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Abstract. A variant of Kolmogorov’s initial proof is given, in terms of a group of symplectic
transformations and of an elementary fixed point theorem.

Let H be the space of Hamiltonians which are real analytic in neighborhoods of Tn
0 := Tn × {0}

in Tn × Rn = {(θ, r)} (Tn = Rn/Zn). The vector field associated with H ∈ H is

θ̇ = ∂rH, ṙ = −∂θH.

For α ∈ Rn, let Kα be the subspace of Hamiltonians K ∈ H such that K|Tn
0

is constant (i.e. Tn
0

is invariant) and ~K|Tn
0

= α:

Kα = {K ∈ H, ∃c ∈ R, K(θ, r) = c + α · r + O(r2)}, α · r = α1r1 + · · · + αnrn,

where O(r2) are terms of the second order in r, which depend on θ.

Let also G be the space of symplectic transformations G real analytic in neighborhoods of Tn
0 in

T
n × R

n, of the following form:

G(θ, r) = (ϕ(θ), (r + ρ(θ)) · ϕ′(θ)−1),

where ϕ is an analytic transformation of Tn fixing the origin (meant to straighten the flow on
an invariant torus), and ρ is a closed 1-form on Tn (or an irrotational vector field, meant to
straighten an invariant torus). To be more precise, ρ(θ) dθ is a closed 1-form on T

n.

We fix α ∈ Rn Diophantine (0 < γ ≪ 1 and τ > n − 1; see [6]):

|k · α| ≥ γ|k|−τ (∀k ∈ Z
n \ {0}), |k| = |k1| + · · · + |kn|

and

Ko(θ, r) = co + α · r + Qo(θ) · r2 + O(r3) ∈ Kα

such that the average of the quadratic form valued function Qo is non-degenerate:

det

∫

Tn

Qo(θ) dθ 6= 0.

Theorem 1 (Kolmogorov [1, 4, 5]). For every H ∈ H close to Ko, there exists (K, G) ∈ Kα ×G
close to (Ko, id ) such that H = K ◦ G in some neighborhood of G−1(Tn

0 ).

See [3, 6, 9] and references therein for background. Here we present Kolmogorov’s initial proof
in its simplest form, but in the concise functional language of [2]. A beautiful paper claims to
give the “shortest complete KAM proof for perturbations of integrable vector fields available
so far” [7]. In fact, the only significant difference of this paper with Kolmogorov’s induction is
that at each step of the induction, Rüssmann [8] and Pöschel [7] optimize the error by taking a
well chosen polynomial approximation of the right hand side of the cohomological equation; the
convergence is slower and the range of convergence probably larger, but, as for the length of the
proof, readers will judge by themselves.

Define complex extensions Tn
C

= Cn/Zn and Tn
C

= Tn
C
× Cn, and neighborhoods (0 < s < 1)

T
n
s = {θ ∈ T

n
C, max

1≤j≤n
|Im θj | ≤ s} and Tn

s = {(θ, r) ∈ Tn
C, max

1≤j≤n
max (|Im θj |, |rj |) ≤ s}.
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For U = Tn
s or Tn

s , we will denote by A(U) the space of real holomorphic maps from the interior
of U to C which extend continuously on U , endowed with the supremum norm | · |s.

• Let Hs = A(Tn
s ), such that H =

⋃
s Hs.

There exist s0 < s and ǫ0 > 0 such that Ko ∈ Hs and, for all H ∈ Hs0
with |H − Ko|s0

≤ ǫ0,

(1)

∣∣∣∣det

∫

Tn

∂2H

∂r2
(θ, 0) dθ

∣∣∣∣ ≥
1

2

∣∣∣∣det

∫

Tn

∂2Ko

∂r2
(θ, 0) dθ

∣∣∣∣ 6= 0.

Hereafter we assume that s is always ≥ s0. Let

Kα
s = {K ∈ Hs ∩ Kα, |K − Ko|s0

≤ ǫ0};

the vector space ~Ks directing Kα
s identifies with R × O(r2).

