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Abstract

We are interested in the question of stability in the field of shape optimization. We focus on the strategy
using second order shape derivative. More precisely, we identify structural hypotheses on the hessian of the
considered shape functions, so that critical stable domains (i.e. such that the first order derivative vanishes
and the second order one is positive) are local minima for smooth perturbations. These conditions are quite
general and are satisfied by a lot of classical functionals, involving the perimeter, the Dirichlet energy or
the first Laplace-Dirichlet eigenvalue. We also explain how we can easily deal with volume constraint and
translation invariance of the functionals. As an application, we retrieve or improve previous results from
the existing literature, and provide new local isoperimetric inequalities. We finally test the sharpness of our
hypotheses by giving counterexamples of critical stable domains that are not local minima.
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1 Introduction

In this paper, we are interested in the question of stability in the field of shape optimization. More precisely,

given J : A → R defined on A ⊂ {Ω smooth enough open sets in Rd}, we consider the optimization problem

min {J(Ω), Ω ∈ A} , (1.1)

and we ask the following question:

if Ω∗ ∈ A is a critical domain satisfying a stability condition (that is to say a strict second order optimality

condition), can we conclude that Ω∗ is a strict local minimum for (1.1) in the sense that

J(Ω)− J(Ω∗) ≥ cd1(Ω,Ω∗)2, for every Ω ∈ V(Ω∗) (1.2)

where c ∈ (0,∞), d1 is a distance among sets, and V(Ω∗) = {Ω, d2(Ω,Ω∗) < η} is a neighborhood of Ω∗,

relying on a (possibly different) distance d2?

(Note that the word distance is used here and in the rest of the paper as an intuitive notion here, asserting

that Ω is far or close from the fixed shape Ω∗, and do not refer in general to the formal mathematical notion

of distance).

Origin of the question:

For example in [38], the following terminology is used: the property that a critical point x has a positive

second order derivative is called linear-stability, and implies that t 7→ f(x + ty) has a minimum at t = 0 for

every y, while nonlinear-stability requires that f(x) is less that f(z) for any z close to x. It is classical that,

when dealing with infinitely dimensional parameters, these two notions do not coincide in general.

In the framework of shapes, this question has been raised in different settings, and its answer has sometimes

been mistakenly considered as easily valid: for example, in the context of stable constant mean curvature sur-

faces, literature has focused for a while on giving sufficient conditions so that (linear)-stability would occur,

without proving that it actually implied local minimality. This point was raised by Finn in [18], and some
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answers followed quickly, see [25, 38, 39], though in the particular case of the ball and the isoperimetric prob-

lem, the difficulty was already handled by Fuglede in [19]. In the context of shape functionals involving PDE,

the issue was raised by Descloux in [15] and a first solution was given in [12, 11].

Quantitative isoperimetric inequalities: different strategies

During the last decade, starting with [20], this type of question gained interest in the community of isoperi-

metric inequalities and shape optimization, in particular three main methods were developed in a quite

extensive literature, in order to get a stability result of the form (1.2) for the most classical problems (1.1):

• Symmetrization technique,

• Mass transportation approach,

• Second order shape derivative approach.

As an example, we quote the L1-stability result for the perimeter: for every V0 ∈ (0,∞), there exists

c ∈ (0,∞) such that

P (Ω)− P (B) ≥ cdL1(Ω, B)2, for every (measurable set) Ω such that |Ω| = V0, (1.3)

where P denotes the perimeter (in the sense of geometric measure theory), | · | is the volume, B is any ball of

volume V0, and

dL1(Ω, B) = inf
τ∈Rd

|(Ω− τ)∆B|
|B|

is also known as the Fraenkel asymmetry (which can be seen as the L1-distance to the ball, up to translations).

For this specific example, all of these three strategies have been successfully applied, see [20, 17, 10].

Note in particular that the result is global (in other words η =∞), but in that case a local result implies a

non-local one as it is shown in [20, Lemma 5.1 and Lemma 2.3].

In this paper, we focus on the third strategy, which recently receveid even more attention as in some

examples, the other techniques could not be applied, or provided non-optimal results: as an example we quote

the L1-stability for the Faber-Krahn inequality, which was solved with symmetrization technique in [23], but

provided a higher (and less strong) exponent in (1.2), and has been improved to an optimal exponent recently

in [7] using the third strategy (see also [21]).

One specific difficulty for this strategy is to define a framework of differential calculus within shapes. This

can be done for example with the notion of shape derivatives, but one main drawback is that this is available

only for reasonably smooth deformations of the initial shape, or in other words, for a rather strong distance d2

(otherwise it is clear that classical functionals are not differentiable for non-smooth perturbations). However,

as it is shown for example in [2], the strategy can also provide results for very weak distances (as the Fraenkel

asymmetry), and can be decomposed in two main steps:

• first, with the help of the differential setting and the fact that Ω∗ satisfies a strict second order optimality

condition, prove a stability result for small and smooth perturbation of Ω∗; in other words, prove that

(1.2) is valid where d2 is a strong distance (and d1 is limited by the properties of J , and is in general

different from d2, see below),

• second, deduce from this first step that (1.2) is valid where d1 = d2 is a weak distance (for example the

Fraenkel asymmetry).

For the perimeter functional, the first step goes back to [19], and the second step is inspired by results in

[40, 30], though the complete result was achieved in [10]. These two steps rely on very different arguments: in

particular, the second step usually requires to adapt the regularity theory related to the optimization problem

(1.1), namely the notion of quasi-minimizer of the perimeter when the functional J contains a perimeter
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term, or the regularity of free boundaries when J involves an energy related to a PDE functional (see [2, 7]

respectively), so it strongly relies on specific properties of the functional J under study. However, as we aim

to show in this paper, the first step has a very large range of applications, and is valid under rather weak

assumptions on the functionals.

The aim of this paper is to describe a general framework so that the first step of the above strategy applies:

while this has been done in a few places in the literature, every time specifically for the functional that was

under study, we aim at giving some general statements, and then show that these statements both applies

to the examples already handled in the literature, and also to new examples. Despite getting a wider degree

of generality, we also simplify many proofs and strategies found in the previous literature, as we describe below.

Neighborhood of shapes

In order to describe the details of the strategy, we briefly introduce two classical ways to parametrize shapes

in a neighborhood of a fixed one:

• Diffeomorphism and shape derivatives: we consider a shape to be a neighbor of Ω if it is a

deformation of Ω by a diffeomorphism which is close to the identity. More precisely, Θ being a Banach

space such that C∞(Rd,Rd) ⊂ Θ ⊂ W 1,∞(Rd,Rd), we consider shapes of the form Ωθ := (Id + θ)(Ω)

where ‖θ‖Θ is small.

In this framework, we can consider the distance introduced by Micheletti :

dΘ(Ω1,Ω2) := inf
{
‖θ‖Θ + ‖(Id+ θ)−1 − I‖Θ, θ ∈ Θ diffeomorphism such that (Id+ θ)(Ω1) = Ω2

}
.

Morover, this leads to the notion of shape derivatives, first introduced by Hadamard, then developed by

Murat-Simon and Delfour-Zolesio. One defines the function JΩ on a neighborhood of 0 in Θ by

∀θ ∈ Θ, JΩ(θ) = J [(Id+ θ)(Ω)].

One then uses (in the whole paper) the usual notion of Fréchet-differentiability: shape derivatives of J

at Ω are the successive derivatives of JΩ at 0, when they exist. In particular, the first shape derivative

is J ′(Ω) := J ′Ω(0), a continuous linear form on Θ (the shape gradient), and the second order shape

derivative is J ′′(Ω) := J ′′Ω(0), a continuous symmetric bilinear form on Θ (the shape hessian).

