  $I[\mu]$  has a cluster point.

The relation  $\nu_n \preccurlyeq \mu$  implies in particular that the first moment of the  $\nu_n$  are bounded by the first moment of  $\mu$ . This in turn implies that Prokhorov's condition is satisfied, i.e. for  $\varepsilon > 0$  there is a compact  $K \subseteq \mathbb{R}^d$  such that  $\nu_n(K) \ge 1 - \varepsilon$ , for all  $n \in \mathbb{N}$ .

By Prokhorov's theorem we may find a subsequence, still denoted by  $(\nu_n)_{n=1}^{\infty}$ , converging weak\* to a probability measure  $\nu \in \mathcal{P}(\mathbb{R}^d)$ . To show that  $\nu \in I[\mu]$ , let  $f: \mathbb{R}^d \to \mathbb{R}$  be convex. By the weak\* semi-continuity of the function  $\nu \to \langle f, \nu \rangle$  on  $\mathcal{P}(\mathbb{R}^d)$ , we obtain

$$\langle f, \nu \rangle \le \lim_{n \to \infty} \sup \langle f, \nu_n \rangle \le \langle f, \mu \rangle.$$

The relationship with weak convergence in  $L^1$  is given by the next result. To motivate it, consider a sequence of i.i.d. random variables  $X_n$  such that  $P[X_n = -1] = 1/2 = P[X_n = 1]$ . Then  $X_n \to 0$  weakly, and the law of the limit is  $\delta_0$ , but all the  $X_n$  have the law  $\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$ . Clearly  $\delta_0 \leq \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$ .

**Proposition 8.** Suppose  $X_n$  is a sequence in  $L^1(\Omega, \mathcal{A}, P; \mathbb{R}^d)$ , converging weakly to Y. Denote by  $\mu_n$  the law of  $X_n$  and by  $\nu$  the law of Y. Suppose  $\mu_n$  converges weak\* to some  $\bar{\mu} \in \mathcal{P}_1(\mathbb{R}^d)$ . Then  $\nu \preceq \bar{\mu}$ , with equality if and only if  $||X_n - Y||_1 \to 0$ 

*Proof.* First note that  $\mu \succeq \delta_{E[Y]}$ . Indeed, if  $f \in \mathcal{C}$ , we have, by Jensen's inequality:

$$\int f(x)d\mu_n = \int_{\Omega} f(X_n)dP \ge f(E[X_n])$$

By Lemma 7 and the equi-integrability of the  $X_n$ , the left hand side converges to  $\int f(x)d\mu$  while the right-hand side converges to f(E[y]).

Now consider a finite  $\sigma$ -algebra  $\mathcal{G} \subset \mathcal{F}$ . Denote by  $\mathcal{A}$  the collection of atoms of  $\mathcal{G}$ . We have:

$$\int f(x)d\mu_n = \int E[f(X_n)|\mathcal{G}]dP \ge \int f\left(E[X_n|\mathcal{G}]\right)dP$$

and by the same method we show that:

$$\mu \succeq \sum_{A \in \mathcal{A}} P[A] \delta_{E[Y|A]}$$

Now let  $(\mathcal{G}_k)$ ,  $k \in \mathbb{N}$ , be a sequence of finite sub-sigma-algebras of  $\mathcal{F}$  such that Y is measurable w.r.t.  $\sigma(\bigcup_k \mathcal{G}_k)$ . Denoting by  $\nu_k$  the law of  $E[Y \mid \mathcal{G}_k]$ , we have by the above argument:

$$\bar{\mu} \succeq \nu_k$$
 for all  $k$ 

and hence  $\bar{\mu} \succeq \nu$  by taking the limit when  $k \to \infty$ .

Turning to the final assertion, it follows from Lebesgue's dominated convergence theorem that, if  $X_n$  converges to Y in the  $L^1$  norm, the law  $\mu_n$  of  $X_n$  converges to the law  $\nu$  of Y weak\* in  $\mathcal{P}_1\left(\mathbb{R}^d\right)$ .

