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Abstract

In open pit mining, one must dig a pit, that is, excavate the upper
layers of ground before reaching the ore. The walls of the pit must satisfy
some mechanical constraints, in order not to collapse. The question then
arises how to mine the ore optimally, that is, how to find the optimal
pit. We set up the problem in a continuous (as opposed to discrete)
framework, and we show, under weak assumptions, the existence of an
optimum pit. For this, we formulate an optimal transportation problem,
where the criterion is lower semi-continuous and is allowed to take the
value +∞. We show that this transportation problem is a strong dual
to the optimum pit problem, and also yields optimality (complementarity
slackness) conditions.
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1 Introduction

In open pit mining, one tries to extract profitable ore by excavating the (un-
profitable) layers of soil above it. One thereby digs a hole (the pit) deep enough
to reach the underground ore. The wall cannot be too steep, otherwise the hole
will cave in, so there are geomechanical constraints on the slope, which depend
on the physics of the soil, which may in turn vary across layers. In any case, the
deeper the ore, the wider the pit, and the costlier it is to reach it. Certain parts
will simply be too costly to reach, so the question arises: how to determine a
most profitable pit? Note that this question encompasses several others: which
part of the ore can be most profitably exploited? (i.e., the “cut-off grade”de-
cision); what is the shape of the hole to be dug, taking into account the slope
constraints?
The standard approach is to discretize the problem and to solve it by mixed

integer programming. However, it is by nature a continuous problem: the ore
density is distributed underground, and the shape of the pit may be described
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as the graph of a function ϕ : A→ R, where A is the “claim”, i.e., the surface
area under which the pit will be dug. The geomechanical requirements on the
pit translate into constraints on the derivatives of ϕ, and one is led to an opti-
mization problem. To our knowledge, the first one to use this approach was G.
Matheron, in unpublished technical notes [5] and [6]. After a forty-year interval,
this approach was revived by and [1] and [2], who seek the optimal shape in a
class of Lipschitz functions. Further references on discrete and continuous ap-
proaches to optimum open pit design may be found in [1] and in the references
therein.
In this paper, we develop yet another approach, which is to seek the optimal

pit as the solution of an optimal transportation problem. Let us recall that
optimal transportation is concerned with transporting a given mass from one
location to another so as to minimize cost (or maximize profit, which is the same
thing), so its relevance to a mining problem (to bring ore out of the ground)
should come as no surprise. However the relationship is not obvious. The
mathematics will be found is Section 3. The underlying intuition is that in any
profitable pit, there unprofitable parts, with no commercial interest, but which
must be cleared out to reach the profitable ones. Since the pit is profitable, the
profit made from the ore must pay for the excavation, and more. Our idea is to
match every unprofitable part of the pit with a profitable part which pays for its
extraction; this will leave some profitable parts unmatched, since otherwise there
would be no overall profit, and these we match with a sink ω. The amount put
into ω is the total profit. There will be unprofitable parts which are unmatched,
meaning that they are unexcavated. To account for these, we introduce a sink
α, and we match them with the sink.
We model the mechanical constraints by an ordering relation: x2 %Γ x1

means that if you want to extract x1, you must first extract x2. It is obviously
transitive, and we assume it to be closed. We also assume that the distribution
of profit (or cost) in the ground is known and continuous. Under these weak
assumptions, weaker than any other one we have seen in the literature, we prove
that there is an optimal pit (Theorem 13). The proof relies on the mathematical
theory of optimal transportation, as described in [9], with the added twist that
we allow the cost function to take the value +∞. In that case, provided that the
transportation cost function is lower semi-continuous, the optimal transporta-
tion problem from (X,µ) to (Y, ν) has a solution in the class of probabilities
on X × Y with marginals µ and ν, but not necessarily in the class of maps
X → Y transporting µ to ν. Special arguments have to be used, and this is
what we do in this paper. We show that the Kantorovitch dual has a solution
(p, q), with p : X → R and q : Y → R taking only the values 0 and 1, and that
the optimal pit is F = {p = 1}∪ {q = 1}. Thus the transportation problem is a
strong dual to the optimum pit problem, for which we also present optimality
(complementarity slackness) conditions.
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2 The model

