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Abstract: We consider the question of giving an upper bound for the first nontrivial eigenvalue of the
Wentzell-Laplace operator of a domain €2, involving only geometrical informations. We provide such
an upper bound, by generalizing Brock’s inequality concerning Steklov eigenvalues, and we conjecture
that balls maximize the Wentzell eigenvalue, in a suitable class of domains, which would improve our
bound. To support this conjecture, we prove that balls are critical domains for the Wentzell eigen-
value, in any dimension, and that they are local maximizers in dimension 2 and 3, using an order two
sensitivity analysis. We also provide some numerical evidence.
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1 Introduction

Background. Let d > 2 and Q be a bounded domain in R? (i.e a bounded connected open set)
supposed to be sufficiently smooth (of class C®), and we denote A, the Laplace-Beltrami operator on
09Q2. Motivated by generalized impedance boundary conditions, we consider the eigenvalue problem
for Wentzell boundary conditions

—Au = 0 in € (1)
—BA;u+du = Au on 0f)

where [ is a given real number and 0,, denotes the outward unit normal derivative.

The coefficient 8 appears as a surface diffusion coefficient arising in a passage to the limit in the
thickness of the boundary layer for coated object (see [22, 1, 16]). A general derivation of Wentzell
boundary conditions can be found in [15]. The coefficient can be either positive or negative. We first
consider the case 8 > 0 where the obtained boundary value problem is coercive.

This problem couples surface and volume effects through the Steklov eigenvalue problem in Q with
the Laplace-Beltrami eigenvalue problem on 0€2. Let us recall some known facts about these two
problems. The Steklov eigenvalue problem consists in solving

Au = 0 in Q )
Ohu = Nu on 02

It has a discrete spectrum consisting in a sequence
A () =0<A(Q) <A (Q)... = +o0

where the A% are called Steklov eigenvalues. Brock-Weinstock inequality states that A7 is maximized
by the ball among all open sets of fixed volume |Q2|. It was first proved in the case d = 2 by Weinstock
and extended by Brock to any dimension in [6] (Weinstock inequality is slightly stronger but restricted
to simply-connected domains: he proved indeed that the disk maximizes )\f among simply-connected
sets of given perimeter). A quantitative form of this inequality was recently obtained by Brasco, De
Philippis and Ruffini who proved in [5] that
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where §4 is an explicit nonnegative constant depending only on d, xgq is the center of mass of 92 and
B(zq) is the ball centered in zpq with volume |Q|!. Let us emphasize that no additional topological
assumption is needed.

It is well-known that the spectrum of the Laplace-Beltrami operator on 952, that is numbers
A such that the equation —A,u = Au on 92 has nontrivial solutions, is also discrete and satisfies:

MB0Q) =0 < MB0) < \B09Q)... = 400

Again, one can ask if AP takes its maximal value on the euclidean sphere, among hypersurfaces of
fixed (d —1)-dimensional volume. Here, the answer is more complicated than for the Steklov problem.
It depends on both the topology of the surface and the dimension. In [19], Hersch gave a positive
answer if d = 3 for surfaces homomorphic to the euclidean sphere. In the cases d > 3 or without
topological restriction, the answer is negative (see [3, 10, 11], and Section 2.1 for the 2-dimensional
case)).

When 8 > 0, the spectrum of the Laplacian with Wentzell conditions consists in an
increasing countable sequence of eigenvalues

)\075(9) =0< )\175(9) < )\275(9) ... — F00 (3)

with corresponding real orthonormal (in L?(952)) eigenfunctions ug, u1, us, . . . As in the previous cases,
the first eigenvalue is zero with constants as corresponding eigenfunctions. As usual, we adopt the
convention that each eigenvalue is repeated according to its multiplicity. Hence, the first eigenvalue of
interest is A1 g. A variational characterization of the eigenvalues is available: we introduce the Hilbert
space

H(Q) = {u € H'(Q), Trao(u) € H (99)},

where Trpq is the trace operator, and we define on H(2) the two bilinear forms

Ag(u,v) = / Vu.Vv dz + B V:u.Viv do, B(u,v) = / uv, (4)
Q o0 o0

where V; is the tangential gradient. Since we assume [ is nonnegative, the two bilinear forms are

positive and the variational characterization for the k-th eigenvalue is

Ap(v,v)
Ak g(2) = mi — = veHQ ;i =0,9=0,...,k—1 5
@) =min {0 e, [ ooz 6
In particular, when k = 1, the minimum is taken over the functions orthogonal to the eigenfunctions
associated to A\gg = 0, i.e constant functions. To describe this spectrum, one can notice that the
eigenvalue problem can be rewritten purely on 9 as:

—BA;u~+ Du = Au

where D denotes the Dirichlet-to-Neumann map, that is a selfadjoint, positive pseudodifferential op-
erator of order one. Therefore, this problem can be seen as a compact perturbation of the usual
Laplace-Beltrami operator. This point of view was used in [4] and justify that high order eigenvalues
of the Laplace-Wentzell problem look like those of the Laplace-Beltrami operator.

'The results in [5] are stated with the Fraenkel asymmetry, meaning that the previous inequality is stated for the ball
B of volume |Q| that minimizes |[QAB]|, but from the proof (see [5, Section 5]) we can conclude that the ball B(zaq) of
volume [Q| and such that [,,(z — zaa)do = 0 is in fact valid as well.



However, we are interested in this work, in studying low order eigenvalues and more precisely in
giving an upper bound for the second eigenvalue \; g involving only geometrical informations. Please
remark that we are not seeking for lower bound, because even with very strong geometrical assumption,
there is none. Indeed, a consequence of our results is that

inf {A; 5(2), Q convex, |Q=m} =0 (6)

for any value of § > 0 and m > 0, see Remark 2.5. An important remark at this point is that
the bilinear form Ag is not homogeneous with respect to dilatation of the domain. Therefore, the
volume of €2 plays a crucial role in A; g. As a surface term appears also in Ag (corresponding to the
Laplace-Beltrami operator), the perimeter of Q (i.e. the volume of 992) should also play a crucial role.
Notice that when 8 = 0 we retrieve the Steklov eigenvalues, and we recover the Laplace-Beltrami
eigenvalues by considering %)\1,5 and letting 8 go to 400, see Section 2.1.
Note also that the close but distinct eigenvalue problem

{ —Au = du in Q

Au+adpu+yu = 0 on 0Of) (7)

was considered by J.B. Kennedy in [21]. He transforms this problem into a Robin type problem to
prove a Faber-Krahn type inequality when the constants a,y are non negative: the ball is the best
possible domain among those of given volume.

The results of the paper. We first apply the strategy of F. Brock for the Steklov eigenvalue
problem to the Wentzell eigenvalue problem and obtain a first upper bound of A; g(£2) in terms of
purely geometric quantities (we actually provide a refined version, using [5]):

Theorem 1.1 Let Q be a smooth set such that [y, x = 0. Let A[Q] be the spectral radius of the
symmetric and positive semidefinite matriz P(2) = (pij)i j=1,..4 defined as

Pij = /89(5@' — niny), (8)

where m is the outward normal vector to 0S). Then if 8 > 0, one has:

s@ =3t s ekl e 0N VAN o
T 2ns(Q) T+ AR T [0+ BAY “\ 18]
where
d+1 2Yd 1
W= (10)

wq = |B1| and B is the ball of volume || and centered at 0. Equality holds in (9) if Q is a ball.
A consequence of Theorem 1.1 is the following upper bound for A; g(€2).

Corollary 1.2 With the same notations as in Theorem 1.1, if 5> 0, it holds:

2]+ BA[Q] _ €] + BA[Q)

2 = 2
Joo |2 C1/d) &L [QAB|
wy QT [T+ W

A g()<d (11)

where B and ~vq are as in Theorem 1.1. Equality holds in (11) if Q is a ball.



Note that the method used for the Wentzell eigenvalue problem also applies for the Laplace-
Beltrami case and provides an upper bound for /\fB without any topological assumption on 2.

Theorem 1.3 With the same notations as in Theorem 1.1, it holds

d || —1/dy 4L 2
1 / dw, "7 |Q| 4 |QAB|
SLB(9Q) = > Jo9 5 “7d 1 . 12
00 =2 S A = A | T 12
and
A0 A0
MBoQ)< d i) < i R (13)
z|? _ QAB
L g 1+w(| = |>

Equality holds in (12) and (13) if 2 is a ball.

It is expected in this type of extremal eigenvalue problem that ball are maximizers. We are not
able to fully justify the natural following conjecture:

Conjecture: The ball maximizes the first non-trivial Wentzell-Laplace eigenvalue among smooth
open sets of given volume and which are homeomorphic to the ball.

The topological restriction is motivated by the limit case f — 400 as we noticed before (see also
Section 2.1). In Section 2.2, we observe that the intermediate bound in (11) has both its numerator
and denominator that are minimized by the ball, under volume constraint, so there is a competition.
In Section 2.3 we observe that in fact, the ball does not minimize this bound in general (see Figure
2.3). Therefore, we can not deduce from this bound the maximality of balls (though it might work
for certain values of § and the volume constraint). About the upper bound (11), we show that it is
larger than A\ g(B) for every § > 0 (with equality for the ball) and hence again does not imply that
balls are maximizing A; g. To check if balls are relevant candidates for maximizers in our case, we
then turn our attention to a shape sensitivity analysis of A1 g.

Therefore, we first wonder if the ball is a critical shape in any dimension. With respect to shape
sensitivity, the main difficulty is to handle multiple eigenvalues which leads to a nonsmooth dependency
of A1 g with respect to 2. However, for a fixed deformation field V' € W3>(Q,R?), along the transport
of Q by Ty = I + tV, we prove the existence of smooth branches of eigenvalues and eigenfunctions
associated to the subspace generated by the group of eigenvalues and provide a characterization of the
derivative along the branches: A g is then the minimum value among these d smooth branches.

Theorem 1.4 We distinguish the case of simple and multiple eigenvalue.

o If A= X\ g(Q) is a simple eigenvalue of the Wentzell problem, then the applicationt — \(t)= A g(€2)

(where Q = (I +tV)(Q)) is differentiable and the derivative at t =0 is
N (0) = / Vn(\vTuP — |Onul? — AH |uo|? + B(H I; — 2D2b)V7u.V7u) do.
[2/9]

where u is the normalized eigenfunction associated to X, D?b is the Hessian of the signed distance
function (see (48)), H = Tr(D?b) is the mean curvature of OSY, Iy is the identity matriz of size



d, and V, = V -nyq is the normal component of the deformation. Moreover, the shape derivative
u' at t =0 of the eigenfunction satisfies

Au = 0 in 8,
“BAA A+ Ot — Mt = BAL(ViBou) + Bdiv, (Vo(HIg — 2D%b)Vu) (14)
+div, (Vo Viu) — Nu+ AV, (Opu + Hu) on ON.

o Let X\ be a multiple eigenvalue of order m > 2. Let (up)g=1,..m denote the eigenfunctions
associated to X. Then there exist m functionst — X\ g(t),k = 1,...,m defined in a neighborhood
of 0 such that

— Ae3(0) = A,
— for every t in a neighborhood of 0, A\, g(t) is an eigenvalue of Q = (I +tV)(Q),
— the functions t — Ay g(t),k = 1,...,m admit derivatives and their values at 0 are the

eigenvalues of the m x m matrizc M= Mq(Vy,) of entries (M;;) defined by
Mij = / Vo (VTUZ'.VTU]' — anuié?nuj — )\Huiuj + 5 (Hfd — 2D2l)) VTui.VTuj) do.
o0

Notice that in the notations above and contrary to (3), the functions A;(t) are no longer ordered.
As a byproduct of this result, notice that we can write the corresponding shape derivatives for the
Steklov and Laplace-Beltrami eigenvalue problem (see Appendix E). Another consequence of this
result, regarding our conjecture, is that we are able to check that balls are critical shapes for A\; g by
computing the trace of the previously defined matrix M = Mp (recall that A\ g(B) is an eigenvalue of
multiplicity d the dimension). But first, we make a short remark about the notion of volume preserving
deformation:

Remark 1.5 In the next results and in many places in the paper, we will consider volume preserving
smooth deformations of domains, that is to say Q = T;(Q2) where t — T} satisfies:

o Ty = 1Id,

o for every t near 0, Ty is a W3 -diffeomorphism from Q onto its image € = T;(2),
e the application t — T} is real-analytic near t = 0.

o for every t near 0, || = |Q].