Conversely suppose that  $(X_n)_{n=1}^{\infty}$  converges to Y weakly in  $L^1(\mathbb{R}^d)$  and  $\bar{\mu} = \nu$ . We claim that for every  $A \in \mathcal{F}$ , and every function  $f \in \mathcal{C}$  we then have

(2.3) 
$$\lim_{n \to \infty} \mathbb{E}\left[f(X_n)\mathbf{1}_A\right] = \mathbb{E}\left[f(Y)\mathbf{1}_A\right]$$

Indeed by Jensen's inequality, we have:

$$\lim_{n \to \infty} \mathbb{E}\left[f(X_n)\mathbf{1}_A\right] \ge \mathbb{E}\left[f(Y)\mathbf{1}_A\right]$$
$$\lim_{n \to \infty} \mathbb{E}\left[f(X_n)\mathbf{1}_{\Omega \setminus A}\right] \ge \mathbb{E}\left[f(Y)\mathbf{1}_{\Omega \setminus A}\right]$$

On the other hand, by Lemma 6, we have:

$$\lim_{n \to \infty} \mathbb{E}[f(X_n)] = \lim_{n \to \infty} \langle f, \mu_n \rangle = \langle f, \bar{\mu} \rangle = \langle f, \nu \rangle = \mathbb{E}[f(Y)].$$

So equality must hold in (2.3), as announced.

Now suppose that  $(X_n)_{n=1}^{\infty}$  fails to converge to Y in the norm of  $L^1(\mathbb{R}^d)$ , i.e., there is  $1 > \alpha > 0$  such that

$$\mathbb{P}[|X_n - Y| \ge \alpha] \ge \alpha,$$

for infinitely many n. By approximating Y by step functions we may find a set  $A \in \mathcal{F}$ , with P[A] > 0, and a point  $y_0 \in A$  such that  $|Y - y_0| < \frac{\alpha^2}{5}$  on A and

$$\mathbb{P}[A \cap |X_n - y_0| \ge \frac{\alpha}{2}] \ge \frac{\alpha}{2} \mathbb{P}[A].$$

We then have

$$\mathbb{E}[|Y - y_0| \mathbf{1}_A] \le \frac{\alpha^2}{5} \mathbb{P}[A]$$

while

$$\mathbb{E}[|X_n - y_0|\mathbf{1}_A] \ge \frac{\alpha^2}{4} \mathbb{P}[A],$$

a contradiction to (2.3).

The Choquet ordering can be completely characterized in terms of Markov kernels

**Definition 9.** A Borel map  $\alpha : \mathbb{R}^d \to \mathcal{P}_1(\mathbb{R}^d)$  is a *Markov kernel* if, for every  $x \in X$ , the barycenter of  $\alpha_x$  is x:

$$\forall x \in X, \quad \int_{\mathbb{R}^d} y d\alpha_x = x$$

If  $\alpha$  is a Markov kernel, and  $\nu \in \mathcal{P}\left(\mathbb{R}^d\right)$ , we define  $\mu := \int_{\mathbb{R}^d} \alpha_x d\nu \in \mathcal{P}\left(\mathbb{R}^d\right)$  by:

$$\int_{\mathbb{R}^{d}} f(x) d\mu = \int_{\mathbb{R}^{d}} \alpha_{x}(f) d\nu$$

**Theorem 10.** If  $\nu$  and  $\mu$  are in  $\mathcal{P}_1\left(\mathbb{R}^d\right)$  we have  $\nu \leq \mu$  if and only if there exists a Markov kernel  $\alpha_x$  such that  $\mu = \int_{\mathbb{R}^d} \alpha_x d\nu$ 

*Proof.* Suppose there exists such a Markov kernel. For any convex function f, since x is the barycenter of  $\alpha_x$ , Jensen's inequality implies that  $\alpha_x(f) \geq f(x)$ . Integrating, we get:

$$\int_{\mathbb{R}^{d}} f(x) d\mu = \int_{\mathbb{R}^{d}} \alpha_{x}(f) d\nu \ge \int_{\mathbb{R}^{d}} f(x) d\nu$$

so  $\nu \leq \mu$ . The converse is known as Strassen's theorem (see [7], [5])

