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1 The variational problem.

In this paper we consider a variational problem arising in mathematical finance
(see [1]). It concerns functions defined in the open positive cone Rn

+ in Rn. The
problem is to minimize a positive definite quadratic form in derivatives up to
order n. The unusual feature here is that not all derivatives up to order n are
involved, only special ones. The principal result of the paper, Theorem 1, is a
proof of smoothness of the solution in the closure of Rn

+, including the origin.
We begin with notation For any multi-index α = (α1, ..., αn), we denote:

Dαu = ∂α1
x1

∂α2
x2

...∂αn
xn

u

where ∂αi
xi

= ∂αi/∂xi.
Set:

An = {α = (α1, ..., αn) | ∀i, αi = 0 or 1}

We will consider only multi-indices α in An, and the corresponding deriva-
tives Dαu. We shall set:

D̃nu = {Dαu | α ∈ An}

For instance, we have:

• for n = 1, D̃1u = {u, ∂u} .

• for n = 2, D̃2u = {u, ∂xu, ∂yu, ∂x∂yu} .
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• for n = 3, D̃3u = {u, ∂xu, ∂yu, ∂zu, ∂x∂yu, ∂x∂zu, ∂y∂zu, ∂x∂y∂zu} .

The highest-order derivative in D̃nu is ∂1∂2...∂nu. Denote by D̃n
n−1 the set

of all other derivatives:

D̃n
n−1u = {Dαu | α ∈ An, α 6= (1, ..., 1)}

Here is the problem coming from [1]. Given a symmetric, positive definite
(2n − 1)× (2n − 1) matrix Q, find a function u : Rn

+ → R which minimizes:

J (u) :=
∫ ∫

...

∫
Rn

+

[
(∂x1∂x2 ...∂xn

u)2 +
(
QD̃n

n−1u, D̃n
n−1u

)]
dx1dx2...dxn

(1)
subject to:

u (0) = 1

In the paper [1] it is proved that there is a unique solution. The proof
consists of introducing the quadratic form:

Hn (u) :=
∑
α∈A

‖Dαu‖2L2

and the Hilbert space En consisting of all functions u such that Hn (u) < ∞,
with the norm Hn (u)1/2. The problem then becomes:

(P)
{

inf J (u)
u ∈ En, u (0) = 1

It is easily seen that all functions in En are continuous and go to zero at
infinity. In fact, the injection En → C0

(
Rn

+

)
is continuous, so that the boundary

condition u (0) = 1 defines an affine linear subset of En with codimension 1.
Since J is a continuous, positive definite quadratic form on En it attains its
minimum at a unique point, which is the only solution of the problem.

If u is that minimum, it must satisfy the usual optimality conditions, namely:∫
Rn

+

[
(∂x1∂x2 ...∂xn

u) (∂x1∂x2 ...∂xn
ϕ) +

(
QD̃n

n−1u, D̃n
n−1ϕ

)]
dx = 0 (2)

for all ϕ ∈ En such that ϕ (0) = 0.
As an example, let us work out these conditions in the special case when

n = 2 and:

J (u) =
∫ ∫

R2
+

[
u2

xy + au2
x + 2buxuy + cu2

y + du2
]
dxdy (3)

Note that, since Q is positive definite, we must have d > 0.
We then get:∫ ∫

R2
+

[uxyϕxy + auxϕx + b (uxϕy + uyϕx) + cuyϕy + duϕ] dxdy = 0 (4)
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for all ϕ such that ϕ (0, 0) = 0. Taking a function ϕ with compact support
contained in the interior of R2

+, we get the Euler-Lagrange equation:

uxxyy − auxx − 2buxy − cuyy + du = 0 in R2
+ (5)

and any smooth solution u in the closure of Rn
+ is subject to the boundary

conditions:

uxyy − aux − buy = 0 on x = 0, y ≥ 0
uxxy − bux − cuy = 0 on y = 0, x ≥ 0

u (0, 0) = 1

In the case n = 1, the solution is an exponential, u (x) = e−λx, for some
λ > 0. In higher dimension, one no longer gets explicit solutions, except in very
particular cases. In the case n = 2, for instance, taking for J (u) the particular
form (4) with b = 0 and ac = d, the solution will be e−λx−µy, for λ =

√
c and

µ =
√

a.

2 Regularity.

In this paper, we prove that the solution u of problem (P) is C∞ up to and
including the boundary. This is a somewhat surprising result, for the corre-
sponding Euler-Lagrange equation, such as (5), is not elliptic.

Theorem 1 Set Rn
+ = {x | xi > 0 ∀i}. For every multi-index α ∈ Nn, there

is a constant C (α) such that:∫
Rn

+

|Dαu|2 ≤ C (α) (6)

Corollary 2 The solution u of problem (P) is C∞ up to and including the
boundary.