More generally, it can be sufficient to assume that the volume is preserved at the first or the second
order, depending on whether we are interested in first or second order conditions. For example, if one
considers Ty = I + tV the vector field V' is said to be volume preserving at first order if it satisfies
Jaq Vndo =0 ; indeed for Q = (I +tV)(2), we have %|t:0|Qt| = [0 Vado.

When dealing with second order considerations as in Theorem 1.7, we need that the volume s
preserved at the second order, so Ty is volume preserving at second order if

d2
Wmmwz/(w+mmm+Hw)w:Q
t 00

where V. = %(Tt —1I), V, is the value at t =0 of V - npq,, and W denotes the deriwative of V' - nagq,
with respect to t at t = 0.



Proposition 1.6 Any ball B is a critical shape for \; g with volume constraint, in the sense that for
every volume preserving deformations V,

d
Te(Mp(Va)) = Y i s(0) =0,
k=1

where (t — A g(t))k=1..q4 are defined in Theorem 1.4.
In particular, 0 € O\ g(B; V)= [infi=1..a A} 5(0),5up;—y...4 Aj 5(0)] the directional subdifferential as-
sociated to the first non trivial eigenvalue.

Moreover, this subdifferential reduces to {0} if Vi, is orthogonal to spherical harmonics of order
two: in other words, in that case, the directional derivative exists in the usual sense and vanishes.

Two situations can now occur: either the subdifferential in direction V;, is not reduced to {0} and
then one can deduce from the previous statement that B locally maximizes A\ g along t — By (see for
example (c) and (d) in Figure 5), or the subdifferential in direction V;, is {0} and then this first order
shape calculus does not allow us to conclude that the ball is a local maximizer of A\; 3. Hence, for the
directions V,, in H defined as the Hilbert space generated by spherical harmonics of order
greater or equal to three, we now consider the second order analysis to wonder if the ball satisfies
the second order necessary condition of optimality, and obtain the following result in dimension two
and three.

Theorem 1.7 Let B be a ball of radius R in R? or R® and t — By = T,(B) a second order volume
preserving deformation. A g(B) is an eigenvalue of multiplicity d the dimension, and we denote
t— A g(t), k=1,...,d the branches obtained in Theorem 1.4.

Then the functions t — A g(t), k= 1,...,d admit a second derivative and their values at 0 are the
eigenvalues of the d x d matric E = Eg(Vy,) defined in Section 4. Moreover, there exists a nonnegative
number (= p(B)) independent of the radius R such that

d

Tr(Ep(Va))= ) N 5(0) < —uK(R) /@B (IV-Val? + Val?) do = —pK(R)||[Vallf om)-
k=1
holds for or all V, € H, with K(R) = gz —.

As a consequence of Proposition 1.6 and Theorem 1.7, we have the result:

Corollary 1.8 If B is a ball in R? or R3, and t — Ty € W3 (B,R%) a smooth (second order)volume
preserving deformation, then

Mg(B) > M g(Ty(B)),  fort small enough.

Plan of the paper. The paper is organized as follows: in section 2, we prove Theorem 1.1 by
adapting the strategy of Brock and present some numerical tests to illustrate the sharpness of the
upper bound. The first order shape analysis is presented in section 3, while the second order shape
analysis is presented in section 4. The background material for shape calculus and the proofs of
technical intermediary results are postponed to the annexes.



2 Upper bound for A,z

2.1 Preliminary remarks and results.

Let us start by a few remarks on the proofs in the two limit cases 8 — +oo (that is the Laplace-
Beltrami eigenvalue problem), and § = 0 (that is the Steklov eigenvalue problem).

On the Laplace-Beltrami case:

The case d = 2 is trivial: it suffices to argue on each connected component of 9Q2. We introduce ~ : [0, L]
a parametrization by the arclength of a connected component I' of 9Q, then for any u € H!(99), the

Rayleigh quotient can be written as
L
[iwal [Clweayp
r _ Jo
2

/F“ /OL(uov)2 |

Hence, the A["?(T') is nothing but the infimum of [|u/|%, (0,) AMong periodic functions u with 0 mean

value and |lullrz2¢,z) = 1, that is to say 472 /L2. Tt is a decreasing function of the length of the
connected component of the boundary. Then, if €2 is simply connected, combined with the isoperimetric
inequality, the previous computations leads to A2(99) < AB(0B) where B is a disk of same area
than Q.

Moreover, if 02 has more than one connected component, then )\fB = 0 since the multiplicity
of 0 as eigenvalue is at least the number of connected component. To check that claim, it suffices
to check that the functions taking the value 1 on one of the connected component and 0 elsewhere
are independent eigenfunctions associated to the eigenvalue 0. We conclude that in dimension 2,
MB(9Q) < \B(0B), where B is a disk of same area than ().

The case d = 3 is more complex. There is a classical result of J. Hersch [19]: if @ C R? is
homeomorphic to the ball, then

MB(90) < AB(B), for all Q such that [9Q| = |0B]. (15)
We first extend Hersch statement to domains of same volume by a classic homogenity argument.
Lemma 2.1 If Q C R3 is homeomorphic to the ball, then
AP (09) < AP (0B) if |0 = |B].

Proof of Lemma 2.1.:
One easily checks that Q +— MB(9Q) is homogeneous of degree —2, so Q — AB(Q)[0Q>/ (@1 is
homogeneous of degree 0. Then we get from Hersch’s inequality (15), that

LB 2 LB 2 _
AT (09)]10Q] =1 < A7 (0B)|0B|a-1, for all © such that |02 = |0B]. (16)

Thanks to the invariance by translation of AlLB and the perimeter, and using the 0-homogeneity of the
previous product, we get that the previous inequality is in fact valid for any ball B and any domain
Q). We combine with the isoperimetric inequality

9BTT _ 007 T
B -l

to conclude. n



On the Steklov case:

In the general case 8 > 0, we will adapt the original Brock’s proof; the main tool is an isoperimetric
inequality for the moment of inertia of the boundary 9 with respect to the origin. The general form
of the weighted isoperimetric inequality due to F. Betta, F. Brock, A. Mercaldo and M.R. Posteraro
[2] is:

Lemma 2.2 Let Q C RY be an open set and let f be a continuous, nonnegative and nondecreasing
function defined on [0, 00]. Moreover, we suppose that

t— <f(t§) - f(O)) 173 is convez for t>0

Then
/ J(2l)do > f(R) |0Bxl, (17)
o0

where By is the ball centered at the origin such that |Bg| = |Q|.

Let us remark that the function t — tP satisfies the assumptions of the lemma as soon as p > 1 and in
particular for p = 2. In that case and in order to prove a refinement of Brock’s inequality, L. Brasco,
G. De Philippis and B. Ruffini established a qualitative refinement of this inequality (Theorem B of

[5]):

Lemma 2.3 There exists an explicit dimensional constant vgq such that for every bounded, open Lip-
schitz set Q in RY,

2
’QABRD ’ (18)

/ |z[*do > R?* |0Bg| |1+ 7a | —5——
0 |BR]

where B is the ball centered at the origin such that |Br| = || and vy, is the constant defined in (10).

On the Wentzell case:

An important remark for the sequel is the particular case when Q is a ball Br of radius R. The
eigenspace corresponding to Aj g is d-dimensional: it consists to the restrictions on the sphere Sfl{l
of the linear functions in R% spanned by the coordinates functions. It follows, from the theory of
spherical harmonic functions that

(d-1B+R

- (19)

Ma(Br) =X g(Br) =... = AgpBr) =

The Laplace-Beltrami operator on 0Bpr and the Steklov operator also are diagonal on the basis of
spherical harmonics, hence

M,s(Br) = X} (Bg) + SAP(0BgR),

and more generally the eigenvalue associated to spherical harmonics of order [ is

I(l+d—2)8+R
R2 '

Ay (BRr) = (20)

But, this situation is specific to the ball: indeed, in general we only have the inequality

M p(Q) 2 AT () + BATE(Q).



1
Moreover, we can easily prove that for any smooth €2, ﬁlim B)\LB(Q) = AB(Q): indeed, we have a
—00
first trivial inequality %)\1’5(9) > MB(Q) for any 8 > 0, and using the variational formulation (5),

we obtain Vv € H(Q) with the additional condition [, v =0,

ﬁWQ/ww /ww
o) 00

— 1
lim — A ) < l =
Jim 5hs(2) < Jim

For example if d = 3, combining Brock’s inequality and Lemma 2.1, we obtain that the right-
hand side in the previous inequality is maximized by the ball, among domains of given volume and
homeomorphic to the ball. Unfortunately, this is not enough to obtain that balls are maximizing the
Wentzell eigenvalue.

So in order to obtain an estimate of A\; g, we look into the strategies used for the extremal problems,
which are the Steklov (8 = 0) and the Laplace-Beltrami (8 — +o0) cases. The strategies of Brock
and Hersch for those cases are actually close but distinct: they use the coordinate functions as test
functions in the Rayleigh quotient characterization of eigenvalues. In the case of the Laplace-Beltrami
operator though, J. Hersch had an additional step: he first transports the surface d€) on the sphere
by a conformal mapping, and use the conformal invariance of the Dirichlet energy for 2-dimensional
surfaces. In the following, we choose to follow the ideas of Brock. This allows to obtain an estimate
with no assumption on the topology or the dimension of the domain. Indeed, the above mentioned
phenomenon of decoupling between the different connected components does not appear in the Steklov
case, due to the volume term, and in fact Brock’s result is valid for every (smooth enough) domain.
The same volume term appears in the Wentzell case and the approach of Brock is then the natural
one. However, one expects from these topological considerations that it will not provide an optimal
result.

2.2 Proof of Theorem 1.1

Our strategy to prove Theorem 1.1 is to use the following characterization for the inverse trace of
eigenvalues (stated by J. Hersch in [18] and proved by G. Hile and Z. Xu in [20])

d
1 U17 U’L
= a 21
ZMgﬁxz%%m (21)
=1 7

where the functions (v;)j—1,. 4 are non zero functions that are B-orthogonal to the constants and
pairwise Ag-orthogonal.
Before proving Theorem 1.1, we now present some preliminary results.

Lemma 2.4 The matriz P[Q]defined by (8) is symmetric, positive definite. Its spectral radius A[Q]
satisfies

(d - 1)|0Q| > A[Q] > d;ﬂam. (22)

In particular, among sets of given volume, the spectral radius is minimal for the ball.

10



Proof:  The matrix P(Q) is symmetric by definition. For y = (y1,--- ,yq) € R? with y # 0, we
check that

d
> vy —mimy)y; =y 'y - (y'n)* 20
ij=1
by Cauchy-Schwarz inequality. By integration over 02, P[{)] is positive semidefinite. Assume, by
contradiction, that P is not definite: then there is a vector y # 0 such that

d

0= Z Yi (/69 (i — ni”j)) Yj = /asz 'y - (y"'n)?*).

ij=1

The equality case of Cauchy-Schwarz inequality y'y — (y?n)? = 0 is therefore satisfied everywhere
on 0f), this holds if and only if y and n are colinear. Hence, n is constant on 02 which contradicts
the boundedness of €.

The matrix P[] has positive eigenvalues. Their sum is the trace Tr(P[€2]), hence

Tr(P[Q)]

) d
Tr(P[) > A[Q) > ——— with Tx(P[2)) = ;/@g(l —n2) = (d—1)|09).

Therefore
d—1 d—1
(d—1)|092 > A[Q] > ( p ) |02 > ( = ) |0B].
The last inequality is obtained by the usual isoperimetric inequality and assuming B is a ball such
that || = |B|. Let us compute A[B]. From the invariance by rotation of the ball, there exists a real

number a such that P[B] = aly. In others words, we have

/ ninj:(),i;éjand/ (1—n?):/ (1-n?), i=1,...,d
0B oB oB

The real number a is determined using the trace of the matrix: we obtain that d A[B] = (d — 1)|0B|,
and so A(Q2) > A(B). [

Remark 2.5 The inequalities in (22) are sharp. The lower bound is reached when § is a ball and the
upper bound is the limit of the collapsing stadium S- (union of a rectangle and two half-disks) of unit
area and width € when € tends to 0: one checks by an explicit elementary calculus that:

2 7e ) 2
|0Se| = —+ — while A[S:] = —.
e 2 €

This example is also useful to prove (6): indeed, we easily prove

2 [0
> —
/asE =l > g3’

where o is a universal constant, so using (11), we obtain (6) for d =2 and m = 1. The other cases
can be handled similarly.

