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Abstract

We focus here on the analysis of the regularity or singularity of solutions Ω0 to shape optimization problems
among convex planar sets, namely:

J(Ω0) = min{J(Ω), Ω convex, Ω ∈ Sad},

where Sad is a set of 2-dimensional admissible shapes and J : Sad → R is a shape functional.
Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order

optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We
prove two types of results:

i) under a suitable convexity property of the functional J , we prove that Ω0 is a W 2,p-set, p ∈ [1,∞]. This
result applies, for instance, with p = ∞ when the shape functional can be written as J(Ω) = R(Ω) +
P (Ω), where R(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) involves the area |Ω|, the Dirichlet energy Ef (Ω) or the first
eigenvalue of the Laplace-Dirichlet operator λ1(Ω), and P (Ω) is the perimeter of Ω,

ii) under a suitable concavity assumption on the functional J , we prove that Ω0 is a polygon. This result
applies, for instance, when the functional is now written as J(Ω) = R(Ω)−P (Ω), with the same notations
as above.

Keywords: Shape optimization, convexity constraint, optimality conditions, regularity of free boundary.

1 Introduction

The goal of this paper is to develop general and systematic tools to prove the regularity or the singularity of optimal
shapes in shape optimization problems among convex planar sets, namely problems like:

min{J(Ω), Ω convex, Ω ∈ Sad}, (1)

where Sad is a set of admissible shapes among subsets of R2 and J : Sad → R is a shape functional. Our
main objective is to obtain qualitative properties of optimal shapes by exploiting first and second order optimality
conditions on (1) where the convexity constraint is included through appropriate infinite dimensional Lagrange
multipliers.
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Our approach is analytic in the sense that convex sets are represented through adequate parametrizations and
we work with the corresponding ”shape functionals” defined on spaces of functions. In particular, we will use the
classical polar coordinates representation of convex sets as follows:

Ωu :=
{

(r, θ) ∈ [0,∞)× R ; r <
1

u(θ)

}
, (2)

where u is a positive and 2π-periodic function, often called “gauge function of Ωu”. It is well-known that

Ωu is convex ⇐⇒ u′′ + u ≥ 0. (3)

Thus, Problem (1) may be transformed into the following:

min
{
j(u) := J(Ωu), u′′ + u ≥ 0, u ∈ Fad

}
, (4)

where Fad is a space of 2π-periodic functions which will be chosen appropriately to represent Sad in (1).

We obtain two families of results depending on whether j is ”of convex type” or ”of concave type”. In the first
case, we prove regularity of the optimal shapes. In the second case, we prove that optimal shapes are polygons.

i) ”Optimal shapes are regular”: under a suitable convexity property on the ”main part” of the functional j, we
prove that any solution u0 of (4) is W 2,p, which means that the curvature of ∂Ω0 = ∂Ωu0 is an Lp function
whereas it is a priori only a measure: see Theorems 2.4, 2.6 and Corollary 2.7. To that end, we simply use the
first optimality condition for the problem (1).

The functionals under consideration here are of the form J(Ω) = R(Ω) + C(Ω), where r(u) := R(Ωu) has
an Lp-derivative and C is like (6) below and satisfies a convexity condition. As a main example, we consider
R(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) which depends on the area |Ω|, on the Dirichlet energy Ef (Ω) and/or on the
first eigenvalue λ1(Ω) of the Laplace operator on Ω (with Dirichlet boundary conditions), and C(Ω) = P (Ω)
is its perimeter: see Section 3.2. In this case, we actually prove that the optimal shape is W 2,∞ which means
that the curvature is bounded.

ii) ”Optimal shapes are polygons”: next, we prove that, under a suitable concavity assumption on the functional
j, for any solution u0 of (4), u0 + u′′0 is (locally) a finite sum of Dirac masses, so that Ωu0 is (locally)
a polygon: see Theorems 2.9, 2.12 and Corollary 2.13. The proof of this result is based on the second
order optimality condition for the problem (1). We apply this result to shape optimization problems where
J(Ω) = R(Ω)− P (Ω) where R(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) with the same notations as above, see Section
4.2. This application involves some sharp estimates on the second shape derivative of the energy which are
interesting for themselves: see Section 4.3.2.

Our examples enlighten and exploit the fact that, in the context of shape optimization under convexity constraint,
the perimeter is “stronger” than usual energies involving PDE, in terms of the influence on the qualitative properties
of optimal shapes: if it appears in the energy as a positive term, it has a smoothing effect on optimal shapes, and on
the opposite as a negative term, it leads to polygonal optimal shapes.

Dual parametrization: Since our results are stated for the analytic functionals (4), we may apply them to the dual
parametrization of convex sets instead of the parametrization with the gauge function: each convex shape can also
be associated to its support function hΩ(θ) = max{x · eiθ, x ∈ Ω}, θ ∈ T and (1) again leads to the problem:

min
{
j̃(h), h′′ + h ≥ 0, h ∈ F̃ad

}
, (5)
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where j̃(h) := J(Ωh), Ωh being now the set whose support function is h, and F̃ad are all support functions of
admissible shapes Ω ∈ Sad. In this framework, if j̃ satisfies the suitable convexity property, the regularity result (i)
above holds for h0 minimizer of (5). However, this regularity does not imply that the corresponding optimal shape
Ω0 := Ωh0 is regular, but it exactly means that Ω0 is strictly convex: see Section 3.4.

The situation is more similar to the gauge representation when exploiting the results (ii). Indeed, when they apply,
they imply that the optimal shape is polygonal as well: see Remark 2.14.

Situation with respect to previous results: The second family of results (ii) is an extension of previous results
obtained in [14] by the two first authors for the specific following functionals of “local type”:

J(Ωu) =
∫ 2π

0
G
(
θ, u(θ), u′(θ)

)
dθ, (6)

where G = G(θ, u, q) : T × [0,∞) × R → R is strictly concave in q. Among these functionals, we find for
instance the area |Ω|, the perimeter P (Ω) or also the famous Newton’s problem of the body of minimal resistance
as studied by T. Lachand-Robert and coauthors: see for example [5, 16] and see also [14, 7] for more examples
arising in the operator theory. Actually, the techniques employed in [14], and here as well for (ii), are inspired
from those introduced in [16]. The main novelty here in the results (ii) is that the functionals are not necessarily of
the local form (6) and may include shape functionals defined through state functions which are solutions of partial
differential equations (PDE). The “concavity condition” is then expressed in a functional way through the coercivity
of the second derivative in an adequate functional space : see Theorem 2.9. In [2], a similar concavity phenomenon
is used to get qualitative properties of minimizers in higher dimension, under assumptions about their regularity and
convexity. We avoid here any assumption of this kind for the planar case.

The general optimality conditions including the infinite dimensional Lagrange multipliers were also provided
(and exploited) in the same paper [14]. They are revisited here in an W 1,∞-context which is better adapted to our
more general functionals (see e.g. Proposition 3.1).

Similar arguments to those used here to obtain the first family of results (i) may also be found in [3] where op-
timality conditions with convexity constraints are developed in an N -dimensional setting. They are exploited for
several examples in dimension 1 (or in radial situations) to obtain C1-regularity of the optimal shapes. With our
approach here, we are able to reach W 2,∞-regularity and this is valid for a rather general family of functionals.

About a localization of the approach: Let us mention that our two families of results may be mixed in the same
functional: indeed, as often the case, it may be that the required convexity property for (i) is valid on some part of the
boundary of the optimal shape, while the concavity property for (ii) is valid on the other part. Then, the techniques
developed here may be locally applied to each part and we can obtain at the same time smooth and polygonal pieces
in the boundary. However, as one expects, it remains difficult to understand the portion of the boundary which
remains at the intersection of these two parts. We refer to Section 5.1 for more details.

To end this introduction, let us say that many questions are of interest in shape optimization among convex sets.
Here, we try to exploit as much as possible analytical tools to obtain precise qualitative results for optimal shapes
among convex planar sets. But many questions are left open in higher dimensions. Among them, and besides the
Newton’s problem already mentioned, we can quote the famous Mahler conjecture about the minimization of the
so-called Mahler-product |K||K◦| among symmetric convex bodies in Rd (see [19]), which is of great interest in
convex geometry and functional analysis, and the Pólya-Szegö conjecture about the minimization of the Newtonian
capacity among convex bodies of R3 whose surface area is given (see for example [4] and reference therein).

This paper is structured as follows. In the following section we state our main results. In Section 3 we focus on
the regularity result (i) and we apply it to some various examples. In Section 4, we deal with problems leading to
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polygonal solutions (result (ii)), and we again consider in detail some classical examples. We conclude with some
remarks and perspectives.

2 Main results

2.1 Notations and problems

We set T := [0, 2π). Throughout the paper, any function defined on T is considered as the restriction to T of a 2π-
periodic function on R. We defineW 1,∞(T) := {u ∈W 1,∞

loc (R), u is 2π-periodic}, and similarly for any functional
space. If u ∈W 1,∞(T), we say that u′′ + u ≥ 0 if

∀ v ∈W 1,∞(T) with v ≥ 0,
∫

T

(
uv − u′v′

)
dθ ≥ 0.

In this case, u′′ + u is a nonnegative 2π-periodic measure on R and finite on [0, 2π].
We denote by Sad a class of open bounded sets in R2 (including constraints besides convexity). We will focus on

two problems:
min{J(Ω), Ω ∈ Sad, Ω convex}, (7)

min{J(Ω), Ω ∈ Sad, Ω convex,M(Ω) = M0}, (8)

where J : Sad → R is referred as the energy and M : Sad → Rd is an extra constraint (M0 given in ∈ Rd).
In order to analyze the regularity of an optimal shape, we transform these problems into minimization problems

in a functional analytic setting as follows: choosing an origin O and using parameterization (2), we define

Fad := {u ∈W 1,∞(T), Ωu ∈ Sad}, (9)

the set of admissible gauge functions, endowed with the ‖ · ‖W 1,∞(T)-norm, and we assume that this set can be
written

Fad = {u ∈W 1,∞(T) / k1 ≤ u ≤ k2 and u > 0}, (10)

for some functions k1, k2 : T→ R+ respectively upper- and lower-semicontinuous (see Remark 2.1 below for this
assumption).

A simple calculus of the curvature shows that Ωu is convex if and only if u′′ + u ≥ 0. Moreover, the support of
the measure u′′ + u gives a parametrization of the “strictly convex part” of the boundary, and a Dirac mass in this
measure correspond to a corner of the associated shape; we have for instance that Ωu is a convex polygon if and
only if u′′ + u is a finite sum of positive Dirac masses.