• Normal graphs:

On the other hand, assuming that Ω is C1 (and n = n∂Ω is its outer unit normal vector) we can consider

“normal graph” on ∂Ω, that is Ωh such that

∂Ωh = {x+ h(x)n(x)}, (1.4)

where h ∈ H is small and H is a Banach space of (scalar) functions defined on ∂Ω (with C∞(Rd) ⊂
H ⊂W 1,∞(Rd)).
Then once can see d̃H(Ω,Ωh) := ‖h‖H as a measure of the distance between Ωh and Ω (though it is

not formally a distance), and one can also define derivatives in this framework, as jΩ(h) := J(Ωh) is

defined on a Banach space. Notice that given Ω1 and Ω2, there is at most one h defined on ∂Ω1 such

that ∂Ω2 = (∂Ω1)h as defined in (1.4), so we can denote h = hΩ1,Ω2 this function if it exists.

Let us emphasize that even if the second method seems more restrictive, the two methods are equivalent in

a neighborhood of Ω (if Ω is smooth enough) in the sense that one descibes as many shapes with each methods

(for suitable Θ and H): first, a normal graph Ωh is a deformation of Ω for any θh which is an extension to Rd
of hn (and then jΩ(h) = JΩ(θh)). Second, if we consider diffeomorphims that are close to the identity, the

boundaries of the perturbed domains are graphs over the boundary of the initial domain: in other words, for

any domain Ωθ = (Id+ θ)(Ω) with θ ∈ Θ close to 0, there is a unique real-valued function h = hΩ,Ωθ defined

on ∂Ω such that (1.4), see Lemma 3.1 in [32].
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However, it is not clear a priori that computing derivatives for normal graphs (derivatives of jΩ : h 7→ J(Ωh))

is enough to describe shape derivatives (derivatives of JΩ : θ 7→ J(Ωθ)): this issue is handled in the first point

below. Also, it may be of interest to focus on paths t ∈ R 7→ Ωt (as we will need below), and in that case

Ωt+s is not in general a normal graph over Ωt; it is therefore important to understand the framework of

diffeomorphisms, though in some case it is enough to remain in the framework of normal graphs.

We may also be interested in having distances taking into account some invariance with translation. For

example, we define

d̄H(Ω1,Ω2) = inf
τ∈Rd

‖hΩ1,Ω2+τ‖H (1.5)

where the infimum is taken over τ such that ∂Ω2 + τ is a normal graph on ∂Ω1.

Main contributions of the paper:

We are now in position to describe the main steps of the strategy to obtain a stability inequality of the form

(1.2) for a strong distances d2: we describe here these steps, and insist on the contributions of the present

paper in each step.

• Structure of derivatives: The way of differentiating shape functionals with diffeomorphism described

just above is very convenient as most shape functionals are easily proven to be smooth in this setting

(usually not using any regularity on the initial shape Ω∗, see more details in [26] for example), and as

noticed before, it is clear that computing derivatives in the sense of normal graphs is just a particular

case (while the opposite seems not clear). Nevertheless, one main drawback for our purpose is that as we

are dealing with shapes, there is a lot of invariance for JΩ (any non-trivial diffeomorphisms that leaves

Ω invariant (at first, second order) must lead to vanishing derivatives). It is therefore unreasonable to

expect that the stability condition for optimal shapes writes J ′′(Ω∗) · (ξ, ξ) > 0 for ξ ∈ Θ \ {0}. This

difficulty is well-known since Hadamard, who observed (in particular examples) that the shape gradient

is a distribution supported on the boundary of the domain, acting only on the normal component of the

deformation. In other words, for any C1 domain Ω, there is a linear form `1 = `1[J ](Ω) acting on scalar

functions defined on ∂Ω, such that

∀ξ ∈ C∞(Rd,Rd), J ′(Ω) · ξ = `1(ξ|∂Ω · n),

see classical monographs, or [29] for a statement and a proof in a possibly non-smooth setting. A similar

observation can be made about second order shape derivatives, though the situation is in general more

involved. Let us describe a simple case, which happens to be particularly relevant for our purpose here: if

Ω∗ is a critical domain for J , that is a domain such that the shape gradient of J vanishes, then the shape

hessian reduces to a symmetric bilinear form `2 = `2[J ](Ω∗), also acting only on normal components of

diffeomorphisms. When we do not assume that Ω∗ is a critical domain, contrary to the first order one,

the second order shape derivative may involve the tangential component of the deformation. However,

as it has been proven in [32], there is a general structure, involving a quadratic form acting only on

normal components (as in the critical case) and another term involving the first order derivative: more

precisely, for any C2 domain Ω, there exists `2 = `2[J ](Ω) acting on normal components such that

∀ξ ∈ C∞(Rd,Rd), J ′′(Ω) · (ξ, ξ) = `2(ξ · n, ξ · n) + `1(Zξ) where Zξ = B(ξτ , ξτ )− 2∇τ (ξ · n) · ξτ ,

where ξτ is the tangential component of ξ, and B = Dτn is the tangential differential of n, or in other

words, the second fondamental form of ∂Ω. This fact is often observed in the literature on specific

examples and after lengthy computations, while it can be used a priori to simplify the computations:

indeed, once we know the shape functional is smooth (in the Fréchet sense), this result implies that the

computation of shape derivatives for purely normal deformations, is enough to describe the result for

any deformation, with the use of this structure result, and if needed, the chain-rule formula (see also

Remark 2.6). In particular, using the framework of normal graphs, we get j′′Ω(0)(v, v) = `2[J ](Ω)(v, v).
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The first contribution of this paper is to give a new proof of this result, see Theorem 2.1. Though

the strategy in [32] is quite natural as it shows that any small deformation of a shape can be seen (in

a smooth way) as a normal deformation defined on the boundary, up to a change of parametrization of

the boundary, we believe this new proof is less technical, and also quite natural as it only relies on the

invariance properties mentioned before.

Even if it may seem that for our purpose this result in only helpful in the particular case where Ω∗ is a

critical shape, as we will notice in the following items, we will actually need to deal with second order

shape derivatives at non-critical shapes as well, when proving the stability result, as we will use of the

Taylor formula with an integral form of the remainder.

• Coercivity assumption: As noticed earlier, we are dealing with infinite dimensional differential calcu-

lus, and it is well-known that usual sufficient conditions for getting optimality is that the second order

derivative is coercive rather than just assuming that it is positive. In particular, we need to wonder for

which norm the coercivity might be valid, with view of applications. We will see that in most examples

we are dealing with, the quadratic form `2[J ](Ω) (normal part of the hessian of J at Ω) satisfies a

structural property emphasizing a particular norm, that will restrict the choice of d1 for applications

(actually, there are examples that do not satisfy the following assumption, and for which stability do

not imply local minimality, see Section 5.2): for some s2 ∈ (0, 1], the bilinear form ` on C∞(∂Ω) satisfies

condition (CHs2 ) if (and by extension we say that J satisfies the condition at Ω∗ if `2[J ](Ω∗) does):

(CHs2 ) there exists 0 ≤ s1 < s2 and c1 > 0 such that ` = `m + `r with{
`m is lower semi-continuous in Hs2(∂Ω) and `m(ϕ,ϕ) ≥ c1|ϕ|2Hs2 (∂Ω), ∀ϕ ∈ C∞(∂Ω),

`r continuous in Hs1(∂Ω).

where | · |Hs2 (∂Ω) denote the Hs2(∂Ω) semi-norm. In that case, ` is naturally extended (by a density

argument) to the space Hs2(∂Ω), and we prove that under this assumption

` > 0 on Hs2(∂Ω) \ {0} ⇔ ∃λ > 0, ∀ϕ ∈ Hs2(∂Ω), `(ϕ,ϕ) ≥ λ‖ϕ‖2Hs2 (∂Ω), (1.6)

(here ` is a quadratic form, so ` > 0 on X means `(ϕ,ϕ) > 0 for any ϕ ∈ X). Notice also that this

statement holds for general bilinear forms on Sobolev spaces and is not connected to shape hessians.

