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Abstrat: This artile is a review of two related lassial topis of Hamiltonian

systems and elestial mehanis. The �rst item deals with the existene and on-

strution of ation-angle oordinates, whih we desribe emphasizing the role of

the natural adiabati invariants \

H



p dq". The seond item is the onstrution and

properties of the Poinar�e oordinates in the Kepler problem, adapting the prin-

iples of the former item, in an attempt to use known �rst integrals more diretly

than Poinar�e did.

1 Ation-angle oordinates

1.1 Main statement and omments

Let (M;!) be a sympleti manifold of dimension 2n and F : M ! B be a �bration

whose �bers M

b

, b 2 B, are Lagrangian,

1

ompat and onneted submanifolds

of M . Roughly speaking, the theorem of the ation-angle oordinates says that

loally in the neighborhood of a base point, the universal model for F is the

anonial projetion

F

o

: M

o

= B

o

� T

n

! B

o

; (I; �) 7! I;

1

Sometimes, suh a �bration is alled a (reduible) real polarization of M [49℄.
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where B

o

is a domain of R

n

, T

n

= R

n

=Z

n

is the n-torus and M

o

is endowed with

the standard sympleti form !

o

=

P

j

dI

j

^ d�

j

. All maps onsidered here are

smooth.

Theorem 1. For every b 2 B, there exist a neighborhood B(b) of b in B, a domain

B

o

of R

n

, a di�eomorphism I : B(b) ! B

o

and a sympleti di�eomorphism

(I; �) : M j

B(b)

!M

o

above I, i.e. suh that the following diagram ommutes:

M j

B(b)

(I;�)

//

F

��

M

o

F

o

��

B(b)

I

//
B

o

:

The oordinates I and � are respetively alled ation and angle oordinates.

Example 1. Let F = (F

1

; :::; F

n

) : M ! R

n

be a family of n independent Hamil-

tonians in involution:

(

fF

j

; F

j

g = 0 (8i; j)

rkF

0

(x) = n (8x 2M);

suh that the levels of F are ompat and onneted. Any of the omponents F

i

's

is then often alled an integrable Hamiltonian system.

2

Due to a lassial theorem

of Ehresman [17, 32℄, F is a �bration. The tangent spae of its �bers is generated

by the Hamiltonian vetor �elds of F

i

, i = 1; :::; n. Sine the F

i

ommute, �bers

are Lagrangian and the hypotheses of the theorem are satis�ed.

The history of ation-angle oordinates has known several stages, whih an be

skethed as follows.

� Early versions of Liouville [36℄ or Jaobi [25℄ fous on the possibility of lo-

al integration of a Hamiltonian system (or, more generally, of an ordinary

di�erential equation) by quadrature. They single out the hypothesis of n

ommuting independent �rst integrals, but they do not provide a a topolog-

ial desription of the quasiperiodi tori foliation of the phase spae.

� In the ourse of the 19th entury, astronomers �ll this gap, realizing the

importane and the non-generiity of the foliation of the phase spae in

\multiply periodi" solutions,

3

in partiular in integrable approximations of

the planetary problem [43℄.

2

In addition to the integrability of di�erential equations by quadrature, integrability may also

refer to Pfa� systems satisfying the hypotheses of the Frobenius theorem or, more generally, to

geometri strutures satisfying some atness ondition [45℄. Also, some authors speak of om-

pletely integrable Hamiltonian systems, while they keep the phrase (non ompletely) integrable

for Hamiltonian systems with any intermediate number k 2 f1; :::; ng of �rst integrals, thus being

not integrable...

3

Today, suh solutions are generally alled `quasiperiodi. Yet some authors rather all them

onditionally periodi, keeping the adjetive \quasiperiodi" for onditionally periodi with an

irrational frequeny vetor [7℄.
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� Several versions of the theorem of the ation-angle oordinates, in the early

20th entury, are related to adiabati invariants and the Bohr{Sommerfeld

quantization (see remark 3). They are due to Gibbs-Hertz [47, Bd 1, p. 535℄

(adiabati invariane of the volume), Burgers [11℄ (adiabati invariane of

the

H

p

i

dq

i

for deoupled systems) and others. Poinar�e [30℄ suggests to re-

plae the Bohr{Sommerfeld rule of quantization by a rule whih is invariant,

substituting an integral invariant for the p

i

dq

i

's; he also raises the issue of

the question of the uniqueness of the system of adiabati invariants (see also

Einstein's quantization [18℄). Epstein disusses how degeneray indues am-

biguity in the hoie of adiabati invariants and thus in quantization [19℄.

Levi-Civita [34℄ and Mineur [39℄ seemingly prove the modern statement on

ation-angle oordinates.

� Landau-Lipshitz treats of adiabati invariants in a way lose to Mineur [29℄.

Arnold uses a more modern geometri language [3, 6℄.

