# SECOND-ORDER EVOLUTION EQUATIONS ASSOCIATED WITH CONVEX HAMILTONIANS ${ }^{(1)}$ 

BY<br>J. P. AUBIN ${ }^{(2)}$ AND I. EKELAND ${ }^{(3)}$

§0. Introduction. Many problems in mathematical physics can be formulated as differential equations of second order in time:

$$
\begin{equation*}
\ddot{x}=-\operatorname{grad} V(x) \tag{E}
\end{equation*}
$$

with $V$ a convex functional. This is the Euler equation for the Lagrangian

$$
\frac{1}{2}|\dot{x}|^{2}-V(x)=\wedge(x, \dot{x})
$$

which is convex with respect to $\dot{x}$, and concave with respect to $x$. On the other hand, the associated Hamiltonian, by the Legendre transform, is seen to be:

$$
\frac{1}{2}|p|^{2}+V(x)=\Gamma(x, p)
$$

It is convex in both variables. It is the purpose of this paper to show how the convexity of the Hamiltonian can be systematically used in the study of equations ( $\mathscr{E}$ ). In the first part, we shall show that the solutions of ( $\mathscr{E}$ ), although they are only extremal for the original Lagrangian $\wedge$, are actually minimizing for another, more complex, Lagrangian $K$. In the second part, we shall show how this characterization can be used to prove the existence of solutions to ( $\mathscr{E}$ ) satisfying various initial or boundary conditions.
§I. Characterization. Let $H$ be some Hilbert space; for the sake of convenience, it will be assumed to contain a countable dense subset. Denote by $H^{1}(0, T ; H)$ the Sobolev space of all functions $x$ in $L^{2}(0, T ; H)$ with derivative $\dot{x}=d x / d t$ also in $L^{2}(0, T ; H)$. When the simpler notations $H^{1}$ and $L^{2}$ are used, they will always refer to these particular spaces.

Let $\Gamma$ be a lower semi-continuous (l.s.c.) function on $L^{2} \times L^{2}$, with values in $R \cup\{+\infty\}$. It will be assumed to be jointly convex in the variables $(x, p)$, and to be proper (i.e. there exists $\left(x_{0}, p_{0}\right)$ such that $\left.\Gamma\left(x_{0}, p_{0}\right)<\infty\right)$. We shall refer to $\Gamma$ as the Hamiltonian.

[^0]We define the Lagrangian $\wedge$ from the Hamiltonian by taking the Fenchel conjugate with respect to the second variable:

$$
\begin{equation*}
\wedge(x, v)=\sup _{p \in L^{2}}\{p \cdot v-\Gamma(x, p)\} \tag{1}
\end{equation*}
$$

It is a function on $L^{2} \times L^{2}$ with values in $R \cup\{ \pm \infty\}$ (note that the value $-\infty$ is now allowed). For any $x \in L^{2}$, it is a convex l.s.c. function of $v$ in $L^{2}$; indeed, formula (1) shows that it is the pointwise supremum of a family of 1.s.c. functions. For any $v \in L^{2}$, it is a concave function of $x$ in $L^{2}$, as the following lemma shows (note that it need not be u.s.c.).

Lemma. Take $v$ in $L^{2}, x_{1}$ and $x_{2}$ in $L^{2}$ with $\wedge\left(x_{1}, v\right)<+\infty$ and $\wedge\left(x_{2}, v\right)<$ $+\infty, \alpha_{1}$ and $\alpha_{2}$ non-negative with $\alpha_{1}+\alpha_{2}=1$. Then:

$$
\wedge\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, v\right) \geq \alpha_{1} \wedge\left(x_{1}, v\right)+\alpha_{2} \wedge\left(x_{2}, v\right) .
$$

Proof. Clear if either $\wedge\left(x_{1}, v\right)$ or $\wedge\left(x_{2}, v\right)$ are equal to $-\infty$. If both are finite, take $\varepsilon>0$, and pick $p_{1}$ and $p_{2}$ in $L^{2}$ such that:

$$
\begin{aligned}
& p_{1} \cdot v-H\left(x_{1}, p_{1}\right) \geq \wedge\left(x_{1}, v\right)-\varepsilon \\
& p_{2} \cdot v-H\left(x_{2} \cdot p_{2}\right) \geq \wedge\left(x_{2}, v\right)-\varepsilon
\end{aligned}
$$

Multiplying these inequalities by $\alpha_{1}$ and $\alpha_{2}$, and adding them, we get (set $\left.\alpha_{1} p_{1}+\alpha_{2} p_{2}=p\right)$ :

$$
p \cdot v-\left[\alpha_{1} H\left(x_{1}, p_{1}\right)+\alpha_{2} H\left(x_{2}, p_{2}\right)\right] \geq \alpha_{1} \wedge\left(x_{1}, v\right)+\alpha_{2} \wedge\left(x_{2}, v\right)-\varepsilon
$$

It follows from the definition of $\wedge$ that:

$$
\wedge\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, v\right) \geq p \cdot v-H\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, \alpha_{1} p_{1}+\alpha_{2} p_{2}\right)
$$

Since $H$ is convex, we have:

$$
-H\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, \alpha_{1} p_{1}+\alpha_{2} p_{2}\right) \geq-\left[\alpha_{1} H\left(x_{1}, p_{1}\right)+\alpha_{2} H\left(x_{2}, p_{2}\right)\right] .
$$

Comparing the last three inequalities, and using the fact that $\varepsilon$ is arbitrarily small, we get the desired result./

As usual, we denote by $\partial \Gamma(x, p)$ the subgradient of $\Gamma$ at $(x, p)$, i.e. the (closed convex) set of all ( $\left.x^{\prime}, p^{\prime}\right) \in L^{2} \times L^{2}$ such that:

$$
(y-x) \cdot x^{\prime}+(q-p) \cdot p^{\prime} \leq \Gamma(y, q)-\Gamma(x, p), \quad \forall(y, q) \in L^{2} \times L^{2}
$$

