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THE HOPF-RINOW THEOREM IN INFINITE DIMENSION

IVAR EKELAND

I. Statement of results

We begin by reviewing some essential features. By a Rίemannίan manifold M
we understand a connected C°°-manifold modelled on some Hubert space H,
such that the tangent space TMP ~ H carries a scalar product < , }p which
is C°° in p e M and defines on TMP a norm || ||p equivalent to the original
norm of H.

Ifp and q are two points in M, a path from p to q is a continuous map
c: [0,1] -+ M such that c(0) = p and c(l) = q. The set of all piecewise C°°
paths from p to q will be denoted by <&%. If c e ^ is such a path, its
LJ(c) is the real number defined by

(1.1) L*(c)= Γ ||d(

Jo

The geodesic distance d on M is defined by

(1.2) d(p, q) = inf {L|(c) | c € if|} , V/7, g e M .

It is compatible with the manifold topology of M. Any path c <= ̂  such that
^(i7? #) = ^?(c) a n ( i t n e speed || c ||c is constant will be called a minimal geodesic;
it must be C°° and satisfy the equation (where V denotes the Levi-Civita con-
nection)

(1.3) Γ i ( t )c(0 = 0 ,

which means that c\t) is obtained from c(0) e TMP by parallel translation along
c. Conversely, any solution c of (1.3) is called a geodesic. The manifold M will
often be assumed to be complete for the metric d; this will imply that solutions
of (1.3) are defined for all t e R, i.e., that geodesies can be indefinitely extended.

Throughout this paper, for δ > 0 and p £ M, we shall use the following no-
tations :

(1.4) B'p = {ξ e TMp\\\ξ\\p < δ } , Ss

p = {ξ 6 TMP\ \\ξ \\p = δ} ,
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(1.5) Λ v = {m eM\d(p, m)<δ}, Sf*v = {m tM\d(p, m) = δ} .

Whenever the solution of (1.3) with the initial condition c(0) = ξe TMP

exists up to t = 1, we set expp ξ = c(l), and call expp the exponential map. If
the Riemannian manifold M is complete, expp £ is defined for all ξ e ΓMP.
Even if it is not, by the usual theorems on differential equations (e.g., [5, Th.
IV. 1]), there is a neighborhood °U of (0, p) in TM such that the map (?, m) —•
€xpm ξ is well-defined and C°° on <8r. Now consider the map (ξ, m) -• (expTO f, m)
from % to M X M. Its tangent map at (0, p) is easily seen to be an isomor-
phism, so that we can apply the implicit function theorem. It follows that we
can find δι > 0 with the property that, for all δ e ]0, 3J, there exists an η > 0
such that, whenever m e ^ j , we have the inclusion J ^ Z) ^ j , and the map
expm : Bh

m —> ̂ ^ is an isomorphism.

Note in particular that any two points in ^ j can be joined by a unique mini-
mal geodesic, depending smoothly on the endpoints; i.e., whenever q and m
belong to J j , there is a single ξ e ΓΛfg such that m = expρ ξ, and the map
(w,^) -> f is C°°.

We define Δ(p) as the supremum of all η > 0 with the property that any two
points in ^\ can be joined by a unique minimal geodesic, depending smoothly
on the end points. We have just shown that Δ(p) > 0. It follows from the defini-
tion that, for all δ € ]0, Δ(p)[, the exponential map is a C°° diffeomorphism of
Bδ

p onto &δ

p, and of Sδ

p onto ¥%\

(1.6) d(p, m) < Δ{p) ^ 3f: m = exP ί ) f and ||f | |p - </(/?, m) .

The Hopf-Rinow theorem [7] states that any two points on a complete finite-
dimensional Riemannian manifold can be joined by a minimal geodesic. This is
no longer true in the infinite-dimensional case as observed by Grossman [4] and
MacAlpin [6], who construct in Hubert space an infinite-dimensional ellipsoid,
the great axis points of which cannot be joined by a minimal geodesic.
Recently, Atkin [1] has modified the Grossman counterexample to construct a
complete infinite-dimensional Riemannian manifold M, and give two points
on M which cannot be joined by any geodesic at all. In other words, the ex-
ponential map need not be surjective in the infinite-dimensional case.