� Some unneessary hypotheses, suh as the funtional independene of the

ation variables and the exatness of the sympleti form, are removed

in [16, 26, 37℄, with variants [7, 24, 35℄. Usually these proofs build some

angle oordinates by straightening the period lattie of the ow of the �rst

integrals, and then de�ne the ation variables as the variables whih are

sympletially onjugate to the angles. In order to prove integrability by

quadrature, one eventually needs to show how these oordinates relate to

the natural adiabati invariants (e.g., see [16℄).

� Generalizations in several diretions: re�ned integrability properties [4, 27℄,

geometri quantization [49℄, globalness and monodromy of the ation [15,

16℄, singular �brations [33℄, or, non-ommuting integrals (the question then

interestingly relates to weak KAM theory) [12℄.

Here we will review the proof of theorem 1 in the lines of Duistermaat and

Guillemin-Sternberg [16, 24℄, with only minor di�erenes aiming at pratial om-

putations, in relation to the seond setion of this artile.

1.2 Toral ations

Lemma 1. Let V be a real vetor spae of �nite dimension n, ating on a ompat

onneted manifold X of dimension n. The ation is transitive if and only if it is

in�nitesimally transitive, in whih ase X is di�eomorphi to T

n

.

For all x 2 X, let �

x

: V ! X, v 7! �

x

(v) = v�x. Reall that the ation is transitive

if the orbit �

x

(V ) is the entire X for all x 2 X, and that it is in�nitesimally

transitive if �

0

x

(0) : V ! T

x

X (derivative of �

x

at v = 0) is an isomorphism for all

x 2 X.
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Proof. By the de�nition of an ation, if x 2 X and v 2 V we have �

x

(v + h) =

v � �

x

(h) for all h 2 V . Hene, by di�erentiating with respet to h,

�

0

x

(v) = v

0

(x) � �

0

x

(0)

and, sine v

0

(x) is an isomorphism, �

0

x

(0) is an isomorphism if and only if, for all

v, �

0

x

(v) is one.

So, if the ation is in�nitesimally transitive, by the inverse funtion theorem, the

orbit �

x

(V ) of x is open. Sine X is ompat, X is overed by a �nite union of

orbits. Sine X is onneted, there an only be one orbit. Thus the ation is

transitive.

Conversly, if the ation is not in�nitesimally transitive, due to the remark above,

�

0

x

(v) is invertible for no v 2 V , so the whole orbit �

x

(V ) onsists of ritial values

of �

x

and, by Sard's theorem, has measure zero. So, the ation is not transitive.

Assume again that the ation is transitive. Let x and y be any two points of X.

Sine the ation is transitive, the stabilizers of x and y are onjugate. Sine V

is an Abelian group, the stabilizers agree. Let L � V be the ommon stabilizer

of points of X. As already mentioned, due to the in�nitesimal transitivity of the

ation, �

x

is a loal di�eomorphism in the neighborhood of v 7! v �x for every x and

v. Hene L has only isolated points, hene L is disrete. So, L is a lattie [8, 46℄.

Sine X is ompat, L is a maximal lattie. So, V=L is ompat, hene an n-torus.

Sine X is di�eomorphi to V=L, X itself is an n-torus.

The above stabilizer L is alled the period lattie of the ation.

Example 2. Let �

1

; :::; �

n

be n vetor �elds on X, ommuting and everywhere

independent:

(

[�

i

; �

j

℄ = 0 (8i; j)

Span (�

1

(x); :::; �

n

(x)) = T

x

X (8x 2 X):

Then the \joint ow of the �

i

's"

R

n

�X ! X; (v; x) 7! �

�

v

(x) = '

�

1

v

1

Æ � � � Æ '

�

n

v

n

(x);

where '

�

i

v

i

is the time-v

i

of the ow of �

i

, is an in�nitesimally transitive ation.

1.3 Lagrangian �brations

We now aim at proving theorem 1. Let F : M ! B be as in the statement.

Lemma 2 ([24℄). There is a transitive ation of T

�

B on M and �bers of F are

n-tori.

Proof. Let b 2 B and x 2M

b

. The otangent map F

�

(x) : T

�

b

B ! T

�

x

M omposed

with the isomorphism T

�

x

M ! T

x

M indued on the left by ! (inverse of X

x

7!
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i(X

x

)!) allows us to assoiate to a otangent vetor �

b

2 T

�

b

B a vetor

^

�

x

tangent

to M at every point x in the �ber of b, haraterized by the equation

i(

^

�

x

)! = F

�

(x) � �

b

:

Sine the 1-form F

�

(x) � �

b

vanishes on vertial vetors, it indues an element of

the normal bundle N

�

x

(M

b

) = T

�

x

M=KerT

x

F of the �ber at x. Sine the �ber is

Lagrangian (otherwise said, equal to its own !-orthgogonal), ! identi�es N

�

x

(M

b

)

with the vertial tangent spae T

x

(M

b

). So,

^

�

x

is vertial and the map

T

�

b

B ! T

x

(M

b

); �

b

7!

^

�

x

is an isomorphism. Sine the �bers are ompat, the vetor �eld

^

� an be expo-

nentiated into a �bered di�eomorphism, whih we will simply denote by �.