11



Proof of Theorem 1.1:
We first translate and rotate coordinates x;, ¢ = 1,2, ...d such that

Vi # 7 € [1,d]?, / z; =0 and / ziz; = 0.
oN o0

We now construct a family which is pairwise Ag-orthogonal, and B-orthogonal to R. We consider
a collection of a family of functions wi,wo,...,wy in the vector space spanned by the coordinates
functions: there is a matrix C such that

d

w; = Zcijl’j, 1€ Hl,dﬂ

=1

Brock used directly the coordinate functions to deal with Ag. Here, we need an Ag-orthogonal family,
hence the matrix C' will be chosen to that end. Since the coordinates functions are L? orthogonal to
the constants, each w; is L?-orthogonal to the constants (that is to say the eigenfunctions associated
to the smallest eigenvalue A\g = 0).

Let us compute Ag(w;, wj). First, we get Vw; = (¢i1, o, - . - ,ciq)’ then

d
/Vwi-vu;j:/ > cikcim = 9] (CCT)y.
Q Qk,m:l

To compute the second term of the sum occurring in Ag, we recall that
VTwi . VT’LUJ' = sz . ij — (VU}Z . 'n,)(Vw] . ’I’Lj).
We therefore get

M d d d
Vrew; - Vowg = / Zcik Cik — (Z Cik”k) <Z Cﬂf"’f)]
O k=1 k=1

k=1

[ d
= / E Cik Cjk — E CikCjiT Ty
00 | k=1

k=1

o0N

We introduce P[] the matrix defined in (8) to get

Vwai . VTU)]‘ = Z Cik Pkm Cjm = (CP[Q]CT)”

k,m

[2/9]
Gathering all the terms, it comes that
Ag(wi,wy) =9 (CCT)y; + BCPIQYCT)y (23)

Since P[Q)] is a real symmetric matrix, we can choose an orthogonal matrix C such that CP[Q]CT is
diagonal. Hence, CCT = I and finally w; and w; are Ag-orthogonal if i # j while

Ag(wi,w) = |9] + BCPICT)i < 9] + BAIQ. (24)

and we can apply Hile and Xu’s inequality (see [20]).

12



Since by assumption

when i # j, it comes that

d
B(w;, w;) :Zc?k/ ry
k=1 £
and then
d d d d
d Syafd Y([A)Ta [
S(Q):Z 1 S =1 k=1 o k=1 MO0 =1 _ _ Joo
25 |0l + BARY QI+ BAR] I+ AAR)

which is the first part of the result. Then using first the isoperimetric weighted inequality (17) for
p =2, we get

/(‘m |z|* > R*|0Bg,

and so

fb  B0By R
Q] + BA[Q] T Q]+ BA[Q]  |Bg N BA[Q]
|0Br|  |0Bg]
If Q = Bg, we know that d|Br| = R|0Bg| and then
R? R? d
|Br|  BABr] R d—1 Mg(Br)
|0Br|  |0Br|  d d

and prove the equality case. By the quantitative version of the isoperimetric inequality for the moment
of inertia of 992 with respect to the origin (18), we also get the precise version:

/ [ r2jomy QABg[\
o0 > 1+ vy .

€2 + BAIQ] T | + BA[Q)] | Br

Using the definition of R and |Q| = | Bg|, we obtain R?|0Bg| = dwgl/d\m% and the desired inequal-
ity. ]
Proof of Corollary 1.2:
Since A g(2) < A\ g(Q) for i =1,...,d, we get

d 1] + BA[Q] d 12 + BA[Q]

)\1,ﬂ(Q)SSQ§d < 5 —ijd, 4
() / 22 QABg|\ " dwy 0%
& e Tl

Proof of Theorem 1.3:

It is a direct adaptation of the previous proof to the Laplace-Beltrami case: it suffices to replace the bi-
linear form Ag(u, v) by A(u,v) = [, Vu.Vv. Then Equation (24) becomes A(w;, w;) = (CP[QCT); <
A[Q] and the conclusion follows. ]
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2.3 On the sharpness of the upper bounds.

Testing the sharpness. Let us denote M;(Q2) the upper bound (11). In order to emphasize the
improvement to the inequality of Brasco, De Philippis and Ruffini, we also plot the rougher upper
bound
Ay < 9 BAIOL 101 + BA[0)

wgl/d‘m‘%l R2|0Bg|

It is clear from the bound of A[Q] stated in (22) that

d 2] + BA[Q]
A,8(Br) = Mi(Br) < Ma(Q2) =
’ |, 1008 * R%|0Bxl
7d7|BR|
We also plot the shaper bound
Q| + BA[Q2
() — A

/ 2]?
o0

This inequality means that proving that balls are maximizers would be strictly better than (11). Let
us illustrate this fact with some numerical illustrations. We compute A\; 5(2) and M;(Q2) (i = 1,2)
for several parametrized families of plane domains when § = 1. In Figure 1(a), we present the case
of ellipses of area 7 (their semiaxis are e! and et, ¢ is in abscissa) while in Figure 1(b) and 1(c) we
present the case of the star-shaped domains ; defined in polar coordinate by r(6) = a(t)(2 + cos(k@))
where a(t) is a constant chosen such that [Q;] = 7.

From these graphs, it seems that the upper bounds M;(2) lack of precision when (2 is far from a ball
and that the maximality of balls is possible and would improve the upper bound given in Corollary
1.2.

Some numerical tests. It is natural to wonder if the ball have the largest \; 3 among all the
domains of same volume that are homeomorphic to the ball. This question cannot be solved with
estimate (11), as Figure 1(a) shows. Therefore, to conclude this section, we would like to present
some numerical experiments in favor of such property.

Let us start by computing the value of A; g(£2) when Q is an ellipse of fixed volume. We present
here the results of our numerical computations for g € {0.1,1,5,10} when |Q] = w. Then when the
volume of €2 is 4. In both figures, the abscissa stands for the eccentricity of the ellipse. It seems that
the ball maximizes A\ g among ellipses of fixed area.

Let us show some computations in dimension three. We consider families of ellipsoids with semi-
axes defined by (exp(ait));_; 5 3 Where oy + g + a3 = 0 to insure the volume constraint. The ball
B corresponds to t = 0. We remind that in this case, A1 g(B) has multiplicity 3 at the sphere, we
then have plotted the three corresponding eigenvalues in two cases: first for the family such that
a = (2,—-0.8,—1.2) in Figure 3(a), then for « = (2,—1,—1) in Figure 3(b). In the last case, the
defined ellipsoids are of revolution and we observe that in this particular case A3 53 ~ A4 3. One can
wonder if it is really the case.

Let E(a,b) be an ellipsoid of volume 47 /3 where a is the larger semiaxis and b the middle one. We
now show in Figure 4 the surfaces z = A; g(E(a, b)) where i = 1,2,3. The pictures have been obtained
by interpolation after the computations of the eigenvalues on 2700 ellipsoids. Again one can attest
that the ball seems to maximize A\ g3 among ellipsoids.

14



(a) Ellipses of area m, (b) 5 branches star-shaped domains

L L L L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12

(c) 11 branches star-shaped domains (d) 17 branches star-shaped domains

Figure 1: Comparison of A\; g(§2) and M;(£2). Here A\ g(B1) = 2.

(a) Q= (b) || = 4r

Figure 2: A\ 3(2) when € is an ellipse of volume ||

3 First order shape calculus

In order to go one step further, we adopt a shape optimization point of view and prove in this
section that the ball is a critical point. The main difficulty here is that the eigenvalue A; g(B) has
multiplicity the dimension of the ambient space. We need some technical material on shape derivative
and tangential calculus on manifold to justify the results stated in this section; to simplify the reading

15



4, T T T T T T T T T 38

1 . L L L . L . L L 22
025 02 015 01 005 0 005 01 015 02 025 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a) o = (2,—0.8,—1.2) (b) a = (2,—1,—1)

Figure 3: (A1,3(%), A2,8(2%), A3,8(€2)) when ) is a parametrized ellipsoid of volume 47 /3

b - middle semiaixs a: larger semiaxis

(¢) As,p(E(a,b))

(a) A1,s(E(a,b))

Figure 4: (A1 5(£2), A2,8(€2), A3 3(2)) when Q = E(a,b) is an ellipsoid of volume 4m/3

of this work, we postpone these reminders in Appendix A.

Let us emphasize that from this point we do not make the assumption 8 > 0, and therefore all
the results of this section and the following are valid for any § € R. Thus from now on we drop the
notation 3 in A; g since there is no possible confusion anymore.

3.1 Notations and preliminary result for shape deformation

We adopt the formalism of Hadamard’s shape calculus and consider the map t — T; = I +tV where
V € W3*(Q,R%) and t is small enough. We denote by

O =T(Q) ={z+tV(z),z € Q}.

Remark 3.1 More generally the results and computations from this section are valid if t — T} satis-

fies:
o T() = Id,
e for every t near 0, Ty is a W3 -diffeomorphism from Q onto its image Q0 = T(Q2).

o The application t — T} is real-analytic near t = 0.
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We need to introduce the surface jacobian w; defined as
wi(x) = det(DTy(x)) || (DTy(z)") 'n(z) |,
and the functions
Ay(x) = (DT, () (DTy(2)") ™", Auz) = det(DTy(2)) Ag(x),  Ci(x) = wil) Ae(2).

We have to study the transport of the considered eigenvalue problem on the deformed domain €2;. To
that end, we first rewrite the deformed equation on the fixed domain 2 and its boundary 0€): we have
to describe how are transported the Laplace-Beltrami and the Dirichlet-to-Neumann operators.

Transport of the Dirichlet-to-Neumann map. Let us consider the Dirichlet-to-Neumann oper-
ator defined on its natural space D; : HY/2(9Q;) — H~1/2(9). It maps a function ¢; in H'/2(9€)
onto the normal derivative of its harmonic expansion in €, that is to say Dy(¢;) = On,us, where ul
solves the boundary values problem:

{—Aut = 0 in €y, (25)

Uy = ¢t on 8Qt

To compute the quantity Dy such that Dy(¢p;0T;) = [Di(ér)] 0T} , we transport the boundary value
problem (25) back on the domain €. In others words, D; makes the following diagram commutative:

T,
HY/2(86) L HY2(00)
Dt Dt
T
H-Y2(09y) H-1/2(6Q)

To be more precise, we have the following result proved in [12].

Lemma 3.2 Given ¢ € H1/2(8Q), we denote v the solution of the boundary value problem

T S :
(v 2y ne =
and then define Dy € H-/2(0Q) as:
Dub f e HH00) o [ A@)9' (@) VE()a)d.
where E is a continuous extension operator from HY?(0Q) to HY(Y). Then the relation
(Dip) o Ty = Dy [p o T} (27)

holds for all functions p € HY/2(Q).

17



Setting u! = uy o T}, we check from the variational formulation, that the function u' is the unique
solution of the transported boundary value problem:

{—div(iltvut) =0 in Q,

uwt = ¢oT; on ON. (28)

Hence, setting y = Ti(x), = € Q we get formally

20 1n(x H(z)n(z).Vul (z
Di(60)(y) = Vun(y) maly) = (DT ()7) Vg (). o) ) 1lx) - Au(wjn )—vlnf@)n'

I(DTi(2)") " In(2)||  [(DTi(x)T)
Here again, we can give a sense to the co-normal derivative A;n.Vu! thanks to the boundary value
problem (28): this quantity is defined in a weak sense as the previous Dirichlet-to-Neumann operator
Dy.

Transport of the Laplace-Beltrami operator. We recall now the expression of the transported
Laplace-Beltrami operator, relying on the relation

Vo € H2(09), (Arp)oT; = w;x)divT (Cy(2)V (0 0 T})(x)) on O9. (29)
Let us denote by L; the operator defined as
LilpoTi](x) =
1 Ci(x)V [p o T3] (z).n(z)
@ div, {Ct(:n)v [po Ty (x) — A, (0)n(e)n(D) At(m)n(:c)} (30)

for ¢ € H%/?(Q;). In [12], we show the following lemma:

Lemma 3.3 The identity
[ArploTy = Ly [poTy (31)

holds for all functions o belonging to H®/?().