In a preceding paper [2], the author proved that any two points can be joined
by a path which is almost a minimal geodesic.

Theorem A. Let M be a complete {infinite-dimensional) Riemannian manifold,
and take two points p, q on M. For every ε > 0, there exist a C°° path cfromp
to q and a vector ξ e TMp such that

(1.7) Γ\\c(
Jo
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(1.8) C \\c(t) - ξ(t)\\lU) dt < ε ,
Jo

where ξ(t) G TMCU) is obtained from ζ by parallel translation along c.
In this paper, we shall prove that almost all points can be joined to a pre-

scribed endpoint by a unique minimal geodesic. Recall that a Gδ subset is a
countable intersection of open subsets.

Theorem B. Let M be a complete Riemannian manifold, and take a point
q on M. The set T of points p e M such that there exists a unique minimal
geodesic from p to q contains a dense Gδ.

Since M is a complete metric space, the Baire category theorem holds on M,
so that a dense Gδ subset of M is very large indeed for instance, a countable
intersection of dense Gδ subsets is still a dense Gδ subset, and hence nonempty.

Note that the "uniqueness" part is of interest even when M is finite dimen-
sional. In this case, M\T is the set of points p z M such that there exist at
least two minimizing geodesies from p to q, and is known as the cut locus of q.
Theorem B thus implies that the cut locus of any point in a complete finite-
dimensional Riemannian manifold is included in a countable union of closed
subsets with empty interior. This is a known fact, although the usual proof is
different, relying on transversality arguments applied to the exponential map
from q. In the infinite-dimensional case, however, even the "existence" part of
Theorem B is new, settling a question raised in [1] and [2].

The proofs of Theorem A and B rely on special versions of Theorem 1.1 of
[2], which is rephrased here for the reader's convenience (taking λ = Ve in the
original statement) :

Theorem 1.1. Let V be a complete metric space, and F: V'—> R a lower semi-
continuous function such that inf F Φ + oo. For every ε > 0, there exists some
point u e V such that

(1.9) F(u)< ε + mfF,

(1.10) F ( v ) > F(u) - ε d { ι ι , v ) , y v z V .

The proof of Theorem A relies on a "smooth, Riemannian" version of
Theorem 1.1, which was ([2])

Theorem A7. Let M be a complete Riemannian manifold, and f:M—>R a
nonnegatίve C1 function. Then for every ε > 0, there exists some point p e M such
that

(1.11) f(p)< ε +inff,

(1.12)

Similarly, the proof of Theorem B will rely on a "local, Riemannian" ver-
sion of Theorem 1.1. In [3], such a result was proved in the framework of
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Banach spaces with differentiable norms, and it is of course no trouble at all to
restate it in framework of Riemannian manifolds. We begin by a definition:

Definition 1.2. Let M be a Riemannian manifold, and / a real-valued func-
tion on M. We shall say that / is locally ε-supported at p e M iff there exist an
open neighborhood °ll of p and a C°° function g\%-^R such that g(p) = 0
and

(1.13) /(m) - /(/?) > g(m) - εd(m. p) , ym e φ .

Taking the local chart defined by the exponential map, we get the following
characterization.

Proposition 1.3. Iffίs locally ε-supported at p e M, for every εf > ε there
exist rf > 0 and ζ/ e TMp such that

(1.14) /(exp, ξ) -f(p) - <£, ζ % > - ε ' ||f||p , V? € itf .

Conversely, if formula (1.14) /zo/Λ with εf = ε, then f is locally ε-supported at p.
Proof Let us first assume formula (1.14) holds with εf = ε, for some rf —

Ύ] > 0 and some ζ' = ζ e ΓMP. We can always assume that η < A(p), so that
expp1 is a well-defined C°° map from fflv onto ^ , and formula (1.6) holds.
Writing all this into (1.14), we get

(1.15) f(m) - f(p) - (exp; 1 m, ζ}p > -εd(p, m) , ym e Λ; ,

which coincides with formula (1.13) if we define g: @&\ —> i? by

(1.16) g(m) = (exp;1™, ζ>p .