The proof of this fact is rather simple, and similar arguments can be found in [25, 2]. Our contribution

principally lies in the fact that we explicitly formulate the underlying assumption so that positivity implies

coercivity, see Lemma 3.3 in Section 3.1.

Note in particular that the value of s2 is determined by the shape functional J (in practice s2 usually

does not depend on Ω), and the choice of the distance d1 in (1.2) is limited by this coercivity property;

in other words, we can not expect (1.2) to be valid for any distance d1 stronger than the d̃Hs2 (see also

[19] where an upper bound of the isoperimetric deficit is given, in a smooth neighborhood). As we will

notice through computations, when J contains a perimeter term, s2 = 1, while for PDE functionals we

are dealing with here (see below when we describe examples), s2 = 1/2. For an interesting result about

the choice of d1 in a non-smooth setting, see [22] where they obtain an improved version of (1.3) where

d1 is a stronger distance than the Fraenkel asymmetry (see also [34] for the anisotropic case).

• Stability and Norm discrepancy: With the help of the previous items, we are able to properly state

the stability question: if Ω∗ is such that

`1 = 0 and `2 > 0 on Hs2(∂Ω∗) \ {0} (1.7)

(where `1, `2 are associated to J ′(Ω∗) and J ′′(Ω∗) respectively, through the structure theorem), can we

conclude to a nonlinear-stability inequality of the form (1.2), for Ω = (Id + θ)(Ω∗) small and smooth

deformation of the set Ω∗?
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From the Taylor formula, we can write:

J((Id+ θ)(Ω∗))− J(Ω∗) =
1

2
`2(θ · n, θ · n) + O(‖θ‖2Θ). (1.8)

which leads to two issues:

– first, the remainder depends on the full norm of θ, while the second order term is only controlled

with the norm of θ · n,

– the norm of differentiability Θ is in most cases stronger than the norm of coercivity given in the

previous item, namely Hs2 ,

so it is a priori not possible to control the sign of the term 1
2 `2(θ · n, θ · n) + O(‖θ‖2Θ). To solve the

first issue, one could only work with normal deformation (which is enough to describe every small and

smooth deformation of Ω∗), but this is in some cases a restriction (as noticed before, see [11, 2]). The

second issue is more serious. In the literature, this phenomenon was first observed when minimizing the

perimeter as it naturally differentiable in W1,∞ while the coercivity can only be valid for the H1-norm.

This has been observed in two places in the literature:

– Fuglede in [19] proved a local H1-stability result for the classical isoperimetric problem whose

solution is the ball (see the next step to explain how to handle the translation invariance of the

functional and the volume constraint): when writing everything in radial coordinates, that is

considering Bu = {(r, ω) ∈ [0,∞)× Sd−1, r < 1 + u(ω)} with u preserving the barycenter and the

volume (at the second order), Fuglede proved that

P (Bu)− P (B) = `(u, u) +O(‖u‖W1,∞)‖u‖2H1(Sd−1) (1.9)

where u 7→ `(u, u) is quadratic form, coercive in the H1-norm; this allows to conclude to the strict

optimality of the ball in small W1,∞ neighborhood.

– For stable constant mean curvature surfaces, a similar differentiability statement is quoted in [25,

Proof of Theorem 6], [6, Equation 3.23], [40, Equation (1)], and this result is not restricted to the

ball. See also [38, 39] for similar observations with a different parametrization.

This difficulty is well-known in the literature on second order optimality conditions in infinite dimension.

We may think that we could change the space of differentiability for the functional (choosing for example

the space for which there is coercivity), unfortunately in most examples, the shape functional is not

differentiable in the space for which there is coercivity, which is weaker than W1,∞. Various geometric

examples have been handled in the literature since these first examples, see [13, 16, 5, 34].

In the specific context of shape optimization involving PDE functionals, the question was raised in the

work of Descloux [15], and was overcome in [12, 11], and more recently a very similar approach can be

found in [2], see also Section 4.1. The situation is much more involved than for geometric functionals,

as it is much harder to write the remainder term in order to obtain an estimate like (1.9).

Therefore, the idea is, given Ω∗ a critical and stable domain and Ω a domain sufficiently close for dΘ,

to consider the path (Ωt)t∈[0,1] defined through its boundary

∂Ωt = {x+ t h(x) n(x), x ∈ ∂Ω∗}. (1.10)

connecting Ω∗ to Ω, where h = hΩ∗,Ω is defined in (1.4), and to assume an improved continuity property

for the second order shape derivative, namely, given s ∈ [0, 1] (chosen as being s2 from the coercivity

property) and Θ ⊂ W 1,∞ a Banach space (which has to be chosen wisely, see below) so that JΩ is C2

around 0, condition (ECHs,Θ) is:

(ECHs,Θ) there exist η > 0 and a modulus of continuity ω such that for every domain Ω = (Id+θ)(Ω∗)
with ‖θ‖Θ ≤ η, and all t ∈ [0, 1]:∣∣j′′(t)− j′′(0)

∣∣ ≤ ω(‖θ‖Θ)‖h‖2Hs ,
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where j : t ∈ [0, 1] 7→ J(Ωt) and (Ωt)t∈[0,1] is given by (1.10). Then, the Taylor formula with integral

remainder gives

J((Id+ θ)(Ω∗))− J(Ω∗) =
1

2
`2(h, h) +

∫ 1

0
[j′′(t)− j′′(0)](1− t)dt ≥ λ‖h‖2Hs + ω(‖θ‖Θ)‖h‖2Hs ,

which easily leads to the stability property, see the proof of Theorem 1.1 just stated below.

Our main contribution about this step is to insist on the list of examples of functionals satisfying this

condition, and also on possible choices of Θ, depending on the functionals.

In [12, 11] they choose Hölder-spaces of the form C2,α, while in [2] they prefer a Sobolev type of spaces,

namely W2,p for p large enough, which is a better result as it leads to a larger neighborhood in the

stability equation (1.2). Note however that Θ cannot be chosen, in general, as the best space for

differentiability (which for our purpose would be the bigger one, namely W1,∞).

We prove that for the PDE functionals from [12, 11], which seems less smooth than the functional from

[2] (see also Section 4.1), the previous condition is also valid for W2,p, for p large enough, therefore

improving the stability properties proven in [12, 11]. Another important contribution about this step is

that thanks to the next item, it is enough to focus on the path (1.10).

Note that this improvement about spaces is not just a technical issue, as in [2] the choice of W2,p rather

than C2,α is relevant for the second step of the strategy when proving stability in an L1-neighborhood ([2,

Section 4]): indeed their regularization procedure needs to allow discontinuities of the mean curvature,

see equation (4.9) in the proof of [2, Theorem 4.3]. This difficulty is handled in another way in [7]

for the quantitative Faber-Krahn inequality as a stability in C2,α is enough to make the regularization

procedure work.

• Stability result: We are now in position to state the main stability result in the framework of shape

optimization. For a similar statement for problems with volume constraint and translation invariant

functionals, which is very useful in practice, see the next item and Theorem 3.2:

Theorem 1.1 Let Ω∗ be a domain of class C3, and J a shape functional, twice Fréchet differentiable

on a neighborhood of Ω∗ for dW1,∞. We denote `1 = `1[J ](Ω∗) and `2 = `2[J ](Ω∗) (given by Theorem

2.1), and assume that J satisfies (CHs2 ) and (ECHs2 ,Θ) at Ω∗ for some s2 ∈ (0, 1] and Θ a Banach

space such that C∞(Rd,Rd) ⊂ Θ ⊂W1,∞.

