
Unsp ecified Journal
Volum e 00, Number 0, Pages 000—000
S ????-????(XX)0000-0

HAMILTON-JACOBI ON THE SYMPLECTIC GROUP

IVAR EKELAND

Dedicated to Jean Mawhin and his students

Abstract. The classical Hamilton-Jacobi-Bellman theory in the calculus of
variations, which is associated with the Bolza problem, is extended to other
kinds of boundary-value problems, such as periodicity. By using the dual
action principle of Clarke and earlier results by the author, one can establish
the analogue of HJB on the symplectic group and show that it has a solution

1. Introduction

It is great pleasure to do mathematics, and I have enjoyed it for more than
fifty years now. Part of that pleasure comes from meeting other mathematicians,
and there are very few, if any, that I have enjoyed more than Jean Mawhin. His
sense of humour of course is part of the enjoyment, but so are his mathematics,
always deeply rooted in classical problems, and bringing to them modern methods
and deceptively simple solutions. He belongs to a long and distinguished Belgian
tradition of the calculus of variations, starting with de la Vallée-Poussin and de
Donder [2], continued by Jean himself and his students, such as Michel Willem.
I wish to point out that their teaching is no less remarkable than their research.
The treatise of de la Vallée-Poussin, in its second edition [6], was the first one to
introduce the Lebesgue integral, and Jean’s treatise [4] , is no less revolutionary
and a pleasure to read. I cannot resist the opportunity of commending Michel’s
expository talent as well, in [8], [7], [9]: short books, which contain an amazing
amount of well-digested material.
All these people have been a great inspiration to me, and I dedicate this work

to them. I will try to fit into the same tradition by describing a research pro-
gram which starts in the classical calculus of variations and ends in the symplectic
group. I have long asked myself whether the Hamilton-Jacobi equation, nowadays
known as Hamilton-Jacobi-Bellman because of the latter’s important contribution,
and shortened to HJB, can be extended to other settings, for instance to periodic
boundary conditions. It turns out that they can. I will describe how to proceed, and
leave the detailed study of the equation to further studies, preferably by younger
people.
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2. The classical situation

Let me first summarize the classical theory (see [1] or [7]). Consider the classical
Bolza problem in the one-dimensional calculus of variations:

inf

∫ T

0

f

(
q,
dq

dt

)
dt(2.1)

q (0) = q0, q (T ) = q1,
dq

dt
∈ L1(2.2)

where T > 0, q0 and q1 ∈ Rn are prescribed. Suppose f (q, χ) is continuously
differentiable, convex wrt χ and coercive, meaning that we have f (q, χ) ≥ Φ (|χ|)
where Φ is bounded from below and Φ (t) t−1 → ∞ when t → ∞. Then it can
be shown that the minimizer q exists, and that

∣∣∣dqdt ∣∣∣ ∈ L∞, so that it satisfies the
Euler-Lagrange equation:

d

dt

∂f

∂χ
=
∂f

∂q

Since the function f has been assumed to be convex wrt the second variable, it
has a Legendre transform:

(2.3) H (p, q) = max {pχ− f (q, χ)}
and it is well-known that the Euler-Lagrange equation (2.1), which is a second-order
equation in Rn, can be rewritten as a Hamiltonian system, which is a first-order
equation in R2n :

dp

dt
= −∂H

∂q
(2.4)

dq

dt
=
∂H

∂p
(2.5)

If now we fix q0 and introduce the so-called value function V (q1, T ) associated
with the optimization problem (2.1) (2.2), namely:

(2.6) V (q1, T ) := inf

{∫ T

0

f

(
q,
dq

dt

)
dt | q (0) = q0, q (T ) = q1

}
we find that it satisfies a first-order PDE on Rn × [0, T ]:

(2.7)
∂V

∂T
+H

(
q1,

∂V

∂q1

)
= 0

This is the HJB equation. We have approached it through the value function,
but the same equation can also be obtained by trying to find a change of variable
which would simplify the problem (i.e. generating functions), and this is how it
appears in the work of Hamilton and Jacobi.
Note that q0 and q1 play symmetric roles, so that a similar equation exists for

q0.