The result does not extend to other domains, such as the half-plane, as the
following counterexample shows. In the case n = 2, take for J (u) the particular
form (3) with b = 0 and ac = d. The solution of problem (P) then is u0 (x, y) =
exp(−λx−µy), for some λ > 0 and µ > 0, as we pointed out earlier. Consider the
problem of minimizing the integral (1) on the half-plane Ω = {y > 0}, subject
to u (0, 0) = 1. Call the functional J̄ and denote its solution by ū. Define v
by v (x, y) = ū (−x, y). It is clear that J̄ (v) = J̄ (ū) = min J̄ , and since J̄ is
strictly convex, the minimizer is unique, and v = ū. So ū is even. Now set
w̄ (x, y) = exp(−λ |x| − µy) for y ≥ 0. Denote by u1 the restriction of ū to the
positive cone. Since u0 minimizes J on the positive cone, subject to u (0, 0) = 1,
we have:

J̄ (ū) = 2J (u1) ≥ 2J (u0) = J̄ (w̄)
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So w must be the minimizer, and by uniqueness again, ū = w. But w is not
smooth, in fact it is not even C1. If, instead of the upper half-plane, we work
in an angle 0 < arg (x + iy) < α, with α > π/2, we suspect that the minimizer
will not be smooth near the y-axis, but we have no proof of this.

The usual way to get estimates like (6) is to use the optimality condition
(2), taking ϕ = ξDβu, where Dβu is some suitable derivative of u and ξ (x)
some suitable cutoff function, and then integrating by parts. For this approach
to succeed, however, we need the problem to be elliptic, which is not the case.
We thereferore introduce an elliptic penalization.

For ε > 0, consider the problem of minimizing the functional:

Jε (u) = J (u) + ε

∫
Rn

+

n∑
i=1

∣∣∂n+1
i u

∣∣2
under the boundary condition u (0) = 1. The solution exists and is unique;
denote by uε its solution. By standard elliptic regularity results, we find that uε

is smooth in the closed orthant except possibly at the edges, where xi = xj = 0
for i 6= j. Note that uε has to satisfy additional boundary conditions, namely
∂2n+1

i uε = 0 on xi = 0, which are independent of ε.
The key to the proof is to take advantage of the special shape of the do-

main first by using cutoff functions which depend only on one of the variables
x1, ..., xn.

3 The proof in the case n = 2.

Notations quickly become overwhelming. For this reason, we will begin by giving
the proof in the case when n = 2 and J (u) has the special form (3), so that
there are no terms in uxu or uyu. The penalized functional then is:

Jε (u) = J (u) + ε

∫ ∫
R2

+

(
u2

xxx + u2
yyy

)
dxdy

We shall denote by uε its solution. Since the variational problem is uniformly
elliptic, uε is C∞ up to the boundary, except possibly at the origin. Note that
J ≤ Jε ≤ Jη for 0 ≤ ε ≤ η, so that:

J (u0) ≤ Jε (uε) ≤ Jη (uη) (7)

where u0 denotes the solution of problem (P). The optimality conditions are:∫ ∫
R2

+

[B (uε, ϕ) + (∂x∂yuε) (∂x∂yϕ)] dxdy + ε

∫ ∫
R2

+

[(
∂3

xu
) (

∂3
xϕ

)
+

(
∂3

yu
) (

∂3
yϕ

)]
dxdy = 0

(8)

∀ϕ ∈ E2 : ϕ (0) = 0

where B stands for:

B (u, ϕ) = a (∂xu) (∂xϕ) + b [(∂xu) (∂yϕ) + (∂yu) (∂xϕ)] + c (∂yu) (∂yϕ)
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We now introduce a special cutoff function. Let σ : [0,∞) → R be a C∞

function. Assume σ is non-decreasing, vanishes in some neighbourhood of the
origin,and σ (t) = 1 for t ≥ 1. For s > 1, set:

ξs (t) = σ (t/s)

Our proof involves (i) deriving preliminary estimates for uε, (ii) showing
that these hold for u, and (iii) using these preliminary estimates to repeat the
argument, applied to u, in order to establish (6).

Proposition 3 For any integer m ≥ 0 and any s > 0, there are constants
C1 (m, s) and C2 (m, s) such that the inequalities:∥∥ξ4+m

s ∂m+2
x ∂yuε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+2
x uε

∥∥2

L2 ≤ C1 (m, s) + εC2 (m, s) (9)

hold for every ε > 0.

The proof will use the following result (Lemma 8.2, page 856, of [2]), with
ξs as above.

Lemma 4 Let w : [0, ∞] →∞ be such that:∫ ∞

0

|∂p
xw|2 ξ2p

s dt < ∞ ∀p ∈ [0, m]

Then for any δ > 0, there is some A (s, δ) such that:∑
p<m

∫ ∞

0

|∂p
xw|2 ξ2p

s ≤ δ

∫ ∞

0

|∂m
x w|2 ξ2m

s + A (s, δ)
∫

ξ 6=0

w2

The lemma is proved using integration by parts.