There remains to prove the first part of Proposition 1.3. Assume condition
(1.13) is satisfied, and let εf > ε be given. Choose η e ] e 0, Δ(p)[ so small that
J J C ^ . Taking formula (1.6) into account, we rewrite (1.13) as

(1.17) /(expp ξ) - f(p) > g(expp ξ) - ε \\ξ \\p , Vf 6 5 | .

But the function g o expp: 5^ -> i? is differentiable at zero, so that there exist
ηr e ]0, η[ and ζ' e TMP with (recall that ^(/?) = 0)

(1.18) Hfll, < ηf => |^(expp f) - <f, ζ % l < (^ ~ e)||f ||P

Formulas (1.17) and (1.18) together yield (1.14). q.e.d.
It is clear from the definition that if / is Frechet-differentiable at p, then

both/and —/ are locally ε-supported at p for every ε > 0. The converse is
proved in [3]. So Definition 1.2 can be looked upon as a very weak differenti-
ability property. Its main interest is that it holds for all points of a dense (not
Gδ) subset of M:

Theorem B'. Let M be a Riemannian manifold, and fa lower semi-continuous
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function on M. For every ε > 0, the set of all points p € M at which f is locally
ε-supported is dense in M.

Proof. Let there be given a point q^M and a neighborhood ψ* of q. We
have to find some point/? € ΊV where / i s locally ε-supported.

Choose δ e ]0, Δ(q)[ so small that B\<ZLiΓ and/ i s bounded from below on
8&\ (because of the lower semi-continuity):

(1.19) i n f { / ( m ) | m e ^ } ^ - «> .

By Lemma 1.4 below, we can assume that the closure JF* is complete in the
induced ^/-metric.

Define a function ψ: <%δ

q-+R by

(1.20)

Clearly, ψ is lower semi-continuous on i%q and smooth on &\. We now set
φ = ψ + / This is a lower semi-continuous function, bounded from below, on
the complete metric space M\. By Theorem 1.1, there is some point/? e 88\ such
that

(1.21) φ(p) < inf {φ(m)\m e & q} + ε ,

(1.22) φ(m) > φ(p) - εd(m, p) , ym 6 ̂  .

By formula (1.21), φ(p) is finite, so p 6 J J C f . Writing φ = ψ + / into
formula (1.22), we get

(1.23) f(m) - /(/?) > ψ(p) - ψ(m) - εd(m9 /?) , ym e &q .

But this is exactly Definition 1.3, with g(m) = ψ(/?) — ψ(m), so / i s locally
ε-supported at p, and the proof is complete, q.e.d.

Note that we did not assume the Riemannian manifold M to be complete.
This is because of

Lemma 1.4. Let M be a Riemannian manifold. Then every point p e M has
a neighborhood which is complete in the induced d-metric.

Proof Choose δ <z ]0, Δ{p)[ so small that all the maps Tq exp"1 are norm-
bounded in ^(TMq, TMP) by some uniform constant k when q 6 0$δ

p. Take
γ e ]0, <5(1 + k)'1^ We claim that <%v is complete.

Let us first note that, for any two points m and q in <%r

p, we have, travelling
along the minimal geodesies from m to p and from p to q,

(1.24) d(m, q) < d(m,p) + d(p, q) < 2γ .

Let us now take a path c e ^ which is not contained in J ^ : Denoting by σ
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and τ the first and last moments in ]0, 1[ when d(p, c(t)) > δ, we have the in-
equality:

(1.25) L*Jc) > £ ||d(OIU dt + £ ||c(O||c(ί) dr .

Setting ξ(t) = exp;1 c(t) e Bδ

p for 0 < t < a and τ < t < 1, we get

(1.26)

> k-\\\ξ(σ)\\p — ||f(0)||p) > k~\δ — γ) ,

and similarly,

(1.27)

Writing formulas (1.26) and (1.27) into (1.25) yields L^c) > 2k~\δ - γ).
Taking into account the assumption δ > (1 + k)γ we finally get

(1.28) Iβjc) > 2γ .

It follows that, whenever m and q belong to <%r

p9 any path c <= ^q

m with length
< 2γ must be contained in 31 v. Hence

(1.29) d{m, q) = inf {Lie)\ce^m, c(t) e @*p9 Vt e [0, 1]} .