We shall also denote by $\partial_{v} \wedge(x, w)$ the subgradient at $w$ of the convex l.s.c. function $v \rightarrow \wedge(x, v)$, and by $\partial_{x}(-\wedge)(y, v)$ the subgradient at $y$ of the convex function $x \rightarrow-\wedge(x, v)$. Note that all these subgradients can very well be empty. Note also that we can get $\Gamma$ from $\wedge$ :

$$
\begin{equation*}
\Gamma(x, p)=\sup _{v \in \mathcal{L}^{2}}\{p \cdot v-\wedge(x, v)\} . \tag{2}
\end{equation*}
$$

Our interest lies in studying the Hamiltonian equation $(-p, x) \in \partial \Gamma(x, p)$. We must first define some boundary conditions; as is usual in convex analysis, we shall do so by using two l.s.c. convex proper functions $\phi_{0}$ and $\phi_{1}$ from $H$ to $R \cup\{+\infty\}$. We can now state in two equivalent forms the equations we wish to study:

Proposition 1. The pair $(x, p) \in H^{1} \times H^{1}$ satisfies the Euler-Lagrange equations:

$$
\begin{gather*}
p \in \partial_{v} \wedge(x, \dot{x}) \\
\frac{d p}{d t}+\partial_{x}(-\wedge)(x, \dot{x})  \tag{E}\\
p(0)+\partial \phi_{0}(x(0)) \ni 0 \\
p(T)-\partial \phi_{1}(x(T)) \ni 0
\end{gather*}
$$

if and only if it satisfies Hamilton's equations:

$$
\begin{gather*}
\left(-\frac{d p}{d t}, \frac{d x}{d t}\right) \in \partial \Gamma(x, p) \\
p(0)+\partial \phi_{0}(x(0)) \ni 0  \tag{H}\\
p(T)-\partial \phi_{1}(x(T)) \ni 0
\end{gather*}
$$

Proof. The boundary conditions are the same. From the definition of $\wedge$, it follows that:

$$
\begin{equation*}
p \in \partial_{v} \wedge(x, \dot{x}) \Leftrightarrow \dot{x} \in \partial_{p} \Gamma(x, p) \tag{3}
\end{equation*}
$$

There only remains to show the equivalence of relations $-\dot{p} \in \partial_{x}(-\wedge)(x, \dot{x})$ and $-\dot{p} \in \partial_{x} \Gamma(x, p)$. The first one means that:

$$
(-\dot{p}) \cdot(y-x) \geq \wedge(x, \dot{x})-\wedge(y, \dot{x}) \quad \forall y \in L^{2}
$$

Since relations (3) hold, we have:

$$
\wedge(x, \dot{x})=p \cdot \dot{x}-\Gamma(x, p)
$$

Writing that into the preceding inequality, we get:

$$
(-\dot{p}) \cdot(y-x) \geq p \cdot \dot{x}-\Gamma(x, p)-\wedge(y, \dot{x})
$$

Using formula (1) yields:

$$
(-\dot{p}) \cdot(y-x) \geq-\Gamma(x, p)+\Gamma(y, p)
$$

which means precisely that $-\dot{p} \in \partial_{x} \Gamma(x, p)$. We can retrace our steps, and get the first relation from the second one. The equivalence is thus proved./

For instance, if the Lagrangian happens to be differentiable, the EulerLagrange equations can be written in classical form:

$$
\frac{d}{d t} \frac{\partial \wedge}{\partial \dot{x}}(x, \dot{x})-\frac{\partial \wedge}{\partial x}(x, \dot{x})=0
$$

As another example, take $\Gamma(x, p)=\frac{1}{2}\|p\|_{L^{2}}^{2}+V(x)$. Then $\wedge(x, v)=$ $\frac{1}{2}\|v\|_{L^{2}}^{2}-V(x)$; the Lagrangian and Hamiltonian systems are:

$$
\begin{align*}
& (\mathscr{E})  \tag{E}\\
& (\mathscr{H}) \quad \ddot{x} \in-\partial V(x), \quad x(0) \in-\partial \phi_{0}(x(0)), \quad x(T) \in \partial \phi_{1}(x(T)) \\
& -\dot{p} \in \partial V(x), \quad \dot{x}=p, \quad p(0) \in-\partial \phi_{0}(x(0)), \quad p(T) \in \partial \phi_{1}(x(T))
\end{align*}
$$

We now shall formulate equations ( $\mathscr{E}$ ) and $(\mathscr{H})$ as variational problems. Briefly, there is a non-negative functional $K(x, p)$ on $H^{1} \times H^{1}$ which the solutions of ( $\mathscr{E}$ ) and ( $\mathscr{H}$ ) minimize; moreover, this minimum has to be zero.

Proposition 3. Solutions of problems (E) and/or (H) are exactly the pairs $(x, p)$ which satisfy:

$$
\begin{equation*}
0=K(x, p) \leq K(y, q) \quad \forall y \in H^{1} \quad \forall q \in H^{1} \tag{P}
\end{equation*}
$$

with $K(y, q)=\Gamma(y, q)+\Gamma^{*}(-\dot{q}, \dot{y})-2 q \cdot \dot{y}+\phi_{0}(y(0))+\phi_{0}^{*}(-q(0))+\phi_{1}(y(T))+$ $\left.\phi_{1}^{*}\right)(q(T))$.