3.2 Regularity of the eigenfunctions and eigenvalues with respect to the param-
eter

The section is a slight variation of a theorem due to Ortega and Zuazua on the existence and regularity
of eigenvalues and associated eigenfunctions in the case of Stokes system [24]. The difficulty comes from
the possible multiple eigenvalues. The main result is, for a fixed deformation field V € W3 (Q, R?),
the existence of smooth branches of eigenvalue. In other words, the eigenvalues are not regular when
sorted in the increasing order, but can be locally relabeled around the multiple point in order to
remain smooth. The restriction is that this labeling depends on the deformation field V' hence one
cannot hope to prove Fréchet-differentiability.

Theorem 3.4 Let Q be an open smooth bounded domain of R%. Assume that X\ is an eigenvalue
of multiplicity m of the Wentzell-Laplace operator. We suppose that Ty = I + tV for some V €
W3 (Q,R)? and denote € = Ty(Q). Then there exists m real-valued continuous functions t

Ni(t), i=1,2,...,m and m functions t — u} € H%(Q) such that the following properties hold

18



1. 050)=X i=1,...,m,

2. the functions t — \(t) and t — ul, i =1,2,...,m are analytic in a neighborhood of t = 0.

3. The functions u;; defined by w;; o Ty = uf are normalized eigenfunctions associated to A\i(t) on

the moving domain ;. If one considers K compact subset such that K C 4 for all t small
enough, then t — Uit is also an analytic function of t in a neighborhood of t = 0.

4. Let I C R be an interval such that I contains only the eigenvalue \ of the Wentzell problem of
multiplicity m. Then there exists a neighborhood of t = 0 such that A\i(t) i = 1,...,m are the
only eigenvalues of 0 which belongs to 1.

Proof: Let A be an eigenvalue of multiplicity m and let uq, ..., u, the orthonormal eigenfunctions
associated to \. Let (A\(t),u;) be an eigenpair satisfying
(P ) —Aut =0 in Qt,
t —BAT’LLt + Bntut == )\(t)ut on 8Qt

Setting u! = uyoTy, Lemma 3.2 (transport of the Dirichlet-to-Neumann map) and 3.3 (transport of the
Laplace-Beltrami operator) show that the system (P;) above is equivalent to the following equation
set on the boundary

(—BLy + Dy)ut = M\(t)wpu' on 9. (32)

Consider the operator S(t) defined on H3/2(9Q) by
v S(t)v = —pLw + D (33)

From their expressions computed for example in [17, Section 5-2] and the regularity assumption on T,
all the operators Cy, Ay and wy are analytic in a neighborhood of ¢ = 0 . Since det(DT}) > 0 for ¢ small
enough, we deduce that all the expressions involved in C;, £; and D; are analytic in a neighborhood
of t = 0. This enables us to conclude that S(¢) is also analytic in a neighborhood of zero.

To show that the eigenvalues and the corresponding eigenfunctions are analytic in a neighborhood of
zero, we apply the Lyapunov-Schmidt reduction in order to treat a problem on a finite dimensional
space, namely the kernel of S(0) — AI. To that end, we rewrite the problem (P;) on the fixed domain
01 as

S(t)(u') — Mt)wpu! = 0.

From the decomposition
(S(0) = A) () = |(S(0) = S() + [(A(®) = A + A = D] |,

u! is solution of the equation

(S(0) = M) (u') = W(t, A(t) — M, (34)

where we have set R(t) = S(0) — S(¢) + AMw¢ — 1) and W (¢, ) = R(t) + aw¢l. From the Lyapunov-
Schmidt Theorem (see [24, Lemma 3-2, p. 999]), we obtain that S(0) — A has a right inverse operator
denoted by K. Hence the equation above implies that u! = KW (t,A(t) — M\u! + 1), where 1)y €
Ker (S(0) — A), i.e ¥ = > ;- cx(t)pr where (¢r) is a basis of Ker (S(0) — A). Notice that I —
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KW (t, A(t) — A) is invertible on Ker(S(0) — AI), the inverse of his operator restricted to this kernel
will be denoted by (I — KW (t, A(t) — \))~! so that

ul = (I — KW (t,\(t) — \) Leby.

From (34), W (t, A\(t) — A)ut belongs to Im(S(0) — \) = Kert(S(0) — \) since S(0) is a Fredholm
selfadjoint operator, and then

m

SO WEAE) — NI~ KW (EAE) — ) di) =0, i=1,2,....m, (35)
k=1

where (-,-) denote the scalar product of L?(99). This shows that a vector of coefficients C =
(¢j)j=1,.,m # 0 is a solution if and only if the determinant of the m x m matrix M (¢, A(t) — A)
with entries

M(t7 a)i,j = <W(ta a)(I - KW(ta a))_1¢j7 ¢Z>

satisfies
det (M (t,\(t) — X)) = 0.

Hence A(t) is an eigenvalue of our problem if and only if det (M (¢,\(t) — X)) = 0. Note that t —
M (t, A(t)) is analytic around ¢t = 0.

For small values of ¢ the operator (I — KW (t,a))~! is well defined since I — KW (0,0) = I and
t— (I — KW(t,a))~! is analytic around ¢ = 0. On the other hand, if det M(¢,«) = 0 then (35) has
a nontrivial solution ¢;(t),..., ¢y (t) and this means that A(f) = A + « is an eigenvalue of (FP;).

We focus now on det M(t,«) for @« € R. From the fact that W(0,«) = al, it comes that for
sufficiently small values of «, the operator I — KW (0, «) is invertible on Ker(S(0) — AI) and from the
Von Neumann expansion we write

(W(0,)(I = KW(0,0))" i, ) = a[%’ +> oM (K e, ¢j>};
k=1

hence
o0 o0
det (M(0,a)) = o™+ Bia™H = a™(1 4> ic).
i=1 =1
Since det (M (0, «)) # 0 is the restriction on ¢ = 0 of det (M (¢, «)), we deduce from the Weierstrass
preparation theorem that there is neighborhood of (0,0) such that det (M (t,«)) is uniquely repre-

sentable as
det (M(t,a)) = Pp(t,)h(t, )

where .
Pp(t,0) =a™+ > ap(t)a™ "
k=1
and where
h(t,a) # 0.
Furthermore, the coefficients ax(t), K = 1,...,m are real and analytic in a neighborhood of ¢ = 0.

Then det (M (t,«)) = 0 if and only if P, (t,a) = 0. If ag(t), kK = 1,...,m are the real roots of the
polynomial, we take A\;(t) = A 4+ () if o1 (t) is not identically equal to zero.
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We now have to find the (m — 1) other branches \;(t) and the corresponding eigenfunction w;; for
i =2,...,m. We use the idea of the deflation method by considering the operator

Sa(t) = S(t) — MPi(t)
where Pj is the orthogonal projection on the subspace spanned by ;. At ¢t = 0, we obtain
SQ(O)Uj = S(O)Uj — )\(51juj'

in other terms S»(0)u; = Auj, j = 2,...,m while S3(0)u; = 0. This shows that X is an eigenvalue
of multiplicity m — 1 of S2(0) with eigenvalues wug, ..., u;,. One can show that these functions are
the only linearly independent eigenfunctions associated to A. Now we can apply the same recipe used
before to the operator Sy instead of S. We then get a branch A2(t) such that ¢ — Aa(¢) is analytic in
a neighborhood of ¢ = 0. Iterating the process, we get at the end the m— branches A;(t), i =1,...,m
such that each branch is analytic in a neighl;orhood of t = 0 and m corresponding eigenfunctions
forming an orthonormal set of functions in H 2 (0€;).

The proof of the last item follows the same lines than the proof of Ortega and Zuazua for the Stokes
system, see [24]. ]

Theorem 3.5 With the notations of Theorem 3.4, if t — (A(t),u) is one of the smooth eigenpair path
(Ni(t), uir) of Q for the Wentzell problem, then the shape derivative v’ = (atut)‘tzo of the eigenfunction
satisfies

Au' =0 in Q,
—BAU + O’ — M = BAL(Vdpu) — Bdiv, (Vo (2D%b — HI;)Vu)
+div, (Vo Vou) = N(0)u + AV, (Opu + Hu) on 9. (36)

Proof: The fact that ' is harmonic inside the domain is trivial. To derive the boundary condition
satisfied by v/, we use a test function ¢; defined on 9Q; with 9,,¢; = 0 as used in the proof of Lemma
3.2 and 3.3 in [12]. We get the following weak formulation valid for all ¢ small enough:

BV ru(t, z). V¢ doy + /BQ On,u(t,z) ¢ doy — )\(t)/(9 u(t, z)¢r doy = 0.

8915 Qt

We take the derivative with respect to ¢t and get at t = 0:

d d
ﬁa( n Voult, ).V, ér dat> t:0+dt( /8 N On,ult, )t dat>

From [14] and [7], we get

d
%( | Vrults0) Vo dat> t:O

After some lengthy but straightforward computations we also obtain

jt( /Q Byt 1 dat)
.

= %(A(t) /aszt u(t, ) ¢¢(x) dUt)

t=0 t=0

— / < — Aru' — AL (V,0nu) + div, (2D — HIy)V,u) )‘15 do.
20

- / O & do —/ Y, Vi Voud da+/ Vn<8nu —|—Hu> ¢ do
t=0 [2)9] o0 o0

and
d /
7( At usdh dat) =N(0) | wddo
dt \ Jaq, =0 o0
—i—)\/ u/qﬁda+/\/ Onu ¢ do + A Hug do.
0N 0N o0
To end the proof of this second point, it suffices to gather the relations. |
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3.3 Shape derivative of simple eigenvalues of the Wentzell-Laplace problem

Let A be a simple eigenvalue of the Wentzell-Laplace equation (1) and let uw be the corresponding
normalized eigenfunction. We give in this subsection the explicit formula for the shape derivative of
the eigenvalue of the Wentzell-Laplace operator associated to (1).

On Q; = (I +tV)(Q) with ¢ small, there is a unique eigenvalue A(¢) near A which is an analytic
function with respect of the parameter ¢. The associated eigenfunction w;(x) = u(t,x) is solution of
the problem (1). The shape derivative denoted u’ is the partial derivative dyu(t,x) evaluated at ¢t = 0
and solves (36). Let us deduce the analytic expression of \'(0):

Theorem 3.6 If (A, u) is an eigenpair (with w normalized) for the Wentzell problem with the addi-
tional assumption that X\ is simple then the application t — A(t) is analytic and its derivative at t = 0
18

N(0) = / Vo (175 10l ~ AHJul? + B(H Iy~ 2D*) V0.V 1) dor
[e9)

Proof: We start with the result of Theorem 3.5. Let us multiply the two sides of (36) the boundary
condition satisfied by u’ by the eigenfunction u and integrate over the boundary 9€:

0= / V' (=BA U+ Opu — M) do +/ VinOnu(—BAu) do
o0 o0

+ [ BVu(HI; —2D*)V,u.V,u do—i—/ Vol Vrul? — X(O)/ Jul?
o0 o0 o0

—/\/ v, (u@nu + H\u\2> do.
o0
Using the boundary condition satisfied by the eigenfunction: —SA u 4+ d,u — Au = 0, it follows that

0= / ViOnu(Au — Opu) do + [ BV (HIg — 2D*6)V,u.V,u) do
oN o0

+/ an7|u2_X(o)/ |u|2—)\/ Vn(uanu+Hyu|2) do.
oN o0 oN

and the normalization condition / u? do = 1 implies
o0

N(0) = —/ Viu|Onul? do —|—/ BVn(HIg — 2D*0)V 4.V, u do
o0 o0N

+/ V| Vrul? — A/ Vi, Hlu|? do.
o0 o0

3.4 Shape derivative of multiple eigenvalues of the Wentzell-Laplace problem
3.4.1 The general result

We suppose that A is an eigenvalue of multiplicity m. For smooth deformation ¢ — €2, there will be
m eigenvalues close to A (counting their multiplicities) for small values of t. We know that such a
multiple eigenvalue is no longer differentiable in the classical sense. We are then led to compute the
directional derivative of t — \;(t) at t = 0 where \;(¢),7 = 1,...,m are given by Theorem 3.4. This
is the second part of Theorem 1.4 that we recall here:
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Theorem 3.7 Let A\ be a multiple eigenvalue of order m > 2. Then each t — X\;(t) for i € [1,d]
given by Theorem 3.4 has a derivative near 0, and the values of (N(0))icp,q) are the eigenvalues of
the matriz M(Vy,) = (Mjk)1<jk<m defined by

My, = / Vi (V. Vg = D0, — AHugup + B (HIg — 2D*) Vg Vyug ) do. (37)
o0

Proof of Theorem 3.7:
Let t — (u(t,x), A(t) = A(£2:)) a smooth path of eigenpair of the Laplace-Wentzell problem, so that it
satisfies

Au(t,z) = 0 in Q
—BA;u(t,z) + Opu(t,x) = A(t)u(t,x) on 0.
We have proved that v = d;u(0, z) is harmonic in © and satisfies the boundary condition (36) on 9f2.
We use the decomposition of u = u(0, z) as

m

u = Z CjUj
j=1
for some ¢ = (c1,¢a,...,cm)” # 0. Multiplying the two sides equation of (36) by uy, we get after some
integration by parts the eigenvalue equation
N(0)e = Mc

where M = (M;;)1<ij<m is defined by (37). From this, we deduce that the set of derivatives
(A5(0))ieq,qp is exactly the set of eigenvalues of the matrix M, which achieves the proof of Theo-
rem 3.7. |

3.4.2 The case of balls

We consider now the case where the domain is a ball of radius R. The problem is invariant under
translation. In order to remove the invariance, we fix the center of mass of the boundary of the domain,
as in Section 2.