Setting ξ(t) = exp;1 c(t) e Bδ

p9 we get

(1.30) Lie) > k~ι Γ | |f(OL dt > k~λ | |f(l) - f(O)|L .

Jo

Writing this into formula (1.29) yields

(1.31) dim, q) > k~ι Hexp;1 m - exp;1 q\\p , vm9qs&p.

It follows from this estimation that if qn, n e TV, is a Cauchy sequence in &r,
then exp"1 qn will be a Cauchy sequence in Bp9 and hence will converge to some
ξ € Br

p, so that qn will converge to expp ξ e U8T

P. Hence ^ is complete, and so
is the proof.

II. Proof of Theorem B

From now on, we are given a complete Riemannian manifold M and some
point q e M. We shall denote by dq the function m —> J(#, m) on M.

For any />=£?, we set Dip) = inf{J(p)9 diq,p)} > 0. For any δ <= ]0, D(p)[
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and any path c € #J, we denote by Tp(c) the set of all moments when c crosses

(2.1) T'p(c) = { t e [

With any a > 0, we associate the nonempty closed subset Cp(a) of Sp defined
by

(2.2) C'p(a) = {c(t) I c e if , LJ(c) < </(/>, </) + α, ί € Tfc)} .

Recall that the diameter of Cp(a), denoted by diam C*(αr), is the supremum
of the distance between two points in Cp(a).

The proof of Theorem B goes through five lemmas.

Lemma 2.1. Assume dq is locally ε-supported at p € M\{q) for some ε > 0.

Then, for any θ > We,

(2.3) lη e ]0, />(/?)[: V5 e ]0,2y[, 3α > 0: diam Cδ

p(a) < θδ .

Proof Take εr > ε and β > 0 so small that

(2.4) 0 > 4(ε' + /3/2)1'2 .

By Proposition 1.3 there exist η 6 ]0, D{p)[ and ζ e ΓMP such that

(2.5) || f II, < η => rfte, exp, f) > rffep) + <f, ζ ) , - ε' ||f ||p .

A first consequence of this is as follows. Applying the triangle inequality,

(2.6) d(q, expp ξ) < d(q,p) + d(p, expp ξ) ,

and taking formula (1.6) into account, we get

which means that

(2.8) | | C I | p < l + e ' .

We now take δ e ]0, η[, any path c e^q

p with L(c) < d(q, p) + j83, and any
•s-e ΓjJ(c). It follows from the definitions that

(2.9) d(q, c(s)) < L(c) - Γ | |c(0||C( t, dt < d(q,p) + βδ - d(p9 c(s)) .
Jo

Writing this inequality into formula (2.5), and setting ξ(s) = exp"1 φ ) e S^

we get
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(2.10) - ( 1 - eOHfωilp + βδ>

Dividing by δ throughout, this becomes

Taking formula (2.8) into account, we get

(2.12) < - C / l i α , ξ(s)/δ>P > (1 " e' - β)(l + ε')"1

As both — ζ/||ζ| | and ξ(s)/δ are unit vectors, this implies that

(2.13) \\ξ(s)/δ + ζ/KUl < 2(26' + β)(l + ε'Γ1 .

If cf <= <g% is any other path with L(c') < d(p, q) + βδ9 and if s' <= Γ^c'), we
also will have, setting ξ'(s') = exp"1 c'Cs'),

(2.14) | | f^0/« + C/llClipIIJ < 2(2e' + /3)(1 + ε')"1 .

Comparing formulas (2.13) and (2.14), we get

(2.15) \\ξ(s) - £'(jθ||p < 2V

AT(2ε/ + β)^(l + εθ"1 / 2^ .

Taking inequality (2.4) into account, this becomes

(2.16) \\ξ(s) - ξ'(s')\\P < M >

which is the desired result, since ξ(s) and ξ'(s') are arbitrary points in Cδ

p(βη).
q.e.d.

We now introduce the subset Rθ of M defined by

(2.17) R9 = {p φ q 13d € ]0, i)(/?)[, 3^ > 0: diam Q(α) < θδ) .