3.1 Proof of proposition 3

We take:
ϕ (x, y) = (−1)m−1

∂m
x

[
ξ8+2m
s (x) ∂m+2

x uε (x, y)
]

in condition (8), which is meaningful since uε is C∞ for x > 0. Integrating by
parts, we find:

M (uε) + H1 (uε, ε) + H2 (uε, ε) = 0 (10)

where:

M (u) =
∫ ∫ ∣∣∂m+2

x uy

∣∣2 ξ8+2m
s + a

∫ ∫ ∣∣∂m+2
x u

∣∣2 ξ8+2m
s

− b

∫ ∫ (
∂m+1

x u
) (

∂m+2
x uy

)
ξ8+2m
s + b

∫ ∫ (
∂m+1

x uy

) (
∂m+2

x u
)

ξ8+2m
s

− c

∫ ∫
(∂m

x u)
(
∂m+2

x uy

)
ξ8+2m
s − d

∫ ∫
(∂m

x u)
(
∂m+2

x u
)
ξ8+2m
s

5



H1 (u, ε) = ε

∫ ∫ (
∂m+4

x u
)

∂2
x

(
ξ8+2m
s ∂m+2

x u
)

H2 (u, ε) = −ε

∫ ∫ (
∂m

x ∂3
yu

) (
∂m+2

x ∂3
yu

)
ξ8+2m
s

Note that H1 is the only term which involves derivatives of ξ. From our
assumptions on ξ, it follows that there is a constant Ks such that∣∣∂k

x

(
ξ8+2m
s

)∣∣ ≤ Ks

∣∣ξ8+2m−k
s

∣∣ ∀x > 0, 1 ≤ k ≤ 3 (11)

Let us first estimate H1. Using (11), we have:

H1 (u, ε) = ε

∫ ∫ (
∂m+4

x u
) [

ξ8+2m
s ∂m+4

x u + 2
(
∂m+3

x u
)
∂x

(
ξ8+2m
s

)
+

(
∂m+2

x u
)
∂2

x

(
ξ8+2m
s

)]
≥ ε

∥∥(
∂m+4

x u
)
ξ4+m
s

∥∥2

L2

− εK
′

s

∥∥(
∂m+4

x u
)
ξm+4
s

∥∥
L2

(∥∥(
∂m+3

x u
)
ξm+3
s

∥∥
L2 +

∥∥(
∂m+2

x u
)
ξm+2
s

∥∥
L2

)
≥ ε

2

∥∥(
∂m+4

x u
)
ξ4+m
s

∥∥2

L2

− εK ′′
s

(∥∥(
∂m+3

x u
)
ξm+3
s

∥∥2

L2 +
∥∥(

∂m+2
x u

)
ξm+2
s

∥∥2

L2

)
where K ′

s and K ′′
s are constants depending only on s. Applying Lemma 4 to

the second term on the right-hand side, with suitable δ, we find that there is a
constant K1 (s) such that:

H1 (u, ε) ≥ ε

4

∥∥(
∂m+4

x u
)
ξ4+m
s

∥∥2

L2 − εK1 (s) ‖u‖2L2 (12)

Next, look at H2 and integrate by parts in x. We find, using (11) again:

H2 (u, ε) = ε

∫ ∫ ∣∣∂m+1
x ∂3

yu
∣∣2 ξ8+2m + ε

∫ ∫ (
∂m

x ∂3
yu

) (
∂m+1

x ∂3
yu

)
∂x

(
ξ8+2m

)
≥ ε

∫ ∫ ∣∣∂m+1
x ∂3

yu
∣∣2 ξ8+2m − εK ′′′

s

∥∥(
∂m+1

x ∂3
yu

)
ξ4+m

∥∥
L2

∥∥(
∂m

x ∂3
yu

)
ξ3+m

∥∥
L2

≥ ε

2

∥∥(
∂m+1

x ∂3
yu

)
ξ4+m

∥∥2

L2 − εK ′′′′
s

∥∥(
∂m

x ∂3
yu

)
ξ3+m

∥∥2

L2

where K ′′
s and K ′′′

s are constants depending only on s. Applying Lemma 4 to
the second term on the right-hand side, with suitable δ, we find that there is a
constant K2 (s) such that:

H2 (u, ε) ≥ ε

4

∥∥(
∂m+1

x ∂3
yu

)
ξ4+m

∥∥2

L2 − εK2 (s)
∥∥∂3

yu
∥∥2

L2 (13)
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We now use equation (10). We have:∫ ∫ ∣∣∂m+2
x ∂yuε

∣∣2 ξ8+2m
s + a

∫ ∫ ∣∣∂m+2
x uε

∣∣2 ξ8+2m
s + H1 (uε, ε) + H2 (uε, ε) =∫ ∫ [

b
(
∂m+1

x uε

) (
∂m+2

x ∂yuε

)
− b

(
∂m+1

x ∂yuε

) (
∂m+2

x uε

)]
ξ8+2m
s +∫ ∫ [

c (∂m
x uε)

(
∂m+2

x ∂yuε

)
+ d (∂m

x uε)
(
∂m+2

x uε

)]
ξ8+2m
s

≤ C
∥∥ξ4+m

s ∂m+2
x ∂yuε

∥∥
L2

(∥∥ξ4+m
s ∂m+1

x uε

∥∥
L2 +

∥∥ξ4+m
s ∂m

x uε

∥∥
L2

)
+ C

∥∥ξ4+m
s ∂m+2

x uε

∥∥ (∥∥ξ4+m
s ∂m+1

x ∂yuε

∥∥
L2 +

∥∥ξ4+m
s ∂m

x uε

∥∥
L2

)
where C > 0 is a suitable constant. It follows that:

