Wentzell eigenvalues, upper bound and stability

Jimmy LAMBOLEY University Paris-Dauphine

with M. Dambrine, D. Kateb

Isoperimetric Problems Between Analysis and Geometry 16/06/2014, Pisa

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ -\beta \Delta_{\tau} u + \partial_{n} u = \lambda u & \text{on } \partial \Omega \end{cases}$$

where $\beta \in \mathbb{R}_+$.

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ -\beta \Delta_{\tau} u + \partial_{n} u = \lambda u & \text{on } \partial \Omega \end{cases}$$

where $\beta \in \mathbb{R}_+$.

It has a discrete sprectrum consisting in a sequence

$$\lambda_{0,\beta}(\Omega) = 0 < \lambda_{1,\beta}(\Omega) \le \lambda_{2,\beta}(\Omega) \ldots \to +\infty$$

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ -\beta \Delta_{\tau} u + \partial_{n} u = \lambda u & \text{on } \partial \Omega \end{cases}$$

where $\beta \in \mathbb{R}_+$.

It has a discrete sprectrum consisting in a sequence

$$\lambda_{0,\beta}(\Omega) = 0 < \lambda_{1,\beta}(\Omega) \le \lambda_{2,\beta}(\Omega) \ldots \to +\infty$$

Remark: it is the spectrum of

$$-\beta \Delta_{\tau} + \mathcal{D}$$

where \mathcal{D} is the Dirichlet-to-Neumann operator on $\partial\Omega$.

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ -\beta \Delta_{\tau} u + \partial_{n} u = \lambda u & \text{on } \partial \Omega \end{cases}$$

where $\beta \in \mathbb{R}_+$.

It has a discrete sprectrum consisting in a sequence

$$\lambda_{0,\beta}(\Omega) = 0 < \lambda_{1,\beta}(\Omega) \le \lambda_{2,\beta}(\Omega) \ldots \to +\infty$$

Remark: it is the spectrum of

$$-\beta \Delta_{\tau} + \mathcal{D}$$

where \mathcal{D} is the Dirichlet-to-Neumann operator on $\partial\Omega$.

Question : Does the ball maximize $\lambda_{1,\beta}$ among smooth open sets of given volume ?

Variational formulation

$$A_{\beta}(u,v) = \int_{\Omega} \nabla u . \nabla v \, dx + \beta \int_{\partial \Omega} \nabla_{\tau} u . \nabla_{\tau} v \, d\sigma, \qquad B(u,v) = \int_{\partial \Omega} u v,$$

$$\lambda_{1,\beta}(\Omega) = \min \left\{ \frac{A_{\beta}(v,v)}{B(v,v)}, \ v \in H^{3/2}(\Omega), \ \int_{\partial \Omega} v = 0 \right\}$$

Outline

- ① Extremal cases $\beta=0$ and $\beta=\infty$
- Generalization of Brock's bound
- First order analysis
- Second order analysis

Outline

- ① Extremal cases $\beta=0$ and $\beta=\infty$
- 2 Generalization of Brock's bound
- First order analysis
- 4 Second order analysis

Steklov eigenvalue problem, $\beta = 0$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ \partial_n u = \lambda^{St} u & \text{on } \partial \Omega \end{cases}$$

It has a discrete sprectrum consisting in a sequence

$$\lambda_0^{St}(\Omega) = 0 < \lambda_1^{St}(\Omega) \le \lambda_2^{St}(\Omega) \ldots \to +\infty$$

Remark:

$$\lambda_1^{St}(\alpha\Omega) = \alpha^{-1}\lambda_1^{St}(\Omega).$$

Bound for λ_1^{St} , $\beta = 0$, Dimension 2

Weinstock (1954); Ω simply connected

$$\lambda_1^{St}(\Omega) \leq \frac{2\pi}{P(\Omega)} \ \left(\leq \sqrt{\frac{\pi}{|\Omega|}} \right),$$

• Hersch-Payne (1968); Ω simply connected

$$\frac{1}{\lambda_1^{\mathcal{S}t}(\Omega)} + \frac{1}{\lambda_2^{\mathcal{S}t}(\Omega)} \ge \frac{P(\Omega)}{\pi},$$

• Hersch-Payne-Schiffer (1975); Ω simply connected

$$\lambda_1^{St}(\Omega).\lambda_2^{St}(\Omega) \leq \frac{4\pi^2}{P(\Omega)^2},$$