We are given a compact subset E ⊂ R3, representing the domain to be mined. To
support intuition, we may think of E as having the special form E = A×[h1, h2],
where A ⊂ R2 is the claim, h1 < 0 < h2 is the elevation range and −h1 is the
maximum depth allowed; in this case we are also given a map ϕ : A→ [h1, h2]
representing ground level before excavation: any x = (x1, x2, x3) with x3 <
ϕ (x1, x2) is underground.
In open pit mining, to reach an underground spot x ∈ E, one must first

excavate the material above it, thereby creating a pit. There are physical con-
straints on the shape of these pits, so that their walls do not collapse and fill it
up. These constraints depend on the slope and on the material. We represent
them by a map Γ : E � E with closed graph such that:

(reflexivity) x ∈ Γ (x)

(transitivity) [x2 ∈ Γ (x1) and x3 ∈ Γ (x2)] =⇒ x3 ∈ Γ (x1)

Write x2 %Γ x1 for x2 ∈ Γ (x1). It is a partial ordering of E. The interpre-
tation is that, to mine x, one must first excavate all of Γ (x). Reflexivity is then
obvious, and transitivity as well. If a pit has been dug, and x has been reached,
then all the x′ ∈ Γ (x) must have been excavated, i.e. they must also belong to
the pit. This leads us to the following:

Definition 2 A pit is a subset Ω ⊂ E which is Lebesgue measurable, closed and
stable for the ordering:

[z ∈ Ω and z′ %Γ z] =⇒ z′ ∈ Ω

To support intuition, one may think of Γ (x) as being a cone with vertex x
and vertical axis, directed upwards. To reach an underground region Ω ⊂ E,
one must excavate the whole pit, up to ground level:

Γ (Ω) := ∪z∈ΩΓ (z)

Thus Ω is a pit if and only if Γ(Ω) = Ω.
Finally, we are given a continuous function g : E → R which satisfies∫

E
max{0, g(x)} dx > 0 (for otherwise there is no hope of making a profit).

This represent profit or cost. More precisely, g (x) dx is the profit (net of ex-
traction cost) obtained (or, if g (x) < 0, the negative of the cost incurred) by
extracting the volume dx = dx1dx2dx3 at x, once it has become accessible, i.e.
when all x′ %Γ x have been extracted. The region where g > 0 is the prof-
itable ore (the higher g the richer the ore). If we want to extract the ore from
F ⊂ {g > 0}, one has to excavate all the ground above it, that is, the whole pit
Γ (F ), and the corresponding profit is∫

Γ(F )

g (z) dz
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To summarize, the data are E, Γ and g. The family of all pits will be denoted
by S (E):

F ∈ S (E)⇐⇒ F = Γ (F )

We are looking for a pit that maximizes profit, that is, we are aiming to
solve the optimization problem:

max
∫
F
g (z) dz

F ∈ S (E)
(P)

3 An optimal transportation problem

Introduce the following subsets of E:

E+ := {g (x) > 0}
E− := {g (x) < 0}

Both E+ and E− are compact sets. Introduce two points α (a source) and ω (a
sink), and set:

X = E+ ∪ {α} , Y = E− ∪ {ω}

Both X and Y are compact sets. We endow them with the non-negative mea-
sures µ and ν defined by:

µ ({α}) =
∫
E−
|g (z)| dz, µ|E+ = g (z) dz

ν ({ω}) =
∫
E+ g (z) dz, ν|E− = |g (z)| dz

Note that µ(E+) > 0, µ (E+ ∩ E−) = ν (E+ ∩ E−) = 0, and µ (X) = ν (Y ).
Define the "transportation" cost c : X × Y −→ R as follows:

X Y c (x, y)
x ∈ E+ y ∈ Γ (x) 0
x ∈ E+ y /∈ Γ (x) , y ∈ E− +∞
x ∈ E+ y = ω 1
x = α y ∈ Y 0

Lemma 3 c is lower semi-continuous (l.s.c.)