2.3. **Optimal transport.** In the sequel,  $\mu$  and  $\nu$  will be given in  $\mathcal{P}_1(\mathbb{R}^d)$ , and  $\mu$  will have bounded support. We are interested in the following problem: maximize

$$\int_{\mathbb{R}^d} \langle x, T(x) \rangle \, d\mu$$

among all Borel maps  $T: \mathbb{R}^d \to \mathbb{R}^d$  which map  $\mu$  on  $\nu$ :

$$T
atural \mu = \nu \Longleftrightarrow \int f(y)d\nu = \int f(T(x))d\mu \ \forall f \in C^0(\mathbb{R})$$

In the sequel, this will be referred to as the *basic problem*, and denoted by (BP[ $\mu, \nu$ ]). If there is an optimal solution T, it has the property that if X is any r.v. with law  $\mu$ , then, among all r.v. Y with law  $\nu$ , the one such that the correlation  $E_{\mu}[\langle X, Y \rangle]$  is maximal is T(X):

There is also a relaxed problem, denoted (RP[ $\mu, \nu$ ]). It consists of maximizing:

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} \langle x, y \rangle \, d\lambda$$

among all probability measures  $\lambda$  on  $\mathbb{R}^d \times \mathbb{R}^d$  which have  $\mu$  and  $\nu$  as marginals. Obviously, we have  $\sup(BP) \leq \sup(RP)$ , and the latter is finite because  $\mu$  has bounded support and  $\nu$  has finite first moment.

Finally, there is a dual problem, defined by  $(DP[\mu, \nu])$ , which consists of minimizing

$$\int_{\mathbb{R}^d} \varphi(x) d\mu + \int_{\mathbb{R}^d} \psi(y) d\nu$$

over all pairs of functions  $\varphi(x)$  and  $\psi(y)$  such that  $\varphi(x) + \psi(y) \ge \langle x, y \rangle$ .

The following theorem summarizes results due to Kantorovitch [3], Kellerer [4] Rachev and Ruschendorf [6], and Brenier [1]. It was originally formulated for the case when  $\mu$  and  $\nu$  have finite second moment, and this is also what is found in [8]. Indeed, in this case, since  $T \natural \mu = \nu$ , we have:

$$\int \|x - T(x)\|^2 d\mu = \int \|x\|^2 d\mu + \int \|T(x)\|^2 d\mu - 2 \int \langle x, T(x) \rangle d\mu$$
$$= \int \|x\|^2 d\mu + \int \|y\|^2 d\nu - 2 \int \langle x, T(x) \rangle d\mu$$

Since the two first terms on the right-hand side do not depend on T, the problem of maximising  $\int \langle x, T(x) \rangle d\mu$  (bilinear cost) is equivalent to the problem of minimizing  $\int \|x - T(x)\|^2 d\mu$  (quadratic cost), for which general techniques are available. In the case at hand, we will not assume that  $\nu$  has finite second moment, so this approach is not available: the square distance is not defined, while the correlation maximisation still makes sense.

**Theorem 11.** Suppose  $\mu$  has compact support and is absolutely continuous w.r.t. Lebesgue measure. Suppose also  $\nu$  has finite first moment. Then the basic problem  $(BP[\mu,\nu])$  has a solution T, which is unique up to negligible subsets, and there is a convex function  $\varphi: \mathbb{R}^d \to \mathbb{R}$  such that  $T(x) = \nabla \varphi(x)$  a.e..

The relaxed problem  $(RP[\mu, \nu])$  has  $\lambda = \int \delta_{T(x)} d\mu(x)$  as a unique solution.

Denoting by  $\psi$  the Fenchel transform of  $\varphi$ , all solutions to the dual problem  $(DP[\mu,\nu])$  are of the form  $(\varphi+a,\psi-a)$  for some constant a, up to  $\mu$ -, resp  $\nu$ -., a.s. equivalence. The values of the minimum in problem (DP) and of the maximum in problems (BP) and (RP) are equal:

(2.4) 
$$\max(BP[\mu, \nu]) = \max(RP[\mu, \nu]) = \min(DP[\mu, \nu])$$

Let us denote by  $\mathbf{mc}[\mu, \nu]$  this common value. We shall call it the maximal correlation between  $\mu$  and  $\nu$ . It follows from the theorem that for any  $T', \lambda', \varphi', \psi'$  satisfying the admissibility conditions, we have:

$$\int_{\mathbb{R}^d} \langle x, T'(x) \rangle \, d\mu \le \mathbf{mc}[\mu, \nu]$$