Proof. By Fenchel's inequality:

$$
\begin{aligned}
\Gamma(y, q)+\Gamma^{*}(-\dot{q}, \dot{y}) & \geq q \cdot \dot{y}-y \cdot \dot{q} \\
\phi_{0}(y(0))+\phi_{0}^{*}(-q(0)) & \geq-y(0) q(0) \\
\phi_{1}(y(T))+\phi_{1}^{*}(q(T)) & \geq y(T) q(T)
\end{aligned}
$$

equality holding if and only if $(-\dot{q}, \dot{y}) \in \partial \Gamma(y, q),-q(0) \in \partial \phi_{0}(y(0)), q(T) \in$ $\partial \phi_{1}(y(T))$, i.e. if $(y, q)$ solves problem ( $\left.\mathscr{H}\right)$. Adding up these inequalities:

$$
K(y, q) \geq-\int_{0}^{T}(y(t) \dot{q}(t)+q(t) \dot{y}(t)) d t-y(0) q(0)+y(T) q(T)
$$

Integrating by part, we get $K(y, q) \geq 0$. Equality will hold for solutions of problem ( $\mathscr{H}$ ) only, which is the desired result./

We can reformulate problem ( $\mathscr{P}$ ) as a variational inequality:
Proposition 4. Solutions of problem ( $\mathscr{E}$ ) and/or ( $\mathscr{H}$ ) are exactly the pairs $(x, p) \in H^{1} \times H^{1}$ which satisfy:

$$
\begin{equation*}
A(x, p ; y, q) \leq 0 \quad y \in H^{1}, \quad q \in H^{1} \tag{2}
\end{equation*}
$$

with $A(x, p ; y, q)=\Gamma^{*}(-\dot{p}, \dot{x})-\Gamma^{*}(-\dot{q}, \dot{y})+\phi_{0}(x(0))-\phi_{0}(y(0))+\phi_{1}^{*}(p(T))-$ $\phi_{1}^{*}(q(T))-p \cdot(\dot{x}-\dot{y})+x \cdot(\dot{p}-\dot{q})+p(0)(x(0)-y(0))-x(T)(p(T)-q(T))$.

Proof. By Proposition 3, the solutions of problems ( $\mathscr{E}$ ) and $(\mathscr{H})$ are the pairs $(x, p) \in H^{1} \times H^{1}$ which satisfy:

$$
K(x, p) \leq 0
$$

By the definition of Fenchel conjugates:

$$
\begin{aligned}
& \Gamma(x, p)=\sup _{\dot{q}, \dot{y}}\left\{-\dot{q} \cdot x+\dot{y} \cdot p-\Gamma^{*}(-\dot{q}, \dot{y})\right\} \\
& \phi_{0}^{*}(-p(0))=\sup _{y(0)}\left\{-p(0) y(0)-\phi_{0}(y(0))\right\} \\
& \phi_{1}(x(T))=\sup _{q(T)}\left\{q(T) x(T)-\phi_{1}^{*}(q(T))\right\}
\end{aligned}
$$

Writing these formulas into $K(x, p)$, and noting that $\dot{q}, \dot{y}, y(0)$ and $q(T)$ can be specified independently, we get:

$$
K(x, p)=\sup _{y, q} A(x, p ; y, q)-[p \cdot \dot{x}+x \cdot \dot{p}+p(0) x(0)-p(T) x(T)]
$$

Integrating by parts, we see that the bracket is identically zero. Clearly, $K(x, p) \leq 0$ if and only if the pair ( $x, p$ ) solves the variational inequality (2)./

We will now give some examples.
Example 1. Newton's equation, Neumann boundary conditions.
Let $f$ be a convex l.s.c. proper function on $H$. Let $p_{0}$ and $p_{1}$ be two points in $H$. Consider the problem:

$$
\begin{align*}
& \ddot{x}(t) \in-\partial f(x,(t)) \quad \text { a.e. }  \tag{5}\\
& \dot{x}(0)=p_{0}, \quad \dot{x}(T)=p_{1}
\end{align*}
$$

These are equations ( $\mathscr{E}$ ), for:

$$
\begin{gathered}
\Gamma(x, p)=\frac{1}{2} \int_{0}^{T}|p(t)|^{2} d t+\int_{0}^{T} f(x(t)) d t \\
\phi_{0}(\xi)=-p_{0} \xi, \quad \phi_{1}(\xi)=p_{1} \xi
\end{gathered}
$$

Indeed, it is a standard result in convex analysis (see [2], [5]) that the subdifferential at $x \in L^{2}$ of the map $y \rightarrow \int_{0}^{T} f(y(t)) d t$ is just the set of all $z \in L^{2}$ such that $z(t) \in \partial f(x(t))$ almost everywhere. Proposition 3 now tells us that $x$ solves equations (5) if and only if it belongs to $H^{1}(0, T ; H)$, and there exists $p \in H^{1}$ such that:

$$
\begin{equation*}
0=K(x, p) \leq K(y, q) \quad(y, q) \in H^{1} \times H^{1} \tag{6}
\end{equation*}
$$

with $K(y, q)=\int_{0}^{T}\left[f(y(t))+f^{*}(-\dot{q}(T))+\frac{1}{2}|q(t)|^{2}+\frac{1}{2}|\dot{y}(t)|^{2}-2 q(t) \dot{y}(t)\right] d t-p_{0} y(0)+$ $p_{1} y(T)$ if $q(0)=p_{0}$ and $q(T)=p_{1},+\infty$ otherwise. It then follows that $p=\dot{x}$.

Example 2. Newton's equation, Dirichlet boundary conditions Consider the problem:

$$
\begin{gather*}
\ddot{p}(t) \in-\partial f(p(t)) \quad \text { a.e. }  \tag{7}\\
p(0)=p_{0}, \quad p(T)=p_{1}
\end{gather*}
$$

These are equations ( $\mathscr{H}$ ) for:

$$
\begin{gathered}
\Gamma(x, p)=\frac{1}{2} \int_{0}^{T}|x(t)|^{2}+\int_{0}^{T} f(p(t)) d t \\
\phi_{0}(\xi)=-p_{0} \xi, \quad \phi_{1}(\xi)=p_{1} \xi
\end{gathered}
$$

Indeed, the relation $(-\dot{p}, \dot{x}) \in \partial \Gamma(x, p)$ decomposes as $-\dot{p}=x$ and $\dot{x}(t) \in$ $\partial f(p(t))$ a.e., which is equivalent to the differential equation (7). It follows that $p$ solves problem (7) if and only if it belongs to $H^{1}(0, T ; H)$, satisfies the boundary conditions, and there exists $x \in H^{1}$ such that:

$$
\begin{equation*}
0=K(x, p) \leq K(y, q) \quad \forall(y, q) \in H^{1} \times H^{1} \tag{8}
\end{equation*}
$$

with $\quad K(y, q)=\int_{0}^{T}\left[\frac{1}{2}|y(t)|^{2}+\frac{1}{2}|\dot{q}(t)|+f(q(t))+f^{*}(\dot{y}(t))-2 q(t) \dot{y}(t)\right] d t-p_{0} y(0)+$ $p_{1} y(T)$ if $q(0)=p_{0}$ and $q(T)=p_{1},+\infty$ otherwise. It then follows that $x=-\dot{p}$.