The coordinates functions x; are eigenfunctions of the Wentzell-Laplace operator, so we get

\ Bd—1)+R and () ; i
= ————— and u;(z) = = .
R? | zi l20Br)  \/wgRIH

Corollary 3.8 Let 0 = Bpr be a ball of radius R, A1 its first non-trivial eigenvalue, which is of
multiplicity d. The shape derivatives of the maps t — A\;(t), i = 1,...,d given by Theorem 3.4 are the
eigenvalues of the matriz Mp,(Vy,) = (M) k=1,..4 defined by

5 d—3
M, = —2 1+ 38— Vn—Cd,R/ V,, iz d 38
jk wde+1< +8 R >/8BR (d, R) DB LjTk a0 (38)
(d+1)(1+84£2)

where C(d, R) =

wde+3
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Proof of Corollary 3.8:
We use (37). On one hand we check the geometric quantities:

d—1 1 1
H=— D?(z) = la = g3 (®iwj)ig
so since V,u;, Vyuy are in the tangent space of 0Bg, we obtain that

d—3
(HI; — 2D*b(x))V,u;.Vyoug = 5Vt Vi

and on the other hand:

: 1 T;T
8nu]' = # VTUj.VT’LLk = 0 <5]k — M)

R /wde'H wdR1+d R2

Therefore, the matrix M = Mp,, has the following entries

o 1 O TjTR\ | TTg d—1 ' d—3 i
Miw = RE /aBR Vil (% R? ) R MR TR (5 )] do
d; d—3
= 1 —_— Vi, — Vaoxizg do.
wa R ( R )/933 /83R e

This leads to the result since (d — 1) +d — 3 = (d + 1)(d — 2).

d+ 1+ plslird=s
wq RT3

From this formula, we deduce a first interesting result:

Proposition 3.9 IfV is a volume preserving deformation, then the following statements are equiva-
lent:

(i) Vj, is orthogonal (in L2(0BR)) to homogeneous harmonic polynomials of degree 2,
(ii) Mp,(Vy) =0.

Proof of Proposition 3.9:
We denote Ho the space of homogeneous harmonic polynomials of degree 2 (therefore we use here
a slightly different notation than in Section 4). Let us suppose that M (V) = 0; this means that

Vo xzjx do =0, for all j,k=1,...,d, and in particular V;, is orthogonal to Ha.
OBRr
If we assume now that V,, is orthogonal to Hs, using that
Ho :span{:z:jxk, j#ked{l,... d}, x%—z?,j :2,...,d}.
and moreover that [, By Vo =0, we obtain
d d
d/ Vpa? = / V(xQ—xz-)—i—/ 2% =0,
and therefore

/ an‘? = / Vn(ﬂvj2 —z2) =0,
dBr 8Br

which concludes the proof.
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In the case where Mp,(V},,) # 0, we compute the trace of the matrix Mp,(V},) to obtain information
on its eigenvalues.

Proposition 3.10 When € is a ball of radius R, then
Tr(Mp,(V,)) =0 (39)
for all volume preserving deformations.

Proof of Proposition 3.10:
It comes that

d d
Tr(Mp, (Vi) = —C(d, R) / Y 4} Vi do=—-C(d,R) Y a3 / Vi do =0
0 : oB
Jj=1 R

Br =1
since we are concerned with deformations preserving the volume. ]

As a consequence of Proposition 3.9 and Proposition 3.10, there is the following alternative: either the
only eigenvalue of M (V},) is 0, or M (V,,) has at least one nonnegative and one nonpositive eigenvalue.
Each ¢t — X;(t) given by Theorem 3.4 has a directional derivative at t = 0 denoted by \,(0). We then
define, as usual [8], OA; the subgradient of A\; by O\ = [inf;—1..4 A;(0),sup;_;..q A;(0)]. With this
notation, 0 € d\; and we say the ball is a critical shape.

3.5 Numerical illustrations

In order to illustrate Proposition 3.10, we consider the two dimensional case and consider perturbations
of the disk given in polar coordinates by

pi(0) = R+1f(0)

where f has zero mean value.

In Figure 5, the computations are made in the case R = 1 and 8 = 10, the deformation parameter
t appears in the abscissa.

In both collection of figures, we can see the derivatives of the second and third eigenvalues vanish
at the ball in every case except when f(0) = cos(26), where the regular lines cross, leading to a really
non differentiable second eigenvalue. This is coherent with Proposition 3.9. Let us explicit the case
V,, = R? cos 260, where we are led to compute the eigenvalues of the following symmetric matrix

27
3 / cos 26 cos® 6 df 0
M==7 2
0 / cos 20 sin? 6 db
0

h i 1 3 d 3

igen T = ——— an = —.

whose eigenvalues are 2Ra (o) R
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(c) £(6) = cos(20)

(d) f(6) = sin(20) (e) £(6) = cos(30) (£) £(8) = cos(46)

Figure 5: A1(Q2) and A2(2) in the direction of f(0) - |Bg| = m, 5 = 10.

4 Testing if the ball is a local maximum for \;: second order argu-
ments

We know that any ball is a critical point for volume preserving deformations. Therefore, if the
subgradient 0\ (B;V,,) # {0}, then the ball is a local maximizer. It remains to deal with the case
where all the eigenvalues of Mp(V},) are 0; this case corresponds to V;, orthogonal to the harmonics of
order two. Then, we aim at proving that the second derivative of A\; along at least one of the smooth
branches is nonpositive.

The necessary order two conditions of optimality are: the second derivative of the Lagrangian
should be non positive on the subspace orthogonal to the space generated by the gradient of the
volume constraint. We compute:

Vol'(0) = /8 v, (40)

Hence Vol'(0) = 0 if and only if V,, € (Ho)* where H;, denotes the linear space of spherical harmonics
of order k. Due to the previous remarks, we hence consider deformation field in the hilbertian space
H spanned by all the spherical harmonics of order [ € I = N\ {0,2} . The normal component of such
a field is orthogonal to spherical harmonics of order 0 and 2.

The goal of this section is to present the different steps for the computations. We will characterize
the matrix F¥ whose eigenvalues are the second order derivatives of the smooth branches of eigenvalues.
It turns out that this computation is hard even in the case of a ball. Nevertheless, the computation
of Tr(E) is much simpler than the individual computations of the entries. In order to prove that the
ball is a local maximum of A1, it suffices to prove that its trace is nonpositive: therefore at least one
smooth branch of eigenvalues has a nonpositive second order derivative.

In this section, we consider deformations preserving the volume at second order and not only at
first order. Hence, we cannot consider deformation T} of type I + tV with V independent of ¢ and
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introduce deformations Sy that are the flow at time ¢ of a vector field V' (see also Remark 1.5). Notice
that Sy = I +tV + o(t) so that T3 — S; = o(t) and first order shape derivatives are unchanged. In
particular, one has

d? 0 9 2
T Vol(S(Q) = /a o) (at(Vna)) V0 50y Vo) + H Vn(t>> do

and the volume preservation at second order means that

d> 0 0 )
(WV"l(St(Q))) » = /8 . ((%(Vn(t)) + Vo an(t)(vn@)) + HVn(t)) » do = 0. (41)

4.1 Construction of the matrix £ of the second derivatives

Let (u(t,x), A(t) = A(£2¢)) be an eigenpair of the Laplace-Wentzell problem, that is to say solves

Au(t,z) = 0 in
—BAu(t, z) + Opu(t,x) = At)u(t,z) on 08

We use the decomposition of u = u(0, x) in the basis of eigenfunctions:

d
u = E Cj’LLj
j=1

for some ¢y, ca, ..., cq not all zero. We have shown that the vector ¢ = (¢, ca,. . ., cd)T is solution of

N(0)e = M(V,)c

where the matrix M(V},) = (M;x)1<s,j<a is defined by (37).

To compute the second derivative at ¢ = 0, one has to compute the first shape derivative u/(z) =
u'(0,z). Fredholm’s alternative insures the existence of a unique harmonic function @; orthogonal to
the eigenfunctions uq, us, ..., uq and satisfying on 0f2 the boundary condition

—BAM; + Oty — Niy = B [AT Vi) + divy [Viu(H Iy — 2D%b) - Vouy]

+div, [anq—’u]'] + )\/Uj + )\Vn(anu] + HUj). (42)
It follows that
d d
u = Z Ejuj + Z Cjﬂj (43)
j=1 j=1
for some ¢;j,¢; when j =1,...,d. We point out that the (¢;) are the same coefficients as the decom-

position of u in the basis (u;).

The strategy is straightforward : we have to consider the equation satisfied by ' on the boundary 92
and take its shape derivative again. A first look to the second derivative shows that we will encounter
three operators :

e the first contains only «” and its expression is the following

E(O) _ —BAu" + anu// 2\
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e concerning the term in v’ and X' = 0 we have
EW = —28A (V,,0) — 2div, (Vy,(I + BA)V )
2 [)\’u’ AV (0! + H')

where A = HI — 2D?b is the deviatoric part of the curvature tensor.

e The remaining term is E) contains only u; we give a more explicit expression below.

Green-Riemann identity tells us that (E©), wu;) = (u”, —BA u; + Opu; — M) = 0, i = 1,...,d. This
means that the term E(® will have no influence in the determination of the second derivative of the
eigenvalue. We will focus only on EM) and E(®).

Construction of E®):

The computations are very technical. We need first to use a test function ¢ which is the restriction
of a test function ® defined on a tubular neighborhood of the boundary such that its normal derivative
on 0N is zero. This kind of extension is well discussed in the book [13] of Delfour-Zolesio. Taking the
shape derivative of the boundary condition (36) (in the multiple case) we need to compute

(d/ VoViu. Vo do*t> = (AW @) + (AP, ),
dt o t=0

B(d AV Vru. Vg do—t> = (BOY, ¢) + (BPu, ¢),
dt o t=0

7% < / [)\/u A+ VB + VnHu)} ¢ dot> _ (0O 8+ (Dl g + (O, b,

o t=0

5<d vT(anTanu).qusdot) = (DY, ¢) + (DPu, ¢).
dt Joo, o

The remaining E®) containing only u is then given by
E® = APy 4+ B@y 4+ @y 4+ D@y,

For an operator L involved in E(i), 1 =1,2,3 we denote by (Lij)i,j=1,--.,d the matrix of L in the
basis of the eigenvalues. After calculations (see also Remark D.1 in the Appendix), we get the following
linear equation

N'T—E)c+2(—M(V,) + N1)e=0
(corresponding to the second derivation) together with
(=M (V,,) + NI)ec=0.
(corresponding to the first derivation) where the matrix E = (E;;) is split into E = E() + E?) where
the terms involving «' are gathered in E() and the terms involving u are gathered in E(2).
4.2 Computation of the trace

Since the direct computations of the eigenvalues are difficult, we restrict ourselves to the cases d = 2
or d = 3, and we will focus on the trace of E and prove that Tr(F) is nonpositive. We start with the
trace of E(?):

28



Lemma 4.1 Assume d € {2,3}. With K(R) = RQ%L%_I, we have
Tr(E®) = —(dB + R)RK(R) / V.,V [2do — K(R) / V2do. (44)
0BR OBRr

for all deformations preserving volume and such that Vi, is orthogonal to spherical harmonics of order
two.