1
2

∥∥ξ4+m
s ∂m+2

x ∂yuε

∥∥2

L2 +
a

2

∥∥ξ4+m
s ∂m+2

x uε

∥∥2

L2 + H1 (uε, ε) + H2 (uε, ε) ≤

C ′
(∥∥ξ4+m

s ∂m+1
x uε

∥∥2

L2 +
∥∥ξ4+m

s ∂m
x uε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+1
x ∂yuε

∥∥2

L2

)
where C ′ is another constant. Using the estimates (12) and (13), this becomes:∥∥ξ4+m

s ∂m+2
x ∂yuε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+2
x uε

∥∥2

L2

+
ε

4

(∥∥(
∂m+4

x uε

)
ξ4+m
s

∥∥2

L2 +
∥∥(

∂m+1
x ∂3

yuε

)
ξ4+m
s

∥∥2

L2

)
≤

C ′′
(∥∥ξ4+m

s ∂m+1
x uε

∥∥2

L2 +
∥∥ξ4+m

s ∂m
x uε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+1
x ∂yuε

∥∥2

L2

)
+ εK̄ (s)

(
‖uε‖2L2 +

∥∥∂3
yuε

∥∥2

L2

)
where K̄ (s) depends on ε and s.

Because of (7), and the fact that Q is positive definite, ‖uε‖2L2 and ε
∥∥∂3

yuε

∥∥2

L2

are bounded from above when ε → 0. We therefore end up with the following
estimate:∥∥ξ4+m

s ∂m+2
x ∂yuε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+2
x uε

∥∥2

L2 ≤

Cm

(∥∥ξ4+m
s ∂m+1

x uε

∥∥2

L2 +
∥∥ξ4+m

s ∂m
x uε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+1
x ∂yuε

∥∥2

L2

)
+ εKm (s) + Rm (s)

(14)

where Km (s) and Rm (s) depend on s, and of course m.
We now proceed to the proof of inequality (9). It will be done by induction

on m.
For m = 0, inequality (14) becomes:

∥∥ξ4
s∂2

x∂yuε

∥∥2

L2 +
∥∥ξ4

s∂2
xuε

∥∥2

L2

≤ C0

(∥∥ξ4
s∂xuε

∥∥2

L2 +
∥∥ξ4

suε

∥∥2

L2 +
∥∥ξ4

s∂x∂yuε

∥∥2

L2

)
+ εK0 (s) + R0 (s)

≤ C0

(
‖∂xuε‖2L2 + ‖uε‖2L2 + ‖∂x∂yuε‖2L2

)
+ εK0 (s) + R0 (s)
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because 0 ≤ ξ ≤ 1. Using (7) again, we find that the first term stays bounded
when ε → 0. Hence:∥∥ξ4

s∂2
x∂yuε

∥∥2

L2 +
∥∥ξ4

s∂2
xuε

∥∥2

L2 ≤ C0 + R0 (s) + εK0 (s)

which is of the form (9) for m = 0.
Suppose now (9) has been proved for m ≤ M − 1. This means that we have:∥∥ξ4+m

s ∂m+2
x ∂yuε

∥∥2

L2 +
∥∥ξ4+m

s ∂m+2
x uε

∥∥2

L2 ≤ C1 (m, s) + εC2 (m, s)

for m ≤ M − 1. Then, using (14), we get, since 0 ≤ ξ ≤ 1:∥∥ξ4+M
s ∂M+2

x ∂yuε

∥∥2

L2
+

∥∥ξ4+M
s ∂M+2

x uε

∥∥2

L2

≤ CM

(∥∥ξ4+M
s ∂M+1

x uε

∥∥2

L2 +
∥∥ξ4+M

s ∂M
x uε

∥∥2

L2 +
∥∥ξ4+M

s ∂M+1
x ∂yuε

∥∥2

L2

)
+ εKM (s) + RM (s)

≤ CM

(∥∥ξ4+M−1
s ∂M+1

x uε

∥∥2

L2 +
∥∥ξ4+M−1

s ∂M+1
x ∂yuε

∥∥2

L2

)
+ CM

∥∥ξ4+M−2
s ∂M

x uε

∥∥2

L2 + εKM (s) + RM (s)

≤ CM [C1 (M − 1, s) + εC2 (M − 1, s)]+
CM [C1 (M − 2, s) + εC2 (M − 2, s)] + εKM (s) + RM (s)

and the inequality has the desired form (9) for m = M . Proposition 3 is proved.

3.2 Interior regularity

We will now prove the following:

Proposition 5 Set R2
s = {x | xi > s ∀i}. For every multi-index α ∈ N2, and

every s > 0, there is a constant C (α, s) such that:∫
R2

s

|Dαu|2 ≤ C (α, s)

Corollary 6 The solution u of problem (P) is C∞ in the interior.