If Ω0 is a solution of problem (7) (resp. (8)), then its gauge function u0 is respectively solution of:

j(u0) = min
{
j(u), u′′ + u ≥ 0, u ∈ Fad

}
, (11)

resp. j(u0) = min
{
j(u) / u ∈ Fad, u′′ + u ≥ 0 and m(u) = M0

}
, (12)

where j : Fad 7→ R, j(u) := J(Ωu), and m : Fad → R, m(u) = M(Ωu).

Our main goal in this paper is the analysis of the convexity constraint. Thus, given an optimal shape Ω0, we focus
on the part of ∂Ω0 which does not saturate the other constraints defined by Sad. We therefore define, for u0 ∈ Fad
and Ω0 = Ωu0 ,

Tin := Tin(Fad, u0) = {θ ∈ T / k1(θ) < u0(θ) < k2(θ)}, (13)

(∂Ω0)in :=
{
x ∈ ∂Ω0 / ∃θ ∈ Tin, x =

1
u0(θ)

(cos θ, sin θ)
}
. (14)

See Example 2.2 and Figure 1 for examples.
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Remark 2.1 If k1 or k2 happened not to be semicontinuous, we could replace them by

k1 = inf{k : T→ R continuous , k ≥ k1}, k2 = sup{k : T→ R continuous , k ≤ k2}

and we have
{u ∈W 1,∞(T) / k1 ≤ u ≤ k2} = {u ∈W 1,∞(T) / k1 ≤ u ≤ k2}.

Therefore, the assumptions on k1 and k2 are not restrictive. Note that, thanks to the regularity of u0, k1, k2, the set
Tin is open.

×
O

(∂Ω)in

Tin
K2

K1

Ω

(∂Ω)in

(∂Ω)in

Tin

Tin

Figure 1: Inclusion constraints

Example 2.2 A frequent example for admissible shapes Sad is:

Sad :=
{

Ω bounded open set of R2 / K2 ⊂ Ω ⊂ K1

}
,

where K2 and K1 are two given bounded open sets. If for example K1 and K2 are starshaped with respect to a
common point O, chosen as the origin, then

Fad = {u ∈W 1,∞(T) / k1 ≤ u ≤ k2},

where k1, k2 are the gauge functions of K2 and K1 respectively. In that case, given a set Ω ∈ Sad,

(∂Ω)in = ∂Ω \ (∂K1 ∪ ∂K2),

see Figure 1.
The analysis of the optimal shape around the set {θ / u0(θ) ∈ {k1(θ), k2(θ)}} = T \ Tin, where the inclusion

constraint is saturated, may require more efforts, see [14] for example. In this paper, we will not discuss this
question.

Note that we can also consider the case K2 = ∅ and/or K1 = R2 with k1 = 0 and k2 = +∞.

Example 2.3 With respect to the constraints m,M in (8), (12), a classical example is the area constraint:

m(u) := |Ωu| = A0 ⇐⇒
∫

T

1
2u2

dθ = A0,

where |Ω| denotes the area of Ω.
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2.2 The main results

As explained in the introduction, Section 1, we will prove two types of results: they are described in the two
following subsections.

2.2.1 ”Optimal shapes are smooth”

First we consider the problem (7) and its associated analytical version (11). We assume that J(Ω) = R(Ω) +C(Ω),
R satisfying some “regularity” assumption, and C being written like in (6), and satisfying a convexity like property.
More precisely:

Theorem 2.4 Let u0 > 0 be an optimal solution of (11) with Fad of the form (10) and

j(u) := r(u) +
∫

T
G
(
θ, u(θ), u′(θ)

)
dθ, ∀u ∈W 1,∞(Ω) ∩ {u > 0}, (15)

where r and G satisfy:

i) r : W 1,∞(T) → R is C1 around u0 and G : (θ, u, q) ∈ T × (0,∞) × R → R is C2 around T × u0(T) ×
Conv(u′0(T)), where Conv(u′0(T)) is the smallest (bounded) closed interval containing the values of the
right- and left-derivatives u′0(θ+), u′0(θ−), θ ∈ T,

ii) r′(u0) ∈ Lp(T) for some p ∈ [1,∞],

iii) Gqq > 0 in T× u0(T)× Conv(u′0(T)).

Then
u0 ∈W 2,p(Tin), where Tin is defined in (13).

See Section 3.1 for the proof, and Section 3.2 for explicit examples.

Remark 2.5 AC1-regularity result has been proved for a similar problem with r = 0 in [3] with different boundary
conditions, with a proof which is also based on first order optimality conditions. Here, for periodic boundary
conditions (but this is not essential), we improve this result to the C1,1-regularity, and generalize it to the case of
non-trivial r, which is of great interest for our applications. Let us also refer to [6] for a higher dimensional result.

Let us remark that the same result is valid, with the same proof, if we only assume that r′(u0) is the sum of a
function in Lp(T) and of a nonpositive measure on T. �

We can also get a similar result for the equality constrained problem (8) and the associated problem (12) as follows.

Theorem 2.6 Let u0 > 0 be an optimal solution of (12) with j,Fad as in Theorem 2.4, and m : W 1,∞ → Rd a C1

function around u0 with m′(u0) ∈ (Lp(T))d onto. Then

u0 ∈W 2,p(Tin).

See Section 3.1 for the proof, and Section 3.2 for explicit examples.

For a shape functional, using parametrization (2), Theorems 2.4 and 2.6 lead to the following.
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Corollary 2.7 Let Sad be a class of open sets in R2 such that Fad := {u / Ωu ∈ Sad} is of the form (10) (Ωu is
defined in (2)), and let J : Sad → R be a shape functional:
i) Let Ω0 be an optimal shape for problem (7), and assume that J = R+ C with:

∀u ∈ Fad, R(Ωu) = r(u) and C(Ωu) =
∫

T
G(θ, u(θ), u′(θ))dθ,

where r and G satisfy assumptions of Theorem 2.4 for some p ∈ [1,∞]. Then (∂Ω0)in, as defined in (14), is C1 and
its curvature is in Lp((∂Ω0)in).
ii) A similar results holds for the problem (8), if m(u) = M(Ωu) satisfies the hypotheses in Theorem 2.6.

Remark 2.8 The results of this section are in an abstract analytical context, and do not depend on the charac-
terization of the domain. Therefore, one could consider the classical characterization of a convex body with its
support function instead of the gauge function. In Section 3.4, we give a geometrical interpretation of similar results
associated to this parametrization.

2.2.2 ”Optimal shapes are polygons”

Our second result is a generalization of Theorem 2.1 from [14]. We give a sufficient condition on the shape func-
tional J so that any solution of (1) be a polygon. In [14], the first two authors only consider shape functionals
of local type like (6). The following results deal with non-local functionals, which allow a much larger class of
applications, including shape functionals depending on a PDE.

Theorem 2.9 Let u0 > 0 be a solution for (11) with Fad of the form (10), and assume that j : W 1,∞(T) → R is
C2 around u0 and satisfies (see Section 4.1 for definitions of Hs-(semi-)norms):

∃s ∈ [0, 1), α > 0, β, γ ∈ [0,∞), such that

∀v ∈W 1,∞(T), j′′(u0)(v, v) ≤ −α|v|2H1(T) + γ|v|H1(T)‖v‖Hs(T) + β‖v‖2Hs(T). (16)

If I is a connected component of Tin (defined in (13)), then

u′′0 + u0 is a finite sum of Dirac masses in I.

See Section 4.1 for a proof and Section 4.2 for explicit examples.

Remark 2.10 We can even get an estimate of the number of Dirac masses in terms of α, β, γ, see Remark 4.2.

Remark 2.11 Theorem 2.9 remains true if (16) holds only for any v such that (denoting µ = u′′0 + u0):

∃ϕ ∈ L∞(T, µ) with v′′ + v = ϕµ.

Indeed, the proof of Theorem 2.9 uses only this kind of perturbations v which preserve the convexity of the shape.
�

As in Section 2.2.1, we can also handle the problem with an equality constraint as follows.

Theorem 2.12 Let u0 > 0 be any optimal solution of (12) with j,Fad as in Theorem 2.9, and the new assumptions:

j′(u0) ∈
(
C0(T)

)′
, and m : W 1,∞ → Rd is C2 around u0,

m′(u0) ∈
(
C0(T)′

)d is onto, ‖m′′(u0)(v, v)‖ ≤ β′‖v‖2Hs(T), for some β′ ∈ R.

Then, if I is a connected component of Tin (defined in (13)),

u′′0 + u0 is a finite sum of Dirac masses in I.
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See Section 4.1 for the proof.

Again, using the parametrization (2), we get the following result.

Corollary 2.13 Let Sad be a class of open sets in R2 such that Fad := {u / Ωu ∈ Sad} is of the form (10), Ω0 be
an optimal shape for the problem (7) (or (8) for the constrained problem), and assume that j : u ∈ Fad 7→ J(Ωu)
satisfies assumptions of Theorem 2.9 (and m : u ∈ Fad 7→M(Ωu) satisfies assumption in Theorem 2.12 in the case
of the constrained problem). Then:

each connected component of (∂Ω0)in is polygonal.

Remark 2.14 When one uses the parametrization of convex sets by the gauge function u, Ωu is a polygon if and
only if u′′+ u is a sum of Dirac masses. When parametrizing Ω with the support function as in Section 3.4, one has
the same characterization. Therefore, the results of this section hold if we work with the optimization problems as
in Section 3.4.

3 Shape functionals containing a local-convex term

In this section, we give the proof of the results in Section 2.2.1, that is to say regularity results for solutions of (11)
or (12). Using the parametrization (2), since the regularity of a shape and of its gauge functions are the same, we
consider several applications of regularity for optimal shapes to classical examples of energies. We conclude with a
few remarks about the application of our results when we use another parametrization of convex bodies, namely the
support function. In that case, we get the regularity of the support function, which does not imply the regularity of
the corresponding shape, but only the fact that this one is strictly convex.

3.1 Proof of Theorem 2.4 and 2.6

First order optimality condition:

A first optimality condition for the problem (11) is stated in [14, Proposition 3.1, 3.2] when j is defined and differ-
entiable in the Sobolev Hilbert space H1(T). We give here an adaptation to state this result in W 1,∞ instead (which
is important for our applications involving a PDE, since the shape functionals are known to be differentiable for
Lipschitz deformations only).