Proof. Let (xn, yn) → (x̄, ȳ). If lim inf c (xn, yn) = +∞, there is nothing to
prove. If lim inf c (xn, yn) < +∞, there is a subsequence n (k) such that either

lim inf c (xn, yn) = c(xn(k), yn(k)) = 0 for all n

or
lim inf c (xn, yn) = c(xn(k), yn(k)) = 1 for all n

The first case divides into two subcases. Either xn(k) = α for infinitely
many k, or xn(k) ∈ E+ and y ∈ Γ (x) for all k ≥ k0. In the first subcase,
x̄ = α and c (x̄, ȳ) = 0 = lim inf c (xn, yn). In the second subcase, since E+ is
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compact, x̄ ∈ E+, and since Γ has closed graph, ȳ ∈ Γ (x̄), so that c (x̄, ȳ) =
0 = lim inf c (xn, yn) again.

In the second case, x̄ ∈ E+ and ȳ = ω, so that c (x̄, ȳ) = 1 = lim inf c (xn, yn)

Let Π (µ, ν) denote the set of all positive Radon measures π with marginals
πX = µ and πY = ν. Now consider the optimal transportation problem in
Kantorovich form:

min
∫
X×Y c (x, y) dπ

π ∈ Π (µ, ν)
(K)

Problem (K) may, as outlined in the introduction, be interpreted as the problem
of optimally transferring profits from the profitable parts of the mine to cover
the costs of those parts that must be removed in order to reach them. It may
also be viewed as a continuous version of a minimum cost, bipartite version of
the maximum flow problem which is dual to a minimum cut formulation (e.g.,
[7]) of the discrete optimal pit problem.

Proposition 4 Problem (K) has a solution

Proof. The set of positive Radon measures on the compact space X × Y is
weak-* compact, and the map π → Eπ [c] is weak-* l.s.c, so the result follows.

4 The Kantorovich dual

Introduce an admissible set A and a criterion J :

A :=
{

(p, q) | p ∈ L1 (X,µ) , q ∈ L1 (Y, ν) , p (x)− q (y) ≤ c (x, y) (µ, ν) -a.s.
}

(1)

J (p, q) :=

∫
X

pdµ−
∫
Y

qdν =

∫
E+

(p (z)− q (ω)) dµ−
∫
E−

(q (z)− p (α)) dν

(2)

In particular, with any pit F we can associate an admissible pair (pF , qF ):

Lemma 5 Let F ∈ S (E) be a pit. Set F+ := F ∩ E+ and F− := F ∩ E−.
Define pF : X → R and qF : Y → R by:

pF (α) = 0, pF (x) =

{
1 if x ∈ F+

0 otherwise
(3)

qF (ω) = 0, qF (y) =

{
1 if y ∈ F−
0 otherwise

(4)

Then (pF , qF ) ∈ A and:

J (pF , qF ) =

∫
F

g (z) dz (5)

which is just the profit associated with the pit F .
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Proof. Since µ (E+ ∩ E−) = ν (E+ ∩ E−) = 0, the definition of pF and qF
makes sense. Since F is Lebesgue measurable and X and Y are compact we
have pF ∈ L1(X,µ) and qF ∈ L1(Y, ν), and we only need to check that pF (x)−
qF (y) ≤ c (x, y) for all x ∈ X and y ∈ Y . If x = α, this becomes qF ≥ 0, which
is true. Similarly, if y = ω, we get pF ≤ 1, which is true as well.

Suppose first x ∈ F+ ⊂ E+, so that pF (x) = 1. If y /∈ {ω} ∪ Γ (x), we have
c (x, y) = +∞, so the relation holds. If y ∈ Γ (x) , we must have y ∈ F because
F is a pit, hence stable, so that y ∈ F ∩ E− = F− and qF (y) = 1. On the
other hand, we have c (x, y) = 0, so the relation becomes qF (y) ≥ 1, which is
satisfied.
Suppose then x /∈ F+, so that pF (x) = 0. If y /∈ Γ (x) then c (x, y) = +∞,

and the relation holds. If y ∈ Γ (x), then c (x, y) = 0, and the relation becomes
qF (y) ≥ 0, which is always true.