Then if Ω∗ is a critical and strictly stable shape for J , that is to say

`1 = 0, and `2 > 0 on Hs2(∂Ω,R) \ {0}, (1.11)

then Ω∗ is an Hs2-stable local minimum of J in a Θ-neighborhood, that is to say there exists

η > 0 and c = c(η) > 0 such that

∀ Ω such that dΘ(Ω∗,Ω) ≤ η, J(Ω) ≥ J(Ω∗) + cd̃Hs2 (Ω∗,Ω)2 (1.12)

where d̃Hs2 is defined in (1.4).

With the help of the previous remarks, the proof of this result is rather easy, and its main interest lies

in the fact that its hypotheses (more accurately the one of the constrained version) are valid in practice

for many examples, as we show in Section 4, see also the end of this introduction.

• Constraints and invariance: as in the isoperimetric problem, whose quantitative version is recalled in

(1.2), we often have to handle two difficulties: first, the functional is translation invariant, and second,

there is a volume constraint in the optimization problem. Therefore one cannot expect (1.11) to be

satisfied, and it should be replaced by

`1[J ](Ω∗) = µ`1[Vol](Ω∗), and `2[J ](Ω∗)− µ`2[Vol](Ω∗) > 0 on T (∂Ω∗) \ {0}

where T (∂Ω∗) :=

{
ϕ ∈ Hs2(∂Ω∗),

∫
∂Ω∗

ϕ = 0 and

∫
∂Ω∗

ϕ−→x =
−→
0

}
. (1.13)
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Here µ ∈ R is the Lagrange multiplier, handling the notion of criticality when there is a volume con-

straint, and T (∂Ω∗) can be seen as the tangent space to the constraint (
∫
∂Ω∗ ϕ being the first order

derivative of the volume) and to the invariance ((
∫
∂Ω∗ ϕ

−→x ) being the first order derivative of the barycen-

ter functional). In [12, 11], especially when dealing with the two-norm discrepancy issue, the author

carefully handle the volume constraint by building a path preserving the volume and being almost nor-

mal, and prove that an estimate like (ECHs2 ,Θ) is valid for this more involved path. In [2], a very similar

approach (adapted to W2,p-spaces) is given, and they also handle the translation-invariance (which is

not there in the example of [11]) which implies a lot a technicalities.

Inspired by the strategy of [25] who deals with the volume constraint for area minimizing surfaces, we

drastically simplify the presentation of [12, 11, 2] by using an exact penalization method. More precisely

(see also Theorem 3.2), we prove that under the assumptions (CHs2 ) for `2[J ](Ω∗), the constrained

optimality conditions (1.13) implies the unconstrained conditions (1.11) when J is replaced by

Jµ,C = J − µVol + C (Vol− V0)2 + C ‖Bar− Bar(Ω∗)‖2 , (1.14)

where µ is the Lagrange multiplier and C ∈ (0,∞) is large enough. We can therefore apply the uncon-

strained result for stability to Jµ,C , see the proof of Theorem 3.2, and this clearly implies the constrained

local minimality. It is clear, looking at the proofs of our results, that the situation we aim to describe in

this paper is quite general and can be applied to many other constraints or invariance; in particular if

there is a volume constraint but no translation invariance, the same strategy applies.

Old and new applications:

In order to justify the interest of our previous general statement, we provide several examples of functionals

for which Theorems 1.1 or 3.2 apply. We give here a short list of them, see Section 4 for more details.

• First, we want to show that our Theorem allows to retrieve classical statements already existing in the

literature. Mainly relying on the computation of the first and second derivatives of the functionals (see

Section 2), and the fact that they satisfy conditions (CHs2 ) and (ECHs2 ,Θ), we believe that despite

the degree of generality of our approach, the proofs are less technical and more straightforward than

the existing literature. This includes the examples of [12, 11, 2, 7], see Section 4.1 for a more detailed

description.

• Second, we notice ealier that if we were only interested in linear stability, namely that for every smooth

path t 7→ Ωt, there exists t0 small enough and c such that J(Ωt) − J(Ω) ≥ ct2 for every t ∈] − t0, t0[,

then most of the work relies only on the computation of derivatives, and proving the positivity of the

second order derivative of d2

dt2
J(Ωt)|t=0. In other words, most of the previous difficulties we described

earlier do not need to be handled. But it is in general much more satisfying (in particular in view of

the second step of the global strategy described before to obtain (1.2) for weak distances) to obtain a

uniformity in t0, c as we require in (1.2). On a couple of explicit examples, the contribution of this paper

is to get uniform stability results, while only directional results have been obtained for these examples.

This includes the result of [31] (see Proposition 4.1).

• We also provide new examples, which comes with minor cost thanks to our results. One example we

have in mind is the following generic example: if Ω∗ is a ball of volume V0 ∈ (0,∞), P (Ω) = Hd−1(∂Ω)

denotes the perimeter of Ω (for reasonably smooth sets), and E is the Dirichlet energy:

E(Ω) = min

{
1

2

∫
Ω
|∇u|2 −

∫
Ω
u, u ∈ H1

0(Ω)

}
, (1.15)

then the conditions of Theorem 3.2 (version of Theorem 1.1 taking into account the translation invariance

and the volume constraint) are fulfilled for the functional J = P + γE when γ ≥ γ0 and γ0 ∈ (−∞, 0)

(whose optimal value can be explicitly computed), and we can conclude from our strategy that the ball is
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a local minimizer (in a smooth neighborhood, say C2,α or even W2,p for p large enough) of the following

optimization problem

min {P (Ω) + γE(Ω), |Ω| = V0} . (1.16)

In other words, (1.2) is valid for J = P + γE, d1 is the H1-distance, and d2 = dΘ for Θ = W 2,p with p

large enough.

For γ ≥ 0 this result is not surprising, since the ball minimizes both the perimeter and the Dirich-

let energy, so a stability version is a direct consequence of (1.3) (if we replace d1 with the Fraenkel

asymmetry) or [19], but this result is new and surprising when γ is nonpositive (but small enough), even

considering only d1 = 0: indeed there is a competition between minimizing the perimeter and maximizing

the Dirichlet energy. Another way to state the result is to say that

P (Ω)− P (B)

E(Ω)− E(B)
≥ |γ0|, ∀Ω ∈ V(B), (1.17)

where V(B) = {Ω, dW 2,p(Ω, B) < η}, for some η > 0.

For a problem related to (1.16) when γ < 0, see also [24]. It is also interesting to notice that (nonlinear)-

stability (and even optimality of the ball) is no longer valid when one consider a neighborhood of Ω∗ for

a weak norm, for example the L1-norm. A counterexample is given in Section 5.1. Especially it means

that the second step of the strategy described before to handle non-smooth deformations, do not apply

to (1.16) if γ < 0, despite the fact that sets are minimizing the perimeter. This shows in which extend

the two steps defers concerning their degree of generality.

In addition to this example, we obtain several new local isoperimetric inequalities, see Proposition 4.1,

in Section 4.2.