Proof: The computation of £ is done in the Appendix C, and to obtain the result, we sum all
the traces given by Lemmas C.1, C.2, C.3 and C.4. [

Concerning Tr(E("), we start with the following Lemma which is straightforward (see also Remark
D.1):

Lemma 4.2 We have

Tr(EW) = 2/

Vi (= OnitsOuts — HXGjus + (I + 8 (HIg — 2D*)) Vi, Vo) do. (45)
0N

=1

holds for all deformations preserving volumes such that V,, is orthogonal to spherical harmonics of
order two.

From this result we deduce the following, which is proved in Appendix D:

Proposition 4.3 Assume d = 3 and set o = J/Bi’ We denote Y™, m = —I,...,m any spherical
harmonic of order l € I. If

V, = ZRZ( i Ul,mYlm)y

lel m=—1
then l
T(ED) = ~ K(R) ( > [Ae + Bra] Y ’““”‘2)
lel m=—1
where
[ 142 1+ a(3—1) I+11-1 1+ a(d+1)
A = —— 2 garo) T i, = T (dayg) AT
e = 51 =2 W) ) B o WD e

Since TrE = Tr(EW) + Tr(E®), we will then deduce the following result

Proposition 4.4 Assume d € {2,3}. Then there exists a nonnegative constant p such that

T(E) < ~K(R)u [ [V VP don

Br

holds for all preserving volume deformations such that V,, is orthogonal to H.

Proof: We distinguish the case d =2 and d = 3.
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The case d = 2. Let us compute the trace of the matrix E. Gathering all the results of Lemma 4.1
with the computations of Appendix D concerning the trace of the different matrices involved in the
matrix E, we obtain the following formula: when

L0 0
Vi = Z— vg coslf + vy sinlf ), l €1,
> e )
we have
Te(E) = ~K(R) Y G(a,1) (2 +1) RZH((0")? + (v])?). (46)
lel

where
(12 =1) 241242221 -2)2 4+ a(l —2)(1*+2))

2(1+12) (I —2)I(1+ )
Let us remark that G(a,1) = 0. This could have been guessed since the Wentzell eigenvalues are
translation invariance: we recall that, denoting Bar the center of mass of the boundary, we have

Bar'(0) = / xVy,
OBr

so that deformations orthogonal to spherical harmonics of order 1 preserve at first order the center
of mass. A close look to the fraction G shows that it has no pole for a > 0 and [ > 3, that it is
nonnegative for [ > 2 and that G(l,a) — 1 when [ — +o00; then there is a nonnegative constant p
such that for all I > 3, u < G(I, ). This gives

G(a,l) =

(E) < ~K(R)u [ [V + Vil do
O0BRr

The case d = 3. The strategy is the same, and we use again Lemma 4.1 and the detailed computa-
tions from Section D.2: we get for [ € I:

l
Va=) R w)Yy,

lel  p=-1

!
Tr(E) = —-K(R)Y | Fla,1) (I(I+1)+ 1R* Y~ (02,

lel p=—I

where F'(a,l) is the fraction

3
1=1) > Pu(l)a™

F(a,l) = m=0 :
I+ +1) 1A +al+1) (2A+1) (-2) 1+al+3)

and where the polynomial P,, are defined as

Py(X) = 2X*+5X34+16X2% -8,

Pi(X) = 4X°+18X* +40X3 +68X% — 28X — 56,

Py(X) = 2X°%4+21X°+42X* +35X3 +16X — 112,

Py(X) = 8XO+18X° +24X* - 68X3 — 144X? — 112X — 64.
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Let us remark that F(a,1) = 0 for the same reason than in dimension two. By Descartes’s rule
of signs, the polynomials P, have at most one positive root. Since P,,(0) < 0 and P, (2) > 0 for
m =0,...3, P, has exactly one positive root which is in [0, 2]. Since [ > 2, there exists a nonnegative
constant p such that for all £ > 3, u < F(k, ) and

TE) < KR u [ [TV + Vil do

Br

A Some classical results on tangential differential calculus

We recall some facts about tangential operators acting on functions defined on 92. The formulas
involve the extensions of functions and the differential calculus becomes easier since we will use the
classical euclidean differential calculus in a neighborhood of 9€). The canonical extension will be
provided thanks to the oriented distance and the orthogonal projection on the tangent plane. For
more details, the interested reader will consult the book [13] of M. Delfour and J.P. Zolesio from
which we borrowed the necessary material.

A.1 Notations and definitions. Preliminary results

We recall some essential notations and definitions that are needed for the computations of shape
derivatives. Given a smooth function f : 002 — R, we define its tangential gradient V. as

V.f=Vf—Vfnn (47)

where f is any extension of f in a tubular neighborhood of Q. An extension is easily obtained when
0%} is smooth. The tangential gradient does not depends on the extension.

It is also useful to define the tangential gradient as the normal projection of V f to the tangent
hyperplane of 9€2; in other words

V.f=Vf—nonVf, ond.

We also need the definition of the tangential divergence : for a tensor v, we define the surface divergence
as
div, u = Tr(V;u)

For regular functions we define the surface Laplacian or Laplace-Beltrami operator as
Arf:=div. (V. f).
We recall the definition of the oriented distance byq:

x or v € R1\Q
boa(z) = { Ci%;()x) ior x E ]13, e (48)

where the notation dq stands for the distance function for a subset Q C R%:

do(r) = infyecqlr — y|
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We shall sometimes write b instead of byq; its gradient is an extension of the normal vector field n in
a neighborhood of 9€).

Let Db be the Weingarten operator with entries (V,); n; where n; is the j—th component of n. The
normal vector is known to be in the kernel of D?b, while the other eigenfunctions are tangential with
the corresponding eigenvalues given by the principal curvatures of 2.

Let x5, i=1,...,d — 1 be the non zero eigenvalues of D?b. We define the mean curvature H as
d—1
H=> r;=Tr(D?) = Ab, on 0. (49)
i=1

An important result about the normal derivative of this quantities is:
Proposition A.1 Suppose that the boundary OS2 is of class C3. Then the normal derivative of the

mean curvature H is
d—1

OnH ==Y k7. (50)

i=1

Other known identities: we denote x the identity function. We have

—-A;x = Hn
div,n = Hn

Tangential integral formula: Given two functions f (scalar) and v smooth enough, we have

/ fdiVTV-i-/ Vi fv= Hf v.n
o0 o0 o0

Shape derivative of the main curvature H and of the normal n in the direction of a velocity
\ %

Proposition A.2 Let a surface OQ be of class C%. The shape derivatives of the normal n and of the
mean curvature H in the direction of the velocity vector V' are

n = -V.,V,

H = -AV, (51)

where V,, = (V,m) denotes the normal component of the vector deformation V.

A.2 A commutation lemma

Here f and g are two smooth functions defined on U a neighborhood of 0f2; the notation b stands for
the oriented distance. Recall that its gradient is an extension of the normal field n on 0.

Proposition A.3 We have
On(V+f.Vrg) +2(D*0V-f).Vg = Vo (0uf).Vrg + Ve (0ng).Vr f (52)
Proof: A straightforward computation gives

0a(Vf.Vg) = (D*fVg)m+ (D*gVf).n
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and
V(Onf).Vg = V(Vfn).Vg
= (D%*fn).Vg+ (D*Vf).Vg
hence
V(0unf).Vg+V(0ag)Vf = 2(D?Vf).Vg+ (D?*fn).Vg+ (D%*gn).Vf
= 2(D*Vf).Vg+on(VfVg)

We use now the decomposition of V into its normal and tangential components and the well known
identity D?bn.n = 0. We get

0%f Og 8298f_

n2dn ' on2on
9’fog  0%gof
, 0°fog  0gof
ADDV-f) Vg +0a(Vef-Veg) + 555+ 505 m

V. (0uf)-Vrg + Vi(0ng). Vo f +
(53)

hence
VT(anf).VTg + V-r(ang)-vrf = 2(D2bVTf).VTg + an(v'rf-v-rg)

B Spherical harmonics

In order to explicit the shape hessian under consideration, a useful tool is the surface spherical har-
monics defined as the restriction to the surface of the unit sphere of harmonic polynomials in the
special case d = 3. We recall here facts from [25, pages 139-141]. Spherical Harmonics are defined as
restrictions of homogeneous harmonic polynomials to the unit sphere. The spherical harmonics are
said of order k£ when the harmonic homogeneous polynomial is of degree k. We denote by Hj the
space of spherical harmonics of degree k. We show that is also the eigenspace of the Laplace-Beltrami
operator on the unit sphere associated with the eigenvalue k(k + 1). Its dimension is

dp =2k + 1.

Let (Ykl)—kgzgk; be an orthonormal basis of Hj with respect to the L2(0B;) scalar product. The
(Hr)ren spans a vector space dense in L2(0B;) and the family (Ykl)keN,—kglgk is a Hilbert basis of
L2(0B1). To be more precise, if f € L2(0Bj), then there exists a unique representation

F=Y_Y
k=0

where the series converge to f in the L? norm and

k
Yi= ) bV eHy
l=—k

If + = (21,22, 23) € R3, it is natural to use on a sphere the spherical coordinates (7,0, ¢) where r is
the radius and 6 and ¢ are the Euler angles. The spherical harmonic Ykl is defined with the Euler
angles (0, ¢) as

k+Li(k-Dh
L 1\l 2 ilgml _
Y, =(-1) \/[ 5 (k:Jrl)!]e Pi(cosf), —k<I<k.
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where the polynomial IP’L is the associated Legendre polynomial. The formula giving the explicit form
of these polynomials can be found in the book of Nedelec [23, page 24].
When k # k', we have also the orthogonality property

YkYk/dO' =0
0B

when Y}, € H;, and Y € Hpr. An homogeneity argument shows that any function ¢ in L?(0Bpg) can
be decomposed as the Fourier series:

oo k
p(x) = ZRk (Z ay ()Y, <|i|>>, for |x| = R.
k=0

I=—k

Then, by construction, the function v defined by

00 dy
u(zx) = Z ||* (Z g1 (p) Y} <|i|>>, for |x| < R,
k=0 =1

is harmonic in Bgr and satisfies u = ¢ on 0Bg.

We recall now some results about the integration of three spherical harmonics, they will enable us
to estimate Tr(F) in dimension three. When we integrate three spherical harmonics, we use coefficients
called Clebsch-Gordon coefficients or Wigner-3j coefficients. The Wigner-3j coefficients are mostly
used; they are related to Clebsch-Gordon coefficients via some known formula that the interested
reader will find in the book of Cohen-Tannoudji and al [9, Tome 2, Annex B].

The first general result concerns the product of two spherical harmonics; it is given by the following
proposition

Proposition B.1 Given l1,ls > 0 two natural integers and —l1 < mq <1, —ls < mo < lo, we have

Vv
1yt lilf @u+ 1)@+ DRL+Y) (1 1 L\ (b I | N
4 0 0 O mip Mg —mip— Mg L ’
L=|l; 12|
lih s L lh I L . )
where <0 0 0> and <m1 - —ml—m2> are the Wigner-3j symbols.

The second result concerns the integration of three spherical harmonics.

Proposition B.2 We have:

ymiymayms _ (2l1+1)(2l2+1)(213+1) lh Iy I3 l1 lo I3
9B, h Tl Tl 47 0 0 0)\mi me mg/)’

In particular it holds

Proposition B.3 Let | be a natural integer and m an integer. We have
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1. If =1 <m < then

VYT = —
8B, ! 47’1’7

Yy = U-m-1)
0B, = ! & 2z+1 )20 —1)

2. If -1 —-1<m<Il+1 then

(l+m+1)(l—-—m+1
Vv IvT = [ mil
a8, (20 +1)(20+3)
3. If -1l —2<m <1 then

[ 3 (l+m+1)(I+m+2
Ylmyl Ylel 8 2l )’
8B Y8 —|— 2l—|—3)

C Intermediate results for the second shape derivative matrix

and

We need to construct the matrix associated to the second shape derivative. To that end, we have to
compute the explicit formula for all the shape derivatives of order one involved in the formula giving
A\ (see Theorem 3.6). In this appendix, we focus on the term E® introduced in Section 4.1. Since
these computations are very technical, we only give the main line and the used arguments, omitting
a couple of details. In the following lines, we denote by H(t) the mean curvature associated to the
boundary of Q; and A(t) the deviatoric part defined on 9 as

A(t) = H(t)I — 2D?b(t)

(see [13] for the terminology).

In order to deal with the weak formulation on the boundary 0€);, we will make use of a test
function ¢ which is the restriction of a test function ® defined on a tubular neighborhood of the
boundary such that its normal derivative is zero. This kind of extension is well discussed in the book
[13] of Delfour-Zolesio.