Lemma 2.1 implies that if dq is ε-supported at/? Φ q, then/? belongs to Rθ for
all ^ > Ayβ. More precisely,

Lemma 2.2. Assume dq is locally ε-supported at p e M\{q} for some ε > 0.
Then p belongs to the interior of Rθ for all θ > 4^/ε.

Proof Choose k e ]1, 2[ and 0' > 4yε such that k\2 - k)~Ψ = tf. Now
take any ^ € ]0, D(p)[. It follows from the definition of D(p) that the map ψm

= exp"1 o expp is well-defined from B£ into ΓMm, for all m e ^ . Note that
ψm(ξ) is C°° in (m9 ξ) and that <pp is the identity on Bδ

p\ It follows that δ2 e
]0, dj can be found so that

(2.18) | | f ||p < δ2 and d(m,p) <δ2^ k~ι < \\Tζψm\\ < k .

Set d3 = δ2/3. For any m e &δ* and any two points ξ and ξ' in Bδ

v\ the inverse
image by ψm of the line segment between ψm{ξ) and <pn(ξ0 lies entirely within
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BlH, so that estimation (2.18) holds all along. It follows easily that whenever m,
expp ξ and expp £' belong to ffip\ we have the inequality:

(2.19) k-1 ||f - ξ% < \\Ψm(ξ) - rf)IU <k\\ς- Π l p .

By Lemma 2.1, we can choose 5 e ]0, 53[ and a > 0 such that

(2.20) diam C3

p

δ/i(a) < 33074 .

Set η = inf {5/4, a/3, 35(1 - k'ι)IA). We claim that ^ c 7?,.
First of all, we notice that J ^ 7 4 C 38*m c J ^ 7 4 whenever w <= ^J,/4, by the tri-

angle inequality,. Since 55/4 < δx < £>(/?), a nY t w o points in &δ

m can be joined
by a minimal geodesic depending smoothly on the end points, so η < Z>(m) for
all m e ^J,/4.

Take any m € J'J, any path c € ^ such that Lq
m(c) < ί/(m, g) + α/3, and

any time s e Γ^(c). Set ξm = exp^1 c(5) e S^. We define a new path c e ^ ^ by

fc(2ί(l - 5) + 25 - 1) for J < t < 1 ,
(2.21) c(t) = \ ~ "

Clearly, c is obtained from c by cutting short between m and c^), so that
Lq

m(c) < Lq

m(c). We now go one step further to build a path c e ^q

p\ set μ =
exp"1 m, and define

<2.22, ίO^P
(expp 2ί^ for 0 < t < \ .

Clearly,

(2.23) L%c) = LqJc) + dim, p) < d(m, q) + ±a + </(ιw, p) .

Using the triangle inequality we get

(2.24) Lq(c) < d(p, q) + d(m, p) + ±a + rf(/w, p) < J(/7, ̂ ) + a .

Take σ € Tf/4(c), and set ζ p = exp;1 c(σ) e S3

p

δ/\ If c' ζtfq

mis another path
such that i 4 ( c θ < £/(/ιi, ̂ ) + α/3, we define f 'm e Si, c' e Vq

m, cf € «^, ζ; € Sf4

in the same way, and we still have Lq
p{cr) < <i(p, g) + a. It follows from formula

(2.20) that

(2.25) | | ζ , - ζ; | | p

Using estimation (2.18), this implies that

(2.26) \\φm(ζp) - φm(O\\m <
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T h e same est imation applied t o \\ζp\\p = 3<5/4 yields

(2.27) \\φm(ζp) - expi1 (p)\\m > 3δk^/4 ,

and since Hexp"1 (p)\\m = d(m,p), this yields

(2.28) IIMOIL > 3S(2&-1 - l)/4 ,

and likewise,

(2.29) \\φm(Q\\m > 3δ(2k~ί - l)/4.

It follows from the construction that

(2.30) ςn = δφw(ζp)l\\φm(Zp)L ,

(2.31) ξ* = δφm(Q/\\φm(?p)\\m ,

and hence

(2.32) ||ξm - & | | m < δ \\φm(ζP) - φm(Q\Umf {φm(ζp), ψm{Q) .