Going deeper in the computations, it is possible, as it is done in [31] who obtains a directional version

of (1.17) when replacing E with λ1 (the first eigenvalue of the Dirichlet-Laplacian), to compute the

optimal value of the constant γ0 such that the ball is a smooth local minimizer for (1.16) (or equivalently

compute the optimal γ0 in (1.17) when η goes to 0), see Proposition 4.4. As we were mentioning in

the previous item, we insist on the fact that even in this particular case, we improve the result of [31],

since our analysis provides a uniform neighborhood where we have an isoperimetric inequality, while

this author make an asymptotic analysis on each path. However we do not compute the optimal value

for this case, it is indeed more involved because of the form of the second order derivative of λ1, we

therefore only obtain an estimate and refer to [31] for the optimal value.

In Section 2, we start with a new proof of the Structure Theorem for second order shape derivatives. We

also recall the classical examples of second order shape derivatives, noticing in particular in which norms they

are continuous (which leads to the value of s2 from assumption (CHs2 )), and focus on the case of the ball

for which we diagonalize the shape hessians (which leads to the classical stability properties of the ball for

these functionals). Section 3 contains the main results of this work: we state the version of Theorem 1.1

adapted to the constrained/invariant case, we discuss the coercivity assumptions proving (1.6) (Lemma 3.3),

and precise the known results on assumption (ECHs2 ,Θ), in particular we recall and improve the existing

results, and provide new ones, for example the first eigenvalue of the Dirichlet Laplacian for which it seems

this condition was not proven in the existing literature. In Section 4, we explain how our general results allow

to retrieve known results, and then prove some local isoperimetric inequalities, some of which are known,

some of which are new, see Proposition 4.1. All these applications are simple corollaries of our main results,

combined with the computations reminded in Section 2. In the last Section, we show counterexamples related

to nonlinear-stability, which helps to understand the hypotheses of our results.

2 On Second order shape derivatives.

In this section, we recall classical facts on second order shape derivatives, and give a new proof of their

structure. As for all the examples of this paper, J is a shape functional such that θ ∈ Θ 7→ J((Id + θ)(Ω))
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is of class C2 in a neighborhood of 0 in Θ if Ω is smooth enough and Θ = W1,∞(Rd,Rd), we focus on this

framework, though similar proofs can be adapted to other functional spaces. In Section 3.2 we give remarks

about other functional spaces in order to handle PDE functionals.

2.1 Structure theorem

It is well-known since Hadamard’s work that the shape gradient is a distribution supported on the moving

boundary and acting on the normal component of the deformation field. The second order shape derivative

also has a specific structure as stated by A. Novruzi and M. Pierre in [32]. We quote their result, and provide

a new proof:

Theorem 2.1 (Structure Theorem of first and second shape derivatives) Let Θ = W1,∞(Rd,Rd), Ω

an open bounded domain of Rd and J a real-valued shape function defined on V(Ω) = {(Id+ θ)(Ω), ‖θ‖Θ < 1}.
Let us define the function JΩ on {θ ∈ Θ, ‖θ‖Θ < 1} by

JΩ(θ) = J [(Id+ θ)(Ω)].

(i) If JΩ is differentiable at 0 and Ω is C2, then there exists a continuous linear form `1 on C1(∂Ω) such that

J ′Ω(0)ξ = `1(ξ|∂Ω · n) for all ξ ∈ C∞(Rd,Rd), where n denotes the unit exterior normal vector on ∂Ω.

(ii) If moreover JΩ is twice differentiable at 0 and Ω is C3, then there exists a continuous symmetric bilinear

form `2 on C1(∂Ω)× C1(∂Ω) such that for all (ξ, ζ) ∈ C∞(Rd,Rd)2

J ′′Ω(0)(ξ, ζ) = `2(ξ · n, ζ · n) + `1(B(ζτ , ξτ )−∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ ), (2.1)

where ∇τ is the tangential gradient, ξτ and ζτ stands for the tangential components of ξ and ζ, and B

is the second fondamental form of ∂Ω.

With respect to this work, it is important to notice that at a critical domain for J , the shape hessian is

reduced to `2 and hence does not see the tangential components of the deformations fields.

Remark 2.2 The requirement that Ω is bounded is made only to simplify the presentation: the result remains

valid replacing C1(∂Ω) with C1
c(∂Ω) and localizin the test functions.

Remark 2.3 As noticed in [26, p. 225], with this degree of generality, the regularity assumption on ∂Ω are

sharp as `1, `2 are a priori defined only on C1(∂Ω). We could wonder if `1 (for example) could be extended as

a continuous linear form on C0(∂Ω); this is not true in general if Ω is only assumed to be C1, as the example

of the perimeter shows (as it would mean that the mean curvature is a Radon measure, which is not true for a

C1 domain). However, as it is shown in [32, Remark 2.8, Corollary 2.9], if we assume that `1 can be extended

as a continuous linear form on C0(∂Ω), then the point (ii) is valid assuming Ω of class C2 instead of C3. It is

easy to notice that our proof also recovers this case.

Remark 2.4 Compare to the result in [32], we restricted ourself to the space Θ = W1,∞ (or similarly C1,∞,

see the proof below), as all the functional of this paper are differentiable in this space. Of course, the same

proof can be adapted to spaces like Wk,∞ for k ≥ 2, which is important to handle higher order geometric or

PDE functional, but we do not work with such examples in this paper.

Remark 2.5 When ξ = ζ, we get

J ′′Ω(0)(ξ, ζ) = `2(ξ · n, ξ · n) + `1(Zξ), where Zξ = B(ξτ , ξτ )− 2∇τ (ξ · n) · ξτ .

As noticed in [2, Equation 7.5], the term Zξ can have be written in a different way:

Zξ = (ξ · n)div(ξ)− divτ (ξτ (ξ · n))−H(ξ.n)2.
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The advantage of Zξ is usually that it clearly vanishes when ξτ = 0, but this second formulation can also

have advantages, especially when ξ has a vanishing divergence (as it is the case in [2]) or when there are

simplifications as it is the case for the volume (see Lemma 2.7 for the first equality):

Vol′′(Ω) · (ξ, ξ) =

∫
∂Ω
H(ξ · n)2 +

∫
∂Ω
Zξ =

∫
∂Ω

(ξ · n)div(ξ). (2.2)

In that case, the last formula is indeed more common.

Remark 2.6 It is sometimes considered that first and second order derivatives described in the previous

theorem cannot handle the differentiation of t 7→ J(Tt(Ω)) where T ∈ C2([0, α[,Θ) when Tt is not of the form

Tt = Id+ tξ. This is not true, as the chain rule formula easily gives (and is allowed when we have proven the

Fréchet-differentiability of the functionals, which is valid for all the functionals of this paper):

d2

dt2
J(Tt(Ω)) = J ′′Ω(Tt − Id)

(
d

dt
Tt,

d

dt
Tt

)
+ J ′Ω(Tt − Id)

(
d2

dt2
Tt

)
and the structure result can then be applied. For example, if Tt is the flow of the vector field ξ as it is usually

done in the speed method, we obtain:

d2

dt2
J(Tt(Ω))|t=0 = J ′′Ω(0) (ξ, ξ) + J ′Ω(0) ((Dξ) · ξ) .

Another interesting case is that if Ω is a critical shape for J , namely J ′Ω(0) ≡ 0, and if Tt = Id+tξ+ t2

2 η+o(t2)

where o(t2) has to be understood with the norm ‖ · ‖Θ, then we always have

d2

dt2
J(Tt(Ω))|t=0 = `2(ξ · n, ξ · n).

This fact is often observed through computations, but it is always true, when functionals and shapes are

smooth enough.