Example 3. The wave equation, prescribed initial and final state.
Let $\Omega$ be an open bounded domain in $R^{n}$. We set $H=L^{2}(\Omega)$, and we define a convex l.s.c. proper function $f$ on $H$ by:

$$
\begin{aligned}
& f(\xi)=\frac{1}{2} \int_{\Omega}|\operatorname{grad} \xi(w)|^{2} d w \quad \text { if } \quad \xi \in H_{0}^{1}(\Omega) \\
& f(\xi)=+\infty \text { otherwise. }
\end{aligned}
$$

We then consider the Hamiltonian:

$$
\Gamma(x, p)=\frac{1}{2} \int_{0}^{T}|x(t)|^{2}+\int_{0}^{T} f(p(t)) d t
$$

and we prescribe boundary conditions in time by $\phi_{0}(\xi)=-p_{0} \xi$, and $\phi_{1}(\xi)=p_{1} \xi$, with $p_{0}$ and $p_{1}$ given in $L^{2}(\Omega)$. Equations ( $\mathscr{H}$ ) then become: (see [2])

$$
\begin{gather*}
p(t) \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \quad \text { a.e. } \\
\frac{d^{2} p}{d t^{2}}(t)=\Delta p(t) \quad \text { a.e. }  \tag{9}\\
p(0)=p_{0}, \quad p(T)=p_{1}
\end{gather*}
$$

which is the wave equation, with homogeneous Dirichlet conditions in the space variables $\left(\left.p(t)\right|_{\partial \Omega}=0\right)$. By Proposition 3, $p$ will solve problem (9) if and only if it belongs to $H^{1}\left(0, T ; L^{2}(\Omega)\right)$, and there exists $x \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ such that:

$$
\begin{equation*}
0=K(x, p) \leq K(y, q) \tag{10}
\end{equation*}
$$

with

$$
\begin{aligned}
K(y, q)= & \int_{0}^{T} \int_{\Omega}\left[\frac{1}{2} y(t, w)^{2}+\frac{1}{2} \frac{\partial q}{\partial t}(t, w)^{2}+\frac{1}{2} \sum_{i=1}^{n} \frac{\partial q}{\partial w_{i}}(t, w)^{2}\right. \\
& \left.+\frac{1}{2} \sum_{i=1}^{n} \frac{\partial z}{\partial w_{i}}(t, w)^{2}-2 q(t, w) \dot{y}(t, w)\right] d t d w-p_{0} y(0)+p_{1} y(T)
\end{aligned}
$$

if $q(0)=p_{0} q(T)=p_{1}$ and $q(t) \in H_{0}^{1}(\Omega)$ a.e. Here the function $z(t)$ is defined as the solution of the homogeneous Laplace equation:

$$
\forall t, \dot{y}(t)=-\Delta z(t), \quad z(t) \in H_{0}^{1}(\Omega) . /
$$

Finally, we will show how to treat initial-value problems, such as:
$\left(\mathscr{H}^{\prime}\right)$

$$
\begin{gathered}
(-\dot{p}, \dot{x}) \in \partial \Gamma(x, p) \\
x(0)=x_{0^{\prime}} \quad p(0)=p_{0}
\end{gathered}
$$

Proposition 5. Solutions of problem ( $\mathscr{H}^{\prime}$ ) on the time interval $[0, T]$ are exactly the pairs $(x, p)$ which satisfy:

$$
0=K^{\prime}(x, p) \leq K^{\prime}(y, q)
$$

for $(y, q) \in H^{1} \times H^{1}, y(0)=x_{0}, q(0)=p_{0}$. Here:

$$
K^{\prime}(y, q)=\Gamma(y, q)+\Gamma^{*}(-\dot{q}, \dot{y})-2 q \cdot \dot{y}+y(T) q(T)-x_{0} p_{0} .
$$

Proof. By Fenchel's inequality:

$$
\Gamma(y, q)+\Gamma^{*}(-\dot{q}, \dot{y}) \geq q \cdot \dot{y}-y \cdot \dot{q}
$$

equality holding if and only if $(-\dot{q}, \dot{y}) \in \partial \Gamma(y, q)$. It follows that:

$$
K^{\prime}(y, q) \geq-\int_{0}^{T}(y(t) \dot{q}(t)+q(t) \dot{y}(t)) d t-x_{0} p_{0}+y(T) q(T)
$$

Integrating by parts, we get $K^{\prime}(y, q) \geq 0$. Equality holds for solutions of problem ( $\mathscr{H}^{\prime}$ ) only, which is the desired result./

Proposition 6. Solutions of problem $\left(\mathscr{H}^{\prime}\right)$ on the time interval $[0, T]$ are exactly the pairs $(x, p)$ such that $x(0)=x_{0}, p(0)=p_{0}$, and

$$
A^{\prime}(x, p ; y, q) \leq 0
$$

for $(y, q) \in H^{1} \times H^{1}, y(0)=x_{0}, q(0)=p_{0}$. Here:

$$
A^{\prime}(x, p ; y, q)=\Gamma^{*}(-\dot{p}, \dot{x})-\Gamma^{*}(-\dot{q}, \dot{y})-p \cdot(\dot{x}-\dot{y})+x \cdot(\dot{p}-\dot{q})
$$