From Proposition 3, we have for any m ≥ 0 and ε > 0,∫ ∫
x>s

[(
∂m+2

x ∂yuε

)2
+

(
∂m+2

x uε

)2
]
≤ C (m, s)

and in a similar way, by interchanging x and y,. we find:∫ ∫
y>s

[(
∂m+2

y ∂xuε

)2
+

(
∂m+2

y uε

)2
]
≤ C (m, s)

We will first extend these inequalities to the function u. There is a sequence
εn → 0 such that un := uεn converges weakly in L2

(
R2

+

)
to some v, while
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∂xun, ∂yun and ∂x∂yun converge weakly in L2
(
R2

+

)
to ∂xv, ∂yv and ∂x∂yv.

Similarly, from (9), we find that in x ≥ s > 0, the derivatives ∂m+2
x ∂yuε and

∂m+2
x uε converge weakly to the corresponding derivatives of u. Similarly for

∂m+2
y ∂xuε and ∂m+2

y uε in y ≥ s for any s > 0.
If ϕ is some C∞ function with compact support such that ϕ (0, 0) = 1, we

have:

1 = un (0, 0) =
∫ ∫

∂x∂y (ϕun)

=
∫ ∫

[(∂x∂yϕ) un + (∂xϕ) (∂yun) + (∂xun) (∂yϕ) + (∂x∂yun) ϕ]

→
∫ ∫

[(∂x∂yϕ) v + (∂xϕ) (∂yv) + (∂xv) (∂yϕ) + (∂x∂yv) ϕ]

=
∫ ∫

∂x∂y (ϕv) = v (0, 0)

so v (0, 0) = 1.
Consider now J (v). We have, since J is convex and continuous, hence weakly

lower semi-continuous and J ≤ Jε :

J (v) ≤ lim inf
n

J (un) ≤ lim inf
n

Jεn (un) (15)

Let u be the minimizer of J . For any η > 0, there is a C∞ function
with compact support uη such that J (uη) ≤ J (u) + η. We clearly have
limε→0 Jε (uη) = J (uη), so that:

lim inf
n

Jεn
(un) ≤ lim

n
Jεn

(uη) ≤ J (u) + η

and since this holds for any η > 0, we have lim infn Jεn (un) = J (u) = inf J .
Comparing with (15), we find that J (v) = inf J , so that v = u, the unique
minimizer of J .

We now set ε = εn in formula (15), and let n →∞. We get:∫ ∫
x≥s

[(
∂m+2

x ∂yu
)2

+
(
∂m+2

x u
)2

]
dxdy ≤ C1 (m, s) (16)

Similarly: ∫ ∫
y≥s

[(
∂m+2

y ∂xu
)2

+
(
∂m+2

y u
)2

]
dxdy ≤ C3 (m, s) (17)

So we have L2 estimates in the domain x > s, y > s for all derivatives of the
form ∂k

xu, ∂k
y u, ∂k

x∂yu and ∂k
y ∂xu. There are still many derivatives missing. We

find them by using the Euler equation (5) satisfied by u in the interior:

∂2
x∂2

yu− a∂2
xu− 2b∂x∂yu− c∂2

yu + du = 0

9



By themselves, (16) and (17) give us all the derivatives of order 3. Let us
look at the derivatives of order 4. We already have ∂4

xu, ∂4
yu, ∂3

x∂yu and ∂3
y∂xu

from (16) and (17). The only missing one is ∂2
y∂2

xu. But it is provided by the
Euler equation. Now let us look at the derivatives of order 5. The only missing
ones are ∂2

x∂3
yu and ∂2

y∂3
xu. Differentiating the Euler equation, we get:

∂2
x∂3

yu = a∂2
x∂yu + 2b∂x∂2

yu + c∂3
yu + d∂yu

∂2
y∂3

xu = a∂3
xu + 2b∂2

x∂yu + c∂x∂2
yu + d∂xu

and so on, so interior regularity is proved. In fact, we have estimates (16) and
(17) up to parts of the boundary and these estimates will now be used. We call
these partial boundary estimates.

3.3 Regularity.

We now look at (1). In view of (16), we may now use as first test function:

ϕ (x, y) = (−1)m−1
∂m

x

[
ξ8+2m
s (x) ∂m+2

x u (x, y)
]

(18)

We write the optimality condition for the (unpenalized) problem (P):∫ ∫
R2

+

[B (u, ϕ) + (∂x∂yu) (∂x∂yϕ)] dxdy = 0 (19)

for all ϕ ∈ E2 such that ϕ (0) = 0. Here B stands for:

B (u, ϕ) = a (∂xu) (∂xϕ) + b [(∂xu) (∂yϕ) + (∂yu) (∂xϕ)] + c (∂yu) (∂yϕ)

Plugging formula (18) into (19), and performing the same calculations as
before, we find:

1
2

∥∥ξ4+m
s ∂m+2

x ∂yu
∥∥2

L2 +
a

2

∥∥ξ4+m
s ∂m+2

x u
∥∥2

L2 ≤

Cm

(∥∥ξ4+m
s ∂m+1

x u
∥∥2

L2 +
∥∥ξ4+m

s ∂m
x u

∥∥2

L2 +
∥∥ξ4+m

s ∂m+1
x ∂yu

∥∥2

L2

)
(20)