Proof. We only focus on the second order derivative, as the first order one is classical (see for example

[26, 14, 29]). For a few technical reasons, we replace Θ by C1,∞ := C1∩W1,∞(Rd,Rd) equipped with the same

norm as W1,∞, which is also a Banach space. This does not affect the result as we stated (2.1) for smooth

vector fields. Let ξ, ζ ∈ C∞ compactly supported in a neighborhood of ∂Ω, and denote γ, δ their respective

flow, namely {
d
dtγt(x) = ξ(γt(x))
γ0(x) = x

{
d
dtδt(x) = ζ(δt(x))
δ0(x) = x

As the function γ ∈ Θ 7→ ξ ◦ γ ∈ Θ is locally Lipschitz and C2 (thanks to our assumptions on ξ, ζ, see ???),

these ODE admits solutions defined on (−t0, t0) and [t 7→ γt − Id, t 7→ δt − Id] are in C2((−t0, t0),Θ).

Let now assume that ζ · n = 0. Then from classical criterion of invariance of sets with the flow, we have

δt(Ω) = Ω for every t small enough, so J(γs ◦ δt(Ω)) = JΩ(γs ◦ δt − Id) is independent of t. Differentiating

successively with respect to t and s at (0, 0), we obtain:

J ′′Ω(0) · (ξ, ζ) + J ′Ω(0) · (Dξ · ζ) = 0, ∀ξ ∈ Θ, ∀ζ ∈ K,

where K = Ker(Φ) and Φ : ξ ∈ Θ 7→ ξ|∂Ω · n.

We define b : (ξ, ζ) ∈ Θ×Θ 7→ J ′′Ω(0) · (ξ, ζ) + J ′Ω(0) · (Dξ · ζ) which is a bilinear functional that vanishes

for ζ ∈ K, for any fixed ξ. Therefore we can write, using quotient properties, b(ξ, ζ) = b̃(ξ, ζ|∂Ω · n) where

b̃ : Θ × C1(∂Ω) → R is continuous (a priori we only get that b̃ is separately continuous but with Banach-

Steinhaus Theorem, it implies continuity), as Φ induces an isomorphism between Θ/K and Φ(Θ) = C1(∂Ω)

equipped with the C1 norm (using that Ω is of class C2). Moreover by construction we have:

J ′′Ω(0) · (ξ, ζ) + J ′Ω(0) · (Dξ · ζ) = b̃(ξ, ζ|∂Ω · n), ∀ ξ, ζ ∈ Θ.
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Using the symmetry of J ′′Ω(0), we can write

b̃(ζ, ξ|Γ · n)− b̃(ξ, ζ|Γ · n) = J ′Ω(0) · (Dζ · ξ −Dξ · ζ)

Our goal is now to apply this formula to ζn the normal component of ζ, which needs to be extended as a

vector field on Rd. To that end, we introduce P∂Ω the projection on ∂Ω, which is well-defined and C1 in a

neighborhood of ∂Ω (see [14]). Then if ϕ is defined on ∂Ω, we set ϕ̃(x) = ϕ(P∂Ωx) (in other words, ϕ is

extended so that it is constant in the normal direction). This operator ϕ 7→ ϕ̃ is continuous from C1(∂Ω) to

C1,∞. Let us define then ζn := ˜(ζ · n)n the extension of the normal component of ζ. Defining the bilinear

form `0(ϕ1, ϕ2) = b̃(ϕ̃1n, ϕ2), defined and continuous on C1(∂Ω)2 (but a priori non symmetric), we obtain

J ′′Ω(0) · (ξ, ζ) = b̃(ξ, ζ · n)− J ′Ω(0) · (Dξ · ζ)

= b̃(ζn, ξ · n)− J ′Ω(0) · (Dζn ξ −Dξ · ζn)− J ′Ω(0) · (Dξ · ζ)
= `0(ζ · n, ξ · n)− J ′Ω(0) · (Dζn · ξ −Dξ · ζn +Dξ · ζ)
= `0(ζ · n, ξ · n)− J ′Ω(0) · (Dζn · ξ +Dξ · ζτ )

where ζτ = ζ − ζn. We now use Dζn = Dτζn, because thanks to our choice of extension operator, ζn is

constant in the direction n (by definition, Dτa = Da− (Da ·n)n), and therefore Dζn ξ = Dτζn ξτ . Moreover,

Dξ ζτ = Dτξ ζτ .

Using a symmetrization of the previous formula, we obtain

J ′′Ω(0) · (ξ, ζ) = 1
2

[
`0(ζ · n, ξ · n) + `0(ξ · n, ζ · n)− J ′Ω(0) · (Dτζn · ξτ +Dτξ · ζτ +Dτξn · ζτ +Dτζ · ξτ )

]
= `2(ξ · n, ζ · n)− 1

2J
′
Ω(0) ·

(
2Dτζ · ξτ + 2Dτξ · ζτ −Dτξτ · ζτ −Dτζτ · ξτ

)
where we defined `2(ξ · n, ζ · n) = 1

2(`0(ζ · n, ξ · n) + `0(ξ · n, ζ · n)), which is a continuous bilinear form on

C1(∂Ω)2.

From the structure of the first order derivative, and using the formula

tDτξτ · n + tDτn · ξτ = 0

(obtained by tangentially differentiating ξτ · n = 0), we finally obtain (using the C3 regularity of ∂Ω so that

Dτn belongs to the space of definition of `1)

J ′′Ω(0).(ξ, ζ) = `2(ξ · n, ζ · n)− 1
2`1

(
(2Dτζ · ξτ + 2Dτξ · ζτ ) · n− ζτ · (tDτξτ · n)− ξτ · (tDτζτ · n)

)
= `2(ξ · n, ζ · n) + `1

(
(Dτn · ζτ ) · ξτ −∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ

)
(where we used that Dτn is symmetric), which concludes the proof (a priori, `0 depends on the extension

operator that has been chosen, but as in the final formula the extension only appears in `2, this last one do

not depend, in fact, of the extension operator). �

2.2 Examples of shapes derivatives on general domains.

For a domain Ω ⊂ Rd, we consider in this section (and in the rest of the paper) its volume |Ω|, its perimeter

P (Ω), its Dirichlet energy E(Ω) defined as

E(Ω) = −
1

2

∫
∂Ω
|∇uΩ|2,

where uΩ is the solution of −∆u = 1 in H1
0(Ω) (this is equivalent to (1.15)) and λ1 the first eigenvalue of the

Dirichlet Laplace operator. The existence and computations of these shape derivatives of these functionals

are well known, see for example [26, Chapter 5].

We need first to precise some geometrical definitions: the mean curvature (understood as the sum of the

principal curvatures of ∂Ω) is denoted by H. We recall that B = Dτn is the second fundamental form of ∂Ω

and that ‖B‖2 is the sum of the squares of the principal curvatures of ∂Ω.
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Lemma 2.7 (Expression of shape derivatives) If Ω is C2, one has, for any ϕ ∈ C∞(∂Ω),

• `1[Vol](Ω).ϕ =

∫
∂Ω
ϕ, `2[Vol](Ω).(ϕ,ϕ) =

∫
∂Ω
Hϕ2.