Proposition 3.1 Let u0 > 0 be a solution of (11) with j : W 1,∞(T) → R of class C1 and such that j′(u0) ∈
C0(T)′. Then there exists ζ0 ∈W 1,∞(T), such that

ζ0 ≥ 0 on T, ζ0 = 0 on Supp(u′′0 + u0), and

∀ v ∈W 1,∞(Tin), j′(u0)v = 〈ζ0 + ζ ′′0 , v〉(W 1,∞)′×W 1,∞ :=
∫

T
ζ0v − ζ ′0v′.

(17)

Remark 3.2 Without any assumption on j′(u0), we would a priori get a Lagrange multiplier ζ0 ∈ L∞(T) (see the
proof below). The non-continuity of ζ0 may lead to some difficulties, especially to state that ζ0 = 0 on Supp(u′′0 +
u0). Though a restriction, the assumption j′(u0) ∈ C0(T)′ will be satisfied in all of our applications.

Proof. We set

g : v ∈W 1,∞ 7→ v′′ + v ∈ (W 1,∞)′ in the sense that 〈v′′ + v, ϕ〉W 1,∞′×W 1,∞ =
∫

T
vϕ− v′ϕ′,
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and we consider Y := Im(g) = {f ∈W 1,∞(T)′, 〈f, cos〉(W 1,∞)′×W 1,∞ = 〈f, sin〉(W 1,∞)′×W 1,∞ = 0}, which is a
closed subspace of (W 1,∞(T))′.

Applying the same strategy as in [14], one gets l0 ∈ Y ′ such that l0(g(u0)) = 0 and

∀f ∈ Y, f ≥ 0⇒ l0(f) ≥ 0, and ∀v ∈W 1,∞, 〈j′(u0), v〉(W 1,∞)′×W 1,∞ = 〈l0, v′′ + v〉Y ′×Y .

We restrict ourselves to v ∈ D(T) := C∞(T), and consider

ζ0 : f ∈ D(T) ∩ Y 7→ 〈ζ0, f〉D′×D := 〈l0, f〉Y ′×Y .

Our aim is to prove that ζ0 can be extended to a continuous linear form on L1(T). First, for f ∈ D(T) ∩ Y = {f ∈
D(T),

∫
T f sin =

∫
T f cos = 0} we choose the unique v ∈ W 2,1(T) such that {

∫
T v sin =

∫
T v cos = 0} and

v′′ + v = f in T. Then there exists C <∞ independant of v or f such that

‖v‖W 1,∞(T) ≤ C‖f‖L1(T). (18)

Indeed, we first get an L∞-estimate using Fourier series: if f =
∑

n∈Z f̂(n)en with en(θ) = einθ and f̂(n) =∫
T f(θ)e−inθ dθ2π , then v =

∑
|n|6=1

1
1−n2 f̂(n)en, and therefore

‖v‖L∞ ≤

∑
|n|6=1

1
|1− n2|

max
n
|f̂(n)| ≤ C‖f‖L1 ,

with C <∞. Then we get a W 1,∞-estimate by choosing θ0 such that v′(θ0) = 0 (which is always possible, thanks
to regularity and periodicity of v), and getting from v′′ + v = f that

|v′(θ)| =
∣∣∣∣−∫ θ

θ0

(f(s)− v(s))ds
∣∣∣∣ ≤ 2π (‖v‖L∞ + ‖f‖L1) ,

which concludes the proof of the estimate (18).
Therefore, we can write (C may define different universal constants)

∀f ∈ Y ∩ D(T), |〈ζ0, f〉D′×D| = |〈l, v′′ + v〉Y ′×Y | = |〈j′(u0), v〉(W 1,∞)′×W 1,∞ | ≤ C‖v‖W 1,∞ ≤ C‖f‖L1 .
(19)

We now extend ζ0 on D(T) by

∀f ∈ D(T), 〈ζ0, f〉D′×D = 〈ζ0, f − f̂(1)e1 − f̂(−1)e−1〉D′×D.

Then, applying (19) to f − f̂(1)e1 − f̂(−1)e−1, we get

∀f ∈ D(T), |〈ζ0, f〉D′×D| ≤ C‖f − f̂(1)e1 − f̂(−1)e−1‖L1 ≤ C‖f‖L1 ,

and therefore by density, we extend ζ0 to a continuous linear form in L1, which can be identified with ζ0 ∈ L∞.
Moreover, in the sense of distributions:

〈ζ0, v
′′ + v〉D′×D = 〈j′(u0), v〉D′×D, that is to say ζ ′′0 + ζ0 = j′(u0).

From the hypothesis for j′(u0) it follows ζ ′′0 + ζ0 ∈ (C0(T))′ which implies ζ0 ∈ W 1,∞(T). Using the continuity
of ζ0 and the fact j′(u0)(u0) = 0 we get

∫
T ζ0d(u′′0 + u0) = 0 by a density argument. Therefore, the rest of the

proof stays as in [14], namely we prove that we can add a combination of cos and sin to ζ0 so that ζ0 ≥ 0. �
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Proof of Theorem 2.4.

Applying the previous proposition, and using the hypotheses on the functional j, we get:

∀v ∈ C∞c (Tin), j′(u0)v = r′(u)v +
∫

T
Gu(θ, u0, u

′
0)v +Gq(θ, u0, u

′
0)v′ = 〈ζ0 + ζ ′′0 , v〉(W 1,∞(T))′×W 1,∞(T).

To integrate by part in this formula, since u′0 is only in BV (T), we may look in [20] (see also [1]) to get:

r′(u0) +Gu(θ, u0, u
′
0)−Gθq(θ, u0, u

′
0)−Guq(θ, u0, u

′
0)u′0 − u′′0G̃qq(θ, u0, u

′
0) = ζ0 + ζ ′′0 in D′(Tin). (20)

where G̃qq(θ, u0, u
′
0) =

∫ 1
0 Gqq(θ, u0(θ), (1 − t)u′0(θ+) + tu′0(θ−))dt. For simplicity, we will drop the indication

of the dependence in (θ, u0, u
′
0) and write more simply

r′(u0) +Gu −Gθq −Guqu′0 − u′′0G̃qq = ζ0 + ζ ′′0 in D′(Tin). (21)

Equality (21) implies that ζ ′′0 is a Radon measure, and also that the singular parts of the measures in the two sides
of (21) are equal. To study the sign of these measures, we will use the following lemma.

Lemma 3.3 The measure ζ ′′0 satisfies: ζ ′′0 ≥ 0 on [ζ0 = 0].

Proof of Lemma 3.3. Let ϕ ∈ C∞0 (R), ϕ ≥ 0 and let pn : R+ → R+ be defined by

∀r ∈ [0, 1/n], pn(r) = 1− nr; ∀r ∈ [1/n,+∞), pn(r) = 0.

Recall that ζ0 ∈W 1,∞(T) and ζ0 ≥ 0. Then∫
ϕpn(ζ0)d(ζ ′′0 ) = −

(∫
ζ ′0ϕ
′pn(ζ0) + ϕp′n(ζ0)ζ ′0

2
)
≥ −

∫
ζ ′0ϕ
′pn(ζ0).

Letting n tend to +∞ leads to ∫
[ζ0=0]

ϕd(ζ ′′0 ) ≥ −
∫

[ζ0=0]
ζ ′0ϕ
′ = 0,

the last integral being equal to 0 thanks to the known property ζ ′0 = 0 a.e. on [ζ0 = 0]. �

End of the proof of Theorem 2.4:

Denote K := Supp(u′′0 + u0). Recall that ζ0 = 0 on K by Proposition 3.1. By Lemma 3.3, ζ ′′0 ≥ 0 on K. Let
u′′0 = µac+µs and ζ ′′0 = nac+ns be the Radon-Nikodym decompositions of the measures u′′0, ζ

′′
0 in their absolutely

continuous and singular parts. Note that: [u′′0 + u0 ≥ 0⇒ µs ≥ 0] and ns ≥ 0 on K.
Identifying the singular parts in the identity (21), and using that r′(u0), Gu, Gθq, Guqu′0, u0G̃qq are at least Lp-

functions, we are led to −µsG̃qq = ns in Tin. Since G̃qq > 0, µs ≥ 0, ns ≥ 0 on K ⊃ Supp(µs), we deduce
µs = 0 = ns in Tin. Thus, u0 ∈ W 2,1(Tin) and u′0 is absolutely continuous on Tin. In particular, G̃qq = Gqq on
Tin.

We can now obtain higher regularity, using again the multiplier ζ ′′0 . Indeed, on one hand, we deduce from Lemma
3.3, from (21) and from the inequality −u′′0Gqq ≤ u0Gqq, that, on the set Tin ∩K

0 ≤ ζ ′′0 ≤ r′(u0) +Gu −Gθq −Guqu′0 + u0Gqq ∈ Lp(T).

Thus, ζ ′′0 ∈ Lp(Tin ∩K). Going back to (21) and using that G̃qq = Gqq is bounded from below on the compact set
T× u0(T)× Conv(u′0(T)), we deduce u′′0 ∈ Lp(Tin ∩K).

On the other hand, in the open set Tin \K, we have u′′0 + u0 = 0 so that u′′0 ∈ L∞(Tin \K). As a conclusion
u′′0 ∈ Lp(Tin). �
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Proof of Theorem 2.6.

Optimality conditions are written with the Lagrangian (since m′(u0) is onto, see also [14, Proposition 2.3.3]):

∀v ∈ C∞c (Tin), j′(u0)v + µ · (m′(u0)v) = 〈ζ0 + ζ ′′0 , v〉(W 1,∞)′×W 1,∞ ,

for some µ ∈ Rd. The regularity of m′(u0) implies that the strategy used in the proof of Theorem 2.4 remains valid.
�

3.2 Examples

In this section, we apply Corollary 2.7 to a number of classical energy functionals. For the proof of the differentia-
bility of the shape functionals see Section 3.3. We start by reminding some classical PDE functionals that we use in
our examples.

Dirichlet energy - Torsional rigidity

For Ω an open bounded set in R2, we consider the solution of the following PDE, in a variational sense:

UΩ ∈ H1
0 (Ω), −∆UΩ = f in Ω, (22)

and we define the Dirichlet energy of Ω by

Ef (Ω) :=
∫

Ω

(
1
2
|∇UΩ|2 − f UΩ

)
= min

{∫
Ω

(
1
2
|∇U |2 − fU

)
, U ∈ H1

0 (Ω)
}

= −1
2

∫
Ω
|∇UΩ|2 = −1

2

∫
Ω
UΩf.