For m = 0, we know that:∥∥ξ4
s∂xu

∥∥2

L2 +
∥∥ξ4

su
∥∥2

L2 +
∥∥ξ4

s∂x∂yu
∥∥2

L2 ≤ ‖∂xu‖2L2 + ‖u‖2L2 + ‖∂x∂yu‖2L2 ≤ C (0)

since u minimizes J which is positive definite. Plugging into (20), we find that:

1
2

∥∥ξ4+m
s ∂m+2

x ∂yu
∥∥2

L2 +
a

2

∥∥ξ4+m
s ∂m+2

x u
∥∥2

L2 ≤ C1C (0)

where the right-hand side does not depend on s. Letting s → 0, we get:∥∥∂2
x∂yu

∥∥2

L2 +
∥∥∂2

xu
∥∥2

L2 ≤ C1C (0) := C (1)

10



Arguing by induction, we find that there for every m there is a constant Cm

such that: ∥∥∂m+2
x ∂yu

∥∥2

L2 +
∥∥∂m+2

x u
∥∥2

L2 ≤ C (m)

So that all the derivatives ∂k
x∂yu and ∂k

xu are bounded in L2
(
R2

+

)
. Switching

the role of x and y in the right-hand side of formula (18), we get the derivatives
∂k

y ∂xu and ∂k
xu. The missing derivatives are provided by the Euler equation.

The regularity result is proved in the case n = 2.

Remark 7 The crucial point in this proof is that the cutoff function ξs is never
differentiated.

4 The proof in the general case.

It is long and rather tedious. There are two additional difficulties to face:

• the method gives some derivatives, but the other ones do not follow from
the Euler equation.

• the solution uε to the penalized problem need not be smooth at the edges
Eij = {xi = xj = 0} , i 6= j.

Nevertheless, we still consider the penalized functional:

Jε (u) =
∫

Rn
+

[
(∂x1∂x2 ...∂xnu)2 +

(
QD̃n

n−1u, D̃n
n−1u

)]
n

+ ε

∫
Rn

+

n∑
i=1

∣∣∂n+1
i u

∣∣2
and the associated problem:

(Pε)
{

inf Jε (u)
u ∈ En, u (0) = 1

Denote by uε the minimizer of (Pε). The problem is elliptic so, of course,
uε is smooth except possibly near the Eij . However, there is some regularity
even there. Namely, for an elliptic problem with locally smooth (flattened)
boundary, one proves regularity near the boundary in some directions by taking
difference quotients of the equation in that direction, and then multiplying by
the corresponding difference quotients of the functions and integrating. In fact,
this method works just as well at nonsmooth boundary points provided, near
such a point, the domain is translation invariant in the chosen direction. This
idea was used, for example, in [3].

Applying this in our situation, we find that for every i, derivatives of the
form Dn+1∂m

xi
uε are square integrable in the region xi > s for any s > 0. The

same is true in general for:

Dn+1∂xi1
∂xi2

...∂xil
uε

11



in the regions where xik
≥ s > 0, 1 ≤ k ≤ l. Hence, in the optimality conditions

for (Pε) we may insert test functions involving many derivatives in any one xi.
Because of the length of the formulas, we will carry out the proof only in

the case n = 3. The optimality condition for (Pε) then takes the form:∫
R3

+

[
(∂x∂y∂zuε) (∂x∂y∂zϕ) +

(
QD̃3

2uε, D̃
3
2ϕ

)]
+

ε

∫
R3

+

[(
∂4

xuε

) (
∂4

xϕ
)

+
(
∂4

yuε

) (
∂4

xϕ
)

+
(
∂4

zuε

) (
∂4

xϕ
)]

= 0 (21)

for all ϕ in E3 such that ϕ (0) = 0.

4.1 First test functions.

We start with:

ϕ (x, y, z) = (−1)k+1
∂k

x

(
ξ10+2k
s (x) ∂k+2

x uε

)
(22)

for k ≥ 0. The exponent for ξ comes from the application of Lemma 4. For
general n, it should be 2n + 4, yielding 8 for n = 2 and 10 for n = 3.

Writing (22) into (21), we get, as before, two terms which will be estimated
separately:

M (uε) + εH (uε)

The first term M (uε) is a linear combination of the following (here, as before,
for simplification, we are ignoring certain product terms in (Q•, •), like uxu).

(−1)k+1
∫

(∂x∂y∂zuε) ∂x∂y∂z

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(∂x∂yuε) ∂x∂y

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(∂x∂zuε) ∂x∂z

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(∂xuε) ∂x

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(∂y∂zuε) ∂y∂z

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(∂yuε) ∂y

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(∂zuε) ∂z

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]
(−1)k+1

∫
(uε)

[
∂k

x

(
ξ10+2k
s ∂k+2

x uε

)]