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} \langle x, y \rangle \, d\lambda' \le \mathbf{mc}[\mu, \nu]$$

$$\int_{\mathbb{R}^d} \varphi'(x) d\mu + \int \psi'_{\mathbb{R}^d}(y) d\nu \ge \mathbf{mc}[\mu, \nu]$$

As an interesting consequence, we have:

**Proposition 12.** Let  $\mu,\nu_1,\nu_2$  be probability measures on  $\mathbb{R}^d$  such that  $\mu$  is absolutely continuous w.r.t the Lebesgue measure and has bounded support, while  $\nu_1$  and  $\nu_2$  have finite first moment. Suppose  $\nu_1 \leq \nu_2$  and  $\nu_1 \neq \nu_2$ . Then  $\mathbf{mc}[\mu,\nu_1] < \mathbf{mc}[\mu,\nu_2]$ .

*Proof.* By Theorem 10, there is a Markov kernel  $\alpha$  such that:

$$(2.5) \nu_2 = \int_{\mathbb{R}^d} \alpha_x d\nu_1$$

Let  $T_1$  be the optimal solution of  $(BP[\mu, \nu_1])$ . Consider the probability measure  $\lambda$  on  $\mathbb{R}^d \times \mathbb{R}^d$  defined by:

(2.6) 
$$\int f(x,y) d\lambda(x,y) = \int d\mu(x) \int f(x,y) d\alpha_{T_1(x)}(y)$$

Since  $\alpha_{T_1(x)}$  is a probability measure, the first marginal of  $\lambda$  is  $\mu$ . Let us compute the second marginal. We have, for any  $f \in C^0(\mathbb{R}^d)$ ,

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} f(y) d\lambda(x, y) = \int_{\mathbb{R}^d} \alpha_{T_1(x)}(f) d\mu(x)$$
$$= \int_{\mathbb{R}^d} \alpha_x(f) d\nu_1(x)$$
$$= \nu_2(f)$$

where the second equality comes from the fact that  $T_1$  maps  $\mu$  on  $\nu_1$  and the second from equation (2.5). So the second marginal of  $\lambda$  is  $\nu_2$ , and  $\lambda$  is admissible in

problem (RP[ $\mu, \nu_2$ ]). A similar computation gives:

$$\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \langle x, y \rangle \, d\lambda(x, y) = \int_{\mathbb{R}^{d}} \left\langle x, \int_{\mathbb{R}^{d}} d\alpha_{T_{1}(x)}(y) \right\rangle d\mu(x)$$
$$= \int_{\mathbb{R}^{d}} \left\langle x, T_{1}(x) \right\rangle d\mu(x) = \mathbf{mc}[\mu, \nu_{1}]$$

Since  $\lambda$  has marginals  $\mu$  and  $\nu_2$ , it is admissible in the relaxed problem(RP[ $\mu, \nu_2$ ]), so that the left-hand side is at most  $\mathbf{mc}[\mu, \nu_2]$  while the right-hand side is equal to  $\mathbf{mc}[\mu, \nu_1]$ . It follows that  $\mathbf{mc}[\mu, \nu_1] \leq \mathbf{mc}[\mu, \nu_2]$ . If there is equality, then  $\lambda$  is an optimal solution to (RP[ $\mu, \nu_2$ ]). By the uniqueness part of Theorem 11, we must have  $\lambda = \int \delta_{T_1(x)} d\mu(x)$ . Comparing with equation (2.6), we find  $\alpha_y = \delta_y$ , holding true  $\nu_1$ -almost surely. Writing this in equation (2.5) we get  $\nu_1 = \nu_2$ .

2.4. Strongly exposed points. Let E be a Banach space, and  $C \subset E$  a closed subset. For  $v \in E'$ , consider the optimization problem:

$$\sup_{u \in C} \langle v, u \rangle$$

**Definition 13.** We say that  $v \in E'$  exposes  $u \in C$  if u solves problem (2.7) and is the unique solution. We shall say that  $v \in E'$  strongly exposes  $u \in C$  if it exposes u and all maximizing sequences in problem (2.7) converge to u:

$$\left\{u_n \in C, \quad \lim_n \langle v, u_n \rangle = \langle v, u \rangle \right\} \Longrightarrow \lim_n \|u - u_n\| = 0$$

We shall say that  $u \in C$  is an exposed point (resp. strongly exposed) if it is exposed (resp. strongly exposed) by some continuous linear functional v. It is a classical result of Phelps that every weakly compact convex subset C of E is the closed convex hull of its strongly exposed points.