About the regularity of the state function, we are going to use the following classical result (see [13], [9]).

Lemma 3.4 Let Ω be convex, f ∈ Lploc(R
2) with p > 2, and UΩ be the solution of (22). Then UΩ ∈ W 1,∞(Ω) ∩

H2(Ω).

Remark 3.5 When f ≡ 1, the Dirichlet energy is linked to the so-called torsional rigidity T (Ω), with the formula
T (Ω) = −2E1(Ω).

First Dirichlet-eigenvalue of the Laplace operator

We define λ1(Ω) as the first eigenvalue for the Laplacian with Dirichlet’s boundary conditions on ∂Ω. It is well-
known that, if we define UΩ as a solution of the following minimization problem,

λ1(Ω) :=
∫

Ω
|∇UΩ|2 = min

{∫
Ω
|∇U |2, U ∈ H1

0 (Ω),
∫

Ω
U2 = 1

}
,

then UΩ is (up to the sign) the positive first eigenfunction of −∆ in Ω:

UΩ ∈ H1
0 (Ω), −∆UΩ = λ1(Ω)UΩ,

∫
Ω
U2

Ω = 1.

Again, like in Lemma 3.4, if Ω is convex then UΩ ∈ H2(Ω) ∩W 1,∞(Ω) and UΩ > 0 in Ω.

We are now in position to state some applications of Corollary 2.7:
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Example 3.6 (Penalization by perimeter) One can study

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω)) + P (Ω) / Ω convex, D1 ⊂ Ω ⊂ D2} (23)

where F : (0,+∞) × (−∞, 0) × (0,∞) → R is C1, f ∈ H1
loc(R2), D1, D2 are bounded open sets, Ef (Ω) is the

Dirichlet energy and λ1(Ω) is the first eigenvalue of −∆ defined as above.

Proposition 3.7 If Ω0 is an optimal set for the problem (23), then the free boundary ∂Ω0 ∩ (D2 \D1) is C1,1 (or
equivalently W 2,∞), that is to say ∂Ω0 ∩ (D2 \D1) has a bounded curvature.

The proof is a simple consequence of Section 3.3, which asserts that R(Ω) = F (|Ω|, Ef (Ω), λ1(Ω)) and C(Ω) =
P (Ω) satisfy the assumptions in Corollary 2.7 with p =∞.

Note that in Proposition 3.7 we could also add a dependence of F in the capacity of Ω or in any shape functional
which is shape differentiable and whose shape derivative can be represented as a function of L∞(∂Ω) when Ω is
convex.

Remark 3.8 The constraints D1 ⊂ Ω ⊂ D2 helps existence for the problem (23). Of course, if one can prove
existence of an optimal shape without these constraints (mainly, one need to prove that a minimizing sequence
remains bounded and does not converge to a segment), the result of Proposition 3.7 remains a fortiori true for the
whole boundary of the optimal shape, i.e. ∂Ω0 is C1,1.

Example 3.9 (Volume constraint and Perimeter penalization) We can also consider a similar problem with a
volume constraint:

min{J(Ω) := F (Ef (Ω), λ1(Ω)) + P (Ω) / Ω convex, and |Ω| = V0}, V0 ∈ (0,+∞).

In this case, the first optimality condition will be similar to the one for the problem (23) withF (Ef (Ω), λ1(Ω)) + µ|Ω|+ P (Ω),
where µ is a Lagrange multiplier for the constraint |Ω| = V0. Theorem 2.6 applies and one gets globally the same
regularity result (but global) as in Proposition 3.7 on any optimal shape.

Example 3.10 (Perimeter constraint) If one considers again a problem with a perimeter constraint,

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω)) / Ω convex, and P (Ω) = P0} (24)

where P0 ∈ (0,+∞), one needs to be more careful. In this case, the first optimality condition will be similar to the
one for the problem (23), with F (|Ω|, Ef (Ω), λ1(Ω)) + µP (Ω), where µ is a Lagrange multiplier for the constraint
P (Ω) = P0. Therefore if we are able to prove µ > 0 then we can apply the same strategy as in Theorem 2.4, and
we therefore get the same regularity result as in Proposition 3.7. However, if µ < 0, we refer to Example 4.9.

Example 3.11 In a more abstract context, one can consider

min{J(Ω)− α|Ω|+ P (Ω) / Ω convex ⊂ D}, (25)

where J is a shape differentiable functional, increasing with respect to the domain inclusion, D is an open set, and
α > 0 (if α = 0, the empty set is clearly solution of the problem). Again, we get that ∂Ω0∩D has a locally bounded
curvature. Indeed, the derivative of j(u) := J(Ωu) is a nonpositive measure, thanks to the monotonicity of J (see
[15]), and we apply Theorem 2.4 combined with the end of Remark 2.5.

3.3 Computation and estimate of first order shape derivatives

In this section we will prove the differentiability of the shape functionals involved in the examples of Section 3.2,
which are needed in Proposition 3.7.
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3.3.1 Volume and perimeter

About geometrical functionals, it is easy to write the area and the perimeter as functional of u, namely

a(u) := |Ωu| =
∫

T

1
2u2

dθ, p(u) := P (Ωu) =
∫

T

√
u2 + u′2

u2
dθ, u ∈W 1,∞(T) ∩ {u > 0}. (26)

Note that p(u) =
∫

TG(θ, u(θ), u′(θ))dθ withG(θ, u, q) =
√
u2+q2

u2 and one can easily check thatGqq = 1
(u2+q2)3/2

>

0.

3.3.2 Dirichlet Energy - Torsional rigidity

We focus our analysis around a convex open set Ω0 with parametrization u0 > 0. For ‖u − u0‖W 1,∞(T) small,
consider

ef : W 1,∞(T) ∩ {u > 0} → R,
u 7→ Ef (Ωu).

In order to study the differentiability of ef near u0, we use the classical framework of shape derivatives. As
usual, we need to work with an extension operator: the deformation ∂Ω0 to ∂Ωu allows to define the vector field
ξ(u) : ∂Ω0 → R2 such that ∂Ωu = (Id+ ξ(u))(∂Ω0). We will consider an extension to R2 of this transformation,
since we need to study the differentiability of u → Ûu := UΩu ◦ (Id + ξ(u)) ∈ H1

0 (Ω0), where Uu := UΩu (see
[10] for example).

If we consider a smooth extension operator ξ : W 1,∞(T)→W 1,∞(R2; R2), we have (Id+ ξ(u))(∂Ω0) = ∂Ωu

if

ξ(u)
(

1
u0(θ)

, θ

)
=
(

1
u(θ)

− 1
u0(θ)

)
eiθ,∀θ ∈ T, (27)

where ( 1
u0

(θ), θ) are polar coordinates (for simplicity, we will often write u0, u or ξ instead of u0(θ), u(θ) or
ξ(u)(r, θ)).

Remark 3.12 The transformation ξ(u) can be extended to R2 in different ways. The easiest way is to take

ξ(u)(r, θ) =
(

1
u(θ)

− 1
u0(θ)

)
eiθη(r, θ) in R2, (28)

where η ∈ C∞0 (R2), η = 0 in a neighborhood of the origin and η = 1 in a neighborhood of ∂Ω0.
This (polar) extension of ξ(u) is such that ξ ∈ C∞(W 1,∞(T);W 1,∞(R2; R2)) near u0, and is sufficient for the

results of this section. More work will be needed for the second order shape derivatives, see Section 4.3.2.
Let us point out that if ξ is C2 in a neighborhood of u0 and satisfies (27), then

∀v ∈W 1,∞(T) : ξ′(u0)(v) = − v

u2
0

eiθ, ξ′′(u0)(v, v) = 2
v2

u3
0

eiθ on ∂Ω0. (29)

Note also that the method used in the proof of Lemma 3.14, which is needed in the proof of Proposition 3.13, allows
to say that the method a priori fails if we consider an extension operator ξ : H1(T) → H1(R2; R2). This explains
our choice to work with v ∈ W 1,∞(T) rather than v ∈ H1(T), even though it introduces extra difficulties (like in
Proposition 3.1 and in the proof of Proposition 4.11). �

The main result of this section is the following.
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Proposition 3.13 Let Ω0 = Ωu0 convex, f ∈ Hk
loc(R2), k ∈ N∗ and ξ ∈ Ck(W 1,∞(T);W 1,.∞(R2; R2)) near u0.

We have:
i) ef is Ck near u0.
ii) If ξ satisfies (27), then for any v ∈W 1,∞(T) we have

e′f (u0)(v) = −
∫
∂Ω0

1
2
|∇U0|2(ξ′(u0)(v) · ν0)ds0 =

∫
T

1
2
|∇U0(xθ)|2

v(θ)
u3

0(θ)
dθ, (30)

whereU0 ∈ H2(Ω0) is the solution of (22) in Ω0, ν0 is the exterior unit normal vector on ∂Ω0, xθ = 1
u0(θ)(cos θ, sin θ) ∈

∂Ω0.
iii) Furthermore, e′f (u0) ∈ L∞(T).

The proof of this proposition is classical and uses the following lemma, which will be needed in the following
section.

Lemma 3.14 Let u0 ∈W 1,∞(T), u0 > 0, f ∈ Hk
loc(R2), k ∈ N∗. We have:

i) The map u ∈W 1,∞(T) 7→ Ûu ∈ H1(Ω0) is Ck near u0.

ii) For v ∈W 1,∞(T), set

Û ′0 := Û ′u(u0)(v), U ′0 := Û ′0 −∇U0 · ξ′(u0)(v). (31)

Then

U ′0 ∈ L2(Ω0), ∆U ′0 = 0 in D′(Ω0), (32)

U ′0 +∇U0 · ξ′(u0)(v) ∈ H1
0 (Ω0). (33)

iii) Furthermore, if u′′0 + u0 ≥ 0, then U ′0 ∈ H1(Ω0).

Remark 3.15 Here we are not interested in the differentiability of u 7→ Uu and the function U ′0 is directly defined
by (31). In fact, the map u 7→ Uu (with Uu extended by zero in R2) is differentiable in L2(R2) and its derivative
equals U ′0 in Ω0, see Théorème 5.3.1, [10] for example.