12



which, after integration by parts, turn out to be equivalent to the following:∫ ∣∣ξ5+k
s ∂k+2

x ∂y∂zuε

∣∣2∫ ∣∣ξ5+k
s ∂k+2

x ∂yuε

∣∣2∫ ∣∣ξ5+k
s ∂k+2

x ∂zuε

∣∣2∫ ∣∣ξ5+k
s ∂k+2

x uε

∣∣2
−

∫
ξ10+2k
s

(
∂k

x∂y∂zuε

) (
∂k+2

x ∂y∂zuε

)
−

∫
ξ10+2k
s

(
∂k

x∂yuε

) (
∂k+2

x ∂yuε

)
−

∫
ξ10+2k
s

(
∂k

x∂zuε

) (
∂k+2

x ∂zuε

)
−

∫
ξ10+2k
s

(
∂k

xuε

) (
∂k+2

x uε

)
They can all be estimated in terms of

∥∥ξ5+k∂k+2
x ∂y∂zuε

∥∥
L2 ,

∥∥ξ5+k∂k+2
x ∂yuε

∥∥
L2 ,∥∥ξ5+k∂k+2

x ∂zuε

∥∥
L2 ,

∥∥ξ5+k∂k+2
x uε

∥∥
L2 ,

∥∥ξ5+k∂k
x∂y∂zuε

∥∥
L2 ,

∥∥ξ5+k∂k
x∂yuε

∥∥
L2 ,

∥∥ξ5+k∂k
x∂zuε

∥∥
L2 ,∥∥ξ5+k∂k

xuε

∥∥
L2 .

We also have terms like:

H (uε) = (−1)k+1
∫ (

∂4
xuε

)
∂4

x∂k
x

(
ξ10+2k
s ∂k+2

x uε

)
which, after integration by parts, becomes:

H (uε) =
∫ (

∂k+5
x uε

)
∂3

x

(
ξ10+2k
s ∂k+2

x uε

)
+ ...

As in the case n = 2, we use lemma 4 to estimate H (uε) and then argue by
induction to obtain the analogue of Proposition 3, namely:∫

ξ10+2k
s

[∣∣∂k+2
x ∂y∂zuε

∣∣2 +
∣∣∂k+2

x ∂yuε

∣∣2 +
∣∣∂k+2

x ∂zuε

∣∣2 +
∣∣∂k+2

x uε

∣∣2] ≤ C (k, s)

(23)
Then, as before, we may let ε → 0 through a sequence; the limit of uε is our

function u, so that the preceding inequality holds for u.
We now repeat the process: we use the test function (22) in the original

problem, without ε, and we find that the estimate holds for u, with a constant
C (k) independent of s. Hence, letting s → 0, we find:∫ [∣∣∂k+2

x ∂y∂zu
∣∣2 +

∣∣∂k+2
x ∂yu

∣∣2 +
∣∣∂k+2

x ∂zu
∣∣2 +

∣∣∂k+2
x u

∣∣2] ≤ C (k)
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Similarly, using y, and then z, in place of x, we obtain:∫ [∣∣∂k+2
y ∂z∂xu

∣∣2 +
∣∣∂k+2

y ∂zu
∣∣2 +

∣∣∂k+2
y ∂xu

∣∣2 +
∣∣∂k+2

y u
∣∣2] ≤ C (k)∫ [∣∣∂k+2

z ∂x∂yu
∣∣2 +

∣∣∂k+2
z ∂xu

∣∣2 +
∣∣∂k+2

z ∂yu
∣∣2 +

∣∣∂k+2
z u

∣∣2] ≤ C (k)

4.2 Second test functions.

We now take, for k, m ≥ 0 and s > 0:

ϕ (x, y, z) = (−1)m+k
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)
(24)

and insert this in (21). As before, we get an expression of the form M (uε) +
εH (uε) = 0. The first term is a linear combination of the following:

(−1)m+k
∫

(∂x∂y∂zuε) ∂x∂y∂z

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
(∂x∂yuε) ∂x∂y

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
(∂x∂zuε) ∂x∂z

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
(∂y∂zuε) ∂y∂z

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
(∂zuε) ∂z

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
(∂yuε) ∂y

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
(∂xuε) ∂x

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
(−1)m+k

∫
uε

[
∂k

x∂m
y

(
ξ10+2k
s (x) ξ10+2m

s (y) ∂k+2
x ∂m+2

y uε

)]
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which, after integration by parts, turn out to be equal to the following:∫ ∣∣ξ5+k
s (x) ξ5+m

s (y) ∂k+2
x ∂m+2

y ∂zu
η
ε

∣∣2∫ ∣∣ξ5+k
s (x) ξ5+m

s (y) ∂k+2
x ∂m+2

y uη
ε

∣∣2
−

∫
ξ10+2k
s (x) ξ10+2m

s (y)
(
∂k+2

x ∂m
y ∂zu

η
ε

) (
∂k+2

x ∂m+2
y ∂zu

η
ε

)
−

∫
ξ10+2k
s (x) ξ10+2m

s (y)
(
∂k

x∂m+2
y ∂zu

η
ε

) (
∂k+2

x ∂m+2
y ∂zu

η
ε

)
∫

ξ10+2k
s (x) ξ10+2m

s (y)
(
∂k

x∂m
y ∂zu

η
ε

) (
∂k+2

x ∂m+2
y ∂zu

η
ε

)
−

∫
ξ10+2k
s (x) ξ10+2m

s (y)
(
∂k

x∂m+1
y uη

ε

) (
∂k+2

x ∂m+2
y uη

ε

)
−

∫
ξ10+2k
s (x) ξ10+2m

s (y)
(
∂k+1

x ∂m
y uη

ε

) (
∂k+2

x ∂m+2
y uη

ε

)
∫

ξ10+2k
s (x) ξ10+2m

s (y)
(
∂k

x∂m
y uη

ε

) (
∂k+2

x ∂m+2
y uη

ε

)
The term H (uε), after integration by parts, is:

H (uε) =
∫

ξ10+2k
s (x) ξ10+2m

s (y)
{∣∣∂k+5

x ∂m+1
y uε

∣∣2 +
∣∣∂k+1

x ∂m+5
y uε

∣∣2 +
∣∣∂k+1

x ∂m+1
y ∂4

zuε

∣∣2}+...