3. Other boundary conditions

From now on we shall simplify notations by writing x = (p, q) and:

J =

(
0 −In
In 0

)
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It follows that the system (2.4), (2.5) can be rewritten compactly as dx
dt =

JH ′ (x).
Recall that a matrix M is symplectic if M∗JM = J . The group of symplectic

matrices in Rn × Rn will be denoted by Sp (n). It has dimension n (2n+ 1). It is
a compact Lie group, and the tangent space at I2n is given by:

(3.1) TI2nSp (n) = {m | m∗J + Jm = 0}
In other words, Jm is symmetric.
The Bolza problem is a natural one when f is coercive, for instance when

f (q, χ) = 1
2q
2 + 1

2χ
2. Note that in that case, by formula (2.3), we have H (p, q) =

1
2p
2 − 1

2q
2, which is neither convex nor coercive. For convex and coercive Hamilto-

nians, such as H (p, q) = 1
2p
2+ 1

2q
2, the natural one is to look for periodic solutions,

that is, to investigate the problem:

dx

dt
= JH ′ (x)

x (T ) = x (0)

This problem can be imbedded in a family of problems indexed by M ∈ Sp (n)

dx

dt
= JH ′ (x)(3.2)

x (T ) = Mx (0)(3.3)

Here M will play the role devoted to (q0, q1) in the Bolza problem: the value
function will be V (M,T ) instead of V (q0, q1, T ). Note that we cannot define it by
using the least action principle:

V (M,T ) = inf

{∫ T

0

[
1

2

(
J
dx

dt
, x

)
+H (x)

]
dt | x (T ) = Mx (0)

}
because the right-hand side takes the value +∞ (and would take the value −∞
if we tried to minimize). In fact, a solution to problem (3.2), (3.3) is neither a
minimizer nor a maximizer, but a critical point of the right-hand side. So we have
to define the value in another way, and for this reason we make some additional
assumptions on H

Definition 3.1. Suppose H : R2n → R is convex, with H (0) = 0. It is called
subquadratic near infinity if H (x) |x|−2 → 0 when |x| → ∞, and subquadratic
near 0 if H (x) |x|−2 →∞ when |x| → 0.

We use the results in [3] (see Chapter II.4, notably Proposition 6, Chapter III.3,
notably Corollary 6; see also [5])

Theorem 3.2. Suppose H is convex and subquadratic near 0, and consider the
problem:

inf

∫ T

0

[(
J
dy

dt
, y

)
+H∗

(
−J dy

dt

)]
dt(3.4)

y (T ) = My (0)(3.5)

This problem has a solution y (t) for any M ∈ Sp (n), and there is a constant
y0 ∈ R2n such that y (t) + y0 solves problem (3.2) (3.3). If in addition H is
subquadratic near 0, this solution is not constant.
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To understand the theorem, note that y (t) = 0 is always a solution. Note also
that, for any y (t), adding a constant y0 changes the value of the integral by

∫ T

0

(
J
dy

dt
, y0

)
dt = (J (y (T )− y (0)) , y0) = − (y (0) , (M∗ − I2n) y0)

IfM has 1 as an eigenvalue, and if y0 is an eigenvector, the right-hand side vanishes.
So the solution y (t) of (3.4) (3.5) is defined modulo a 1-eigenvector y0 of M , and
the latter can be chosen so that y (t) + y0 solves (3.2) (3.3).
We are now in a position to define the function V (M,T ) in a proper way:

(3.6) V (M,T ) = inf

{∫ T

0

[
1

2

(
J
dy

dt
, y

)
+H∗

(
−J dy

dt

)]
dt | y (T ) = My (0)

}

The right-hand side is the dual action functional. Note that setting y = 0
gives the value 0 to the integral, so that V (M,T ) < 0 for T > 0. The function
V : Sp (n) × [0, T ] → R is well-defined and does not vanish. Let us show that it
satisfies a PDE system of the first order.
For the sake of simplicity, assume that M does not have the eigenvalue 1. Set

u =
dx

dt

x (t) = x (0) +

∫ t

0

u (s) ds

The boundary condition x (T ) = Mx (0) becomes:

x (0) +

∫ T

0

udt = Mx (0)(3.7)

x (0) = (M − I2n)
−1
∫ T

0

udt(3.8)

Set Πu (t) :=
∫ t
0
u (s) ds. We have:

(3.9) x (t) = x (0) +

∫ t

0

u (s) ds = (M − I2n)
−1

Πu (T ) + Πu (t)