For this onstrution to de�ne an ation, we need that, if �

1

; �

2

2 T

�

b

B, their

assoiated di�eomorphisms ommute. Let h

1

and h

2

be funtions on B suh that

�

i

= h

0

i

(b), i = 1; 2. If x 2M

b

,

(h

i

Æ F )

0

(x) = F

�

(x) � �

i

;

hene, the vetor �eld

^

�

i

(x) = X

F

�

h

i

(x)

is the restrition of a Hamiltonian vetor �eld and, sine �bers are Lagrangian,

[

^

�

1

;

^

�

2

℄

x

= fF

�

h

1

; F

�

h

2

g

x

= !

x

(X

F

�

h

1

; X

F

�

h

2

) = 0:

We have thus de�ned an ation of T

b

B on the �ber M

b

, for all b 2 B. The ation

is in�nitesimally transitive. Hene, aording to lemma 1, the ation is transitive

and �bers of F are n-tori. .

A �rst onsequene of lemma 2 (and its proof) is the existene of loal Lagrangian

submanifolds of M whih are transverse to the �bers.

Lemma 3. If � is a 1-form on B,

�

�

! = ! + F

�

d�

where on the left hand-side � is thought of as a di�eomorphism of M . Conse-

quently, there exists a setion of F whose image is Lagrangian.

Proof. If � is a 1-form on B,

�

�

! = ! +

Z

1

0

(t�)

�

L

^

�

! dt

= ! +

Z

1

0

(t�)

�

di(

^

�)! dt (Cartan formula)

= ! +

Z

1

0

(t�)

�

F

�

d� dt (by de�nition of

^

�)

= ! + F

�

d� (beause F Æ (t�) = F ):
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Now, let �

0

: B ! M be a setion of F . There is a 1-form � on B suh that

�

�

0

! = d�. From lemma 2, and using the fat that F Æ �

0

= id,

((��) Æ �

0

)

�

! = �

�

0

(! � F

�

d�) = 0:

So, the setion � = (��) � �

0

is Lagrangian.

The next lemma is a key step towards understanding the struture of M . We

endow T

�

B with its anonial sympleti form, whih we denote by !

o

.

Remark 1. In the onstrution of lemma 2, we may replae F by the anonial

projetion � : T

�

B ! B. If � 2 T

�

b

B, the vertial vetor �eld

^

�

o

along the �ber of

b is de�ned by i(

^

�

o

)!

o

= �

�

� �. If one identi�es the tangent spae at  2 T

�

b

B of

T

�

b

B with T

�

b

B,

^

�

o

identi�es with �, seen as a onstant vertial vetor �eld. Thus

^

�

o

exponentiates (despite the �ber being not ompat) into a di�eomorphism �

o

of T

�

b

B, whih is just the vertial translation:

�

o

�  = � + :

Lemma 4. Let � be a Lagrangian setion of F . The map

� : T

�

B !M; �

b

7! �

b

� �(b)

is sympleti.

0B

F

σ

π

B

T ∗

b
B

βMb

T ∗B

b

χ

u

M

Proof. Let us �rst prove that � is sympleti at some point (b; 0) of the zero-setion

0

B

of T

�

B. The tangent spae of T

�

B at (b; 0) splits into its horizontal and vertial

subspaes, T

(b;0)

0

B

and T

(b;0)

T

�

b

B, both Lagrangian. The derivative �

0

maps these

subspaes respetively to the tangent spaes at �(b) of the image of � and of the

�ber M

b

, both of whih are Lagrangian too. So it is enough to hek that

�

�

!(�; u) = !

o

(�; u)

with � 2 T

(b;0)

T

�

b

B = T

�

b

B and u 2 T

(b;0)

0

B

= T

b

B. For suh vetors � and u, on

the one hand we have

4

!

o

(�; u) = � � u:

4

Here we hoose between the two possible signs of the anonial sympleti form.
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On the other hand, we have

�

0

� � =

^

�

�(b)

and �

0

� u = �

0

� u;

hene

�

�

!(�; u) = !(

^

�

�(b)

; �

0

� u)

= F

�

� � (�

0

� u) (by de�nition of

^

�)

= � � u (using that F Æ � = id ):

Let us now onsider any point  2 T

�

b

B not neessarily on the zero-setion. First

notie that

� Æ �() = � � ( � �(b))

= (� + ) � �(b)

= � Æ �

o

():

Now, if u and v are two vetors tangent to T

�

B at , they are of the form

u = 

o0

� u

1

and v = 

o0

� v

1

with u

1

; v

1

tangent to T

�

B at (b; 0), and

�

�

!(u; v) = (� Æ 

o

)

�

!(u

1

; v

1

)

= ( Æ �)

�

!(u

1

; v

1

)

= 

�

!(�

0

� u

1

; �

0

� v

1

)

= !(�

0

� u

1

; �

0

� v

1

) + F

�

d(�

0

� u

1

; �

0

� v

1

) (lemma 3)

= !

o

(u

1

; v

1

) + �

�

d(u

1

; v

1

)

(� is sympleti along 0

B

and F Æ � = �)

= !

o

(u; v) (lemma 3 and remark 1):

Remark 2. The Poinar�e lemma relative to a �ber M

b

shows that ! is exat (al-

though H

2

(M;R) = H

2

(T

n

;R) is not trivial if n � 2).