Proof. By definition of the Fenchel conjugate:

$$
\Gamma(x, p)=\sup _{\dot{q} \cdot \dot{y}}\left\{-\dot{q} \cdot x+\dot{y} \cdot p-\Gamma^{*}(-\dot{q}, \dot{y})\right\}
$$

Writing this into $K^{\prime}(x, p)$, and noting that $\dot{q}$ and $\dot{y}$ can be specified arbitrarily, we get:

$$
K^{\prime}(x, p)=\sup A^{\prime}(x, p ; y, q)-\left[p \cdot \dot{x}+x \cdot \dot{p}+p_{0} x_{0}-p(T) x(T)\right]
$$

the supremum being taken over all pairs $(y, q) \in H^{1} \times H^{1}$ and that $y(0)=x_{0}$ and $q(0)=p_{0}$. The bracket vanishes, so that $K^{\prime}(x, p) \leq 0$ if and only if (2') is satisfied./

Of course, we can apply the same trick to $\Gamma^{*}(-\dot{p}, \dot{x})$ instead of $\Gamma(x, p)$. In this way, we get statements equivalent to propositions 6 and 4 (we leave the proof to the reader):

Proposition 6 bis. Solutions of problem ( $\mathscr{H}^{\prime}$ ) on the time interval $[0, T]$ are exactly the pairs $(x, p)$ such that $x(0)=x_{0}, p(0)=p_{0}$ and:
$\left(\mathscr{R}^{\prime}\right) \quad B^{\prime}(x, p ; y, q) \leq 0 \quad \forall(y, q) \in H^{1} \times H^{1}, \quad y(0)=y_{0}, \quad x(0)=x_{0}$. where $B^{\prime}(x, p ; y, q)=\Gamma(x, p)-\Gamma(y, q)+\dot{p}(x-y)-\dot{x}(q-y)$.

Proposition 4 bis. Solutions of problem ( $\mathscr{H}$ ) are exactly the pairs $(x, p) \in$ $H^{1} \times H^{1}$ which satisfy:

$$
\begin{equation*}
B(x, p ; y, q) \leq 0 \quad \forall(y, q) \in H^{1} \times H^{1} \tag{R}
\end{equation*}
$$

with $B(x, p ; y, q)=\Gamma(x, p)-\Gamma(y, q)+\dot{p}(x-y)-\dot{x}(q-y)+\phi_{0}(x(0))-\phi_{0}(y(0))+$ $p(0)(x(0)-y(0))+\phi_{1}(y(T))-\phi_{1}(x(T))+p(T)(x(T)-y(T))$.

We can now give some more examples:
Example 4. Newton's equation, Cauchy problem.
Let $f$ be a convex l.s.c. proper function on $H$, and $x_{0} p_{0}$ two points of $H$. Consider the problem:

$$
\begin{align*}
& \ddot{x}(t) \in-\partial f(x(t)) \quad \text { a.e. } \\
& x(0)=x_{0}, \quad x(0)=p_{0} \tag{11}
\end{align*}
$$

A function $x \in H^{1}(0, T ; H$ solves problem (11) on the time interval $[0, T]$ if and only if $x(0)=x_{0}$, and there exists $p \in H^{1}$ such that $p(0)=p_{0}$ and:

$$
\begin{equation*}
A^{\prime}(x, p ; y, q) \leq 0 \quad \forall(y, q) \in H^{1} \times H^{1}, \quad y(0)=x_{0}, \quad p(0)=p_{0} . \tag{12}
\end{equation*}
$$

Here $A^{\prime}(x, p ; y, q)=\int_{0}^{T}\left[\frac{1}{2}|\dot{p}(t)|^{2}+f^{*}(x(t))-\frac{1}{2}|\dot{q}(t)|^{2}-f^{*}(\dot{y}(t))-p(t) \dot{x}(t)-y(t)\right)+$ $x(t)(p(t)-\dot{q}(t))] d t$. It then follows that $p=\dot{x}$.

We can also state this variational inequality as:

$$
\begin{equation*}
B^{\prime}(x, p ; y, q) \leq 0 \quad \forall(y, q) \in H^{3} \times H^{1}, \quad y(0)=x_{0}, \quad p(0)=p_{0} \tag{13}
\end{equation*}
$$

with $\quad B^{\prime}(x, p ; y, q)=\int_{0}^{T}\left[\frac{1}{2}|p(t)|^{2}+f(x(t))^{2}-\frac{1}{2}|q(t)|^{2}-f(y(t))^{2}+\dot{p}(t)(x(t)-y(t))-\right.$ $\dot{x}(t)(q(t)-y(t))] d t$. It also follows that $p=\dot{x}$

Example 5. The wave equation, Cauchy problem.
Consider, as before, the problem:

$$
\begin{gather*}
p(t) \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \quad \text { a.e. } \\
\frac{d^{2} p}{d t^{2}}(t)=\Delta p(t) \quad \text { a.e. }  \tag{14}\\
p(0)=p_{0}, \quad \dot{p}(0)=-x_{0}
\end{gather*}
$$

The function $p \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ will solve problem (14) on the time interval [ $0, T]$ if and only if $p(0)=p_{0}$, and there exists $x \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ such that $x(0)=x_{0}$ and:

$$
\begin{gathered}
A^{\prime}(x, p ; y, q) \leq 0 \quad \forall(y, q) \in H^{1} \times H^{1}, \quad y(0)=x_{0} \\
p(0)=p_{0}, \quad q(t) \in H_{0}^{1}(\Omega) \quad \text { a.e. }
\end{gathered}
$$

with

$$
\begin{aligned}
A^{\prime}(x, p ; y, q)= & \int_{0}^{T} \int_{\Omega}\left[\frac{1}{2} \frac{\partial p}{\partial t}(t, w)^{2}-\frac{1}{2} \frac{\partial q}{\partial t}(t, w)^{2}+\frac{1}{2} \sum_{i=1}^{n} \frac{\partial u}{\partial w_{i}}(t, w)^{2}\right. \\
& -\frac{1}{2} \sum_{i=1}^{n} \frac{\partial z}{\partial w_{i}}(t, w)^{2}-p(t, w)\left(\frac{\partial x}{\partial t}(t, w)-\frac{\partial y}{\partial t}(t, w)\right) \\
& \left.+x(t, w)\left(\frac{\partial p}{\partial t}(t, w)-\frac{\partial q}{\partial t}(t, w)\right)\right] d t d w
\end{aligned}
$$