Writing this into the right-hand side of (3.6), we get:

(3.10) V (M,T ) = inf
u

∫ T

0

[
1

2

(
Ju, (M − I2n)

−1
Πu (T ) + Πu (t)

)
+H∗ (−Ju)

]
dt

Let us now compute the partial derivatives wrt M and to T .
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If m ∈ TI2nSp (n), we have mM ∈ TMSp (n). Hence, for every m satisfying (3.1),
we have, by the envelope theorem:

∂V

∂M
(M,T )mM = −

∫ T

0

1

2

(
Ju, (M − I2n)

−1
mM (M − I2n)

−1
Πu (T )

)
dt

= −
∫ T

0

1

2

(
Ju, (M − I2n)

−1
mMx (0)

)
dt

= −1

2

(∫ T

0

Judt, (M − I2n)
−1
mx (T )

)

= −1

2

(
J (M − I2n)x (0) , (M − I2n)

−1
mx (T )

)
= −1

2

(
(M∗ − I2n)

−1
J (M − I2n)x (0) ,mx (T )

)
where u (t) is a minimizer in (3.10) and x (t) is given by formula (3.9).

Lemma 3.3. If M is symplectic, we have:

(M∗ − I2n)
−1
J (M − I2n) = −JM

Proof. Multiply both sides by M∗ − I2n. We get:

JM − J = −M∗JM + JM

which is true since M∗JM = J �

Finally, we find:

(3.11)
∂V

∂M
(M,T )mM =

1

2
(JMx (0) ,mx (T )) =

1

2
(Jx (T ) ,mx (T ))

To find the partial derivative wrt T , we rewrite the right-hand side of (3.10) as
follows: ∫ 1

0

[
1

2

1

T

(
J
dx

dt
, x

)
+H∗

(
−J 1

T

dx

dt

)]
Tdt

The envelope theorem then yields:

∂V

∂T
(M,T ) =

∫ 1

0

[
H∗
(
−J 1

T

dx

dt

)
+

(
∇H∗

(
−J 1

T

dx

dt

)
, J

1

T 2
dx

dt

)
T

]
dt

By the Fenchel identity, H (x) = (∇H∗ (y) , y)−H∗ (y) for x = ∇H∗ (y), so the
integrand is just:

−H
(
∇H∗

(
−J 1

T

dx

dt

))
Inverting the equation dx

dt = JH ′ (x), we have x = ∇H∗
(
−J dxdt

)
. Finally, we get

∂V

∂T
(M,T ) = −

∫ T

0

H (x)
dt

T

Bearing in mind that H (x (t)) is constant along trajectories of the Hamiltonian
system, we get:

(3.12)
∂V

∂T
(M,T ) = −H (x (0)) = −H (x (T ))
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4. HJB

We have found the partial derivatives of V (M,T ) at any point (M,T ) ∈ Sp (n)×
R+ such that M does not have the eigenvalue 1. If u (t) is the corresponding
minimizer in (3.1), and x (t) is the corresponding solution of (3.2) (3.3) given by
formula (3.8), so that dxdt = u, we have:

∂V

∂M
(M,T )mM =

1

2
(Jx (T ) ,mx (T )) ∀m ∈ TI2nSp (n)(4.1)

∂V

∂T
(M,T ) = −H (x (T ))(4.2)

This is the HJB equation we are seeking. Indeed, we can invert the first equation
to express x (T ) in terms of ∂V

∂M , say x (T ) = ϕ
(
∂V
∂M

)
and write the result in the

second, getting ∂V
∂T = −H ◦ϕ

(
∂V
∂M

)
. Note that equation (4.1) is in reality a system

of 2n2 + n equation (one for each m ∈ TI2nSp (n)) in 2n variables, so that it is
overdetermined. However, by the preceding analysis, we have shown that formula
(3.10) gives a solution. Let us summarize:

Theorem 4.1. Suppose H : R2n → R is convex, H (0) = 0, and subquadratic near
0 and infinity. Then the function V : Sp(n)× [0, T ]→ R defined by formula (3.10)
is negative for T > 0. IfM does not have 1 as an eigenvalue, and V is differentiable
at (M,T ), the HJB relations (4.1) and (4.2)