In this differentiation, nineteen terms arise and we introduce some notations to study them sepa-
rately. For all function test ¢ € H'(9€2), we will need in the sequel the following quantities:

Alu, ', 9) = (d/ VnVTu.VTgbdat) ,
dt Joq, 1=0

B(u,u',¢) = B( d AV, Viu. Vg d0t>

9

% o t=0
Clu,u’,u",¢) = —d</ [)\'u—i—)\(u'—FVné?nu—l—VnHu)}qb dat> ,
dt \Jag, =0
D(u,u,¢) = 6<d Vi (ViOnu).Vrd dat>
dt 00 t=0
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We will now study independently each term A, B,C and D, when Q = Br C R? or R3, and t — € is
volume preserving.

Study of D(u,u’,¢). First, we denote

d
W= dat (V- th)|t:0 :

From the derivative formula of boundary integrals, we know that we have to compute three main
terms: the first corresponding to the shape derivative, the second concerns the normal derivative of
the integrand and the third is related to the term related to the mean curvature H. The first term is

b ( /m jt V., (VaBott). Vs 6] dat>

t=0

_ g( Vo (Vi dptd — Vo Vo VoV) Ve do + | Vo(V!.0pu).Vro da)
OBR

9Br

+ 8 O (V0 V1V V) dor
9BR

=—p A, (V.0 ) do + B V. (V!.0pu). V¢ do
0BRr OBRr

18 0.(Vadnw) VoV Vet do + AT(VnVTu.VTVn)gb do.
8BR 8BR

The third term is

B HV,V,(Vidhw)Ved do= -5 [ div, (anvT(vnanu))¢ do.
O0BR OBRr

We focus now on the second term. We have

I} Voo [V (Vi0nu). V2] do
OBr

=B [ ViV 0u (Vo). Vet do — 28 | Vi(D26V,[Voonul). Vo do
0BR OBR

=8 < / Vi V1 [00V0nu)] V1o do — 2 Vi (D*0V - [V 0pu]).V - ¢ da>
OBRr

OBRr

=5 div, [V, V2 [0nu 9, V,] — 2V, D*bV 1 [V, 0pul] ¢ do.
OBRr

We expand D(u, ¢) into a sum (DMw/, ¢) + (D@, ¢). For D@, we will set D?) = Zi:l D@F) where

(D ¢) = B[  ViVidut|Vepdo=—8 [ A Vo0l do
8BR aBR

(D@Ny, ¢y = 5[ /6 . (=A[Wohu] ¢ do — /a N div, [V 0,V Vo [0u]] ¢ do,
- / divy [HV, V- (V0pu)] ¢ da],
BBR

(DP2y,¢) = —p divy [Opu 8,V V. Vil do + 8 AL [VnBouV, Vo do,
OBRr OBR

<D(2’3)U, ¢> = QB diVT [VnD2b : VT[Vnanu]]¢ do.
OBRr
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We denote DM and DK k= 1,2, 3 the matrices whose elements are defined by

(2.5)

D(l) = <D(1)1~LZ,’UJ]>, and Di]

I = (DR uj), 0,5 =1,2,...,d.

We give a result concerning the traces of the matrices.

Lemma C.1 We have

28(d — 1)K (R
Tr(D@Y) = Tr(D??)) = 0 and Tr(D?) = — el R) ( )/ V2 do,
OBRr

d

with the normalization constant K(R) = Ry
W

Proof of Lemma C.1:
We have

d d
Tr(D(271)) — 6[/313 —AT(WZ&Lui)ui do —/8 div, (VnanVnZVT(anui))ui do
R i=1

Br i=1

d
— [ dive (HVV, (Vadui)) i da} (54)
O0BRr i—1

d d
do
= @/ Vo(d—1 mm2+@/ VOV > Vo (Opui) - Vyu; O
. Vil )Zf U . ;:1: (Onuz)

d d
+8 HV2Y Vo (Onti) - Vreu; do + 8 H  0,u VoV, Vs - Vo, do
9Br i=1 O9Br =1

Combining the two facts (coming from algebraic properties of spherical harmonics, see Appendix B),

d 2 d
|On i d(d—1)
(d—1) ; R ; Vi (0nui) - Veu; = RTde = (d-1)K(R). (55)
and
d
/ Vi Y 0nui VoV - Vo = 0, (56)
OBr =1
we get,

d
do
Te(D@D) — (d— 1 emm/' W+ VidaVa + HV?) .
&) = (@-n 3ol [ ) 7

Since we assumed the deformation to be volume preserving up to the second order (41), we have

Tr(D(2’1)) = 0. The same strategy applies for Tr(D(2’2)).
We focus now on Tr(D?3)). We first expand the second term in the definition of D™):

d
(D) =) / ViOntis V1[0, Vo). Vs — 2V, 0pu; D*0V, Vi, - Vo, do
i=179Br

d
-BY_ / 2V D2V, (Onus) - Veu; do.
i—=1 Y9BRr
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We follow the same argument thanks to the relations (55)-(56) and the fact

(d-1K(R)

d
2 ‘ _
Z D*bV - (0pu;).Vru; 7

=1

on the sphere. Recall that on the sphere D?b = I;/R when restricted to the tangent space.

Study of B(u,u’,¢). In the same manner, we begin to compute the derivative of the integrand:
d
S (AOVvuve)| =

AV, V. uNV, ¢+ AVTZVTU.VT(b + AV,V 'V, ¢ — AV, 0,uNV .V, .V .
Denote A = (a;j)1<i j<q and A= (Onaij)i<ij<d- Thanks to lemma A.3, we get

Vi <VnA : VTu.VT<b> = V2A- VoV + Voo VA - Vo Vegp + V2AS, [vTu.quﬂ .

From the relation

d
B—

7t .A(t)Vanztu.Vathb doy
o

d
T /8 . a(,4(75)anmtu.vmt¢>) ‘t:() do

v v, (Avanu.ws) do+ |  HV2AVW.V,¢ doy,
O0BRr OBR

we gather all the terms and obtain B(u, ¢) = (BMu/, ¢) + (B! ¢); we then set
4

=1

where
BBV ¢) = —p | div, [VaA - Vil do,
OBRr
(B ¢) = -8 div, (W + HV2 + V,0,V,,) A~ V,ulé do,
OBRr
<B(272)U/7 ¢> = _/8 leT [3nu Vn-A : VTVN]¢ da?
OBRr
<B(273)u’ > e —IB leT [VnA/ N VTU]¢ da’
OBRr
OBRr
We get

B®hqy ¢y = 8 V2 (0p[A] - Viu V., ¢) do+ S / VZA -V, 0,uN.¢ do
8BR 8BR

B | 2(D*A)-V,u.V.¢ do
o0

= -5 div, [Vn2 <.,[l “Vou+ AV, [0,u]) — 2D*bA - VTU)} ¢ do
OBRr
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Let B2F) I =1,2,3,4 denote the respective matrices associated to the operator with respect to the
basis of eigenvectors. We have the following result:

Lemma C.2 We have

4
A BK(R)
(29)y — _ _ 2 2
Tr(;:1 B“Y) =—-3(d—1)RK(R) /BBR |V Vo|* do + 2 7 /8BR Ve do.

Proof of Lemma C.2:
Using the same arguments as before, we prove easily that Tr(BZY) = Tr(B(22) = 0.
For the other terms, above all we have to focus on the term

d
Tr(B(2’3)) = Vi Z(A/ - Vru;).Vyu; do.
OBRr i—1

We have, thanks to the expression of shape derivation of the normal vector and of the mean curvature
given in Proposition A.2:

A(t) = H(t) — 2D%b(t) = A = —AV,, + 2D(V.V,,);
then

d
Tr(BZ3) = 3 Vo) (A Vew;). Vo, do
9Br =

d d
— _5/ Vil Vi Y |V dg+2ﬁ/ V) D(VTVn)'VTuZ} Vyu; do
O0BRr i=1 OBRr i=1

d d _
= -3 VoAV Y | Vowi? do + 28 / VoY | D(V-Vn) - vfui].vTui do
9Br i=1 O9Br =1 -

d d
= —ﬁ/ VHATVn Z |v7.ui|2 do + 2,8/ Va Z D?_Vn . VTU'L} Vru; do
OBRr i—1 OBRr i—1 -

d d
— _5/ VoAV > Vo do + 2ﬁ/ VaTr(D2V,) Y " |Vruf® do
9BR i=1 9Br i=1
Since Tr(D2V,,) = A,V,,, and since Z?Zl |V, u;|?> = RK(R), on OBr we get
d
Tr(B®3) = 3 / VoA Vi > Vil do = B(d — 1)RK(R) Vu ALV, do.
OBRr i=1 OBRr

Concerning Tr(B(2’4)), we have to distinguish the case d = 2 from the case d = 3. If d =3 then A =0
- this implies that Tr(B(2%) is reduced to

Tr(B@Y) = (d — 1)1((1-‘5)é V2 do.
BBR

If d = 2, then A + A is a null matrix and this leads to

d
Tr(BZY) = 23 V2 D% Vu Ve do

OBr =1
B 2
= 2K(R)— V.7 do.
R Jopg
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Then for d = 2,3 we get

Tr(B?Y) = 257K(R);

Study of A(u,u’,¢). We have
d
— (/ VnVTU.VTgbdat) = WV, u.V,¢ do+ / Vo, V' Vi¢ do
dt \ Jagq, —o JoBg 0Bp

+ / Vi, Y, Vi [anu Y, b+ @@Vﬂt} + (Vnan[vanu.vT¢] + HV,ZVTU.VT¢> do.
OBRr

Since d,¢ = 0, it comes that

Vi V. V. [8nu V.o + anqsvTu} o= — 1 / V2 [anuAqu + vT[anu].qus}
0BR 2 OBR

1 1
S / V2 (0[V7u.V¢] + 2D*0V,u.V,¢) do — = / V2 Opulr,d do
2 JoBg 2 JoBg

Hence, gathering the equivalent terms we get

d
— VoVru.V pdo, = WY /' V¢ do +/ Vo Vo' V¢ do
dt Jaq, t=0 9dBRr 0BRr
1
- = ALVZ Opulp — On (ViIV uV,9) do + / (HI; — D*b)V2V,u.V.¢ do.
2 JoBg 8BR

We split these terms into A(u, ¢) = (AMD !, ¢)+(APu, ¢). As before, we set (AP u, ¢) = 372 (ADy, ¢)
where

Ay = [ dive Vo) do
OBg

(ACYuG) = [ div, (W + HVE 4 VaduVa) Vil 6 do,
OBg

(ACu0) = [ div, [0y VoV Vi) 0 do,
O0BRr

(A®)y, ¢) = / div. [V;} (2D*0Vru — V- (9pu))]¢ do.
O0BRr

We have

Lemma C.3 We have

Te(A?Y) = 0, Te(A®?)) = 0 and Te(A??) = K (R)/ Vi do
OBR

The proof of Lemma C.3 follows the lines of the proof of Lemma C.2.
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Study of C(u, v ,u”,¢). We decompose C(u,u’,u”, $) as follows:
Clu,¢) = (D", ¢) + (CV, §) + (CPu, )
with (CPu, ¢) = Z?:?)(C(Q’i)u, ¢) where

(COy" ¢y = —\ / u' ¢ do
OBRr

©Wu) = =2 [ (N V(O + Hu)) 6 do
OBRr
(C®Vu,g) = N / up = A" | Vobnu¢ do
8BR 8BR
0BRr
<C(273)u, ¢> = —)\/ Vn( - VTVTL'VTU’ + H/u)¢ do
O0BRr

- /\/ v, (VTVn.VTu F ALY, u)¢> do
OBRr

d—1
©@Vug) = A [ VE(ohu-uY k+ HOw)o do
OBRr

i=1
= 0.