5

Let � be a primitive of ! and 

1

(b); :::; 

n

(b) be smooth generators of the funda-

mental group of M

b

with basepoint �(b), varying smoothly with b 2 B. De�ne I

by

I

i

=

I



i

(b)

�; i = 1; :::; n; (1)

and � as the (multi-valued) dual variables of I suh that � = 0 on �(B).

5

This is assumed in [6℄ and shown using a �rst version of the ation-angle variables in [16℄. IfX

is Lagrangian, this also follows from the fat that the only sympleti invariant of a neighborhood

of X is the di�eomorphism lass of X itself [38, 48℄.
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Lemma 5. If B is simply onneted, the variables (I; �) indue ation-angle o-

ordinates M ! R

n

�T

n

, whih form a di�eomorphism loally in the neighborhood

of any �ber of F .

Theorem 1 follows from this lemma, by setting B

o

= I(M).

Proof. If J = (J

1

; :::; J

n

) : B ! R

n

is a oordinate system over B, the natural

sympleti oordinates assoiated with J over T

�

B is (J; '), with '

i

= �=�J

i

, i.e.

'

i

(�

b

) = �

b

�

�

�J

i

�

�

�

�

b

; i = 1; :::; n; �

b

2 T

�

b

B:

We want to ompute the oordinates I

i

in terms of suh well hosen oordinates

(J; '), in order to see that (1) the I

i

's are independent, (2) (I; �) is sympleti and

(3) � is T

n

-valued.

Sine the map � is a loal di�eomorphism everywhere, the set L = �

�1

(�(B))

of elements of T

�

B ating trivially on M is a submanifold of dimension n (with

ountably many onneted omponents). Besides, � being sympleti and �(B)

being Lagrangian, L itself is Lagrangian. Due to lemma 1, the trae of L on a

�ber T

�

b

B is a maximal lattie L

b

.

Let b 2 B. Using �, lift the loops 

i

(b) (i 2 f1; :::; ng), to paths ~

i

(b) in T

�

b

B

starting at (b; 0) and ending at some points �

i

(b) 2 T

�

b

B. Sine (

1

(b); :::; 

n

(b)) is

a basis of the fundamental group of M

b

, the so-de�ned (�

1

(b); :::; �

n

(b)) is a basis

of L

b

over Z. When now b is varied, the ovetors �

i

(b) extend to uniquely de�ned

1-forms �

1

; :::; �

n

, whose disjoint images are n onneted omponents of L. Sine

L is Lagrangian, the 1-forms �

i

are losed: there are funtions J

1

; :::; J

n

over B

suh that

�

i

= dJ

i

; i = 1; :::; n:

That the �

i

's form a basis of the lattie subbundle entails that the J

i

's are inde-

pendent, and thus form a oordinate system over B. De�ne the dual oordinates

'

1

; :::; '

n

(as above for I and �), by letting '

i

be the tangent vetor �eld '

i

= �=�J

i

over B.

De�ne the primitive

�

o

=

X

1�i�n

J

i

d'

i

:

of the sympleti form !. Sine � is sympleti, �

�

�� �

o

is losed in T

�

B, hene

exat: �

�

� � �

o

= dS, for B is simply onneted by assumption. Note that

S :M ! R is L-periodi, and, for every i = 1; :::; n, the funtion

S(I; '+ �=�'

i

)� S(I; ')

is onstant equal to some 

i

2 R.

Sine for a given b 2 B the �ber T

�

b

B is Lagrangian, the integral

I

1

(b) =

Z

~

1

(b)

�

�

�

8



depends on ~

1

(b) only through its homotopy lass, and we may replae ~

1

(b) by

the path with the same endpoints

~

1

(b) = (J(b); ('

1

; 0; :::; 0))

0�'

1

�1

;

and similarly for I

2

; :::; I

n

. Thus, for i = 1; :::; n,

I

i

(b) =

Z

~

i

(b)

o

�

�

�

=

Z

~

i

(b)

o

(�

o

+ dS)

= J

i

(b) + 

i

:

Consequently, I

i

di�ers from J

i

by a mere onstant and �

i

= '

i

Æ �

�1

(mod Z

n

),

where �

�1

stand for any inverse branh of �.

Remark 3 (Adiabati invariants). The ation oordinates I

i

de�ned by (1) play an

important role in lassial dynamis beause of their adiabati invariane, i.e. their

invariane under in�nitesimally slow perturbations [40℄. They also play a ruial

role in the Sommerfeld quantization, whih is explained by Ehrenfest's \adiabati

hypothesis": quantities whih are to be quantized must be adiabatially invariant,

beause, on perturbing the system, these quantities would have to remain integral

multiples of the Plank onstant [41℄.