Note that there are two terms in the HJB system: the first one, (4.1), does not
depend on H, which appears only in the second, (4.2).
Let us give an example. Take n = 1, so that M is symplectic if and only if it

preserves volume:

M =

(
a b
c d

)
∈ Sp(2)⇐⇒ ad− bc = 1

m =

(
α β
γ δ

)
∈ TI2nSp(2)⇐⇒ α+ δ = 0

Then, for ξ = (ξ1, ξ2):

1

2
(Jξ,mξ) = γξ21 − βξ22

Let us now take local coordinates in Sp(2). If c 6= 0, for instance, we can take
a, b, c and set d = (ab− 1) c−1. Then V (M,T ) becomes V (a, b, c, T ) and:

∂V

∂M
mM =

∂V

∂a
(αa+ βc) +

∂V

∂b
(αb+ βd) +

∂V

∂c
(γa+ δc)

= α

(
a
∂V

∂a
+ b

∂V

∂b

)
+ β

(
c
∂V

∂a
+ d

∂V

∂b

)
+ γ

(
a
∂V

∂c

)
+ δ

(
c
∂V

∂c

)
= α

(
a
∂V

∂a
+ b

∂V

∂b
− c∂V

∂c

)
+ β

(
c
∂V

∂a
+
ab− 1

c

∂V

∂b

)
+ γ

(
a
∂V

∂c

)
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Equation (4.1) becomes:

a
∂V

∂a
+ b

∂V

∂b
− c∂V

∂c
= 0(4.3)

c
∂V

∂a
+
ab− 1

c

∂V

∂b
= −x2 (T )

2(4.4)

a
∂V

∂c
= x1 (T )

2(4.5)

We can derive x1 (T ) and x2 (T ) from the last two equations, and plug into
second HJB relation (4.2), getting:

∂V

∂T
= −H

(
±
√
a
∂V

∂c
,±
√

1− ab
c

∂V

∂b
− c∂V

∂a

)
We still have to satisfy equation (4.3). Finally, we get an overdetermined system

for V (a, b, c, T ) :

0 = a
∂V

∂a
+ b

∂V

∂b
− c∂V

∂c

∂V

∂T
= −H

(
±
√
a
∂V

∂c
,±
√

1− ab
c

∂V

∂b
− c∂V

∂a

)
The sign indeterminacy in the second equation arises also in the Bolza problem.

For instance, it is found in the classical eikonal equation.
If one takes H (x) = |x|α with 0 < α < 2, which is convex and subquadratic near

0 and infinity, the system becomes:

0 = a
∂V

∂a
+ b

∂V

∂b
− c∂V

∂c

0 =
∂V

∂T
+

∣∣∣∣a∂V∂c +
1− ab
c

∂V

∂b
− c∂V

∂a

∣∣∣∣α2
a
∂V

∂c
> 0,

1− ab
c

∂V

∂b
− c∂V

∂a
> 0

and the problem (3.2) (3.3) can be solved explicitly, yielding a solution to this
system

5. Conclusion

This aim of this paper is to open up a problem. There are many questions to be
answered:

(1) We have investigated only points where M does not have the eigenvalue 1
and V (M,T ) is differentiable. What happens at other points ? Is it true
that the value function V (M,T ) provides a viscosity solution of the system
(4.1) (4.2) over Sp(n)×R+?

(2) What is the geometry of the solution ? What is the meaning of the in-
determinacy which arises when solving (4.1), and which appears as ± in
the example ? Does it mean that the graph of the value function can be
extended to a sheet which covers Sp(n)×R+ several times, in the manner
of a Riemann surface ?
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(3) What happens when the Hamiltonian H is no longer subquadratic ? If it is
superquadratic, for instance, the dual action principle still holds, and can be
used to prove the existence of a solution to the problem (3.2) (3.3), but the
minimum on the right-hand side of (3.6) is not attained. The solution is a
saddle-point, and defines a critical value rather than a minimum. However,
the system (4.1) (4.2) is still valid. Does it have a solution, and is it provided
by the analogue of formula (3.10), where one seeks a critical value of the
right-hand side ?

(4) Finally, what about general Hamiltonians H, assuming simply that H (0) =
0 and that H (x) → ∞ when |x| → ∞, so that energy surfaces H (x) = h
are bounded, and the boundary-value problem (3.2) (3.3) is reasonable ?
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