Bound for λ_1^{St} , $\beta = 0$, Dimension d

• Brock (2001) : Ω any smooth set in \mathbb{R}^d such that $\int_{\partial\Omega} x = 0$:

$$\sum_{i=1}^{d} \frac{1}{\lambda_{i}^{St}(\Omega)} \geq \frac{1}{|\Omega|} \int_{\partial \Omega} |x|^{2} \geq d \left(\frac{|\Omega|}{\omega_{d}}\right)^{\frac{1}{d}}.$$

$$\lambda_1^{St}(\Omega) \leq \frac{d|\Omega|}{\int_{\partial\Omega} |x|^2} \leq \left(\frac{\omega_d}{|\Omega|}\right)^{\frac{1}{d}}.$$

Laplace-Beltrami eigenvalue problem, $\beta = +\infty$

$$-\Delta_{\tau}u = \lambda u$$
 on $\partial\Omega$

$$\lambda_0^{LB}(\partial\Omega) = 0 < \lambda_1^{LB}(\partial\Omega) \le \lambda_2^{LB}(\partial\Omega) \dots \to +\infty$$

Remarks:

- $\lambda_1^{LB}(\alpha\partial\Omega) = \alpha^{-2}\lambda_1^{LB}(\partial\Omega)$.
- $\lambda_1^{LB}(\Omega) = \lim_{\beta \to \infty} \frac{\lambda_{1,\beta}(\Omega)}{\beta}$.

Bound for λ_1^{LB} , $\beta = +\infty$, 2-dimensional surface

• Hersch (1970) : If $\Omega \subset \mathbb{R}^3$ smooth and bounded is such that $\partial \Omega$ is diffeomorphic to the 2-dimensional sphere $\mathbb{S}^2 = \partial B$, then

$$\frac{1}{\lambda_1^{LB}(\partial\Omega)} + \frac{1}{\lambda_2^{LB}(\partial\Omega)} + \frac{1}{\lambda_3^{LB}(\partial\Omega)} \ge \frac{3}{8\pi}P(\Omega).$$
$$\lambda_1^{LB}(\partial\Omega)P(\Omega) \le \lambda_1^{LB}(\mathbb{S}^2)P(B).$$

Bound for λ_1^{LB} , $\beta = +\infty$, 2-dimensional surface

• Hersch (1970) : If $\Omega \subset \mathbb{R}^3$ smooth and bounded is such that $\partial \Omega$ is diffeomorphic to the 2-dimensional sphere $\mathbb{S}^2 = \partial B$, then

$$\frac{1}{\lambda_1^{LB}(\partial\Omega)} + \frac{1}{\lambda_2^{LB}(\partial\Omega)} + \frac{1}{\lambda_3^{LB}(\partial\Omega)} \ge \frac{3}{8\pi}P(\Omega).$$
$$\lambda_1^{LB}(\partial\Omega)P(\Omega) \le \lambda_1^{LB}(\mathbb{S}^2)P(B).$$

• Colbois-Dryden-El Soufi (2009)

$$\sup_{\Omega\subset\mathbb{R}^3}\lambda_1^{LB}(\partial\Omega)P(\Omega)=\infty$$

where the supremum is taken among smooth compact set Ω .

Bound for λ_1^{LB} , $\beta=+\infty$, 2-dimensional surface, volume constraint

Corollary

If $\Omega \subset \mathbb{R}^3$ smooth and bounded is such that $\partial \Omega$ is diffeomorphic to the 2-dimensional sphere $\mathbb{S}^2 = \partial B$, then

$$\lambda_1^{LB}(\partial\Omega)|\Omega|^{2/3} \le \lambda_1^{LB}(\mathbb{S}^2)|B|^{2/3}.$$

Bound for λ_1^{LB} , $\beta = +\infty$, *m*-dimensional manifold

• Colbois-Dodziuk (1994); for $m \ge 3$,

$$\sup_{M} \lambda_1^{LB}(M) Vol(M)^{2/m} = \infty$$

where the supremum is taken among smooth compact manifold of dimension m and fixed smooth structure.