Using inequalities (2.26) and (2.28), this yields

(2.33) \\ξm - ξ'm\\m < δk\2 - kyψ ,

which is the desired result, since ξm and ξ'm are two arbitrary points in C^aK
q.e.d.

Take p Φ q and δ e ]0, D(p)[. We shall say that a path c e ^v

q is geodesic
inside @δ

v if there exists ξ e ΓΛfp such that c(0 = expp /f for 0 < t < δ/\\ξ\\p.
We denote by R^ the set of points p z M\{q} such that there exists an increas-
ing sequence pn —• Z)(/?) with the following property: for any sequence cn e ^q

p

such that L|(cn) —> ί/(/?, r̂) and cTO is geodesic inside J^ n , the sequence
cn(0)l\\cn(0)\\p converges in S^. We first connect this up by proving that R^ Z>

Lemma 2.3. Assumep belongs to Rθ for every θ > 0. Then p belongs to R^.
Proof. By the assumption on /?, there exists a sequence δn in ]0, D{p)[ and

a decreasing sequence # n > 0 converging to zero such that

(2.34) diam C' (αw) < rΓιδn .

Let /?,, be an increasing sequence such that: δn < ρn < £>(/?) and ôn -> Z>(/?).
Now let cn be any sequence in <&% such that Lq

p(cn) -• J(/7, ^) and cn is geodesic
inside ^ n . By readjusting the time parameter if necessary, we may assume that
there exists ξn e S^ with cn(t) = expp tξn for 0 < t < pn, so that ξn =
cn(0)/\\cn(0)\\p. Note that whenever k > n, we have δn < pn < pk9 so that ck

intersects £fδ

n

n at expp δnξk.
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For any prescribed n, there is an N > n such that Lη

p(ck) < d(p, q) + an for
all k > N. Taking any / > k > N, we find by the preceding remark that both
δnξt and δnξk belong to cδ/(an). By formula (2.34), this boils down to

(2.35) v/i, lN:yl>k>N, \\ξk - ξL\\p < n~ι .

so that the sequence ξn is Cauchy, and hence converges in S*. q.e.d.
Take p e M\{q} and δ e ]0, D(p)[. Recall that the distance from q to ̂ J is

defined as

(2.36) d(q, ̂ δ

p) = inf {d(q, m) \ m e 9>δ

p) .

It follows easily from the definitions that

(2.37) d(q,Sra

p) = d(q9p)-δ.

A nearest point to q in £fv is a point m e <?δ

v such that J(^, m) = d(q, Sfδ

p).
Such points do not always exist in the infinite-dimensional case, and even in
the finite-dimensional case they need not be unique. So one of the main inter-
ests of R^ lies in the following.

Lemma 2.4. Assume p belongs to R^. Then there exists μp e Sp such that for
all δ 6 ]0, D(p)[9 expp δμp is a nearest point to q in $f*v. This point μp is the com-
mon limit of all sequences cn{ϋ)j\\cn{ϋ)\\v for cn € ̂ q

p geodesic inside &p
p

n and
Ll(cn)->d(p,q).

Proof Take a sequence cn in %>q
p such that cn is geodesic inside 3$p

n and
Lq

p(cn) - • d(q,p). We know that cn(0)/||cn(0)||p converges to some f in Sp. Now
this limit f cannot depend on the particular sequence chosen. For if c'n were
another, with ^(0)/||c^(0)||p converging to f, we could define a third sequence
c'n' with the same properties by setting alternatively c" = cn if n is odd and
c" = c'n\ΐ n is even, and C(0)/|| C(0) | | p would still have to converge since
p e R^. So ξ = ξ\ and we denote by μp this common value.

Let cn be any sequence in #« such that Lq

p(cn) -> d(p, q). Take sn € Tζn(cn),
and set cn(sn) = expp pnξn, with ξn e S%. We replace cn by the shortcut cn con-
structed as follows:

(2.38) .() \
[expp 2^ w f n . for 0

We have Lq(cn) > L%cn) > d(p, q\ so Lq

p(cn) must converge to d(p, q).
Moreover, cn obviously is geodesic inside J*£\ If follows that the sequence ξn

= 4(0)/| |4(0)| | converges to μp in S$.
Now take any δ e ]0, D(p)[. There is an N so large that pn > δ whenever n

> N; then cn intersects Sfp at expp δξn9 which converges to expp δμp. We have
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(2.39) d(q9 expp δξn) < L%cn) - δ .