• Let Ds be the space of real holomorphic invertible transformations ϕ : Tn
s → ϕ(Tn

s ) ⊂ Tn
C

with ϕ(0) = 0, and Zs be the space of real holomorphic closed 1-forms on Tn
s (seen as maps

Tn
s → Cn). Elements of Gs = Zs × Ds define symplectic transformations of the phase space,

(2) G : Tn
s → Tn

C, (θ, r) 7→ (ϕ(θ), (ρ(θ) + r) · ϕ′(θ)−1), G = (ρ, ϕ),

and of Hs, K 7→ K ◦ G (the latter Hamiltonian being defined on G−1(Tn
s )).

• Let ds := {ϕ̇ ∈ A(Tn
s )n, ϕ̇(0) = 0} with norm |ϕ̇|s := maxθ∈Tn

s
max1≤j≤n |ϕ̇j(θ)|, be the space

of vector fields on Tn
s which vanish at 0. Similarly, let |ρ̇|s = maxθ∈Tn

s
max1≤j≤n |ρ̇j(θ)| on Zs.

An element Ġ = (ρ̇, ϕ̇) of the sum gs = Zs ⊕ ds (with norm |(ρ̇, ϕ̇)|s = max(|ρ̇|s, |ϕ̇|s)) identifies
with the locally Hamiltonian vector field

(3) Ġ : Tn
s → C

2n, (θ, r) 7→ (ϕ̇(θ), ρ̇(θ) − r · ϕ̇′(θ)).

Constants γi, τi, ci, ti below do not depend on s or σ.

Lemma 0. If Ġ ∈ gs+σ and |Ġ|s+σ ≤ γ0σ
2, then exp Ġ ∈ Gs and | exp Ġ− id |s ≤ c0σ

−1|Ġ|s+σ.

Proof. Let χs ∈ A(Tn
s )2n, with norm ‖v‖s = maxθ∈Tn

s
max1≤j≤2n |vj(θ)|. Let Ġ ∈ gs+σ with

|Ġ|s+σ ≤ γ0σ
2, γ0 := (36n)−1. Using definition (3) and Cauchy’s inequality, we see that if

δ := σ/3,

‖Ġ‖s+2δ = max (|ϕ̇|s+2δ, |ρ̇ + r · ϕ̇′(θ)|s+2δ) ≤ 2nδ−1|Ġ|s+3δ ≤ δ/2.

Let Is = [0, 1] × i[−s, s] and F :=
{
f ∈ A(Is × Tn

s )2n, ∀(t, θ) ∈ Is × Tn
s , |f(t, θ)|s ≤ δ

}
. By

Cauchy’s inequality, the Lipschitz constant of the Picard operator

P : F → F , f 7→ Pf, (Pf)(t, θ) =

∫ t

0

Ġ(θ + f(s, θ)) ds

is ≤ 1/2. Hence, P possesses a unique fixed point f ∈ F , such that f(1, ·) = exp(Ġ) − id and

|f(1, ·)|s ≤ ‖Ġ‖s+δ ≤ c0σ
−1|Ġ|s+σ, c0 = 6n.

Also, exp Ġ ∈ Gs because at all times the curve exp(tĠ) is tangent to Gs (another proof uses the
method of the variation of constants). �

Lemma 1 (Cohomological equation). For all (K, Ḣ) ∈ Kα
s+σ × Hs+σ, there exists a unique

(K̇, Ġ) ∈ ~Ks × gs such that

K̇ + K ′ · Ġ = Ḣ and max(|K̇|s, |Ġ|s) ≤ c1σ
−t1 (1 + |K|s+σ) |Ḣ |s+σ.
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Proof. We want to solve the linear (cohomological) equation K̇ + K ′ · Ġ = Ḣ . Write





K(θ, r) = c + α · r + Q(θ) · r2 + O(r3)

K̇(θ, r) = ċ + K̇2(θ, r), ċ ∈ R, K̇2 ∈ O(r2)

Ġ(θ, r) = (ϕ̇(θ), R + S′(θ) − r · ϕ̇′(θ)), ϕ̇ ∈ χs, Ṙ ∈ R
n, Ṡ ∈ A(Tn

s ).

