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Wentzell eigenvalue problem

—Au = 0 in €
—BA;u+0pu = Au on 0N)

where 8 € R;.
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Wentzell eigenvalue problem

—Au = 0 in €
—BA;u+0pu = Au on 0N)

where 8 € R;.

It has a discrete sprectrum consisting in a sequence

)\075(9) =0< )\1”3(9) < )\275(9) .o — 00
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Wentzell eigenvalue problem

—Au = 0 in €
—BA;u+0pu = Au on 0N)
where 8 € R;.

It has a discrete sprectrum consisting in a sequence
20,8(2) =0 < A18(2) < X2 p(Q) ... = F00
Remark : it is the spectrum of
—BA- +D

where D is the Dirichlet-to-Neumann operator on 0f2.
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Wentzell eigenvalue problem

—Au = 0 in €
—BA;u+0pu = Au on 0N)

where 8 € R;.

It has a discrete sprectrum consisting in a sequence
20,8(2) =0 < A18(2) < X2 p(Q) ... = F00
Remark : it is the spectrum of
—BA; +D

where D is the Dirichlet-to-Neumann operator on 0f2.

Question : Does the ball maximize \1 3 among smooth open sets of
given volume 7
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Variational formulation

Ag(u,v) = / Vu.Vv dx+ V., uV,v do, B(u,v) = / uv,
Q oQ o0

As(v,v)

—_ v€H3/2Q, v:O}
B(v,v) ©) o0

AL(R) = min {
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Outline

@ Extremal cases 3 =0 and 3 = o0
© Generalization of Brock's bound

© First order analysis

@ Second order analysis
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J. Lamboley (University Paris-Dauphine) Wentzell eigenvalues



Extremal cases 8 = 0 and 8 = oo

Outline

@ Extremal cases 3 =0 and 3 = o0
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Extremal cases 8 = 0 and 8 = oo

Steklov eigenvalue problem, 5 =0
Au = 0 in Q
Opu = Ntu on 0N

It has a discrete sprectrum consisting in a sequence

ASH(Q) =0 < ATHQ) < ASHQ)... — 400

Remark :

A (aQ) = o IATH(Q).
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Extremal cases 8 = 0 and 8 = oo

Bound for )\ft, = 0, Dimension 2

o Weinstock (1954); Q simply connected

@< e (<)

@ Hersch-Payne (1968) ; Q simply connected

1,1 PO
M@ @ T 7

@ Hersch-Payne-Schiffer (1975); Q simply connected

@@ < e
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Extremal cases 8 = 0 and 8 = oo

Bound for )\ft, = 0, Dimension d

e Brock (2001) : © any smooth set in R? such that [, x=0:

d
Q
S =)

A < 2 <<Wd>
fag‘x‘ €|
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Extremal cases 8 = 0 and 8 = oo

Laplace-Beltrami eigenvalue problem, § = 400

—A;u=Au on 09

AB(0Q) =0 < AEB(0Q) < ASB(6Q)... — 40
Remarks :
o A\B(adQ) = a2A\EB(9Q).

o MB(Q) = limg_o0 22412
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Extremal cases 8 = 0 and 8 = oo

Bound for )\fB, £ = +o00, 2-dimensional surface

@ Hersch (1970) : If Q C R3 smooth and bounded is such that OQ is
diffeomorphic to the 2-dimensional sphere S = 9B, then
1 1 1 3

> —P(Q).
NBoR) T aBon) T o) < e W

AP (0Q)P(Q) < ATP(S%)P(B).
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Extremal cases 8 = 0 and 8 = oo

Bound for )\fB, £ = +o00, 2-dimensional surface

@ Hersch (1970) : If Q C R3 smooth and bounded is such that OQ is
diffeomorphic to the 2-dimensional sphere S = 9B, then
1 1 1 3

> —P(Q).
NBoR) T aBon) T o) < e W

AP (0Q)P(Q) < ATP(S%)P(B).

e Colbois-Dryden-El Soufi (2009)

sup MB(OQ)P(Q) = o0
QCR3

where the supremum is taken among smooth compact set 2.
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Extremal cases 8 = 0 and 8 = oo

Bound for A\L8, 3 = 400, 2-dimensional surface, volume
constraint

Corollary

If Q € R3 smooth and bounded is such that O is diffeomorphic to the
2-dimensional sphere S*> = 0B, then

AP (09)|Q*? < MP(s?) B3,

J. Lamboley (University Paris-Dauphine) Wentzell eigenvalues 11/ 26



Extremal cases 8 = 0 and 8 = oo

Bound for )\fB, £ = +00, m-dimensional manifold

e Colbois-Dodziuk (1994); for m > 3,

sup \iB(M)Vol(M)?/™ = o
M

where the supremum is taken among smooth compact manifold of
dimension m and fixed smooth structure.
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Extremal cases 8 = 0 and 8 = oo

Bound for )\fB, £ = +00, m-dimensional manifold

e Colbois-Dodziuk (1994); for m > 3,

sup \iB(M)Vol(M)?/™ = o
M

where the supremum is taken among smooth compact manifold of
dimension m and fixed smooth structure.