Here $u(t)$ and $z(t)$ are the solutions of the Laplace equations:

$$
\begin{array}{ll}
\forall t, \dot{x}(t)=-\Delta u(t), & u(t) \in H_{0}^{1}(\Omega) \\
\forall t, \dot{y}(t)=-\Delta z(t), & z(t) \in H_{0}^{1}(\Omega)
\end{array}
$$

This will also be written as:

$$
\begin{aligned}
A^{\prime}(x, p ; y, q) & =\int_{0}^{T}\left[\frac{1}{2}\|\dot{p}(t)\|^{2}-\frac{1}{2}\|\dot{q}(t)\|^{2}+\frac{1}{2}\left\|\operatorname{grad}(-\Delta)^{-1} \dot{x}(t)\right\|^{2}\right. \\
& -\frac{1}{2}\left\|\operatorname{grad}(-\Delta)^{-1} \dot{y}(t)\right\|^{2}-p(t)(\dot{x}(t)-\dot{y}(t)) \\
& +x(t)(\dot{p}(t)-\dot{q}(t))] d t,
\end{aligned}
$$

all norms to be taken in $H=L^{2}(\Omega)$.
§2. Existence. The question now is whether these characterizations can act ally be used to solve problems ( $\mathscr{E}$ ) and/or ( $\mathscr{H}$ ). We shall show that, in some cases, they can. Our main tool will be a refined version of Ky Fan's inequality (see [2]):

Proposition 1. Let $\mathscr{H}$ be a closed subspace of $H^{1}(0, T ; H)^{2}$, and $\mathscr{B}$ its unit ball. Let $\Phi$ be a real function on $\mathscr{H} \times \mathscr{H}$. Assume that, for any $(x, p) \in \mathscr{H}$ :
(1) the function $(y, q) \rightarrow \Phi(x, p ; y, q)$ is concave
(2) $\Phi(x, p ; x, p)=0$
and that, for any $(y, q) \in \mathscr{H}$, and any $n \in N$ :
(3) the function $(x, p) \rightarrow \Phi(x, p ; y, q)$ is weakly l.s.c. on $n \mathscr{B}$

Assume moreover that:
(4) $\exists m \in N:\{(x, p) \mid \Phi(x, p ; y, q) \leq 0 \quad \forall(y, q) \in \mathscr{B}\} \subset m \mathscr{B}$.

Then there exists $(\bar{x}, \bar{p}) \in \mathscr{H}$ such that:
(5) $\Phi(\bar{x}, \bar{p} ; y, q) \leq 0 \quad \forall(y, q) \in H^{1} \times H^{1}$.

Proof. Let $n \in N$ be given. By the usual Ky Fan inequality ([6]), applied to $\Phi$ on the set $n \mathscr{B} \times n \mathscr{B}$, there exists $\left(x_{n}, p_{n}\right)$ in $n \mathscr{B}$ such that:

$$
\Phi\left(x_{n}, p_{n} ; y, q\right) \leq 0 \quad \forall(y, q) \in n \mathscr{B} .
$$

Let $n \rightarrow \infty$. By assumption (4), the sequence ( $x_{n}, p_{n}$ ) is bounded, and therefore we can extract a subsequence converging weakly to some ( $\bar{x}, \bar{p}$ ). Take any ( $y, q$ ) $\in H^{1} \times H^{1}$; it belongs to $n \mathscr{B}$ for $n$ large enough, and by assumption (3):

$$
\Phi(\bar{x}, \bar{p} ; y, q) \leq \lim _{n \rightarrow \infty} \Phi\left(x_{n}, p_{n} ; y, q\right) \leq 0 /
$$

As a particular case, conclusion (5) will still hold if (4) is replaced by the stronger assumption (see [4]):

$$
\begin{equation*}
\exists m \in N, \quad\left(y_{0}, q_{0}\right) \in H^{1} \times H^{1}:\left\{(x, p) \mid \Phi\left(x, p ; y_{0}, q_{0}\right) \leq 0\right\} \subset m \mathscr{B} . \tag{6}
\end{equation*}
$$

We shall apply these results to the variational inequalities in Propositions 4 and 6 ; the subspace $\mathscr{H}$ being defined by appropriate boundary conditions. Example 2 and 4 will be taken up again.

Example 2. Newton's equation, Dirichlet boundary condition.
Consider, as before, the problem (with prescribed $T>0$ ):

$$
\begin{gather*}
p(t) \in-\partial f(p(t)) \quad \text { a.e. }  \tag{7}\\
p(0)=p_{0^{\prime}} \quad p(T)=p_{1}
\end{gather*}
$$

By Proposition 4, $p$ solves that problem if and only if it belongs to $H^{1}(0, T ; H)$, satisfies the boundary conditions and there exists $x \in H^{1}$ such
that:

$$
A(H x, p ; y, q) \leq 0 \quad \text { whenever } \quad q(0)=p_{0}, \quad q(T)=p_{1}
$$

with $\quad A(x, p ; y, q)=\int_{0}^{T}\left[\frac{1}{2}|\dot{p}(t)|^{2}+f^{*}(\dot{x}(t))-\frac{1}{2}|\dot{q}(t)|^{2}-f^{*}(\dot{y}(t))-p(t)(\dot{x}(t)-\dot{y}(t))+\right.$ $x(t)(\dot{p}(t)-\dot{q}(t))] d t$

Note that if a constant is added to $x$, and another one to $y$, the value of $A$ is unchanged. Indeed:

$$
\begin{gathered}
A\left(x+x_{0}, p ; y+y_{0}, q\right)-A(x, p ; y, q)=\int_{0}^{T} x_{0}(\dot{p}(t)-\dot{q}(t)) d t \\
=0 \quad \text { since } \quad p(0)=q(0) \quad \text { and } \quad p(T)=q(T) .
\end{gathered}
$$

So we can always assume that $x(0)=y(0)=0$.
Proposition 2. Let the function $f: H \rightarrow R$ be convex, continuous, and satisfy the following growth condition:

$$
\begin{equation*}
\exists K>0, \quad \exists k>0: \quad f(\xi) \leq K|\xi|^{2}+k, \quad \text { all } \quad \xi \in H . \tag{8}
\end{equation*}
$$

Then there exists $T_{K}>0$ such that problem (7) has at least one solution whenever $T \in] 0, T_{K}\left[\right.$. Moreover, $T_{K} \rightarrow \infty$ when $K \rightarrow 0$.