Proof of Lemma 3.14:

i) The map θ ∈ W 1,∞(R2; R2) 7→ U(Id+θ)(Ω0) ◦ (Id + θ) ∈ H1
0 (Ω0) is Ck in a neighborhood of 0, see for

example [10, Proposition 5.3.7]. We conclude by using the composition of this map with ξ.

ii) It is clear that U ′0 ∈ L2(Ω0) and that U ′0 + ∇U0 · ξ′(u0)(v) = Û ′0 ∈ H1
0 (Ω0). To prove ∆U ′0 = 0 we

consider the map S : W 1,∞(T) 7→ W 1,∞(R2; R2), S(u) = (Id + ξ(u))−1, which is well defined and Ck in
a neighborhood of u0. From S(u) ◦ (Id+ ξ(u)) = Id, it is easy to check that for v ∈W 1,∞(T) we have

S′(u0)((v) = −ξ′(u0)(v), S′′(u0)(v, v) = 2∇ξ′(u0)(v) · ξ′(u0)(v)− ξ′′(u0)(v, v). (34)

Let ϕ ∈ D(Ω0). From (22), for all u near u0 we have
∫

Ω0
Ûu ◦ S(u)∆ϕ − fϕ = 0. Differentiating this

equality on the direction v gives∫
Ω0

(
Û ′u ◦ S(u) +∇Ûu ◦ S(u) · S′(u0)(v)

)
∆ϕ = 0. (35)

Replacing u = u0 in (35) and using (34) gives∫
Ω0

(
Û ′0 −∇U0 · ξ′(u0)(v)

)
∆ϕ = 0,

which proves ii).
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iii) If u′′0 + u0 ≥ 0 then Ω0 is convex. From Lemma 3.4 we obtain U0 ∈ H2(Ω0), which implies U ′0 ∈ H1(Ω0).
�

Proof of Proposition 3.13:
i) The functional u 7→ ef (u) can be seen as ef (u) = Ef,Ω0 ◦ ξ(u), where Ef,Ω0 is a classical functional, introduced
to compute shape derivatives:

Ef,Ω0(θ) : W 1,∞(R2; R2) → R
θ 7→ Ef ((Id+ θ)(Ω0)).

(36)

As ξ is Ck near u0 and Ef,Ω0 is Ck near θ = 0 in W 1,∞(R2; R2), see [10, Corollaire 5.3.8]), the differentiability of
ef (u) follows.
ii) As we have ef (u) = −1

2

∫
Ωu
Ûu ◦ S(u)f and Ûu = 0 on ∂Ω0, from Corollaire 5.2.5, [10], we obtain

e′f (u)(v) = −1
2

∫
Ωu

(
Û ′u ◦ S(u) +∇Ûu ◦ S(u) · S′(u)(v)

)
f. (37)

Taking u = u0 in the last equality and using (34) gives

e′f (u0)(v) = −1
2

∫
Ω0

(Û ′0 −∇U0 · ξ′(u0)(v))f = −1
2

∫
Ω0

U ′0f = −1
2

∫
∂Ω0

|∇U0|2(ξ′(u0)(v) · ν0)ds0.

Finally, by changing the variable s0 =
√
u2
0+(u′0)2

u2
0

dθ, taking into account that ν0 =
(

1
u0
eiθ + u′0

u2
0
(ieiθ)

)
u2
0√

u2
0+u′20

,

and after using (29). we obtain (30).
iii) As k ∈ N∗ it follows f ∈ Lp(Ω0), for all p ∈ [1,∞). Then Lemma 3.4 gives U0 ∈ W 1,∞(Ω0), so e′f (u0) ∈
L∞(T). �

3.3.3 First eigenvalue of the Laplace operator with Dirichlet boundary conditions

We consider
l1 : {u ∈W 1,∞(T), u > 0} → R

u 7→ l1(u) := λ1(Ωu)

and we have the same result as in Proposition 3.13, see for example Théorème 5.7.1, [10], and (29), with

l′1(u0)(v) =
∫

T
|∇U0|2(xθ)

v(θ)
u3

0(θ)
dθ, ∀v ∈W 1,∞(T).

3.4 Application with the dual parametrization

Instead of using parametrization by the gauge function, one can also use the well-known parametrization by the
support function of a body, namely

∀θ ∈ T, hΩ(θ) := max{x · eiθ, x ∈ Ω}.

We get a characterization of the convexity in a similar way to (3):

Ω is convex ⇒ h′′Ω + hΩ ≥ 0.

Conversely, if h ∈W 1,∞(T) satisfies h′′+h ≥ 0, then one can find a unique (after a choice of an origin) open con-
vex set, denoted Ωh, whose support function is h (see [18] for example). This parametrization is the dual of the one
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with the gauge function. Indeed, the gauge function of Ω is the support function of the dual body of Ω and vice versa.

Therefore the optimization problem

min{J(Ω) / Ω ∈ Sad, Ω convex}, (38)

where Sad is a class of open planar sets, becomes find h0 ∈ F̃ad such that j̃(h0) = min{j̃(h), h ∈ F̃ad, h′′ + h ≥ 0}, where

j̃(h) = J(Ωh), and F̃ad = {h ∈W 1,∞(T) / Ωh ∈ Sad},
(39)

which is the same as (11).

Again, if the set of admissible functions can be written

F̃ad = {h ∈W 1,∞(T) / k1 ≤ h ≤ k2}, (40)

we can define T̃in = {θ ∈ T / k1(θ) < h(θ) < k2(θ)}, and then (̃∂Ω)in = {x ∈ ∂Ω s.t. ∃θ ∈ T̃in, x · eiθ = h(θ)},
i.e. the set of points of ∂Ω whose supporting plane is orthogonal to (cos(θ), sin(θ)) with θ ∈ T̃in.

As in Example 2.2, if Sad = {Ω / K1 ⊂ Ω ⊂ K2}, where K1 and K2 are two convex open sets, then (40) is

satisfied with k1, k2 the supports functions of K1,K2, and in that case (̃∂Ω)in = ∂Ω \ (∂K1 ∪ ∂K2).
Therefore one gets a dual version of Corollary 2.7 as follows.

Corollary 3.16 Let Ω0 = Ωh0 be an optimal shape for the problem (38) with J = R+ C, and assume that,

∀h ∈ F̃ad, R(Ωh) = r(h) and C(Ωh) =
∫

T
G(θ, h(θ), h′(θ))dθ

where r and G satisfy the assumptions of Theorem 2.4 for some p ∈ [1,∞]. Then

h0 ∈W 2,p(T̃in).

This implies in particular that ˜(∂Ω0)in is strictly convex.

Remark 3.17 This parametrization is especially interesting when one has to deal with the perimeter because in this
case P (Ωh) =

∫
T hdθ. An example of a function C(Ωh) satisfying the hypotheses of Corollary 3.16 is now the

opposite of the area, since

|Ωh| = 1
2

∫
T
(h2 − h′2)dθ.

However, it is not easy to work now with functionals coming from PDE. Indeed, it is well-known for example,
that the derivative of λ1 in terms of h is not more regular than a measure on T, see [11, 12]. We think that this can
be explained by the fact that some solutions of problems like (23) may not be strictly convex.

4 Optimization of concave non-local shape functionals

In this section, we prove the results of Section 2.2.2. The main proof relies on the analysis of the second order
shape derivatives. Next we apply these results to various energy functionals involving the Dirichlet energy or the
first eigenvalue of the Laplace-Dirichlet operator. Since the optimal shapes come with no a priori regularity except
the convexity condition, one needs some delicate computations to check the required assumptions. This leads to
rather sharp estimates on second derivatives which are interesting for themselves.
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4.1 Proof of Theorems 2.9 and 2.12

We first introduce the classical Sobolev semi-norms on T. For s ∈ R+, we set:

|u|2Hs(T) :=
∑
n∈Z
|n|2s|û(n)|2 where û(n) :=

∫
T
u(θ)e−inθ

dθ

2π
.

We also define Hs(T) := {u ∈ L2(T) such that |u|Hs(T) < +∞} and ‖u‖2Hs(T) := ‖u‖2L2(T) + |u|2Hs(T).

Proof of Theorem 2.9.

The main idea is to prove that for a deformation supported by a small set, the estimate (16) is a concavity estimate,
and so it violates the second order optimality condition. This relies of the following Poincaré-type inequality:

Lemma 4.1 Let s ∈ [0, 1) and ε ∈ (0, π). Then there exists a constant C = C(s) independant on ε such that,

∀u ∈ H1(T) such that Supp(u) ⊂ [0, ε], ‖u‖Hs(T) ≤ Cε1−s|u|H1(T).

Proof of Lemma 4.1. Let u ∈ C∞(T) with Supp(u) ⊂ [0, ε]. If we first assume that s = 0, then we have the
classical Poincaré inequality (with the optimal constant), proved using the fact that |u|2H1(T) =

∫
T u
′2, so

‖u‖L2(T) ≤
ε

π
|u|H1(T).

If one has now s ∈ (0, 1), one can proceed with an interpolation inequality, easily obtained by Hölder inequality:

|u|2Hs(T) =
∑
n∈Z
|n|2s|û(n)|2s|û(n)|2(1−s) ≤

(∑
n∈Z
|n|2|û(n)|2

)s(∑
n∈Z
|û(n)|2

)1−s

,

and so

|u|Hs(T) ≤ |u|sH1(T)‖u‖
1−s
L2(T)

≤ ε1−s

π1−s |u|H1(T).

�

Let K := Supp(u′′0 + u0). Assume that, for a connected component I of Tin, K ∩ I is infinite. Then, there
exists θ0 ∈ I an accumulation point of K ∩ I . Without loss of generality we can assume θ0 = 0 and also that there
exists a decreasing sequence (εn) tending to 0 such that K ∩ (0, εn) ⊂ I is infinite. Then, we follow an idea of
T. Lachand-Robert and M.A. Peletier as in [14] (see also [16]). We can always find 0 < εin < εn, i = 1, . . . , 4,
increasing with respect to i, such that Supp(u′′0 + u0) ∩ (εin, ε

i+1
n ) 6= ∅, i = 1, 3. We consider vn,i ∈ W 1,∞(T)

solving
v′′n,i + vn,i = 1(εin,ε

i+1
n )(u

′′
0 + u0), vn,i = 0 in (0, εn)c, i = 1, . . . , 3.

Such vn,i exist since we avoid the spectrum of the Laplace operator with Dirichlet boundary conditions. Next, we
look for λn,i, i = 1, 3 such that vn =

∑
i=1,3

λn,ivn,i satisfies

v′n(0+) = v′n(ε−n ) = 0.