e Colbois-Dryden-El Soufi (2009); for m > 3,

sup ALB(Q)P(Q)?™ = o
QCRm+1

where the supremum is taken among smooth compact set Q2 such
that 9 has a fixed smooth structure.
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Outline

© Generalization of Brock's bound
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Generalization of Brock’s bound

Generalization of Brock's result

Theorem (Dambrine-Kateb-L. 2014)

Let Q a smooth set such that [, x = 0. Let A[Q] be the spectral radius of
P[Q] = (pij)i j=1,...d defined as

pij = / (0 = niny),
oQ

where n is the outward normal vector to 02. Then if 8 > 0, one has :

DB Ly (1)
2%5(@) 0]+ GRS

Equality holds in (1) if Q is a ball.
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Generalization of Brock’s bound

Generalization of Brock's result

Corollary

If >0, it holds :
2] + BA[C]

A(Q) <d
e faQ |X’2

Equality holds if Q is a ball.

@ 3 =0 is Brock's result.

@ In general, the right-hand side is not maximized by the ball.

@ 3 =00 gives :

NS

AB(HQ) < d
1 ( ) faQ |X’2
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Generalization of Brock’s bound

Proof of the generalization of Brock's result

Variational formulation

As(u,v) = / VuVvdx+ V:uV, v do, B(u,v) = / uv,
Q o0 oQ

d
VHVI
Z; 75 ZAg v,,v,

where the functions (v,-),-zl,,._,d are non zero functions that are
B-orthogonal to the constants and pairwise Ag-orthogonal.
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Generalization of Brock’s bound

Proof of the generalization of Brock's result
Choice of test functions

We choose coordinates such that

Vi j, /x,-zO and/xpgzO.
o o
Let for i € [1,d] :

d
w; = Z CijX;, B-orthogonal to the constants.
j=1
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Generalization of Brock’s bound

Proof of the generalization of Brock's result
Choice of test functions

Let us compute Ag(w;, w;) :

Vew; - Vow; = Zcik Pkm Cjm = (CP[Q]CT)U-

k,m

o0

Therefore
As(wi,wj) = 1] (CCT)y + B(CPIQICT);
We choose C € O(n) such that CP[Q]CT is diagonal. Then

@ w; and w; are Ag-orthogonal if i # j,

o Ag(wi,wi) = |Q + B(CP[QICT)i < 1Q] + BAQ].
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Generalization of Brock’s bound

Proof of the generalization of Brock's result

Conclusion
Using
d
B(wj, w;) = c,2/ x2
( ) l; kX
we obtain :
d d
2 2
B o) 1oL AT
Z 1 = o0 i=1 _ 90
— \i(Q) Q[ + BAIQ] Q[ + BA[Q]
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Outline

© First order analysis
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First order analysis

Derivative of a multiple eigenvalue

Theorem (Dambrine-Kateb-L. 2014)

Let A be an eigenvalue of order m and Q; = (I + tV)(Q2). Then there exist
m functions (t — Ak g(t))ke[1,m] Such that
° M\ p(0) = A,

o for |t| small, \¢ g(t) is an eigenvalue of 2,

o the functions (t — Ak g(t))ke[1,m] admit derivatives and their values
at 0 are the eigenvalues of the matrix M= Mq(V,) :

M; = ” Vv, (VTu,-.VTuJ- — OnuiOpu; — AHuju;

+ B (Hlg — 2Dbyg) vTu,-.vTuJ) do.

where (u)k=1,...m denote the eigenfunctions associated to \.
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First order optimality for the ball

If Q = B the unit ball and V preserves the volume, then :

M;j; = C(d,ﬁ)/ VoXix;.

§d-1
Corollary

Any ball B is a critical shape for A1 g with volume constraint : for every
volume preserving deformations V,

d
3" N 4(0) = Te(Mg(Va)) = 0.
k=1

Moreover, if V, : St 5 R is orthogonal to spherical harmonics of order
2, the directional derivative exists in the usual sense and vanishes.
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Outline

@ Second order analysis
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Second order analysis

Sign of the second order derivative

Theorem (Dambrine-Kateb-L. 2014)

Let B be a ball in R? or R and t — B; = | + tV + O(t?) a volume
preserving deformation such that

V., is orthogonal to spherical harmonics of order 2.

Then the functions (t — Ak (t))kef1,q) admit a second derivative and
there exists o > 0 such that

d

Z %p(0) < —aHVnqul(aB)'
k=1
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Local optimality

Corollary

If B is a ball in R? or R3, and t — B; = (I + tV + O(t?))(B) a smooth
volume preserving deformation, then

M g(B) > A g(Bt), for t small enough.
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Second order analysis

Perspectives - Open Problems

@ Positive answer to the question when Q C R3 and 9Q is
differomorphic to S??
@ Study the stability question for Hersch’s inequality in a smooth
neighborhood :
- solve the “two-norm discrepancy issue” :

S(Q) =) @) S(B) + S"(B)(V, V) +o(|| V||%s).

<—al|Vall2,

- prove coercivity for deformation preserving the perimeter.
- Enlarge the neighborhood/regularization procedure.
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