• `1[P ](Ω).ϕ =

∫
∂Ω
Hϕ, `2[P ](Ω).(ϕ,ϕ) =

∫
∂Ω
|∇τϕ|2 +

∫
∂Ω

[
H2 − ‖B‖2

]
ϕ2

• `1[E](Ω).ϕ = −
1

2

∫
∂Ω

(∂nu)2ϕ,

`2[E](Ω).(ϕ,ϕ) = 〈∂nu ϕ,Λ(∂nu ϕ)〉H1/2×H−1/2 +

∫
∂Ω

[
∂nu+

1

2
H(∂nu)2

]
ϕ2

where Λ : H1/2(∂Ω) → H−1/2(∂Ω) is the Dirichlet-to-Neumann map defined as Λ(ψ) = ∂nV (ψ) with

V (ψ) is the solution of

−∆V (ψ) = 0 in Ω, V (ψ) = ψ on ∂Ω, (2.3)

• `1[λ1](Ω).ϕ = −
∫
∂Ω

(∂nv)2ϕ, `2[λ1](Ω).(ϕ,ϕ) =

∫
∂Ω

2w(ϕ) ∂nw(ϕ) +H(∂nv)2ϕ2

where v is the normalized eigenfunction (solution in H1
0(Ω) of −∆v = λ1v with ‖v‖L2(Ω) = 1 and v > 0

in Ω) and w(ϕ) is the solution of
−∆w(ϕ) = λ1w(ϕ)− v

∫
∂Ω

(∂nv)2ϕ in Ω,

w(ϕ) = −ϕ∂nv on ∂Ω,∫
Ω
v w(ϕ) = 0.

(2.4)

A fundamental fact for this work appears here in the expression of the shape hessians. Even if they are

defined and derived for regular perturbations, they are naturally defined and continuous on different Sobolev

spaces on ∂Ω. The hessian of the perimeter is defined on H1(∂Ω), the hessian of Dirichlet energy on H1/2(∂Ω)

while the hessian of the volume is defined on L2(∂Ω) as expressed in the following continuity properties:

Lemma 2.8 (Continuity of shape Hessians) If Ω is C2, there is a constant C > 0 such that

|`2[P ](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2H1(∂Ω), |`2[Vol](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2L2(∂Ω),

|`2[E](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2
H1/2(∂Ω),

|`2[λ1](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2
H1/2(∂Ω)

.

Therefore, from this Lemma, it is natural to consider the extension of these bilinear forms to their space of

continuity. Note that the C2 assumption on Ω is sufficient here, as explained in Remark 2.3.

2.3 The case of balls

When proving the second order optimality condition, one needs to explicit the shape derivatives of these

functionals on the balls BR (of radius R). For the Dirichlet energy E, we need to remark that u(x) =

(R2 − |x|2)/2d solves −∆u = 1 in H1
0(BR) and satisfies ∂nu = −R/d on ∂BR. For λ1, we recall that the

eigenvalue and eigenfunction are

λ1(BR) =
j2
d/2−1

R2
associated to v(x) = αd |x|1−d/2 Jd/2−1

(
jd/2−1

R
|x|

)
,

where the normalization constant is defined as

αd =

[
|∂B1|

∫ R

0
rJ2

d/2−1

(
jd/2−1

R
r

)
dr

]−1/2

,
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and where jd/2−1 is the first zero of Bessel’s function Jd/2−1. On the unit ball, the eigenfunction satisfies

∂nv =

√
2

P (B1)
jd/2−1 := γd, so that γ2

d =
2λ1(B1)

P (B1)
; (2.5)

from [27, p. 35]. We obtain the shape gradients:

`1[Vol](BR).ϕ =

∫
∂BR

ϕ, `1[P ](BR).ϕ =
d− 1

R

∫
∂BR

ϕ,

`1[E](BR).ϕ = −
R2

2d2

∫
∂BR

ϕ, `1[λ1](BR).ϕ = − γ2
d

∫
∂BR

ϕ.

Let us notice that these four shape gradients at balls are colinear. As a consequence, the balls are critical

domains for the perimeter, the Dirichlet energy and λ1 (or any sum of these functionals) under a volume

constraint, and these formula easily provide the value of the Lagrange-multiplier.

Let us turn our attention to the hessians. The value of `2[λ1] is a bit more involved, so we deal with it in

the next Lemma. For the other functionals, it is known that:

`2[Vol](BR).(ϕ,ϕ) =
d− 1

R

∫
∂BR

ϕ2,

`2[P ](BR).(ϕ,ϕ) =

∫
∂BR

|∇τϕ|2 +
(d− 1)(d− 2)

R2

∫
∂BR

ϕ2,

`2[E](BR).(ϕ,ϕ) =
R2

d2
〈ϕ,Λϕ〉H1/2×H−1/2 −

d+ 1

2d2
R

∫
∂BR

ϕ2.

It is well known in the literature (see for example [11]) that on balls the quadratic forms associated to

the Lagrangian are coercive on their natural spaces. Let us make this point precise by diagonalizing the

Hessian. The useful tool to explicit the shape hessian under consideration is spherical harmonics defined as

the restriction to the unit sphere of harmonic polynomials.

We recall here facts from [37, pages 139-141]. We let Hk denote the space of spherical harmonics of degree

k. It is also the eigenspace of the Laplace-Beltrami operator on the unit sphere associated with the eigenvalue

−k(k+d−2). Let (Y k,l)1≤l≤dk be an orthonormal basis of Hk with respect to the L2(∂B1) scalar product. The

(Hk)k∈N spans a vector space dense in L2(∂B1) and the family (Y k,l)k∈N,1≤l≤dk is a Hilbert basis of L2(∂B1).

Hence, any function ϕ in L2(∂B1) can be decomposed as the Fourier series:

ϕ(x) =

∞∑
k=0

dk∑
l=1

αk,l(ϕ)Y k,l(x), for |x| = 1. (2.7)

Then, by construction, the function h defined by

h(x) =
∞∑
k=0

|x|k
dk∑
l=1

αk,l(ϕ)Y k,l

(
x

|x|

)
, for |x| ≤ 1,

is harmonic in B1 and satisfies h = ϕ on ∂B1. Moreover, the sequence of coefficients αk,l characterizes the

Sobolev regularity of ϕ: indeed ϕ ∈ Hs(∂B1) if and only if the sum
∑

k(1 + k2)s
∑

l |αk,l|2 converges. Let us

now prove the following lemma expressing the fact that the shape hessian of the volume, the perimeter, the

Dirichlet energy and the first eigenvalue are diagonal on the basis of spherical harmonics.
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Lemma 2.9 Assume that ϕ is decomposed on the basis of spherical harmonics as in (2.7), then

`2[Vol](B1).(ϕ,ϕ) =

∞∑
k=0

dk∑
l=1

(d− 1) αk,l(ϕ)2,

`2[E](B1).(ϕ,ϕ) =
∞∑
k=0

dk∑
l=1

[
1

d2
k − d+ 1

2d2

]
αk,l(ϕ)2,

`2[P ](B1).(ϕ,ϕ) =

∞∑
k=0

dk∑
l=1

[
k2 + (d− 2)k + (d− 1)(d− 2)

]
αk,l(ϕ)2,

`2[λ1](B1)(ϕ,ϕ) = γ2
d

(
3P (B1)2α2

0,1(ϕ) +
∞∑
k=1

dk∑
l=1

[
k − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)

)
.

where γd is the constant defined in (2.5).

This result is very useful to look for the sign of `2[J −µVol](B1) where J is the functional we minimize and µ

is a Lagrange multiplier, see Section 4. For the computation of `2[λ1](B1), we use the presentation given by D.

Henry in [27, p. 35], though the computation was performed by Lord Rayleigh in [35] when d = 2 (see also [36]).

Proof. We decompose ϕ ∈ L2(∂B1) on the spherical harmonics basis as

ϕ(x) =
∞∑
k=0

(
dk∑
l=1

αk,l(ϕ)Y k,l(x)

)
, for |x| = 1. (2.8)

and let us express the various integrals arising in the shape hessian in terms of the spherical harmonics

decomposition. First we check that ∫
∂B1

ϕ2 =

∞∑
k=0

dk∑
l=1

αk,l(ϕ)2.

∫
∂B1

|∇τϕ|2 = −
∫
∂B1

ϕ ∆τϕ =
∞∑
k=0

k(k + d− 2)

dk∑
l=1

αk,l(ϕ)2.