As for the last equality, we simply substitute into (2), getting:∫
X

pF dµ−
∫
Y

qF dν =

∫
X

(p (z)− q (ω)) dµ−
∫
Y

(q (z)− p (α)) dν

=

∫
F+

g (z) dz −
∫
F−
|g (z)| dz =

∫
F

gdz

Consider the optimisation problem:

sup J (p, q)
(p, q) ∈ A (D)

Problem (D) is a dual of problem (K), with the weak duality property:∫
X×Y

c (x, y) dπ ≥ J (p, q) ∀π ∈ Π (µ, ν) , ∀ (p, q) ∈ A (6)

This implies that problem (K) is a also a dual to our optimum pit problem:

Proposition 6 sup (P) ≤ inf (K)

Proof. Combining inequality (6) with Lemma 5, we get:

∀F ∈ S (E) ,

∫
F

gdz ≤ inf (K)

In fact, by a fundamental result of Kantorovich (see [9], Theorem 1.3), there
is no duality gap between (K) and (D):

inf (K) = sup (D) (7)

We will show that there is also no duality gap between (K) and (P), i.e., that
problem (K) is a strong dual to our optimum pit problem (P).
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Before we proceed, let us recall some facts from c-convex analysis. For proofs,
we refer to [3], or [4]. Given p : X → R and q : Y → R, we define q[ : X → R

and p
]

: Y → R by:

p] (y) := sup
x∈X
{p (x)− c (x, y)}

q[ (x) := inf
y∈Y
{q (y) + c (x, y)}

Computing the right-hand side gives:

p] (y) := max

{
p (α) , sup

y∈Γ(x)

p (x)

}
for y ∈ E− (8)

p] (ω) := max

{
p (α) , sup

x∈E+

{p (x)} − 1

}
q[ (x) := min

{
1 + q (ω) , inf

y∈Γ(x)
q (y)

}
for x ∈ E− (9)

q[ (α) := min
{
q (ω) , inf

{
q (y) | y ∈ E−

}}
with the understanding that:

sup
x∈∅

p (x) = −∞, inf
y∈∅

= +∞

It follows from the definition that:

p (x)− p] (y) ≤ c (x, y)

q[ (x)− q (y) ≤ c (x, y)

p (x) ≤ c (x, y) + p] (y) , hence p (x) ≤ p][ (x)

q (y) ≥ q[ (x)− c (x, y) , hence q (y) ≥ q[] (y)

We have the fundamental duality result:

p][] = p] and q[][ = q[

and the monotonicity properties:

p1 ≤ p2 =⇒ p]1 ≤ p
]
2

q1 ≤ q2 =⇒ q[1 ≤ q[2
It also follows from (8), (9) and the transitivity of Γ that

Lemma 7 p] and q[ are increasing with respect to %Γ:

x′ %Γ x =⇒ q[ (x′) ≥ q[ (x)

y′ %Γ y =⇒ p] (y′) ≥ p] (y)

Note that, given a pit F the associated pair (pF , qF ) defined by (3) and (4)
satisfies:

pF = q[F and qF = p]F
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5 Solving the dual problem.

Back to problem (D). Note that there is a built-in translation-invariance:

Lemma 8 Take any pair (p, q) ∈ A and any constants p0, p1, q0, q1 satisfying:

µ
(
E+
)

(q0 − p1)− ν
(
E−
)

(p0 − q1) = 0

Define (p̄, q̄) by:

p̄ (α) = p (α)− p0

p̄ (x) = p (x)− p1 for x ∈ E+

q̄ (ω) = q (ω)− q0

q̄ (y) = q (y)− q1text for y ∈ E−

Then:
J (p̄, q̄) = J (p, q)

Proof. Substituting, we get:

J (p̄, q̄) =

∫
E+

(p̄ (x)− q̄ (ω)) dµ−
∫
E−

(q̄ (y)− p̄ (α)) dν

= J (p, q) + µ
(
E+
)