Corollary. Assume the growth of $f$ is less than quadratic:

$$
\begin{equation*}
f(\xi) /|\xi|^{2} \rightarrow 0 \quad \text { uniformly as } \quad|x| \rightarrow \infty \tag{9}
\end{equation*}
$$

Then problem (7) has a solution for all T.
Proof. The function $A(x, p ; y, q)$ satisfies all the assumptions of Proposition 1 , where $\mathscr{H}$ is taken to be the subspace of $H^{1}(0, T ; H)$ defined by the boundary conditions $x(0)=0, p(0)=p_{0}$ and $p(T)=p_{1}$. Indeed, (1) and (2) are obvious. As for (3), consider a bounded sequence ( $x_{n}, p_{n}$ ) in $\mathscr{H}$ converging weakly to $(x, p)$. Then ( $x_{n}, p_{n}$ ) converges weakly in $L^{2}(0, T ; H)$, which implies that:

$$
\begin{aligned}
& x_{n}(t)=0+\int_{0}^{t} \dot{x}_{n}(x) d s \\
& p_{n}(t)=p_{0}+\int_{0}^{t} \dot{p}_{n}(s) d s
\end{aligned}
$$

converge to $x(t)$ and $p(t)$ for all $t$. Moreover, $x_{n}$ and $p_{n}$ are bounded, and hence they converge strongly in $L^{2}(0, T ; H)$ by Lebesgue's theorem. It follows that $\dot{x}_{n} \cdot p_{n}$ and $x_{n} \cdot \dot{p}_{n}$ converge to $\dot{x} \cdot p$ and $x \cdot \dot{p}$. By Fatou's lemma, the function $x \rightarrow \int_{0}^{T} f^{*}(\dot{x}(t)) d t$ is strongly l.s.c. on $H^{1}(0, T ; H)$; since it is convex, it is also weakly l.s.c. Taking everything into account, we see that the function $(x, p) \rightarrow$ $A(x, p ; y, q)$ is weakly l.s.c. on bounded sets.

There only remains to prove estimate (4), or (6). We shall use the wellknown inequality $a b \leq \frac{1}{2} c a^{2}+\frac{1}{2}\left(b^{2} / c\right)$ for all non-negative $a, b$, We have:

$$
\begin{aligned}
& A(x, p ; y, q)=\int_{0}^{T}\left[\frac{1}{2}|\dot{p}(t)|^{2}+f^{*}(\dot{x}(t))-p(t) \dot{x}(t)+x(t) \dot{p}(t)\right] d t \\
& \quad+\int_{0}^{T}[p(t) \dot{y}(t)-x(t) \dot{q}(t)] d t-\int_{0}^{T}\left[\left.\frac{1}{2} \right\rvert\, \dot{q}(t)^{2}+f^{*}(\dot{y}(t)] d t\right.
\end{aligned}
$$

Once $(y, q)$ is fixed, the last term on the right-hand side is a constant, the second one is a linear function of $(p, q)$, and the first one, by the inequality just mentioned, is greater than or equal to:

$$
\int_{0}^{T}\left[\frac{1}{2}|\dot{p}(t)|^{2}+f^{*}(\dot{x}(t))-\frac{c}{2}|\dot{x}(t)|^{2}-\frac{1}{2 c}|\dot{p}(t)|^{2}-\frac{d}{2}|(t)|^{2}-\frac{1}{2 d}|x(t)|^{2}\right] d t
$$

the constants $c>0$ and $d>0$ to be chosen later. Taking into account the initial conditions $x(0)=0$ and $p(0)=p_{0}$, we easily get:

$$
\|x\|_{L^{2}} \leq T\|\dot{x}\|_{L^{2}} \quad \text { and } \quad\left\|p-p_{0}\right\|_{L^{2}} \leq T\|\dot{p}\|_{L^{2}}
$$

It follows that expression (10) is greater than or equal to:

$$
\begin{gathered}
\int_{0}^{\mathrm{T}} \frac{1}{2}\left(1-d-\frac{T^{2}}{c}\right)|\dot{p}(t)|^{2} d t+\int_{0}^{T}\left[f^{*}(\dot{x}(t))-\frac{1}{2}\left(c+\frac{T^{2}}{d}\right)|\dot{x}(t)|\right] d t \\
-\frac{T^{3 / 2}}{c}\left|p_{0}\right|\|\dot{p}\|_{L^{2}}-T\left|p_{0}\right|^{2}
\end{gathered}
$$

Now hypothesis (8) comes into play. Taking the Fenchel conjugate of both sides, we get $f^{*}(\xi) \geq(1 / 4 K)|\xi|^{2}-k$ for all $\xi \in H$. Taking that of into account, as well as the preceding inequalities, we get:

$$
\begin{aligned}
A(x, p ; y, q) \geq & \geq \frac{1}{2}\left(1-d-\frac{T}{c}\right)\|\dot{\dot{y}}\|^{2}+\frac{1}{2}\left(\frac{1}{2 K}-c-\frac{T}{d}\right)\|\dot{x}\|^{2}-k T \\
& -\frac{T^{3 / 2}}{c}\left|p_{0}\right|\|\dot{p}\|-T\left|p_{0}\right|^{2}-\|\dot{y}\|\left(\left|p_{0}\right|+T\|\dot{p}\|\right) \\
& -T\|\dot{q}\|\|\dot{x}\|-\frac{1}{2}\|\dot{q}\|^{2}-\int_{0}^{T} f^{*}(\dot{y}(t)) d t
\end{aligned}
$$