The above derivatives exist since vn,i are regular near 0 and εn in (0, εn). We can always find such λn,i so as they
satisfy two linear equations. It implies that v′′n does not have any Dirac mass at 0 and εn. It even implies that the
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support of vn is included in [ε1
n, ε

4
n]. In particular, v′′n + vn = ϕ(u′′0 + u0) where ϕ is bounded and with support in

[ε1
n, ε

4
n]. As Supp(u0) ∩ (εin, ε

i+1
n ) 6= ∅, we also have vn 6= 0.

Since Supp(vn) ⊂ Tin and v′′n + vn = ϕ(u′′0 + u0), it follows that u0 + tvn is admissible for |t| small enough
(and n fixed). Consequently, since j(u0 + tvn) ≥ j(u0) for |t| small, we have j′(u0)(v) = 0 and then by using the
assumption (16) and Lemma 4.1, we get

0 ≤ j′′(u0)(vn, vn) ≤ −α|vn|2H1(T) + γ|vn|H1(T)‖vn‖Hs(T) + β‖vn‖2Hs(T) (41)

≤ (−α+ Cγε1−s
n + C2β(εn)2(1−s))|vn|2H1(T). (42)

As εn tends to 0, inequality (41) becomes impossible and proves that Supp(u′′0 + u0) has no accumulation points in
Tin. It follows that u′′0 + u0 is a finite sum of positive Dirac masses. �

Remark 4.2 More precisely, we can get an estimate of the number of corners in each connected component I of
Tin:

#{Supp(u′′0 + u0) ∩ I} ≤ 2|I|
A

+ 2 where A1−s :=
−γ +

√
γ2 + 4αβ

2βC

(C = 1
π1−s appears in Lemma 4.1). Indeed, let us consider three consecutive Dirac masses θ1, θ2, θ3 in I . Then

• if β > 0, γ ≥ 0, we have

(θ3 − θ1)1−s ≥ −γ +
√
γ2 + 4αβ

2βC
. (43)

• if β = γ = 0, then we have a contradiction, that is to say u′′0 + u0 is the some of at most two Dirac masses I .

To prove this estimate, we define v ∈ H1
0 (θ1, θ3) satisfying v′′ + v = δθ2 in (θ1, θ3), v = 0 in T \ (θ1, θ3). In T,

the measure v′′ + v is supported in {θ1, θ2, θ3}, and since these points are in Supp(u′′0 + u0), and [θ1, θ3] ⊂ Tin,
u0 + tv is admissible for small |t|. The second order optimality condition and then the assumption (16) together
with Lemma 4.1 lead to

0 ≤ j′′(u0)(v, v) ≤ −α|v|2H1(T) + γ|v|H1(T)‖v‖Hs(T) + β‖v‖2Hs(T)

≤ (−α+ CγX + C2βX2)|v|2H1(T),

where X = (θ3 − θ1)1−s, which implies (43) when β is positive, and gives a contradiction if β = γ = 0.

Remark 4.3 When one uses the parametrization of convex sets by the gauge function u, Ωu is a polygon if and only
if u′′ + u is a sum of Dirac masses. With the support function (see Section 3.4), one has the same characterization.
Therefore, the conclusion is the same if we work with the optimization problem (39). Estimate (43) remains valid.
However, θi is no longer the polar angle of a corner of the shape, but is the angle of the normal vectors to the
successive segments of the polygonal boundary of the shape. �

As in Section 2.2.1, one can also handle problem with the equality constraint.
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Proof of Theorem 2.12.

We now need an abstract result for second order optimality conditions. Adapting [14, Proposition 3.3] similarly to
the first order condition given in Proposition 3.1 (this explains the assumption j′(u0) ∈ (C0(T))′), we get that there
exist ζ0 ∈W 1,∞(T) nonnegative, µ ∈ Rd such that{

ζ0 = 0 on Supp(u′′0 + u0) and

∀ v ∈W 1,∞(Tin), j′(u0)v + µ ·m′(u0)v = 〈ζ0 + ζ ′′0 , v〉(W 1,∞)′×W 1,∞ .
(44)

Furthermore, for all v ∈ H1(Tin) such that ∃λ ∈ R,with v′′+v ≥ λ(u′′0 +u0), and 〈ζ0 +ζ ′′0 , v〉−µ·m′(u0)(v) = 0,

j′′(u0)(v, v) + µ ·m′′(u0)(v, v) ≥ 0. (45)

Then we proceed as in the proof of [14, Theorem 2.1]. Compared to the first step of the proof of Theorem 2.9, we
add one degree of freedom introducing 4 functions vn,i on a partition of (0, εn), and we look for λn,i, i = 1 . . . 4
such that vn =

∑
i=1,4 λn,ivn,i satisfies

v′n(0+) = v′n(ε−n ) = µ ·m′(u0)vn = 0.

Such a choice of λn,i is always possible as λn,i satisfy three linear equations. Moreover, vn is not zero and using
(44), we get

∫
T vn(ζ0 + ζ ′′0 ) = 0, which implies

0 = j′(u0)(vn) =
∫

T
vn(ζ0 + ζ ′′0 ) = µ ·m′(u0)(vn).

As v′′n + vn ≥ λ(u′′0 + u0) for λ � 0, it follows that vn is eligible for the second order necessary condition (45).
Then, it follows

0 ≤ j′′(u0)(vn, vn) + µ ·m′′(u0)(vn, vn) ≤ −α|vn|2H1(T) + γ|vn|H1(T)‖vn‖Hs(T) + (β + ‖β′µ‖)‖vn‖2Hs(T)

≤ (−α+ Cγε1−s
n + C2(β + ‖β′µ‖)(εn)2(1−s))|vn|2H1(T)

As n tends to∞, the inequality 0 ≤ j′′(u0)(vn, vn) + µ ·m′′(u0)(vn, vn) becomes impossible and this concludes
the proof. �

Remark 4.4 An estimate similar to the one in Remark 4.2 is not straightforward anymore, since the Lagrange
multiplier µ is unknown.

4.2 Examples

We analyze the same examples as in Section 3.2, with −P instead of P :

Example 4.5 (Negative perimeter penalization) One can study

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω))− P (Ω) / Ω convex, D1 ⊂ Ω ⊂ D2} (46)

where F : (0,+∞) × (−∞, 0) × (0,+∞) → R is C2, f ∈ H2(R2), and D1, D2 are bounded open sets. We can
prove the following.

Proposition 4.6 If Ω0 is an optimal set for the problem (46), then each connected component of the free boundary
∂Ω0 \ (∂D1 ∪ ∂D2) is polygonal.
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Proof. The proof is a direct consequence of Corollary 2.13 and of the estimates given in Section 4.3.2. Indeed,
Proposition 4.11 for Ef (Ω), the similar result for λ1 (See Section 4.3.3) and Proposition 4.10 for the volume, imply

|r′′(0)| ≤ C‖v‖2
H1/2+ε(T)

,

where r(t) = F (|Ωt|, Ef (Ωt), λ1(Ωt)), Ωt = Ωu0+tv and ε ∈ (0, 1
2). Next, the estimate for the perimeter in

Proposition 4.10 provides the concavity condition. �

Remark 4.7 As in Remark 3.8, if we consider problems of type (46) where the constraint D1 ⊂ Ω ⊂ D2 can be
dropped, then the solution is a polygon.

Example 4.8 (Volume constraint and negative perimeter penalization) We can also consider a similar problem
with a volume constraint:

min{J(Ω) := F (Ef (Ω), λ1(Ω))− P (Ω) / Ω convex, and |Ω| = V0} (47)

where V0 ∈ (0,+∞). Again, Corollary 2.13 applies and leads to the fact that any optimal shape of (47) is a polygon.

Example 4.9 [Perimeter constraint] We consider again a problem with a perimeter constraint, as in Example 3.10

min{J(Ω) := F (|Ω|, Ef (Ω), λ1(Ω)) / Ω convex, and P (Ω) = P0} (48)

where P0 ∈ (0,+∞). The optimality conditions are written for F (|Ω|, Ef (Ω), λ1(Ω)) + µP (Ω), where µ is a
Lagrange multiplier for the constraint P (Ω) = P0, so if we prove that µ < 0, then the strategy of this section
applies, and we get that any optimal shape is polygonal.

4.3 Computations and estimates of second order shape derivatives

4.3.1 Volume and perimeter

Let a(u), p(u) be the area and perimeter functionals, see (26).

Proposition 4.10 Let 0 < u ∈ W 1,∞(T). Then a and p are twice differentiable around u in W 1,∞(T) and there
exists some real numbers β1, β2, β3, γ and α > 0 (depending on u) such that, ∀v ∈W 1,∞(T) |a

′′(u)(v, v)| ≤ β1‖v‖2L2(T)

α|v|2H1(T) − γ|v|H1(T)‖v‖L2(T) − β2‖v‖2L2(T) ≤ p
′′(u)(v, v) ≤ β3‖v‖2H1(T)

(49)

Proof. This is done by easy computations, using formulas of Section 3.3.1. �

4.3.2 The Dirichlet energy - Torsional rigidity

We now analyze the second order derivative of ef (u) = Ef (Ωu) introduced in Section 3.3. The main result is the
following.

Proposition 4.11 Assume Ω0 := Ωu0 , u0 > 0, u′′0 + u0 ≥ 0, f ∈ H2
loc(R2). Then ef is C2 in a neighborhood of u0

(in W 1,∞(T)). Furthermore, there exist β1, β2 positive such that, for all v ∈W 1,∞(T),

|e′f (u0)v| ≤ β1‖v‖L2(T), (50)

|e′′f (u0)(v, v)| ≤ β2(‖v‖2
H1/2(T)

+ ‖v‖2L∞(T)). (51)
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The differentiability of ef and the estimate (50) follow easily from Proposition 3.13. The estimate (51) is easy
to prove when working with smooth sets and one can then even drop the L∞ term. However, this result is more
difficult for a general convex set and the rest of this section is devoted to its proof.