There are numerous examples illustrating theorem 1, for example in the book [7℄.

Examples losely related to next setion's topi are the Delaunay oordinates

(see [13, 44℄, or [22, Appendix℄

6

for a loser viewpoint), or ation-angle oordi-

nates of the non-Newtonian Kepler problem [23℄.

2 The Poinar�e oordinates

The Poinar�e variables are sympleti oordinates in the phase spae of the Kepler

problem, in the neighborhood of horizontal irular motions. Determining suh

oordinates departs from the abstrat setting of the �rst setion in two respets:

� The Kepler problem is super-integrable in the sense that it has more in-

dependent (non ommuting) �rst integrals than degrees of freedom, so the

dynamis is degenerate and does not determine in itself a full set of oordi-

nates.

� The ation of rotations is degenerate at irular Keplerian ellipses, in the

sense that dH ^ dC = 0 with the notations below.

6

This appendix is really on the Delaunay oordinates, and does not prove the analytiity of

the Poinar�e oordinates.
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The Poinar�e variables are the loser to being ation-angle oordinates in this

situation. Despite being of prime importane in perturbation theory [2, 14, 21, 43℄

(see also more ompliated, Deprit-like oordinates of the N -body problem in [14,

42℄), they have few omplete desriptions in the literature (see [9, 10, 13, 44℄

for proofs at various levels of preision), all of whih are based on Poinar�e's

omputation, through the Delaunay oordinates.

7;8

This omputation requires a

good deal of intuition {whih Poinar�e did not lak.

Here we aim at providing a slightly more diret onstrution (although symple-

tiity is always more simple to hek by relating the Poinar�e oordinates to the

Delaunay oordinates), trying to �nd out the de�nition of the oordinates at the

same time as proving their properties.

In the sequel, we will set T

n

= R

n

=2�Z

n

(as opposed to R

n

=Z

n

as in the �rst

setion) for the sake of onveniene.

2.1 Reminder on the plane Kepler problem

We start with the plane problem beause it is an interesting intermediate step, with

simpler omputations. In this setion, we reall some elementary (non sympleti)

fats.

Consider the equation

�q = �

q

r

3

; q 2 C n f0g; r = jqj; (2)

referenes are so numerous that we give up advising any one of them. The phase

spae is the set f( _q; q)g = C � (C n f0g).

� The angular momentum

C = Im(�q _q) = x _y � y _x

is preserved, as in any entral fore problem (Kepler's seond law).

� The eentriity vetor

E =

q

r

+ iC _q

too is preserved, this time in ontrast to other entral fores than Newton's.

The equation of an orbit an be obtained by eliminating the veloity from

C and E:

Re (

�

Eq) = r � C

2

(3)

whih is the equation of the oni with a fous at the origin (Kepler's �rst

law), of eentriity � = jEj and with diretrix D : Re (

�

Eq) + C

2

= 0.

7

In the �rst edition of [1℄, the Delaunay and Poinar�e oordinates are wrongly found non

sympleti!

8

In the unpublished note [20℄ on the plane Poinar�e oordinates, it is wrongly laimed that

the analytiity of the Poinar�e oordinates was not proved by Poinar�e. Poinar�e did prove that

the inverse map is analyti (and in partiular, that the Hamiltonian is an analyti funtion of

the Poinar�e oordinates), whih, due to the inverse funtion theorem, is equivalent to proving

that the oordinate map itself is analyti.

10



� The Hamiltonian

H =

j _qj

2

2

�

1

r

(denoted H by Lagrange in referene to Huygens [28℄) too is a �rst integral.

The dynamis is that of the Hamiltonian vetor �eld of H with respet to

the standard sympleti form, ! = Re (d�p ^ dq).

Beause of the symmetry about the origin, it is useful to swith to polar oordi-

nates. The otangent map of the \polar oordinate" map (r; �) 7! q = r e

i�

is the

di�eomorphism

9

Pol : R

2

�R

+

�

�T ! C �(C nf0g); (R;�; r; �) 7! ( _q; q) =

��

R + i

�

r

�

e

i�

; r e

i�

�

:

The (pull-baks by Pol of the) �rst integrals are

H =

R

2

2

+

�

2

2r

2

�

1

r

; C = � and E = e

i�

�

1�

�

2

r

+ i�R

�

: (4)

The polar representation of E is

E =

p

1 + 2H�

2

e

ig

; (5)

where the argument g is easily omputed when R = 0: it is the argument of the

perienter of the oni (when the oni is a irle and the perienter thus not

de�ned, E = 0 is well de�ned, of ourse).

From now on, we restrit to negative energies. If a is the semi major axis, r varies

between a(1 � �) and a(1 + �). These two extremal values are the roots of the

quadrati equation H =

C

2

2r

2

�

1

r

, so their sum and produt are

2a = �

1

2H

and a

2

(1� �

2

) = �

C

2

2H

:

Hene, using (5),

H = �

1

2a

; C =

p

a(1� �

2

); and E = � e

ig

; (6)

we will use that these funtions are analyti.