3. Some geometric properties of law-invariant subsets of  $L^1\left(\mathbb{R}^d\right)$ 

Recall that, given  $\nu \in \mathcal{P}_1(\mathbb{R}^d)$ , we have defined subsets  $M(\nu)$  and  $C(\nu)$  of  $L^1(\mathbb{R}^d)$  by:

$$M(\nu) = \left\{ X \in L^1 \mid \mu_X = \nu \right\}$$
$$C(\nu) = \left\{ X \in L^1 \mid \mu_X \preccurlyeq \nu \right\}$$

 $M(\nu)$  is closed in  $L^1$ but not convex. To investigate the relation between  $M(\nu)$  and  $C(\nu)$ , we shall need the following result:

**Proposition 14.** Let  $Y \in L^1(\mathbb{R}^d)$  with law  $(Y) = \nu$ , and  $\mu \in \mathcal{P}^1(\mathbb{R}^d)$  such that  $\mu \succeq \nu$ . Then there is a sequence  $(X_n)_{n=1}^{\infty}$  in  $M(\mu)$  such that  $(X_n)_{n=1}^{\infty}$  converges weakly to Y in  $L^1(\mathbb{R}^d)$ . As a consequence, there is a sequence  $(Y_n)_{n=1}^{\infty} \in conv(M(\mu))$  converging strongly to Y in  $L^1(\mathbb{R}^d)$ .

We start by recalling a well-known result from ergodic theory.

**Lemma 15.** Let  $\Omega = \{-1, 1\}^{\mathbb{Z}}$  equipped with the Borel sigma-algebra  $\mathcal{F}$  and Haar-measure P, and  $T_n$  the n-shift, that is:

$$\forall k \in \mathbb{Z}, \quad [T_n(\eta)]_k = \eta_{k-n}$$

For any  $Z \in L^1(\Omega, \mathcal{F}, P; \mathbb{R}^d)$ , the sequence of functions  $Z \circ T_n$  converges weakly to the constant  $E_P[Z]$ .

*Proof.* Suppose that Z depends only on finitely many coordinates and let  $A \in \mathcal{F}$  also depend only on finitely many coordinates of  $\{-1,1\}^{\mathbb{Z}}$ . Then, for n large enough,  $Z_n := Z \circ T_n$  is independent of A so that

$$\mathbb{E}[Z_n|A] = \mathbb{E}[Z_n] = \mathbb{E}[Z].$$

The general case follows from approximation.

*Proof.* (of Proposition 14): Assume (w.l.o.g.) that  $L^1(\Omega, \mathcal{F}, P; \mathbb{R}^d)$  is separable. Recall that,  $(\Omega, \mathcal{F}, \mathbb{P})$  has no atoms. Suppose first that Y takes only finitely many values, i.e.

$$Y = \sum_{j=1}^{N} y_j \mathbf{1}_{A_j}$$

where  $(y_j)_{j=1}^N \in \mathbb{R}^d$  and  $(A_1, \ldots, A_N)$  forms a partition of  $\Omega$  into sets in  $\mathcal{F}$  with strictly positive measure.

By Theorem 10 we may find a Markov kernel  $\alpha = (\alpha_{y_j})_{j=1}^N$  such that the barycenter of  $\alpha_{y_j}$  is  $y_j$  and:

(3.1) 
$$\mu = \sum_{j=1}^{N} \mathbb{P}[A_j] \alpha_{y_j}$$

Each of the sets  $A_j$ , equipped with normalized measure  $P[A_j]^{-1}P|_{A_j}$  is Borel isomorphic to  $\{-1,1\}^{\mathbb{Z}}$ , equipped with Haar measure. Hence, by the preceding lemma, for each  $j=1,\ldots,N$  we may find a random variable  $Z_j:A_j\to\mathbb{R}^d$  under  $P[A_j]^{-1}P|_{A_j}$  such that law  $(Z_j)=\alpha_{y_j}$ , as well as a sequence  $(T_{j,n})_{n=1}^{\infty}$  of measure-preserving transformations of  $A_j$  such that, in the weak topology of  $L^1(\mathbb{R}^d)$ :

$$\lim_{n\to\infty} (Z_j \circ T_{j_n}) \mathbf{1}_{A_j} = y_j \mathbf{1}_{A_j}, \qquad j=1,\dots,N.$$