Letting n go to infinity yields

(2.40) d(q, expp δμp) < d(p, q) - δ .

By formula (2.37), this means precisely that expp δμp is a nearest point to q in
9>%. q.e.d.

Another useful property of R^ is the following.
Lemma 2.5. Assume p belongs to R^. Then so does expp δμp, whenever δ e

Proof. Set m = expp δμp, with 0 < δ < D(p); we have to prove that m e
7 C Note first that D(m) > D(p) - δ; indeed, whenever η < D(p) - δ, there
is some δ' < D(p) with fflm C 31 v\ so any two points in 38^—and hence in 3Sη

m

—can be joined by a unique miminal geodesic, depending smoothly on the end-
points. Let pn9 0 < pn < D{p), pn -> D(p), be the increasing sequence char-
acteristic of p e R^. By the preceding remark, it is possible to choose an increas-
ing sequence dn, 0 < σn < D(m), δn -> D(m), such that

(2.41) σ n > P n - δ , \fn e TV.

Let cn be a sequence in ^ such that I l ( c n ) —• d(m9 q) and cn is geodesic
inside ffi^. We can write, by readjusting the time parameter if necessary, cn(t)
= expm tζn for 0 < t < σn9 with | |ζn | |T O = 1. Now set m - expp D(p)μp e M.
We claim that the sequence cn(pn — δ) € M converges to m. From inequality
(2.41) it will follow that the sequence ζn converges in 5^, and Lemma 2.5 will
be proved.

Since ρn -» ^ ( ^ ) , we can choose N1 so large that pn> δ whenever n > Nl9

so that the sequence cn(pn — δ) is well-defined, starting at Nlt

Let ε > 0 be given. We have seen in Lemma 2.4 that m i s a nearest point to
q in Sf\. It follows from this and formula (2.37) that

(2.42) L*Jίcn) + δ-

Take sn e T^n(cn), and set ξn = p~ι exp;1 cn(sn). Define a new path cn

by

- sn) + 2^π ^ 1) for \ < t < 1 ,
(2.43) ^ ω

Let us do some elementary computations:

( 2 4 4 ) L%cn) < d(p, m) + d(m, cπ(sn)) + £ ||c,(i)||,..((, dt
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<δ+Γ \\cn(ΐ)\\cM dt + Γ | | 4 (0I
Jθ Jsn

It follows from this and formula (2.42) that Lq

v(cn) —> d(p, q). Moreover, cn is
clearly geodesic inside J*£\ Using Lemma 2.4, we conclude that the sequence
ξn converges to μp in S$. Recalling that pn -> D(p\ we see that cn(\) = expp pnξn

converges to m in M. Since cn(lβ) == cn(sw), we get

(2.45) d(m, cn(sn)) -• 0 .

We know that

(2.46) d(m, cn(sn)) > d(p, cn(sn)) - δ = pn - δ .

Hence ρn — δ < sn. Let us do some elementary computations again:

d(cn(sn), cn(pn - δ))

(2.47) < Γ~'\\έn(t)\Udt

= L"m{cn) - Γ~δ \\cn(ί)\U dt - Γ l|c,(OII«<(, dt.
JO J Sn

Using inequality (2.41) and the fact that cn is geodesic inside J^", we reduce
(2.47) to

(2.48) d(cn(sn\ cn(pn - δ)) < L«m{cn) - (Pn - δ) - d(q, cn(sn)) .

But cn ( O e Sfp

v

n\ using formula (2.37) yields

(2.49) d(q, cn(sn)) > d(q9 #»/) = d(q9p) - pn .

Writing this into formula (2.48), we get

(2.50) d(cn(sn), cn(pn - δ)) < LUcn) + δ - d(q, p) .

Letting n go to infinity, we have by formula (2.42)

(2.51) d(cn(sn), cn(pn -δ))-+0.