Expanding the equation in powers of r yields

(4)
(
ċ + (Ṙ + Ṡ′) · α

)
+ r ·

(
−ϕ̇′ · α + 2Q · (Ṙ + Ṡ′)

)
+ K̇2 = Ḣ =: Ḣ0 + Ḣ1 · r + O(r2),

where the term O(r2) on the right hand side does not depend on K̇2.

If g ∈ A(Tn
s+σ) has zero average, there is a unique function f ∈ A(Tn

s ) of zero average such
that Lαf := f ′ · α = g, and |f |s ≤ cσ−t|g|s+σ, c = cγ,τ,n. Using the Diophantine condition and
Cauchy’s inequality to estimate Fourier coefficients, the unique formal solution indeed satisfies

|f |s =

∣∣∣∣∣∣

∑

k∈Zn\{0}

gk

ik · α
eik·θ

∣∣∣∣∣∣
s

≤
|g|s+σ

γ

∑

k

|k|τ e−|k|σ,

and the wanted upper bound then follows from an elementary estimate [6].

Equation (4) is triangular in the unknowns and successively yields:





Ṡ = L−1
α

(
Ḣ0 −

∫
Tn Ḣ0(θ) dθ

)

Ṙ = 1
2

(∫
Tn Q(θ) dθ

)−1 ∫
Tn

(
Ḣ1(θ) − 2Q(θ) · Ṡ′(θ)

)
dθ

ϕ̇ = ϕ̇1 − ϕ̇1(0), ϕ̇1 = L−1
α

(
Ḣ1(θ) − 2Q(θ) · (Ṙ + Ṡ′(θ))

)

ċ =
∫

Tn Ḣ0(θ) dθ − Ṙ · α

K̇2 = O(r2).

The wanted estimate follows from Cauchy’s inequality. �

Let us bound the discrepancy between the action of exp(−Ġ) and the infinitesimal action of −Ġ.

Lemma 2 (Quadratic error). For all (K, Ḣ) ∈ Kα
s+σ × Hs+σ such that (1 + |K|s+σ)|Ḣ |s+σ ≤

γ2σ
τ2 , if (K̇, Ġ) ∈ ~K × gs solves the equation K̇ + K ′ ◦ Ġ = Ḣ (lemma 1), then exp Ġ ∈ Gs,

| exp Ġ − id |s ≤ σ and

|(K + Ḣ) ◦ exp(−Ġ) − (K + K̇)|s ≤ c2σ
−t2(1 + |K|s+σ)2|Ḣ |2s+σ.

Proof. Set δ = σ/2. Lemmas 0 and 1 show that, under the hypotheses for some constant γ2 and

for τ2 = t1 + 1, we have |Ġ|s+δ ≤ γ0δ
2 and | exp Ġ − id |s ≤ δ.

Let H = K + Ḣ . Taylor’s formula says

Hs ∋ H ◦ exp(−Ġ) = H − H ′ · Ġ +

(∫ 1

0

(1 − t)H ′′ ◦ exp(−tĠ) dt

)
· Ġ2

or, using the fact that H = K + K̇ + K ′ · Ġ,

H ◦ exp(−Ġ) − (K + K̇) = −(K̇ + K ′ · Ġ)′ · Ġ +

(∫ 1

0

(1 − t)H ′′ ◦ exp(−tĠ) dt

)
· Ġ2.

The wanted estimate thus follows from the estimate of lemma 1 and Cauchy’s inequality. �

End of the proof of theorem 1. Let Bs,σ = {(K, Ḣ) ∈ Kα
s+α × Hs+σ, |K|s+σ ≤ ǫ0, |Ḣ |s+σ ≤

(1 + ǫ0)
−1γ2σ

τ2} (recall (1)).
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By lemmas 1 and 2, the map φ : Bs,σ → Kα
s ×Hs,

φ(K, Ḣ) = (K + K̇, (K + Ḣ) ◦ exp(−Ġ) − (K + K̇)),

satisfies, if (K̂, ̂̇H) = φ(K, Ḣ),

|K̂ − K|s ≤ c3σ
−t3 |Ḣ |s+σ, | ̂̇H|s ≤ c3σ

−t3 |Ḣ |2s+σ.