(q0 − p1)− ν
(
E−
)

(p0 − q1)

Lemma 9 If (p, q) ∈ A then
(
p, p]

)
∈ A,

(
q[, q

)
∈ A and:

J
(
p, p]

)
≥ J (p, q)

J
(
q[, q

)
≥ J (p, q)

Proof. Since (p, q) ∈ A, we have p (x)− q (y) ≤ c (x, y) for all (x, y) so that:

p (x) ≤ inf
y
{c (x, y) + q (y)} = q[ (x)

q (y) ≥ sup
x
{p (x)− c (x, y)} = p] (y)

Substituting in J , we get the result.

It follows from the Lemma that:

J (p, q) ≤ J
(
p, p]

)
≤ J

(
p][, p]

)
Setting p̄ := p][ and q̄ := p], we find that:

J (p, q) ≤ J (p̄, q̄)

p̄ = q̄[ and q̄ = p̄]

8



Proposition 10 Problem (D) has a solution (p̄, q̄) with

p̄ = q̄[ and q̄ = p̄]

0 ≤ p̄ ≤ 1 and 0 ≤ q̄ ≤ 1

p̄(α) = 0 and q̄(ω) = 0

Proof. Take a maximizing sequence (pn, qn) ∈ A:

J (pn, qn)→ sup {J (p, q) | (p, q) ∈ A}

By Lemma 9 and the following observations, we may assume that:

pn = q[n, qn = p]n (10)

By Lemma 8, we may assume in addition that:

pn (α) = 0, qn (ω) = 0, inf
y∈E−

q (y) = 0 (11)

If follows from (10) and (9) that:

∀x ∈ E+, pn (x) = min

{
1, inf
y∈Γ(x)

qn (y)

}
Taking (11) into account, we find that 0 ≤ pn (x) ≤ 1. Similarly, it follows from
(10) and (8) that:

∀y ∈ E−, qn (y) = max

{
0, sup
y∈Γ(x)

pn (x)

}

and, since all pn(x) ≤ 1, we find that 0 ≤ qn (x) ≤ 1 as well.
So the family (pn, qn) is equi-integrable in L1 (µ)×L1 (ν). By the Dunford-

Pettis theorem, we can extract a subsequence which converges weakly to some
(p, q). Since the admissible set A is convex and closed in L1 (µ) × L1 (ν), it is
weakly closed, and (p, q) ∈ A. Since J is linear and continuous on L1 (µ)×L1 (ν),
we get:

J (p̄, q̄) = lim
n
J (pn, qn) = sup

A
J

so that (p, q) ∈ A is an optimal solution.

6 Solving the original problem

We now derive the complementarity conditions arising from the strong duality
equation (7). If π is optimal in problem (K) and (p, q) is optimal in problem
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(D), we have:

0 = J (p, q)−
∫
X×Y

c (x, y) dπ

=

∫
X

pdµ−
∫
Y

qdν −
∫
X×Y

c (x, y) dπ

=

∫
X×Y

(p (x)− q (y)− c (x, y)) dπ

Since the integrand is non-positive and the integral is zero, the integrand must
vanish almost everywhere and we obtain the complementary slackness condi-
tions:

p (x)− q (y)− c (x, y) = 0 π-a.e. (12)

Lemma 11 If (p, q) is an optimal solution to problem (D) satisfying the prop-
erties in Proposition 10, then we have:

y′′ %Γ y
′ %Γ x

′′ %Γ x
′ =⇒ q (y′′) ≥ q (y′) ≥ p(x′′) ≥ p (x′)

Proof. The first and the last inequality come from Lemma 7, and the middle
one from (8):

q (y′) = p] (y′) = max

{
0, max
x:y′∈Γ(x)

p (x)

}
≥ p (x′′)

Proposition 12 Let (p, q) be an optimal solution to problem (D) satisfying the
properties in Proposition 10. Define the set F ⊂ E by:

F = {x | p (x) = 1} ∪ {y | q (y) = 1} (13)