Bound for λ_1^{LB} , $\beta = +\infty$, *m*-dimensional manifold

• Colbois-Dodziuk (1994); for $m \ge 3$,

$$\sup_{M} \lambda_1^{LB}(M) Vol(M)^{2/m} = \infty$$

where the supremum is taken among smooth compact manifold of dimension m and fixed smooth structure.

• Colbois-Dryden-El Soufi (2009); for $m \ge 3$,

$$\sup_{\Omega\subset\mathbb{R}^{m+1}}\lambda_1^{LB}(\partial\Omega)P(\Omega)^{2/m}=\infty$$

where the supremum is taken among smooth compact set Ω such that $\partial\Omega$ has a fixed smooth structure.

Outline

- ① Extremal cases $\beta=0$ and $\beta=\infty$
- Quantification of Brock's bound
- First order analysis
- 4 Second order analysis

Generalization of Brock's result

Theorem (Dambrine-Kateb-L. 2014)

Let Ω a smooth set such that $\int_{\partial\Omega}x=0$. Let $\Lambda[\Omega]$ be the spectral radius of $P[\Omega]=(p_{ij})_{i,j=1,\dots,d}$ defined as

$$p_{ij} = \int_{\partial\Omega} (\delta_{ij} - n_i n_j),$$

where **n** is the outward normal vector to $\partial\Omega$. Then if $\beta \geq 0$, one has :

$$\sum_{i=1}^{d} \frac{1}{\lambda_{i,\beta}(\Omega)} \ge \frac{\int_{\partial \Omega} |x|^2}{|\Omega| + \beta \Lambda[\Omega]} \tag{1}$$

Equality holds in (1) if Ω is a ball.

Generalization of Brock's result

Corollary

If $\beta \geq 0$, it holds:

$$\lambda_{1,eta}(\Omega) \leq drac{|\Omega| + eta \Lambda[\Omega]}{\int_{\partial\Omega} |x|^2}$$

Equality holds if Ω is a ball.

- $\beta = 0$ is Brock's result.
- In general, the right-hand side is not maximized by the ball.
- $\beta = \infty$ gives :

$$\lambda_1^{LB}(\partial\Omega) \leq d \frac{\Lambda[\Omega]}{\int_{\partial\Omega} |x|^2}$$

Variational formulation

$$A_{\beta}(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \ dx + \beta \int_{\partial \Omega} \nabla_{\tau} u \cdot \nabla_{\tau} v \ d\sigma, \qquad B(u,v) = \int_{\partial \Omega} u v,$$

$$\sum_{i=1}^d \frac{1}{\lambda_{i,\beta}(\Omega)} = \max_{v_1,\cdots,v_d} \sum_{i=1}^d \frac{B(v_i,v_i)}{A_{\beta}(v_i,v_i)},$$

where the functions $(v_i)_{i=1,\dots,d}$ are non zero functions that are B-orthogonal to the constants and pairwise A_{β} -orthogonal.

Choice of test functions

We choose coordinates such that

$$\forall i \neq j, \quad \int_{\partial\Omega} x_i = 0 \ \ \text{and} \ \ \int_{\partial\Omega} x_i x_j = 0.$$

Let for $i \in \llbracket 1, d \rrbracket$:

$$w_i = \sum_{i=1}^{d} c_{ij} x_j$$
, B-orthogonal to the constants.

Choice of test functions

Let us compute $A_{\beta}(w_i, w_j)$:

$$\int_{\partial\Omega} \nabla_{\tau} w_i \cdot \nabla_{\tau} w_j \ = \sum_{k,m} c_{ik} \ p_{km} \ c_{jm} = (CP[\Omega]C^T)_{ij}.$$

Therefore

$$A_{\beta}(w_i, w_j) = |\Omega| (CC^T)_{ij} + \beta (CP[\Omega]C^T)_{ij}$$

We choose $C \in O(n)$ such that $CP[\Omega]C^T$ is diagonal. Then

- w_i and w_j are A_{β} -orthogonal if $i \neq j$,
- $A_{\beta}(w_i, w_i) = |\Omega| + \beta (CP[\Omega]C^T)_{ii} \leq |\Omega| + \beta \Lambda[\Omega].$