Now, aording to Kepler's seond law, the area swept by q grows with onstant

speed C=2. Sine the area of the ellipse is �ab = �a

2

p

1� �

2

, the following relation

holds between the period T and the ellipti elements:

�a

2

p

1� �

2

T

=

C

2

and, thanks to the remarkable disappearane of the eentriity (use (6)), so does

Kepler's third law:

T = 2�a

3=2

:

We will also use three lassial angles, de�ned when the ellipse is not irular:

10

9

Another way to ompute the onjugate variable of � is to think of � as the momentum

i(X) p dq of the rotational vetor �eld X .

10

Notations here follow Poinar�e's quite losely.
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Figure 1: Eentri, mean and true anomalies (u; v; `)

� the mean anomaly ` is the angle whih is proportional to the area, ounting

from the perienter (Kepler's seond law says that ` inreases linearly with

time)

� the eentri anomaly u is de�ned on �gure 1

� the true anomaly v = � � g.

Elementary geometry yields Kepler's fundamental equation

` = u� � sinu; (7)

whih shows that q is a transendant funtion of ` (see Newton's proof in [5℄), that

u does vary around the whole irle, et.

We will need one more fat. The anomalies u, v or ` are not analyti, nor even

de�ned, at irular motions. In ontrast, the eentri longitude w = u + g is

analyti. Indeed, elementary geometry again shows that

(

r os v = a(os u� �)

r sin v = a

p

1� �

2

sinu:

Solving these two equations for os u and sinu allows us to express trigonometri

funtions of w in terms of v = � � g: for example,

osw =

�

r

a

os(� � g) + �

�

os g �

r

a

p

1� �

2

sin(� � g) sin g

=

r

p

a�

�

os � +

�

�

p

a

� 1

�

�

os

2

g os � + os g sin g sin �

�

�

+ � os g;
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the right hand side is real analyti beause

�

p

a

� 1 =

p

1� �

2

� 1 = O(�

2

), and

E = �e

ig

is analyti. The funtion sinw an be seen to be real analyti similarly.

So, w is real analyti.

2.2 Plane Poinar�e variables

Consider the plane Kepler problem with negative energy and, say, positive angular

momentum. The phase spae is di�eomorphi to R

3

� T

1

and has oordinates

(R; r;�; �) and sympleti form ! = dR ^ dr + d� ^ d�.

Keplerian ation variable � First onsider the problem redued by rotations,

in the sympleti spae K = f(R; r)g ' R

2

, with the angular momentum � as a

parameter. The redued Hamiltonian H = H

�

(R; r) has an ellipti singularity at

(R; r) = (0;�

2

), orresponding to irular motions. Loally outside the singularity,

the energy H and the time t (ounted from some setion of the ow of H, whih

we do not want to speify at this stage) form some sympleti oordinates. We

would like to swith to some oordinates (�; �) where the ation is a well hosen

funtion of H, so that the dual oordinate � be an angle, de�ned modulo 2�:

dH ^ dt = d� ^ d�;

where � = �(H) and � =

2�

T

t. Hene,

dH ^ dt =

2�

T

�

0

(H) dH ^ dt;

or

�

0

=

T

2�

= a

3=2

=

�

�

1

2H

�

3=2

;

or, if we hoose the primitive vanishing at H = �1,

� =

1

p

2

(�H)

�1=2

=

p

a:

Up to now, �, is only determined up to the addition of a �rst integral.

Remark 4. The above omputation of �

0

an be reovered from the expression of

the ation oordinate given in the previous setion (up to a fator 2� due to the

fat that we then took irles of length 1). Indeed, denoting by X

t

the (globally

de�ned) Hamiltonian vetor �eld of t, by (�

H

) its ow (with \time" H) , and by

H

0

=

1

2�

2

the value of the Hamiltonian at irular motions,

�

0

(H) =

1

2�

X

t

�

I

H=H

0

�

�

H�H

0

Rdr

=

1

2�

I

H=H

0

�

�

H�H

0

L

X

t

Rdr)

=

1

2�

I

H=H

0

�

�

H�H

0

(dt+ di

X

t

Rdr) (Cartan formula)

=

T

2�

:

13



The Keplerian ation variable � lifts to an analyti variable in the non-redued

phase spae (analytiity follows from (6)).

Eentri variable F One ould hek that the sympleti transformation

(R; r) 7! (�; �) in the redued spae lifts to an essentially unique sympleti

transformation (R; r;�; �) 7! (�; �; F

1

; F

2

) in the full phase spae, possibly using

a generating funtion. But this omputation is more involved than neessary (a

similar omputation is made in [23℄ in the non-Newtonian two-body problem at

the seond order in the eentriity). We will make a muh shorter omputation,

ompleted by geometri arguments.

Consider the spae E of Keplerian ellipses of �xed energy H < 0. For an ellipse

in the plane, to be Keplerian means that it is oriented and has a fous at the

origin. In addition to that, Keplerian ellipses in E have a �xed semi major axis.