Let v be given as in Proposition 4.11. To prove the estimate (51), it is appropriate to consider a transformation ξ
such that

ξ ∈ C2((−η, η),W 1,∞(R2,R2)), η ∈ (0, 1), ξ(t) =
(

1
u0 + tv

− 1
u0

)
eiθ on ∂Ω0. (52)

Then, we will differentiate twice t ∈ (−η, η) → e(t) = E(Ωu0+tv). We will use the following notation and
identities:

Ωt := Ωu0+tv, Ut := UΩu0+tv , Ût := Ut ◦ (I + ξ(t)), e(t) := E(Ωu0+tv). (53)

Note that e(t) = ef (u0 + tv) = Ef,Ω0(ξ(t)) and we have

e′(0) = e′f (u0)(v) = E ′f,Ω0
(0)(ξ′(0)), (54)

e′′(0) = e′′f (u0)(v, v) = E ′′f,Ω0
(0)(ξ′(0), ξ′(0)) + E ′f,Ω0

(0)(ξ′′(0)). (55)

In the smooth case, e′′(0) can be written in terms of boundary integrals, which involve in particular the boundary
trace of D2U0 and ∇U ′0. These terms are not well defined in the non-smooth setting (even in the case Ω0 convex).
To overcome this difficulty, our strategy will be to write all non-smooth terms of e′′(0) as “interior” integrals in Ω0.

Estimate of e′′(0): Note that we have proven in Section 3.3 that ef is C2 if f ∈ H2
loc(R2)) (so, e is C2). We remind

the following classical formulation of e′′(0)

Lemma 4.12 Let f ∈ H2
loc(R2) and ξ ∈ C2(R;W 1,∞(R2; R2)) near 0. Then we have

e′′(0) = −1
2

(∫
Ω0

fU ′′0 +
∫
∂Ω0

fU ′0(ξ′(0) · ν0)
)
, (56)

where Û ′′0 := Û ′′u (u0)(v, v) and U ′′0 is defined by

U ′′0 := Û ′′0 −
(
2∇U ′0 · ξ′(0) + ξ′(0) ·D2U0 · ξ′(0) +∇U0 · ξ′′(0)

)
in Ω0, (57)

and satisfies
U ′′0 ∈ L2(Ω0), ∆U ′′0 = 0 in D′(Ω0). (58)

Proof. Differentiating (37) at u = u0 (see Corollaire 5.2.5, [10]) and then using (34) gives

e′′(0) = −1
2

∫
Ω0

(
Û ′′0 − 2∇Û ′0 · ξ′(0) + ξ′(0) ·D2U0 · ξ′(0) +∇Û0 · (2∇ξ′(0) · ξ′(0)− ξ′′(0))

)
f,

−1
2

∫
∂Ω0

U ′0f(ξ′(0) · ν0). (59)

After replacing Û ′0 = U ′0 −∇U0 · ξ′(0), (59) gives (56).
Clearly U ′′0 ∈ L2(Ω0). To prove that ∆U ′′0 = 0 we differentiate (35) at u = u0 and use (34). Then we obtain∫

Ω0

(
Û ′′0 − 2∇Û ′0 · ξ′(0) + ξ′(0) ·D2U0 · ξ′(0) +∇U0 · (2∇ξ′(0) · ξ′(0)− ξ′′(0))

)
∆ϕ = 0.

Replacing Û ′0 as given by (31) gives
∫

Ω0
U ′′0 ∆ϕ = 0, which proves (58). �
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Proof of Proposition 4.11.

We will often write ξ, ξ′, ξ′′ for ξ(0), ξ′(0), ξ′′(0). Let us rewrite (56) in the form e′′(0) = 1
2(I1 + I2). The second

term I2 is easy to estimate: from (31) we have

I2 := −
∫
∂Ω0

fU ′0(ξ′ · ν0) =
∫
∂Ω0

f∂ν0U0(ξ′ · ν0)2 ≤ C‖ξ′‖2L2(∂Ω), C = C(‖f‖L∞(Ω0), ‖U0‖W 1,∞(Ω0)).(60)

The first term I1 =
∫

Ω0
U ′′0 ∆U0 requires more investigation. To go around the non regularity of Ω0, we introduce

U0 = U1 − U2, Ui ∈ H1
0 (Ω0),−∆U1 = f+, −∆U2 = f−, Ui > 0 on Ω0.

Recall that Ui ∈ W 1,∞(Ω0) ∩ H2(Ω0). We will compute on the level sets Ωi
ε := {x ∈ Ω0, Ui(x) > ε} (only on

one of them if f+ ≡ 0 or f− ≡ 0). Indeed, by Sard’s theorem, the Ωi
ε are at least C1 for a.e. ε. By strict positivity

of Ui, limε→0 1Ωiε
= 1Ω0 , so that

I1 = lim
ε→0

∫
Ω1
ε

U ′′0 ∆U1 −
∫

Ω2
ε

U ′′0 ∆U2.

Note that U ′0, U
′′
0 ∈ C∞loc(Ω0) and as f ∈ H2

loc(R2) we have U0 ∈ H4
loc(Ω0). We obtain∫

Ωiε

U ′′0 ∆Ui =
∫
∂Ωiε

U ′′0 ∂νεUi =
∫
∂Ωε

Û ′′0 ∂νεUi − 2(∇U ′0 · ξ′)∂νεUi − (ξ′ ·D2U0 · ξ′)∂νεUi − (∇U0 · ξ′′)∂νεUi

=: Iε1 + Iε2 + Iε3 + Iε4 . (61)

For the term Iε1 , we have

Iε1 =
∫

Ωiε

Û ′′0 ∆Ui +∇Û ′′0 · ∇Ui
ε→0−−−→

∫
Ω0

Û ′′0 ∆Ui +∇Û ′′0 · ∇Ui =
∫
∂Ω0

Û ′′0 ∂ν0Ui = 0. (62)

To deal with Iε2 and Iε3 , we will need the following generalized formula of integration by parts.

Lemma 4.13 Let Ω be a C1 open set, U ∈W 1,∞
0 (Ω)∩H2(Ω), V ∈ H1(Ω)∩{∆V ∈ L2(Ω0}, g ∈W 1,∞(Ω; R2).

Then
J :=

∫
∂Ω
∂νU(g · ∇V ) =

∫
Ω
∇(∇U · g) · ∇V + (∇U · g)∆V −∇(∇⊥U · g) · ∇⊥V, (63)

where the operator ⊥ acts on a vector and is defined by ⊥(a1, a2) = (−a2, a1). As a consequence

|J | ≤ ‖∇U‖L∞(Ω)‖g‖L2(Ω)‖∆V ‖L2(Ω) + 2
{
‖V ‖H1(Ω)

[
‖U‖H2(Ω)‖g‖L∞(Ω) + ‖∇U‖L∞(Ω)‖∇g‖L2(Ω)

]
.
}

(64)

Proof. If ν is the exterior normal unit vector to ∂Ω and τ =⊥ν the unit tangent vector, then, for ϕ ∈ H1(Ω) and
a = (a1, a2), using that∇U · τ = 0 on ∂Ω0, we have

⊥τ = −ν, (a · ν)∂νU = a · ∇U, (a · τ)∂νU = a · ∇⊥U, τ · ∇ϕ = −ν · ∇⊥ϕ.

Then we obtain∫
∂Ω
∂νU(g · ∇V ) =

∫
∂Ω

(∇U · ν)(g · ν)(∇V · ν) + (∇U · ν)(g · τ)(∇V · τ)

=
∫
∂Ω

(
(∇U · g)∇V − (∇⊥U · g)∇⊥V

)
· ν (apply divergence theorem to both terms)

=
∫

Ω
∇ · ((∇U · g)∇V )−∇ · ((∇⊥U · g)∇⊥V ),

22



which proves (63) because∇ · ∇⊥ = 0. The estimate (64) follows. �

End of the proof of Lemma 4.13.

We apply Lemma 4.13 on Ω = Ωi
ε to estimate Iε2 , I

ε
3 in (61). For Iε2, we choose U = Ui − ε, V = U ′0, g = ξ′(0)

(recall that ∆U ′0 = 0) and for Iε3 , we choose U = Ui − ε, V = Vj = ∂jUi, g = gj = ξ′j(0)ξ′(0), j = 1, 2:
here −∆Vj = ∂jf

+ or ∂jf−. Next, we apply the estimate (64) to each of these choices and we are obviously led
to estimates independent of ε. For Iε4 , we make a direct easy estimate. Together also with (60) and using Young
inequality we obtain:

|e′′(0)| ≤ C(‖∇U ′0‖2L2(Ω0) + ‖∇ξ′‖2L2(Ω0) + ‖ξ′‖2L∞(Ω0) + ‖ξ′‖2L2(∂Ω0) + ‖ξ′′‖L1(∂Ω0)), (65)

where C = C(‖f‖L∞(Ω0)∩H1(Ω0), ‖Ui‖W 1,∞(Ω0), ‖Ui‖H2(Ω0), i = 0, 1, 2). (66)

Now, let us write the estimate (65) in terms of v. First note that if α, β ∈ H1/2(∂Ω0) ∩ L∞(∂Ω) then αβ ∈
H1/2(∂Ω0) ∩ L∞(∂Ω0) and

‖αβ‖H1/2(∂Ω0)∩L∞(∂Ω0) ≤ C‖α‖H1/2(∂Ω0)∩L∞(∂Ω0)‖β‖H1/2(∂Ω0)∩L∞(∂Ω0).

(using the easy fact thatH1(Ω0)∩L∞(Ω0) is an algebra, and that theH1/2(∂Ω0)-norm is equivalent to theH1(Ω0)-
norm of the harmonic extension in Ω0). Also, we point out that the transformation ψ = ψ(r, θ) := r

u0(θ)e
iθ is

bi-Lipschitz near T and ψ(T) = ∂Ω0. Then γ ∈ H1/2(∂Ω) if and only if γ ◦ ψ ∈ H1/2(T), and their H1/2-norms
are equivalent.

Let us remind that, according to the choice of ξ in (52), we have ξ′(0) = − v
u2
0
eiθ, ξ′′(0) = 2 v

2

u3
0

on ∂Ω0. Then we
obtain, with the same dependence of the various constants C as in (66)

‖∇U ′0‖2L2(Ω0) ≤ C|ξ
′ · ∇U0|2H1/2(∂Ω)

≤ C‖ξ′‖2
H1/2(∂Ω)∩L∞(Ω0)

≤ C‖v‖2
H1/2(T)∩L∞(T)

, (67)

‖ξ′‖L∞(∂Ω0) ≤ C‖v‖L∞(T), ‖ξ′‖2L2(∂Ω0) + ‖ξ′′‖L1(∂Ω0) ≤ C‖v‖2L2(T). (68)

All these estimates are valid for all choices of ξ as in (52). Let

W := {w ∈W 1,∞(Ω0), w|∂Ω0
= − v

u2
0

eiθ }.