Conclusion

Using

$$B(w_i, w_i) = \sum_{k=1}^{a} c_{ik}^2 \int_{\partial \Omega} x_k^2$$

we obtain:

$$\sum_{i=1}^d \frac{1}{\lambda_i(\Omega)} \geq \frac{\sum_{k=1}^d \int_{\partial \Omega} x_k^2 \left(\sum_{i=1}^d c_{ik}^2\right)}{|\Omega| + \beta \Lambda[\Omega]} = \frac{\int_{\partial \Omega} |x|^2}{|\Omega| + \beta \Lambda[\Omega]}$$

Outline

- ① Extremal cases $\beta = 0$ and $\beta = \infty$
- 2 Generalization of Brock's bound
- First order analysis
- 4 Second order analysis

Derivative of a multiple eigenvalue

Theorem (Dambrine-Kateb-L. 2014)

Let λ be an eigenvalue of order m and $\Omega_t = (I + t\mathbf{V})(\Omega)$. Then there exist m functions $(t \mapsto \lambda_{k,\beta}(t))_{k \in [1,m]}$ such that

- $\lambda_{k,\beta}(0) = \lambda$,
- for |t| small, $\lambda_{k,\beta}(t)$ is an eigenvalue of Ω_t ,
- the functions $(t \mapsto \lambda_{k,\beta}(t))_{k \in [\![1,m]\!]}$ admit derivatives and their values at 0 are the eigenvalues of the matrix $M = M_{\Omega}(V_n)$:

$$\begin{split} M_{ij} &= \int_{\partial\Omega} V_n \Big(\nabla_\tau u_i . \nabla_\tau u_j - \partial_n u_i \partial_n u_j - \lambda H u_i u_j \\ &+ \beta \left(H I_d - 2 D^2 b_{\partial\Omega} \right) \nabla_\tau u_i . \nabla_\tau u_j \Big) \ d\sigma. \end{split}$$

where $(u_k)_{k=1,\ldots,m}$ denote the eigenfunctions associated to λ .

First order optimality for the ball

If $\Omega = B$ the unit ball and **V** preserves the volume, then :

$$M_{ij} = C(d, \beta) \int_{\mathbb{S}^{d-1}} V_n x_i x_j.$$

Corollary

Any ball B is a critical shape for $\lambda_{1,\beta}$ with volume constraint : for every volume preserving deformations \mathbf{V} ,

$$\sum_{k=1}^d \lambda'_{k,\beta}(0) = \operatorname{Tr}(M_B(V_n)) = 0.$$

Moreover, if $V_n : \mathbb{S}^{d-1} \to \mathbb{R}$ is orthogonal to spherical harmonics of order 2, the directional derivative exists in the usual sense and vanishes.

Outline

- ① Extremal cases $\beta=0$ and $\beta=\infty$
- 2 Generalization of Brock's bound
- First order analysis
- Second order analysis

Sign of the second order derivative

Theorem (Dambrine-Kateb-L. 2014)

Let B be a ball in \mathbb{R}^2 or \mathbb{R}^3 and $t\mapsto B_t=I+t\textbf{V}+O(t^2)$ a volume preserving deformation such that

 V_n is orthogonal to spherical harmonics of order 2.

Then the functions $(t \mapsto \lambda_{k,\beta}(t))_{k \in [1,d]}$ admit a second derivative and there exists $\alpha > 0$ such that

$$\sum_{k=1}^d \lambda_{k,\beta}''(0) \leq -\alpha \|V_n\|_{\mathrm{H}^1(\partial B)}^2.$$

Local optimality

Corollary

If B is a ball in \mathbb{R}^2 or \mathbb{R}^3 , and $t \mapsto B_t = (I + t\mathbf{V} + O(t^2))(B)$ a smooth volume preserving deformation, then

$$\lambda_{1,\beta}(B) \geq \lambda_{1,\beta}(B_t)$$
, for t small enough.

Perspectives - Open Problems

- Positive answer to the question when $\Omega \subset \mathbb{R}^3$ and $\partial \Omega$ is differomorphic to \mathbb{S}^2 ?
- Study the stability question for Hersch's inequality in a smooth neighborhood:
 - solve the "two-norm discrepancy issue" :

$$S(\Omega) := \sum_{i=1}^d \frac{1}{\lambda_i^{LB}(\Omega)} = S(B) + \underbrace{S''(B)(V,V)}_{\leq -\alpha \|V_n\|_{H^1}^2} + o(\|V\|_{C^3}^2).$$

- prove coercivity for deformation preserving the perimeter.
- Enlarge the neighborhood/regularization procedure.