Inluding degenerate ellipses orresponding to ollision orbits of eentriity 1, E

is di�eomorphi to S

2

. Outside the poles fN; Sg orresponding to irular ellipses,

it bears the oordinates (�; g), where g is the argument of the perienter. Sine

the ow of � = C onsists of rigid rotations in the plane, the Poisson braket of

� and g is f�; gg = 1, hene the sympleti form indued from ! on E n fN; Sg is

!

E

= d� ^ dg.

We will fous on the open hemisphere E

+

of E onsisting of diret, non-degenerate

ellipses; this domain is de�ned in E by the inequality � > 0.

11

Over E

+

, the

exentriity vetor E is a (omplex-valued) real analyti oordinate, unfortunately

not sympleti, sine, using the expression (5), we get

1

2i

d

�

E ^ dE = �

�

�

2

d� ^ dg: (8)

Let us �rst look to the ase � = 1. We will look for a real analyti sympleti

oordinate F obtained by multiplying

�

E (not E beause of the negative sign in

(8)) by a positive real analyti funtion f of � 2 ℄0; 1℄:

F = f(�)

�

E: (9)

Diret omputation yields

1

2i

d

�

F ^ dF =

�

�f(�)

2

� (1� �

2

)f(�)f

0

(�)

�

d� ^ dg: (10)

The requirement that F be sympleti is equivalent to imposing that the expression

in brakets equal 1. In the unknown ' = f

2

, the equation beomes

(1� �

2

)'

0

(�) = 2(�'(�)� 1):

Solutions are of the form

'(�) =

2� + 

1��

2

;  2 R:

11

One an similarly de�ne dual Poinar�e oordinates over the hemisphere of negatively oriented

ellipses.
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The only solution analyti (and even ontinuous) at � = 1 orresponds to  = �2

i.e., '(�) =

2

1+�

i.e., F =

p

2(1� �)e

�ig

. For a general value of the parameter

�, by homogeneity (F having the dimension of

p

� and � having that of �), one

gets

F =

p

2�

r

1�

�

�

e

�ig

=

p

2(���)e

�ig

: (11)

Lemma 6. The oordinate F is real-analyti and sympleti over E

+

.

That F be sympleti has already been proved. That it is analyti follows from

the formula

F =

s

2�

1 +

�

�

�

E:

Mean longitude � The variable F an be lifted to the full phase spae of the

plane Kepler problem. We need to show that the oordinates (�; �; F ) are analyti

and sympleti, provided that we make some adequate hoie of a real analyti

setion of the ow of � to de�ne � = ` + st; this hoie of onstant orresponds

to hoosing an analyti Lagrangian setion in lemma 3. De�ne � as the mean

longitude

� = `+ g;

this hoie is primarily motivated by the �rst argument given in the proof of the

following statement.

Lemma 7. The oordinate system (�; �; F ) is real analyti and sympleti in the

neighborhood of diret irular Keplerian motions.

Only � is not yet known to be analyti. Adding g to Kepler'equation (7) yields

� = w � � sin(w � g) = w + Im(Ee

�iw

);

where both E and w are analyti. So � is analyti.

We need to show that the oordinate system is sympleti. By ontinuity, it is

enough to hek this outside irular motions. Reall that the \sympleti polar

map"

R

+

�

� T

1

! C ; (�; �) 7! z =

p

2� e

i�

(12)

is sympleti:

1

2i

F

�

(d�z ^ dz) = d�^ d�. So, the question redues to heking that

(�; �;� � �;�g) is sympleti, or, equivalently, that the Delaunay oordinates

(�; `;�; g) are sympleti.

Sine the matrix of the sympleti form is the inverse of the matrix of the Poisson

struture, we will hek that the Poisson brakets are given by the standard matrix.

We know that f�;�g = f�; `g = f�; gg = 1. Three Poisson brakets remain to

be heked:

� f�; `g = 0 beause the ow of � ats by diagonal rotations in the phase

spae.
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� f�; gg = 0 beause g is a �rst integral of H = H(�).

� f`; gg does require some omputation: aording to Jaobi's identity,

f�; f`; ggg = f�; f`; ggg = 0;

so it is enough to prove that f`; gg = 0 on the odimension-2 submanifold

` = g = 0 (mod 2�), a setion of the L- and �-ows. So, without loss of

generality we may thus assume that the body is on the major axis and that

the major axis itself is the �rst oordinate axis. Then the partial derivatives

of ` and g with respet of x or p

y

are zero, and

f`; gg =

 

�`

�x

|{z}

=0

�g

�p

x

�

�`

�p

x

�g

�x

|{z}

=0

!

+

 

�`

�y

�g

�p

y

|{z}

=0

�

�`

�p

y

|{z}

=0

�g

�y

!

= 0:

2.3 Reminder on the spatial Kepler problem

Now onsider the same equation as in (2) but with q = (x; y; z) 2 R

3

n f0g. We

will again restrit to negative energy

H =

k _qk

2

�

1

r

and non ollision motions (q ^ _q 6= 0). Due to the equivariane of the equation by

orthogonal symmetries, a solution q(t) is drawn on the vetor plane generated by

q(0) and _q(0).