Given w ∈ W , let us choose ξ(t) := ζ(t) + t(w − ζ ′(0)), where ζ is the W 1,∞-extension as given in (28), namely

ζ(t)
(

1
u0(θ)

, θ

)
=
(

1
u0(θ) + tv(θ)

− 1
u0(θ)

)
eiθη(r, θ), η ∈ C∞0 (R2),

with η = 0 (resp. η = 1) in a neighborhood of the origin (resp. of ∂Ω0). Then, ξ is as in (52) and ξ′(0) = w.
Therefore, the estimate (65) together with (67), (68) leads to

∀w ∈ W, |e′′(0)| ≤ C
(
‖∇w‖2L2(Ω0) + ‖v‖2

H1/2(T)∩L∞(T)
+ ‖w‖2L∞(Ω0)

)
. (69)

Let us introduce

w0 ∈ H1(Ω0), ∆w0 = 0 on Ω0, (w0)|∂Ω0
= − v

u2
0

eiθ [or w0 − ζ ′(0) ∈ H1
0 (Ω0)] .
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Let now δn be a sequence of C∞0 (Ω0)-functions converging to w0 − ζ ′(0) in H1
0 (Ω0) and let wn := inf{δn +

ζ ′(0), ‖w0‖L∞(Ω0)}. Then, wn ∈ W and converges in H1(Ω0) to w0. Applying (69) with wn in place of w and
passing to the limit yields:

|e′′(0)| ≤ C
(
‖∇w0‖2L2(Ω0) + ‖v‖2

H1/2(T)∩L∞(T)
+ ‖w0‖2L∞(Ω0)

)
. (70)

But, since w0 is harmonic,

‖∇w0‖L2(Ω0) ≤ ‖w0‖H1/2(∂Ω0) ≤ C‖v‖H1/2(T), ‖w0‖L∞(Ω0) ≤ ‖w0‖L∞(∂Ω0) ≤ C‖v‖L∞(T).

Finally, the estimate (70) leads to
|e′′(0)| ≤ C‖v‖2

H1/2(T)∩L∞(T)
.

�

4.3.3 First eigenvalue of the Laplace operator with Dirichlet boundary conditions

The estimate of Proposition 4.11 also holds for λ1(Ωu), the first Laplace eigenvalue (see Section 3.3), namely

|l′′1(0)| ≤ C‖v‖2H1/2(T) ∩ L∞(T), (71)

where l1(t) = λ1(Ωu0+tv). As the computations are very similar, we will only sketch the proof.

Proof of (71).

As for ef , for v ∈ W 1,∞(T) fixed and |t| small we consider l1(t) := λ1(Ωt) and Ut, the first eigenvalue and the
corresponding eigenfunction of −∆ in Ωt := Ωu0+tv. As in Lemma 4.12 we can show that

l′′1(0) = −
∫

Ω0

U ′0∆U ′0 + U0∆U ′′0 =: I1 + I2. (72)

Here U ′0 and U ′′0 satisfy

−∆U ′0 = l1U
′
0 + l′1U0 in Ω0, U ′0 = −ξ′(0) · ∇U0 on ∂Ω0,

∫
Ω0

U0U
′
0 = 0,

−∆U ′′0 = l1U
′′
0 + 2l′1U

′
0 + l′′1U0 in Ω0,

∫
Ω0

|U ′0|2 + U0U
′′
0 = 0,

U ′′0 = Û ′′0 −
(
2ξ′(0) · ∇U ′0 + ξ′(0) ·D2U0 · ξ′(0) + ξ′′(0) · ∇U0

)
in Ω0,

where l1 = l1(0), l′1 = l′1(0), l′′1 = l′′1(0). Then considering Ωε = {x ∈ Ω0, U0 > ε} as in the proof of Proposition
4.11 (note that U0 > 0 on Ω0 here), we have :

I1 =
∫

Ω0

U ′0(l1U ′0 + l′1U0) = l1

∫
Ω0

|U ′0|2, (73)

I2 = − lim
ε→0

∫
Ωε

U0∆U ′′0 = − lim
ε→0

∫
Ωε

ε∆U ′′0 + (U0 − ε)∆U ′′0 = − lim
ε→0

∫
Ωε

(U0 − ε)∆U ′′0

= lim
ε→0

∫
Ωε

U ′′0 (−∆U0)− lim
ε→0

∫
∂Ωε

(U0 − ε)∂νεU ′′0 − U ′′0 ∂νεU0

= −l1
∫

Ω0

|U ′0|2 + lim
ε→0

∫
∂Ωε

U ′′0 ∂νεU0. (74)
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Combining (72) with the last two equalities gives

l′′1(0) = lim
ε→0

∫
∂Ωε

U ′′0 ∂νεU0.

Then we proceed exactly as in Proposition 4.11, and obtain for l′′1(0) an estimate exactly similar to (65).
Next, we prove that ‖∇U ′0‖L2(Ω0) ≤ C‖ξ′(0)‖H1(Ω0). As U ′0 = Û ′0 − ξ′(0) · ∇U0 it is enough to prove

‖∇Û ′0‖L2(Ω0) ≤ C‖ξ′(0)‖H1(Ω0). One can verify that Û ′0 satisfies

Û ′0 ∈ H1
0 (Ω0) ∩H2(Ω0), ∆Û ′0 + l1Û

′
0 = 2trace([∇ξ′] · [D2U0])− l′1U0,

∫
Ω0

Û ′0U0 = 0.

Using the convexity of Ω0 and Fredholm alternative theorem, we can prove that the operator

V ∈ (H1
0 (Ω0) ∩H2(Ω0))\span{U0} 7→ ∆V + l1V ∈ L2(Ω0) ∩ {h,

∫
Ω0

hU0 = 0},

defines an isomorphism (see for example [8]), which together with the formula for l′1(0) provides the required
estimate for Û ′0. Therefore, as for e′′(0), for all ξ as in (52), we have

|l′′1(0)| ≤ C
(
‖∇ξ′(0)‖2L2(Ω0) + ‖v‖2

H1/2(T)∩L∞(T)
+ ‖ξ′(0)‖L∞(Ω0)

)
.

Then we complete the proof as in Proposition 4.11. �

5 Remarks and perspectives

5.1 Localization of our two approaches

As explained in the introduction, the approaches leading to our two families of results are very ”local” with respect
to the boundary of the optimal shape. Indeed, each proof uses test functions v ∈ W 1,∞ whose support may be as
small as we want and only covers the portion of the boundary that we want to analyze. To show how this can be
exploited, we give now -without proof- , an example of a result which can be reached by the same two methods
when applied locally.

Let us consider the following optimization problem where G : (θ, u, q) ∈ T × R × R → R is assumed to be of
class C2 and a, b ∈ (0,∞):

u0 ∈W 1,∞(T), j(u0) = min{j(u), u′′ + u ≥ 0, a ≤ u ≤ b},

where j(u) =
∫

T
G
(
θ, u(θ), u′(θ)

)
dθ.

(75)

We define Tin as in (13) and we introduce the partition Tin = T+ ∪ T0 ∪ T− where
T+ := {θ ∈ Tin ; G̃qq(θ) ∈ (0,∞)}, (recall G̃qq(θ) =

∫ 1
0 Gqq (θ, u0(θ), tu′0(θ+) + (1− t)u′0(θ−)) dt,

T− := {θ ∈ Tin, [Gqq (θ, u0(θ), u′0(θ−)) , Gqq (θ, u0(θ), u′0(θ+))] ⊂ (−∞, 0)},
T0 := Tin \ (T+ ∪ T−).
Then
(i) T+ is open and u′′0 ∈ L∞loc(T+), so that u0 ∈W 2,∞

loc (T+),
(ii) There is no accumulation point of Supp(u′′0 + u0) in the open set T−; in other words, [θ ∈ T− → ∂Ωu0(θ)] is
locally polygonal.
The situation on T0 requires a complementary study specific to each functional.
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5.2 Very singular optimal shapes

In this paper, we gave some sufficient conditions on the shape functional so that an optimal shape be smooth
or polygonal. But there exist convex sets which are not of this type, and in a certain sense have “intermediate
regularity”. Namely, there are convex sets which are singular in the sense that they do not have corners (they are
C1), but their curvature is zero almost everywhere. As an example, one may consider any convex set such that
u′′ + u is a Radon measure, without mass, but singular with respect the Lebesgue measure.

Let us mention a shape optimization problem whose solution is neither regular nor polygonal (see [17] for an
analysis of this problem). Let Ω0 be a convex set, V0 = |Ω0|, P0 = P (Ω0) andD = (Ω0)T = {x ∈ R2, d(x,Ω0) <
T}. Then Theorem 8 in [17] states that:

J(Ω0) = min{J(Ω) / Ω ⊂ D convex such that P (Ω) = P0, |Ω| = V0}, (76)

where J is the distance functional:
J(Ω) :=

∫
D
d(x,Ω)dx.

Since Ω is any convex set, one cannot expect any geometrical property for a minimizer of (76) without extra condi-
tions on D, V0 and P0. Remark also that the box D = (Ω0)T is C1,1 here.

5.3 Problem without perimeter

An interesting problem, which has not been analyzed in this paper, is the following (we use the notation of Section
4.3):

max{Ef (Ω), |Ω| = V0,Ω convex ⊂ D}. (77)

It is easy to prove the existence of an optimal shape Ω0. In this situation, we expect the term Ef (Ω) to be leading
over |Ω| (whereas the perimeter was the stronger term in the examples solved in this paper). So we are naturally led
to the following question : do there exist α > 0, β, γ ≥ 0 such that

∀v ∈W 1,∞(T), e′′(0) ≥ α|v|2
H1/2 − γ|v|H1/2‖v‖L2 − β‖v‖2L2 ? (78)

A consequence of such an estimate, would be that any solution of (77) is locally polygonal inside D (the same
strategy as in the proof of Theorem 2.9 would provide the result, we just need to adapt Lemma 4.1 to H1/2-norms).
It is easy to prove that (78) holds if v is supported by a subset of T which parametrizes a C2 strictly convex part
of ∂Ω0. Therefore, with the same proof as for Theorem 2.9, we are in position to deduce that ∂Ω0 ∩D is nowhere
C2 with a positive curvature. But it is not clear whether estimate (78) remains valid in a more general situation and,
consequently, whether ∂Ω0 ∩D is a polygon or not.
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