Then F is stable, and it is an optimal pit, that is, an optimal solution to prob-
lem (P)

Proof. By Lemma 11, F is stable, so it is a pit. Define F+ and F− as in
Lemma 5. The profit from pit F satisfies:∫

F

g (z) dz =

∫
F+

dµ−
∫
F−

dν ≤ sup (P) (14)

Set G+ := E+\F+ and G− := E−\F−. We have, taking into account the
fact that p = 1 on F+ and q = 1 on F−, together with p (α) = q (ω) = 0:

J (p, q) =

∫
F+

dµ−
∫
F−

dν +

∫
G+

p dµ−
∫
G−

q dν (15)

Since ν is the marginal of π:∫
G−

q (y) dν (y) =

∫
E+×G−

q (y) dπ(x, y)
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Now observe that, since c(x, y) = 0 or +∞ for (x, y) ∈ E+ × E−, property
(12) and the fact that p and q are bounded (viz., 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1)
imply that p(x) = q(y) π-a.e. on E+ × E−. Therefore

π(F+ ×G−) = 0 = π(G+ × F−)

and thus∫
E+×G−

q (y) dπ(x, y) =

∫
G+×G−

q (y) dπ(x, y) =

∫
G+×G−

p (y) dπ(x, y)

=

∫
G+×E−

p (y) dπ(x, y) =

∫
G+

p (x) dµ (x)

This implies:

J (p, q) =

∫
F+

dµ−
∫
F−

dν =

∫
F

g (z) dz

Since (p, q) is optimal, J (p, q) = sup (D) = inf (K). By Proposition 6
sup (P) ≤ inf (K). So: ∫

F

g (z) dz = inf (K) ≥ sup (P)

Comparing with (14) we see that F is an optimal pit for problem (P), as
claimed.
The pit F consists of two regions, A := {p = 1} and B := {q = 1}. We have

g ≥ 0 on A, so A is the profitable part of the pit, while g ≤ 0 on B, so B is the
costly part, which must be excavated in order to reach A. Note that A need not
be equal to the whole E+: there are regions underground which are potentially
profitable, but which are too costly to reach.

Summarizing our results:

Theorem 13 If E is compact, %Γ is an order relation with closed graph, and
g (x) is continuous with

∫
E

max{0, g(x)} dx > 0 then:

1. Problem (P) has an optimum solution, i.e., there exists an optimal pit F .

2. The corresponding pair (p, q) := (pF , qF ) defined by (3)—(4) is an optimum
solution to problem (D).

3. Problem (K) has an optimum solution and is a strong dual to problem (P),
i.e, min(K) = max(P).

4. A pit F is optimal if and only if there exists a feasible solution π to prob-
lem (K) such that the pair (p, q) := (pF , qF ) satisfies the complementary
slackness conditions (12).
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Proof. By Proposition 10, there is an optimal solution (p̄, q̄) to problem (D),
and by Proposition 12 we have J (p̄, q̄) =

∫
F
g (z) dz = sup (D), so that the

pit F defined by (13) is optimal. On the other hand, by Lemma 5, we have
J (pF , qF ) =

∫
F
g (z) dz, so the pair (pF , qF ) ∈ A is optimal as well. The other

statements follow from preceding observations.

The optimum pit need not be unique. In fact it is known (Topkis [8]; see
also Matheron [5] Th. 2) that the set of optimal pits is closed under (arbitrary)
intersections and unions. Therefore, taking the intersection and the union,
respectively, of all optimum pits, we have:

Corollary 14 There exist a unique smallest optimum pit and a unique largest
optimum pit.

The smallest optimum pit may be of particular interest when seeking to
minimize the environmental impact of the pit without sacrificing its total profit.

Of course, our solution of the problem is purely static: all the excavation and
extraction is done at once. In practice, these processes take time, and it it is of
interest to plan the whole mining process so as to optimize discounted revenue
over time. This leads to a variant of the optimal transportation problem, where
transportation is costly, not only in money, but in time. We hope to investigate
it in the not-too-distant future
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