Denoting by (C’(Q’j)), j =1,2,3,4 the matrices associated to the linear operators C>P) p =1,2,3,4
in the basis of eigenvectors, we get:

Lemma C.4 We have

4
> Tr(C®) = AR*K(R) VaA Vi do = —((d—1)3 + R) RK(R)/ IV, V,|? do.
j=1

O0BRr OBR

Proof of Lemma C.4:
The proof is straightforward and obeys to the same arguments used before. The only non null trace
concerns the factor in —H' = AV, ]

D Computing v’
In this section, we focus on the computation of the trace of E(") introduced in Section 4.1. We recall
that ¢ — (A\(¢),u(t,-)) is solution of

Au = 0 in Ty(Bg),

—BA;u+ Opu—ANt)u = 0 on 0T (Bgr). (57)

To compute the second derivative, one must know u' = u/(0). For the reader convenience, we recall
the problem (36) solved by «’.
Au’ =0in BR,

—BAU + Ot =M = BAL (Vi dpu) — Bdiv, (Vo (2D%b — HI)V )
+div, (V,Vou) — Nu + AV, (0,u + Hu) on OBg.
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First, Fredholm’s alternative insures the existence of a unique harmonic function #; orthogonal to the
eigenfunctions uy, us, . . ., uq and satisfying on dBp the boundary condition

—BAL + Oty — Nij = ﬂAAWamﬂ+dWJw4HQ—2D%yvﬂm

+div, [VHVTUJ'] + )\/u]' + )\Vn(anuj + Huj). (58)
It follows that
d m
u = Z cjuj + Z cjt (59)
j=1 j=1
for some ¢;j,¢; when j =1,...,d. We point out that the (¢;) are the same coefficients as the decom-

position of u in the basis (u;) of the eigenspace associated to A: v = ciug + - - - + cquq.

Remark D.1 We recall that we only need the terms u;: we inject this decomposition of u' in EM.

d
R+ B(d—3
EWg = —2Zaj [ / VnOn;jOne do + 2L) / Vo Vou; Vob do
o dBr R dBr
u R+p3(d—-3
=23 ci| [ Vabnity0at do + RTAEZ3) Vo Vi,V do
o "o R 2Bg
—2) / VaHujo do = 2) | VoHiyo do|.
8BR 8BR

By construction the first sum cancels and we simply get

@U:2/ %(—&%&mk—HMﬂh+U+B@MFJD%»VJ%VWOda
o0

D.1 Explicit resolution of (58) to compute @,

Let us now compute @; solution of (58). This step consists in technical computations. For the
completeness of the presentation, we present the case of dimension three, we will then simply state
the results in dimension two. From now on, we do not consider the case d > 4 for technical reasons.

D.1.1 Explicit representation of u; in the case d = 2.

We illustrate the computation of the elements u;, i« = 1,2 in the case d = 2. The eigenfunctions are
the normalized coordinates functions that is (u1,uz) given by

cosf sin 0
and uy(r,0) =r

ui(r,0) =r

g

™

We have

Lemma D.2 Let V be a deformation of normal component V, = Rk(vyﬂ cos k6 + vék) sin k0), then

RHL O
a1 (r,0) = r 7 [vgk)cos(kJr1)9+v§sin(k+1)9 (60)
QﬁRz k
k—1)0 Fsin(k —1)0
QﬁRSk—2[ kB + R Hvl cos ( )0 + v sin ( )]
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and

rktl 1k

ag(r,0) = 2\FR;k[—’Uéf’ﬁ)cos(lﬂ—i-1)04—1)]fsm(k—|-1)6?] (61)
T
rk=1 14k B(2—k)+ R ()
E—1)0 — vFsin (kE —1)0
+2\/7?R§/€—2[ kB + R }{UQ cos ( )0 — v7 sin ( )]

In order to justify these formulae, one has to compute a, b, ¢, d the coefficients

;= a® cos (k + 1)0 + b® sin (k + 1)0 + ¢ cos (k — 1)0 4+ d*) cos (k — 1)0

T

such that @; satisfies (58) with u; = . We left the tedious computations to the reader.

| @i [|L2(0BR)

D.1.2 Explicit representation of u; in the case d =3

We begin with the case where V,, = rlYlm and ¢, = rYlp where —] < m <[l and —1 <p < 1. We
introduce the coefficients:

=lp A m p —-m—p)\0 0 0 )
C(l,l,m,p)

(—1)m+ 320+1)20+3) (1 1 1+1 I 1 141
I+1,p Ar m p —-m—p)\0 0O 0 )’

where we use the Wigner 3j symbol and Clebsch-Gordan coefficients. We set a« = §/R in order to
obtain an adimensional constant.

and

Lemma D.3 Let [ # 0 be a natural integer and let —1 < m < 1. Let V,, = r'Y/™ and u, = rY? where
—1 < p < 1. The unique solution of (58) that is orthogonal to Span(Yl_l,Ylo, Y{!) is given by
+1

1,1 - 1,1 r
(7 7m7p),r,l 1}/[7:74;'17 +a(7 7m7p) Ym+p

up:al—l,p,oz I+1,p, R2 I+1

where

(Limp) _ L+2 1+aB -1 q1mp)

Gimp) _ =1 14+a(d+1) @1,mp)
I—1,p, -1 C .
P -2 1+a(l+1) P

and Ut1pa = I 14+a(3+1) e

Proof of Lemma D.3:
We first decompose the right hand side of (58) into the basis of spherical harmonics. Taking into

account that
lLi Il LY 0
0 0 0/)

whenever (l1,1l2, L) satisfies the triangular inequality and 1 4+ lo + L is odd, we get

ananup _ 5Rl}/lm}/lp — ﬁRl [Cl(Ei;mp)leT—nler + Cl(iii;n,p)n?:fp}

and then

_ l,1,m, m l,1,m, m
BA(VaButp) = aR'™H [1(1 = DO DY — (14 1)+ 2)C Y
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We also have

1
V-V Veu, = 5 [Ar(Voup) — Vi Aruy, — up A7V
Rlil [, 1m m I,1,m m
= = [ (1 - )oY ()4 2) et Py

l,1,m, m [,1,m, m
U+ HCPYE 4 1) Cb p)Yij}

= R ety ol

Since div; V,,V u, = V,V, .V u, + V,Aru,, it comes

. — 1,1,m, m [,1,m, m
divy VuVyu, = R [(z ety 2y ol ”)Y;Hﬂ .

Hence, gathering the various terms in the right hand side of (58), we see that 4, is solution of

—BA iy + Opily — Aoy =

_ I,m,1, m l,m,1, m
R(1+2)(1+a3— Z))Cf_lp DY (1 1)1+ a4 + l)>0l(+1,p p)YHﬂ :

After identification, we obtain:

(1,1,m,p) (1,1 )TZJr1
~ »Lm,p) -1y, m~+p »L,m,p m~+p
Up = a’l—l,p,a r le—l + a’l—l—l,p,a R2 Yl+1 ’

. 1,1 .
where the coefficients al( jélef) are defined in Lemma D.3. n

As a corollary, we deduce the general case for V,.

Corollary D.4 If
00 l 1
V, = Zrl Z umY" and u, = Z apY?,
=2 m=—I p=—1

then
+1

[e%S) l 1
- (LLm,p) I—-1y m+p ,1,mp) " m+p
U= D> D ot |y Y ey 72 Vi1
=2 m=—[p=-1
D.2 The explicit expression of the trace of F)

We leave the tedious but easy computations of the case d = 2 to the reader; the obtained result is
written in (46). We focus here on the much more technical case d = 3.
We set u; = K(R)(a' Y7+ Y + i Y for 1 < j < 3 where

041_1:1/\/57 a[l):O, o&zl/\/ﬁ,
a2_1:O, a%zl, a%:O,

a3, =—i/V2, ai=0, of=i/V2



On the sphere in dimension 3, the deviatoric part of the curvature cancels and the entries of E() are
3
Te(EW) = 3" ED where B = /8 ) Vi (= Oniignu; — Hju; + Vii;. Vo ) do,
j=1

where each @; corresponding to u; is computed thanks to Corollary D.4.
We first state a technical result to perform this summation. We postpone its proof to the end of the
section.

Lemma D.5 LetV, = RlYlm, -1 <m<I and
Y =rY}

for =1 <p<1. Let m' and p’ be integer such that —1 < m’ <1 and —1 < p’ <1 and suppose

I+1

d=a Tz—1yl711;+p’ b ;ﬁyl:rfﬁp"
Then
/ Vn< — 0,0 — HA + VT@L.vTu}) do
8BR
= —a (da+20) R¥! Y™ yyP — b (da+2) RE Y YYD
0B 0By
As a consequence, we get for j = 1,2,3
(1) 2U+1 142 14aB4+D) ~ N~ e 2 TTpymyp )

) = — K B \as 2 755 ESEEY S S elf ([, vrme)

l 1 9
I—1 1+ad+1) 9 ) / —
4 2 J m Ym meYp
+ at2) I 1+aB3+1) Z Z lepl” [v1,m] I RS

m=—1p=—1
We are now in position to prove Proposition 4.3 concerning the trace of EW in dimension d = 3.

Proof of Proposition 4.3:
We have to sum the E](]l) obtained before the statement of Proposition 4.3. By the normalization

condition ), la}|2 = 1, our main task is to compute the sum over p = —1,0,1 of the integrals
involving three spherical harmonics. The values of this type of integral is recalled in Propositions B.2
and B.3. Elementary computations then give

l 1

St >3 LE — 23 1+1
yprymyP ) — d ymtpymyP ) — 2 -
S ([ vErey) = gt XN ([ v = 2

m=—p=-—1 m=—[p=—1
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Proof of Lemma D.5:
We compute:

V0,000 = —RAL [a(z — DY Lb( 4 1)1@11;*1”] Yy,
CAHVib = —R (ot 2) [y oy vy,
We have also
- 1 - - .
NV = 5 [ Va[Arw) - v - Gac)
O0BRr OBRr
1 / / ’ ’
- _ = l(l+ 1) RQl—l / (aY'lT1+p +bY2ml+p )YimE/lp
2 0B, *
+R2l+1 / (a}/lrf1+p + b}/lT1+p )Ylmylp
0B1
1 m’ ’ m/ ’ m
g B[ fat= ) e e ) +2) vy
1
e / [a (1—1) Y™ 45 (1+2) Yl’fﬁp’} YmyyE.
0B1
We obtain the result by summing the three terms. |

E Shape Derivatives of Steklov and Laplace-Beltrami eigenvalues
problem

The following result is obtained by taking 5 = 0 in Theorem 1.4.
Theorem E.1 [Steklov eigenvalues] We distinguish the case of simple and multiple eigenvalue.

o If A=\ (Q) is a simple eigenvalue of the Steklov problem and w an associated eigenfunction,
then the application t — \(t) = A\ (I +tV)(Q)) is differentiable and the derivative at t = 0 is

X(0) —/ Va1V — |8, ~ AH[uf?) do.
oN

The shape derivative v of the eigenfunction satisfies

Av' =0 in Q,
Ot =\’ = div, (V,V,u) — N (0)u + AV, (Opu + Hu) on 0Q.

o Let X be a multiple eigenvalue of order m > 2. Let (u;) for 1 < j < m denote the eigenfunctions
associated to X. Then there exists m functions t — A\ (t),k = 1,...,m defined in a neighborhood
of 0 such that

— M (0) = A,
— for every t in a neighborhood of 0, \,(t) is an Steklov eigenvalue of QO = (I +tV) (),
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— the functions t — X\g(t),k = 1,...,m admit derivatives which are the eigenvalues of the
m x m matric M= Mq(Vy,) of entries (M;;) defined by

M, = / Vn( — OpuiOpur, — Hujug, + VTUj.VTuk) do.
oN

The following result is obtain by taking 8 — 400 in Theorem 1.4.

Theorem E.2 [Laplace-Beltrami eigenvalues] We distinguish the case of simple and multiple eigen-
value.

o If A= () is a simple eigenvalue of the Laplace-Beltrami problem and u an associated eigen-
function, then the application t — A(t) = A\ ((I +tV')(Q2)) is differentiable and the derivative at
t=01s

N(0) = / Vn<(H I— 2D2b)VTu.VTu) do.
o0

The shape derivative v’ of the eigenfunction satisfies
Au' =0 in Q,
—A = A (V,,0pu) — divy (Vi (2D%0 — HI ) V,u) — N (0)u on 0N

o Let A be a multiple eigenvalue of order m > 2. Let (u;) for 1 < j < m denote the eigenfunctions
associated to X. Then there exists m functions t — A\(t),k = 1,...,m defined in a neighborhood
of 0 such that

— X(0) = A,

— for every t in a neighborhood of 0, \i(t) is a Laplace-Beltrami eigenvalue of Qy = (I +
tV)(9),

— the functions t — \g(t),k = 1,...,m admit derivatives which are the eigenvalues of the

m x m matric M= Mq(Vy,) of entries (M;;) defined by
My, = / Vn< (HI, - 2D%) vTui.vTuj) do.
o
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