Proposition 3 in the appendix applies and shows that if
H−Ko is small enough in Hs+σ, the sequence (Kj , Ḣj) =
φj(Ko, H − Ko), j ≥ 0, converges towards some (K, 0) in
Kα

s ×Hs.
K

H

K̇

K̂ = K + K̇

H ◦ exp(−Ġ)

̂̇
H

Ḣ
K ′ ◦ Ġ

Let us keep track of the Ġj ’s solving with the K̇j’s the successive linear equations K̇j +K ′
j · Ġj =

Ḣj (lemma 1). At the limit,

K := Ko + K̇0 + K̇1 + · · · = H ◦ exp(−Ġ0) ◦ exp(−Ġ1) ◦ · · · .

Moreover, lemma 1 shows that |Ġj |sj+1
≤ c4σ

−t4
j |Ḣj |sj

, hence the transformations γj := exp(−Ġ0)◦

· · · ◦ exp(−Ġj), which satisfy

|γn − id |sn+1
≤ |Ġ0|s1

+ · · · + |Ġn|sn+1
,

form a Cauchy sequence and have a limit γ ∈ Gs. At the expense of decreasing |H −Ko|s+σ, by
the inverse function theorem, G := γ−1 exists in Gs−δ for some 0 < δ < s, so that H = K ◦G. �

Remark. The uniqueness property of lemma 1 and the estimate of lemma 2 show that if G̃ is in
some small neighborhood of the identity in G and K ◦G̃ ∈ Kα then G̃ = id . The local uniqueness
of the pair (K, G) such that H = K ◦ G follows directly.

Appendix. Quadratic convergence

Let (Es, |·|s)0<s<1 and (Fs, |·|s)0<s<1 be two decreasing families of Banach spaces with increasing
norms. On Es × Fs, set |(x, y)|s = max(|x|s, |y|s). Fix C, γ, τ, c, t > 0.

Let

φ : Bs,σ := {(x, y) ∈ Es+σ × Fs+σ, |x|s+σ ≤ C, |y|s+σ ≤ γστ} → Es × Fs

be maps such that if (X, Y ) = φ(x, y),

|X − x|s ≤ cσ−t|y|s+σ and |Y |s ≤ cσ−t|y|2s+σ.

In the proof of theorem 1, “|x|s+σ ≤ C” allows us to bound the determinant of
∫

Tn Q(θ) dθ away

from 0, while “|y|s+σ ≤ γστ” ensures that exp Ġ is well defined.

Lemma 3. Given s < s+σ and (x, y) ∈ Bs,σ such that |y|s+σ is small, the sequence (φj(x, y))j≥0

exists and converges towards a fixed point (ξ, 0) in Bs,0.

Proof. It is convenient to first assume that the sequence is defined and (xj , yj) := F j(x, y) ∈
Bsj ,σj

, for sj := s + 2−jσ and σj := sj − sj+1. We may assume c ≥ 2−t, so that dj := cσ−t
j ≥ 1.

By induction, and using the fact that
∑

2−k =
∑

k2−k = 2,

|yj |sj
≤ dj−1|yj−1|

2
sj−1

≤ · · · ≤ |y|2
j

s+σ

∏

0≤k≤j−1

d2k+1

k ≤
(
|y|s+σ

∏

k≥0

d2−k−1

k

)2j

=
(
c(4σ)−t|y|s+σ

)2j

.

Given that
∑

n≥0 µ2n

≤ 2µ if 2µ ≤ 1, by induction we see that if |y|s+σ is small enough, (xj , yj)

exists in Bsj ,σj
for all j ≥ 0, yj converges to 0 in Fs and the series xj = x0+

∑
0≤k≤j−1(xk+1−xk)

converges absolutely towards some ξ ∈ Es with |ξ|s ≤ C. �
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Massetti and Éric Séré for their scrutiny and the improvements they have suggested.

The author has been supported by the French ANR (projets KamFaible ANR-07-BLAN-0361 and
DynPDE ANR-10-BLAN-0102).

References

[1] L. Chierchia. A. N. Kolmogorov’s 1954 paper on nearly-integrable Hamiltonian systems. A comment on: “On
conservation of conditionally periodic motions for a small change in Hamilton’s function”. Regul. Chaotic
Dyn., 13(2):130–139, 2008.
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