Letting

$$X_n = \sum_{j=1}^N (Z_j \circ T_{j_n}) \mathbf{1}_{A_j}$$

we obtain by (3.1) a sequence in  $L^1(\mathbb{R}^d)$  with law  $(X_n) = \mu$  and converging weakly to  $Y = \sum_{j=1}^N y_j \mathbf{1}_{A_j}$ .

Now drop the assumption that Y is a simple function and fix a sequence  $(\mathcal{G}_m)_{m=1}^{\infty}$  of finite sub-sigma-algebras of  $\mathcal{F}$ , generating  $\mathcal{F}$ . Note that if  $Y_m = \mathbb{E}[Y|\mathcal{G}_m]$  and  $\nu_m$  is the law of  $Y_m$ , we have  $\nu_m \prec \nu$ , by Jensen's inequality.

By the first part we may find, for each  $m \geq 1$ , a sequence  $(X_{m,n})_{n=1}^{\infty}$  in  $M(\mu)$  such that  $(X_{m,n})_{n=1}^{\infty}$  converges weakly to  $Y_m$ . Noting that  $(Y_m)_{m=1}^{\infty}$  converges to Y (in the norm of  $L^1(\mathbb{R}^d)$  and therefore also weakly) we may find a sequence  $(n_m)_{m=1}^{\infty}$  tending sufficiently fast to infinity, such that  $(X_{m,n_m})_{m=1}^{\infty}$  converges weakly to Y.

The final assertion follows from the Hahn-Banach theorem.

The relationship between  $C(\nu)$  and  $M(\nu)$  now follows:

**Theorem 16.** The set  $C(\nu)$  is convex, weakly compact, and equals the weak closure of  $M(\nu)$ :

$$C(\nu) = \overline{M(\nu)}^w = \overline{co} M(\nu)$$

*Proof.* Obviously  $\overline{M(\nu)}^w \subset C(\nu)$ . Conversely, take any  $X \in C(\nu)$ . By Proposition 14, there is a sequence  $X_n$  in  $M(\nu)$  such that  $X_n \to X$  weakly, so  $X \in \overline{M(\nu)}^w$ . This shows that  $C(\nu) = \overline{M(\nu)}^w$ .

By Proposition 8,  $C(\nu)$  is convex. It remains to show that it is weakly compact. Since  $C(\nu)$  is the weak closure of  $M(\nu)$ , it is enough to show that  $M(\nu)$  is weakly relatively compact. To do that, we shall use the Dunford-Pettis criterion. We claim that  $M(\nu)$  is equi-integrable. Indeed, fix some  $X \in M(\nu)$ . For any other  $Y \in M(\nu)$ , and any m > 0, we have:

$$\int_{|Y| \ge m} |Y| dP = \int_{|x| \ge m} |x| \, d\nu \, (x) = \int_{|X| \ge m} |X| dP$$

which goes to 0 when  $m \to \infty$ , independently of Y. The result follows.

We now investigate strongly exposing functionals and strongly exposed points of  $C(\nu)$ . We will show that any  $Z \in L^{\infty}$ , the law of which is a.c. w.r.t. Lebesgue measure, strongly exposes a point of  $C(\nu)$  (which must then belong to  $M(\nu)$ ) and conversely, provided  $\nu$  is absolutely continuous w.r.t. Lebesgue measure, that any point of  $M(\nu)$  is strongly exposed by such a Z.

**Theorem 17.** Let  $\nu \in \mathcal{P}_1(\mathbb{R}^d)$ ,  $Z \in L^{\infty}$  and suppose the law of Z is absolutely continuous with respect to Lebesgue measure. Then Z strongly exposes  $C(\nu)$ , and the exposed point in fact belongs to  $M(\nu)$ .