Adding (2.45) and (2.51) yields the desired result, q.e.d.
The hard part of the proof is over now, and the remainder is soft analysis.

For all n e N, define Ωn as the interior of Rι/n. By construction, Ωn is an open
subset of M. By Lemma 2.2, for any ε € ]0, l/16/z2[, it contains the set Tε of all
points p Φ q at which dq is ε-supported. By Theorem Br, the set Tε is dense in
M. So Ωn9 n ζ. N, is a sequence of open dense subsets of M. Since M is a com-
plete metric space, the Baire category theorem holds, and the intersection
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R = p | n Qn is a dense Gδ subset of M. Note that Rθ C 7^,, whenever 0 < θ
< 0', so that R C Π* ^ It follows by Lemma 2.3 that i? <z i C We claim
that from every p z Rm there is a single minimal geodesic to q.

The proof now mimics the classical argument for Hopf-Rinow in the finite-
dimensional case (see [7] for instance). Take any/? e R^ and set p — d(p, q).
Take δ e ]0, D(p)[. By Lemma 2.4, there is in Sfδ

p a nearest point expp δμp to q.
Define a C°° path c by c (/) = expp tpμp. We claim that, for all t <= ]0, 1[,

(2.52) c(t) e R^ and d(q, c(t)) = p(\ - t) .

Letting t —> 1, since <ίg is continuous, this yields J(<7, c{\)) = 0, so c(l) = q
and c is actually a geodesic from/? to q. By construction, its length is p = d(/?, ^),
so c is minimal. If cf € ^ is another minimal geodesic, then the constant se-
quence in ^l defined by cn = cf for all n satisfies Lq

p(cn) -> d(p, q) and certainly
is geodesic inside @p

p
n. By Lemma 2.4, c^O)/^ has to be μp, so c7 coincides with c.

So we are left with proving formula (2.52) for all t in [0, 1[. By Lemmas 2.4
and 2.5, used in conjunction with formula (2.37), it is true for all t in [0, D(p)[.
Let us denote by t the supremum of all s e ]0, 1[ such that formula (2.52) holds
on [0, s[, and assume that t < 1. We will derive a contradiction. Indeed, set p
= c(t), and take any δ <= ]0, D(p)[. We already know that t > D(p) > 0. Since
c is smooth, there exists a time s e ]0, ί[ such that J(β, C(Λ )) < δ/4. Set c(.s) = m.

Now, since δ < i)(β), any two points in 3§δ

p can be joined by a unique mini-
mal geodesic, depending smoothly on the endpoints. By the triangle inequality,
J ^ 2 C 3Sδ

pi so that δβ < D(m). By assumption, formula (2.52) is satisfied on
[0, t). It follows that d(q, m) = p(l — s), and m <= /?«,. By Lemma 2.4, expm δμmβ
is a nearest point to q in ^ ^ 2 , and we have, by formula (2.37),

(2.53) d(q, expm δμjl) = p(l - s) - δβ .

By the triangle inequality,

(2.54) d(p, expm δμjl) > d(p, q) - d(q, expm δμJ2) = ps + δβ .

Set ps(ps + δβ)~ι = a. We define a path c' from p to expm δμmβ by

expp [tpsμja] for 0 < t < a ,
( 2 . 5 5 ) c ( 0 ^ χ p ^ ) δ J ( ι a)] fora<t<l.

The length of c' is precisely ps + δβ, and | |c ' | | c is constant. It follows by
inequality (2.54) that c' is a minimizing geodesic from p to expm fy/TO/2. Since
c'{f) = c(ts/ά) for 0 < t < a, and c also is a geodesic, we get

(2.55) c\t) = c(ts/a) for 0 < t < 1 .

It follows that
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(2.56) c(t) = expm Γ fj ~ s)δμm] for s < t < s/a .
I2s(l —a) Λ

By Lemmas 2.4 and 2.5, always taking equality (2.37) into account, formula

(2.52) holds for s < t < s/a. But s/a = s + ±δ/p. Since d(c(ϊ), c(s)) < δ/4,
and the speed along c has constant magnitude p, we have t — s < £δ//o. So

/ — s < 5/4. Hence t < ά'/α, the desired contradiction.
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