As usual, this term is handled by Lemma 4. For the terms in M (uε), we use
induction on m, starting with m = 0, which is a term controlled by (23). Thus
we find:∫

ξ10+2k
s (x) ξ10+2m

s (y)
{∣∣∂k+2

x ∂m+2
y ∂zuε

∣∣2 +
∣∣∂k+2

x ∂m+2
y uε

∣∣2} ≤ C (k,m, s)

(25)
As before, using this information, we insert (24), with uε replaced by u,

in the optimality condition for (P). Repeating the procedure, we find that the
preceding estimate holds for u with C independent of s. Letting s → 0, we get:∫ {∣∣∂k+2

x ∂m+2
y ∂zu

∣∣2 +
∣∣∂k+2

x ∂m+2
y u

∣∣2} ≤ C (k, m) (26)

Similarly, interchanging x, y, and z, we obtain also:∫ {∣∣∂k+2
y ∂m+2

z ∂xu
∣∣2 +

∣∣∂k+2
y ∂m+2

z u
∣∣2} ≤ C (k,m) (27)∫ {∣∣∂k+2

z ∂m+2
x ∂yu

∣∣2 +
∣∣∂k+2

z ∂m+2
x u

∣∣2} ≤ C (k,m) (28)

4.3 Third test functions.

For k, m, p ≥ 0 and s ≥ 0, we now take as test function:

ϕ (x, y, z) = (−1)k+m+p+1
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)
(29)
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where:
g (x, y, z) = ξ5+k

s (x) ξ5+m
s (y) ξ5+p

s (y)

Insert this ϕ into the optimality conditions (21). As before, we get an ex-
pression of the form M (uε)+εH (uε) = 0. The first term is a linear combination
of the following:

(−1)k+m+p+1
∫

(∂x∂y∂zuε) ∂x∂y∂z

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
(∂x∂yuε) ∂x∂y

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
(∂x∂zuε) ∂x∂z

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
(∂y∂zuε) ∂y∂z

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
(∂xuε) ∂x

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
(∂yuε) ∂y

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
(∂zuε) ∂z

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
(−1)k+m+p+1

∫
uε

[
∂k

x∂m
y ∂p

z

(
g2∂k+2

x ∂m+2
y ∂p+2

z uε

)]
which, after integration by parts, turns out to be equal to the following:∫ ∣∣g∂k+2

x ∂m+2
y ∂p+2

z uε

∣∣2
−

∫
g2

(
∂k+2

x ∂m+2
y ∂p

zuε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
−

∫
g2

(
∂k+2

x ∂m
y ∂p+2

z uε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
−

∫
g2

(
∂k

x∂m+2
y ∂p+2

z uε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
∫

g2
(
∂k+2

x ∂m
y ∂p

zuε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
∫

g2
(
∂k

x∂m+2
y ∂p

zuε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
∫

g2
(
∂k

x∂m
y ∂p+2

z uε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
−

∫
g2

(
∂k

x∂m
y ∂p

zuε

) (
∂k+2

x ∂m+2
y ∂p+2

z uε

)
We don’t bother to write down the expression for H (uε) .Arguing as before,

we use Lemma 4 an induction on p, starting the induction with the aid of (25).
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We thus obtain estimates for ∂k+2
x ∂m+2

y ∂p+2
z uε. Then we let ε → 0 and apply

the argument again to the original problem using the test function (29), with
uε replaced by u. Letting s → 0, we obtain finally the desired result:∫ ∣∣∂k+2

x ∂m+2
y ∂p+2

z u
∣∣2 ≤ C (k, m, p) for m, k, p ≥ 0

5 Remarks.

Is u positive ? This is a natural question, and we don’t know the answer. It is
easy to see that in Rn

+, we have:

−1 < u < 1

Namely, from the estimates we know that u → 0 as |x| → ∞. It there was a
point x0 ∈ Rn

+ where u = 1, then, denoting by I (x) the integrand in J (u),
which is positive, we would have:∫

x0+Rn
+

I ≥ J (u) >

∫
x0+Rn

+

I

which is impossible. By considering −u, we find that u > −1.
One may ask whether the regularity result holds in case the quadratic form Q

has variable coefficients. In case it is uniformly positive definite, with bounded
coefficients, and, for any m, all derivatives of the coefficients up to order m
are bounded by constants A (m), then the answer is yes. The proof we have
given works also in that case. During the integration by parts, derivatives of
the coefficients will appear, but only in lower order terms, which are handled
using Lemma 4 and induction.
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