Take for instance $d=\frac{1}{2}$ and $c=1 / 4 K$. Then

$$
\frac{1}{2}\left(1-d-\frac{T}{c}\right)=\alpha \quad \text { and } \quad \frac{1}{2}\left(\frac{1}{2 K}-c-\frac{T}{d}\right)=\beta
$$

both are strictly positive whenever $T<1 / 8 K$. If $y, q$, and $T$ are fixed, we have
the inequality:

$$
\begin{equation*}
A(x, p ; y, q) \geq \alpha\|\dot{p}\|^{2}+\beta\|\dot{x}\|^{2}-\gamma\|\dot{p}\|-\delta\|\dot{x}\|-\zeta \tag{10}
\end{equation*}
$$

with $\alpha, \beta, \gamma, \delta, \zeta$ denoting various constants (depending on $y, q$, and $T$ ). If $T<1 / 8 K$, it is clear that assumption (6) is satisfied, so Proposition 2 is proved with $T_{K}=1 / 8 K$. The corollary immediately follows, since inequality (8) is seen to hold for any K./

The growth condition (8) is natural in this context. For instance, the one-dimensional problem $\ddot{p}=-p, p(0)=p_{0}, p(T)=p_{1}$, can be solved for all ( $\left.p_{0}, p_{1}\right) \in R^{2}$ if and only if $T<1$, since the solutions have to be 1 -periodic.

Example 4. Newton's equation, Cauchy problem.
Consider the problem described in the preceding section:

$$
\begin{gather*}
\ddot{x}(t) \in-\partial f(x(t)) \quad \text { a.e. }  \tag{11}\\
x(0)=x_{0}, \quad \dot{x}(0)=p_{0}
\end{gather*}
$$

The variational inequality (12) characterizing ( $x, p$ ) with $p=\dot{x}$, is exactly the same as the one in the preceding example; only the boundary conditions have changed $\left(y(0)=x_{0}, p(0)=p_{0}\right.$ instead of $\left.y(0)=0, p(0)=p_{0}, p(T)=p_{1}\right)$. The same arguments leads us to an analogous result:

Proposition 3 (global existence). Let the function $f: H \rightarrow R$ be convex, continuous, and satisfy the growth condition (8). Then problem (11) has a solution on the time interval $[-1 / 8 K, 1 / 8 K]$. If growth condition (9) is satisfied, there is a solution for all times $t \in R$./

This can easily be transformed into a local existence result:
Proposition 4 (local existence). Let the function $f: H \rightarrow R \cup\{+\infty\}$ be l.s.c. convex. Let $x_{0} \in H$ be a point of continuity for $f$. Then, for any $p_{0} \in H$, problem (11) has a solution on some time interval $[-T, T]$, with $T>0$.

Proof. Since $f$ is l.s.c. convex and continuous at $x_{0}$, it is finite and continuous in some neighbourhood $\mathscr{U}$ of $x_{0}$. Moreover:

$$
\exists M:(\eta \in \partial f(\xi), \eta \in \mathscr{U}) \Rightarrow|\eta| \leq M
$$

We then define a function $g: H \rightarrow R$ by the formula:

$$
\forall \zeta \in H, \quad g(\zeta)=\sup \{(\zeta-\xi) \eta+f(\xi) \mid \xi \in \mathcal{U}, \eta \in \partial f(\xi)\}
$$

The function $g$ is easily seen to be convex, finite, and to coincide with $f$ on
$\vartheta$, Moreover, it is lipschitzian with constant $K$ :

$$
\forall(\xi, \eta) \in H, \quad|g(\xi)-g(\eta)| \leq K|\xi-\eta|
$$

so that it certainly satisfies condition (9).
The initial-value problem:

$$
\begin{aligned}
& \ddot{x}(t) \in-\partial g(x(t)) \quad \text { a.e. } \\
& x(0)=x_{0}, \quad \dot{x}(0)=p_{0}
\end{aligned}
$$

has a global solution, by Proposition 3. This solution $x$ is also a solution of (11) as long as $x(t) \in \mathscr{U}$. Hence the result./

For sharper results on the Cauchy problem for Newton's equation, we refer to [7]. As for the wave equation, we did not succeed in proving existence by our method.

## Bibliography

1. J. P. Aubin, Mathematical methods of game and economic theory, North-Holland Elsevier (1978).
2. H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland.
3. H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques, Notes CRAS Paris t. 282 (1976), pp. 971-974 and 1197-1198.
4. M. Brezis, H. Nirenberg, and G. Stampacchia, A remark on Ky Fan's minimax principle, Bol. Un. Mat. Ital. IV Ser. 6, 1972, pp. 293-300.
5. I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland.
6. Ky Fan, A minimax inequality and applications, Inequalities III, Shishia ed., Academic Press (1972), pp. 103-113.
7. M. Schatzmann, Le système differentiel $\frac{d^{2} u}{d t^{2}}+\partial \phi(u) \ni f$ avec conditions initiales, Note CRAS Paris, t. 284 (1976), pp. 603-606.
[^1]
[^0]:    Received by the editors July 31, 1978.
    ${ }^{(1)}$ Research supported by NRC Grants \#67-9082 and 67-3990.
    ${ }^{(2)}$ J. P. Aubin, CEREMADE, University of Paris-Dauphine, 75775 Paris 16.
    ${ }^{(3)}$ I. Ekeland, Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1W5 Canada; and CEREMADE, University of Paris-Dauphine.

[^1]:    Centre de Recherches Mathematioues de la Decision Université Paris. Dauphine
    75775 Paris cedex 16
    France