*Proof.* Let  $\mu$  be the law of Z and consider the maximal correlation problem (BP[ $\mu$ , $\nu$ ]). By Theorem 11, it has a unique solution T. Set X = T(Z). Clearly X has law  $\nu$ , and by uniqueness:

$$(3.2) [X' \in M(\nu), X' \neq X] \Longrightarrow \langle Z, X \rangle > \langle Z, X' \rangle$$

So X is an exposed point in  $M(\nu)$ . Take any  $Y \in C(\nu)$ , so that  $\mu_Y \preccurlyeq \nu$ . By Proposition 12, we have  $\langle Z, X \rangle \geq \langle Z, Y \rangle$ , and if  $\langle Z, X \rangle = \langle Z, Y \rangle$ , then  $\mu_Y = \mu_X = \nu$ . So Y must belong to  $M(\nu)$ , and by formula (3.2), we must have Y = X. So X is an exposed point in  $C(\nu)$  as well.

It remains to prove that it is strongly exposed. For this, take a maximizing sequence  $X_n$  in  $C(\nu)$ . Since  $C(\nu)$  is weakly compact and  $\nu_n \leq \nu$ , where  $\nu_n$  is the law of  $X_n$ , there is a subsequence  $X_{n_k}$  which converges weakly to some  $X' \in C(\nu)$ . By Lemma 7, the set of all  $\mu \lesssim \nu$  is weak\* compact, so we may assume that the laws  $\nu_{n_k}$  converge weak\* to some  $\bar{\nu}$ . Obviously X' maximizes  $\langle Z, X' \rangle$ , and since Z exposes X, we must have X' = X. So the  $X_{n_k}$  converge weakly to X, and, by Proposition 8,  $\mu_X = \nu \preccurlyeq \bar{\nu}$ .

On the other hand, take any convex function f with linear growth. Since  $\nu_{n_k} \preceq \nu$  we have:

$$\int f(x)d\nu_{n_k} \le \int f(x)d\nu$$

Letting  $k \to \infty$ , we get from Lemma 7

$$\int f(x)d\overline{\nu} = \lim_{k} \int f(x)d\nu_{n_{k}} \le \int f(x)d\nu$$

So  $\nu = \overline{\nu}$ , and Proposition 8 then implies that  $||X_{n_k} - X||_1 \to 0$ . Since the limit does not depend on the subsequence, the whole sequence  $X_n$  converges, and X is strongly exposed, as announced.

Here is a kind of converse:

**Theorem 18.** Fix two measures  $\nu$  and  $\mu$  on  $\mathbb{R}^d$ , the first one having finite first moment and the second one compact support. Suppose both of them are absolutely continuous with respect to Lebesgue measure. Then, for every X with law  $\nu$ , there is a unique Z with law  $\mu$  which strongly exposes X in  $C(\nu)$ .

Proof. Consider the maximal correlation problem  $(BP[\nu, \mu])$ . It has a unique solution  $T: \mathbb{R}^d \to \mathbb{R}^d$  verifying  $T \sharp \nu = \mu$ . Since both  $\mu$  and  $\nu$  are absolutely continuous with respect to Lebesgue measure, the problem  $(BP[\mu, \nu])$  also has a unique solution  $S: \mathbb{R}^d \to \mathbb{R}^d$  verifying  $S \sharp \mu = \nu$ . Clearly  $S = T^{-1}$  and  $T = S^{-1}$ . Define Z = T(X). It is then the case that the law of Z is  $\mu$  and  $S(Z) = S \circ T(X) = X$ . Repeating the preceding proof we find that Z strongly exposes X in  $C(\nu)$ .

Note that the condition that  $\nu$  be absolutely continuous with respect to the Lebesgue measure cannot be dropped from the preceding theorem. This may be seen by a variant of a well-known example in optimal transport theory ([9], Example 4.9). On  $\mathbb{R}^2$  consider the measure  $\nu$  which is uniformly distributed on the interval  $\{0\} \times [0, 1]$  while  $\mu$  is uniformly distributed on the rectangle  $[-1, 1] \times [0, 1]$ . Then  $\mu$  is absolutely continuous w.r.t. Lebesgue measure, while  $\nu$  is not. Clearly the optimal transport T from  $\mu$  to  $\nu$  for the maximal correlation problem is given by the projection on the vertical axis. This map is not invertible.