Rede�ne the angular momentum and the eentriity vetor respetively as

C = q ^ _q 2 R

3

^ R

3

� R

3

and

~

E =

q

r

+ i( _q)C;

with r = kqk and i( _q)C = ( _q � q) _q � _q

2

q.

We will need extensions of �e

ig

and of the eentri longitude w in spae. Let

R
q

(�) 2 SO

3

be the rotation around a vetor q 2 R

3

of angle �, R
x

(�) =

R
(1;0;0)

(�), and similarly for rotations around the two other vetors of the anoni-

al basis of R

3

. When the orbital plane is not the \horizontal" plane (xy-plane),

de�ne

� the inlination �, or the angle of the orbital plane with respet to the hori-

zontal plane,

� �, the oriented diretion of the asending node (half line from the enter of

attration to the point of the Keplerian ellipse where z = 0 and _z > 0),

� the longitude of the node ', or the angle between the x-axis and �.
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Sine

~

E lies in the orbital plane, R
�

(��)

~

E is horizontal. The fortunate fat is that

this rotation matrix is an analyti funtion of q and _q. Indeed, using a lassial

deomposition (see [31℄), we see that

R
�

(�) = R(')R(�=2)R(�=2)R(�')

=

0

�

1� 2�

2

2�� �2�

2�� 1� 2�

2

2�

2� �2� 1� 2�

2

� 2�

2

1

A

;

where we have used the auxiliary notation

� =

C

x

2kCk

; � = �

C

y

2�

;  = os

�

2

=

r

1 + C

z

=�

2

; � = kCk:

Identifying R
�

(��)

~

E 2 R

2

�f0g to a omplex number, de�ne the analyti variable

E = R
�

(��)

~

E = � e

i(g+')

2 C :

Moreover, the omputation analogous to the one made in the plane shows that

now the eentri longitude

w = u+ g + '

is analyti.

2.4 Spatial Poinar�e oordinates

Horizontal variables The plane oordinates (�; �; F ) extend to real analyti

variables in a neighborhood of irular oplanar Keplerian motions in the spatial

phase spae f( _q; q)g = R

3

� (R

3

n f0g), in the following manner:

� � =

p

a, where a is the semi major axis. Due to the invariane of the

Hamiltonian by rotations, the relation H = �

1

2a

still holds in spae, showing

that a and thus � are real analyti.

� � = `+ g + '.

� F =

p

2(�� �) e

�i(g+')

=

q

2�

1+

�

�

�

E

Only � is not obviously analyti. But, this follows from Kepler's equation 7, to

whih one an add g + ' (instead of g in the plane), to get

� = w � � sin(w � '� g) = w + Im(Ee

�iw

);

and from the fat that E and the eentri longitude w are analyti.
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Oblique variable The omplex-valued variable

� = C

x

+ iC

y

= �i

p

�

2

� �

2

e

i'

; with � = C

z

= �os �;

an be added to (�; �; F ) to form an analyti oordinate system in spae. Unfor-

tunately, (�; �; F;�) is not a sympleti sine, in restrition to the tangent spae

generated by �=�z and �=� _z,

1

2i

d

�

� ^ d� = C

z

d _z ^ dz:

Looking for a sympleti modi�ation of � of the form G = f(�;�)

�

� by arrying

out an analogous omputation of the sympleti form as after (9), using spherial

oordinates, one an �nd

G =

p

2(�� �) e

�i'

;

another way to build spatial oordinates from the plane ones is desribed in [50℄.

G is analyti beause

G =

p

2

i

�

�

p

�+ �

:

Theorem 2. The oordinate system (�; �; F;G) with

8

>

>

>

<

>

>

>

:

� =

p

a

� = `+ g + '

F =

p

2(���) e

�i(g+')

G =

p

2(�� �) e

�i'

is analyti and sympleti in the neighborhood of diret irular horizontal Keple-

rian motions.

Only the property of being sympleti remains to be proved. Sine the map (12) is

sympleti, by ontinuity it suÆes to show that the oordinate system

(�; �;�� �;�g � ';�� �;�')

(de�ned outside horizontal or irular motions) is sympleti, or, equivalently, that

the Delaunay oordinates

(�; `;�; g;�; ')

are sympleti.

� Poisson brakets with �, � and � are all 0, exept f�; `g = f�; gg =

f�; 'g = 1 (we know the ows of �, � and �).

� The three Poisson brakets between pairs of angles among `, g and ' vanish.

Indeed, as in the plane, the Jaobi identity shows that it is enough to hek

those Poisson brakets on the submanifold f` = g = ' = 0 (mod �)g. But

on this submanifold the partial derivatives of any of the angles with respet

to x, p

y

or p

z

vanish.
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This ompletes the proof of theorem 2.

Thank you to A. Albouy and A. Cheniner for their ritial reviewing and to P.
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