Let  $(\Omega, \mathcal{F}, P)$  be given by  $\Omega = [0, 1]$  equipped with the Lebesgue measure P on the Borel  $\sigma$ -algebra. Define a random vector  $X \in L^1\left(\Omega, \mathcal{F}, P; \mathbb{R}^2\right)$  by  $X\left(\omega\right) = (0, \omega)$ , so that the law of X is  $\nu$ . Let us now calculate the maximal correlation between  $\mu$  and  $\nu$ . Let  $Z_0 \in L^{\infty}$  have law  $\mu$  and define  $X_0 = T\left(Z_0\right)$  so that  $X_0$  has law  $\nu$ . By the proof of theorem 17 we get:

$$\mathbf{mc}(\mu, \nu) = \int_{\Omega} \langle X_0, Z_0 \rangle dP = \int_{\mathbb{R}^2} \langle x, T(x) \rangle d\mu$$
$$= \frac{1}{2} \int_{-1}^{1} \left[ \int_{0}^{1} x_2^2 dx_2 \right] dx_1 = \int_{0}^{1} x_2^2 dx_2 = \frac{1}{3}.$$

On the other hand, we claim that:

(3.3) 
$$\int \langle X, Z_0 \rangle dP < \frac{1}{3}.$$

Since this holds for any  $Z_0$  with law  $\mu$ , it shows that X does not expose any point in  $C(\mu)$ . This is the desired counterexample. To prove (3.3), write  $Z_0(\omega) = (Z_{0,1}(\omega), Z_{0,2}(\omega))$  and note that  $P[Z_{0,2} \neq X_2] > 0$ . Indeed, assume otherwise, so that  $Z_{0,2}(\omega) = X_2(\omega) = \omega$  almost surely. Then  $Z_{0,1}(\omega)$  is fully determined by  $Z_{0,2}(\omega)$ , meaning that, in the image of  $\Omega$  by Z, the coordinate  $z_1$  is determined by the coordinate  $z_2$ . This clearly contradicts the fact that the law of Z is  $\mu$ . Since the law of  $Z_{0,2}$  is the Lebesgue measure on [0, 1], but  $Z_{0,2}$  does not coincide with  $X_2(\omega) = \omega$ , we have, from the uniqueness of the Brenier map:

$$\int \langle X, Z_0 \rangle dP \le \int X_2 Z_{0,2} dP < \int X_2^2 dP = \frac{1}{3}$$

Let us summarize our findings: There are measures  $\mu$  and  $\nu$  on  $\mathbb{R}^2$  with compact support,  $\mu$  being absolutely continuous with respect to Lebesgue measure, and some  $X \in L^{\infty}(\mathbb{R}^2)$  with law  $\nu$  such that there is no  $Z \in L^{\infty}(\mathbb{R}^2)$  with law  $\mu$  which exposes X in  $C(\nu)$ 

### References

- Brenier, Yann, "Polar factorization and monotone rearrangements of vector-valued functions", Comm. Pure and Applied Math. 64, 375-417 (1991)
- [2] Elyes, Jouini, Walter Schachermayer and Nizar Touzi, "Law-invariant risk measures have the Fatou property", Adv. Math. Econ. 9, 49-71
- [3] Kantorovitch, L.V. "On the transfer of masses", Doklady Akad, Nauk, CCCR (1942), 113-161
- [4] Kellerer, H.G. "Duality theorems for marginal problems" Z. Wahrsch. Verw. Gebiete 67 (1984), 399-432
- [5] Meyer, Paul-André, "Probabilités et potentiel", Hermann (1966)
- [6] Rachev, S.T. and Rüschendorf, L., "A characterization of random variables with minimal L<sup>2</sup> distance", J. Multivariate An. 32, 48-54 (1990)
- [7] Strassen, V. "The existence of probability measures with given marginals" Ann. Math. Stat 36 (1965) p.423-439
- [8] Villani, Cedric, "Topics in optimal transportation", Publications of the AMS, 2003
- [9] Villani, Cedric "Optimal transport, old and new", Springer Verlag

Université Paris-Dauphine and University of Vienna