Then, we precise the term involving the Dirichlet-to-Neumann map that appears in the shape hessian of the

Dirichlet energy. The series defining h is normally convergent inside B1, we cannot directly differentiate with

respect to r up to the boundary. Though, by Green formula, we have:

〈ϕ,Λϕ〉H1/2×H−1/2 =

∫
∂B1

ϕ∂nh =

∫
B1

|∇h|2

=

∫ 1

0

(∫
∂Br

(
(∂nh)2 + |∇τh|2

)
dσ

)
dr =

∫ 1

0

(∫
∂Br

(
(∂nh)2 − h∆τh

)
dσ

)
dr

=

∞∑
k=0

dk∑
l=1

∫ 1

0
rd−1

[
k2r2(k−1) +

k(k + d− 2)

r2
r2k

]
dr αk,l(ϕ)2

=
∞∑
k=0

dk∑
l=1

[
k2

2k + d− 2
+
k(k + d− 2)

2k + d− 2

]
αk,l(ϕ)2 =

∞∑
k=0

dk∑
l=1

k αk,l(ϕ)2.

We obtain `2[Vol], `2[P ] and `2[E] by gathering these elementary terms.

Let us now consider the case of the first eigenvalue. Again we decompose ϕ on the basis of spherical

harmonics according to (2.8) and we apply [27, p. 35]: it is proven there that for a second order volume
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preserving path, that is t 7→ Tt such that |Tt(Ω)| = |Ω|+ o(t2) for small t, we have(
d2

dt2
λ1(Tt(B1))

)
|t=0

= 2

∞∑
k=1

dk∑
l=1

γ2
d

[
k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)

where ϕ = ( ddtTt)|t=0 · n and we have used the recurrence formula for Bessel function J ′ν(z) = (ν/z)Jν(z) −
Jν+1(z) to adapt his expression to our notations ([1, 9.1.27, p 361]). To deduce `2[λ1] from this computation,

we introduce θ a smooth vector field which is normal on ∂B1 and denote ϕ = θ · n. We assume that∫
∂B1

ϕ = α0,1(ϕ) = 0. It is then clear that there exists ξ such that Tt := Id+ tθ+ t2

2 ξ is volume preserving at

the second order that is such that

`2[Vol](B1)(ϕ,ϕ) + `1[Vol](B1)(ψ) = 0.

Then we observe that for a smooth shape functional J and for such t 7→ Tt,(
d2

dt2
J(Tt(B1))

)
|t=0

= `2[J ](B1)(ϕ,ϕ) + `1[J ](B1)(ψ),

where ψ := ξ ·n, and therefore, denoting µ the Lagrange multiplier such that `1[λ1−µVol](B1) = 0, we obtain(
d2

dt2
λ1(Tt(B1))

)
|t=0

= `2[λ1](B1)(ϕ,ϕ) + `1[λ1](B1)(ψ) = `2[λ1](B1)(ϕ,ϕ) + µ`1[Vol](B1)(ψ)

= `2[λ1](B1)(ϕ,ϕ)− µ`2[Vol](B1)(ϕ,ϕ)

Then, we get, as here µ = −γ2
d :

`2[λ1](ϕ,ϕ) =

(
d2

dt2
λ1(Tt(B1))

)
|t=0

+ µ`2[Vol](B1)(ϕ,ϕ),

=

∞∑
k=1

dk∑
l=1

γ2
d

[
k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)− γ2

d

∞∑
k=0

dk∑
l=1

(d− 1)a2
k,l(ϕ),

=
∞∑
k=1

dk∑
l=1

γ2
d

[
k − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ).

It remains to compute the coefficient associated to the mode k = 0. It suffices to consider the deformations

as Tt(x) = x+ t‖Y 0,1‖x mapping the ball B1 onto the ball of radius 1 + tP (B1)1/2. Since λ1 is homogeneous

of degree −2, we get λ(t) = (1 + tP (B1)1/2)−2λ1(B1) so that λ′′(0) = 6P (B1)λ1(B1). �

3 Main Theorem

In the introduction, we gave the unconstrained version of the main result of this paper. As in most applications

we need to deal with a volume constraint and a translation invariance of the functional, we describe here the

corresponding statement. In the rest of the section, we discuss condition (C Hs2 ) and prove (1.6) about

coercivity, then condition (ECHs,Θ) with old and new examples, and we finally prove Theorems 1.1 and 3.2.

We start with the suitable definitions of critical and stable domains for problems with volume constraint

and translation invariant functionals:

Definition 3.1 Let Ω∗ be a shape and J a shape functional defined and twice shape differentiable at Ω∗, where

Θ is the Banach space for differentiability.
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• We say that Ω∗ is a critical domain for J under volume constraint if

∀ϕ ∈ C∞(∂Ω∗) such that `1[Vol](Ω∗).ϕ =

∫
∂Ω∗

ϕ = 0, `1[J ](Ω∗).(ϕ) = 0. (3.1)

It is well-known that it is equivalent to the existence of µ ∈ R such that (`1[J ]− µ`1[Vol])(Ω∗) = 0 on

C∞(∂Ω∗); in that case, µ is called a Lagrange multiplier associated to J .

• When Ω∗ is a critical domain for J under volume constraint, we say that Ω∗ is a stable shape for J

under volume constraint and up to translations if

∀ϕ ∈ T (∂Ω) \ {0}, (`2[J ]− µ`2[Vol])(Ω).(ϕ,ϕ) > 0 (3.2)

where

T (∂Ω) :=

{
ϕ ∈ Hs(∂Ω),

∫
∂Ω
ϕ = 0,

∫
∂Ω
ϕ−→x =

−→
0

}
, (3.3)

µ is the Lagrange multiplier associated to J and s ≥ 0 is the lowest index so that `2[J ](Ω) is continuous

on Hs(∂Ω) (see Lemma 2.8).

Here is the main result of this paper:

Theorem 3.2 Let Ω∗ of class C3, and J a shape functional, translation invariant and twice Fréchet differ-

entiable on a neighborhood of Ω∗ for dW1,∞. We assume:

• Structural hypotheses: there exists s2 ∈ (0, 1] and Θ a Banach space with C∞(Rd,Rd) ⊂ Θ ⊂W1,∞

such that J satisfies (CHs2 ) and (ECHs2 ,Θ) at Ω∗,

• Necessary optimality conditions:

– Ω∗ is a critical shape under volume constraint for J ,

– Ω∗ is a stable shape for J under volume constraint and up to translations:

Then Ω∗ is an Hs2-stable local minimum of J in a Θ-neighborhood under volume constraint, that

is to say there exists η > 0 and c = c(η) > 0 such that:

∀ Ω such that dΘ(Ω,Ω∗) ≤ η and |Ω| = |Ω∗|, J(Ω) ≥ J(Ω∗) + cd̄Hs2 (Ω∗,Ω)2.

where d̄Hs2 is defined in (1.5).

3.1 About coercivity and condition (ECHs)

Usually the coercivity property for the second order derivative (or the one of the Lagrangian; we notice here

that thanks to our exact penalization procedure (see (1.14) and the proof of Theorem 3.2) this section and the

following can indifferently be used for both the unconstrained and the constrained result) has to be proved

by hand on each specific example by studying the lower bound of the spectrum of the bilinear form `2 defined

in Theorem 2.1, typically thanks to Lemma 2.9. Nevertheless, when `2 enjoys some structural property,

coercivity can be more easily checked as a consequence of the following general lemma.

Lemma 3.3 Let X be a Lipschitz manifold, s2 ∈ [0, 1], and V a vectorial subspace of Hs2(X), closed for the

weak convergence in Hs2(X). If `, a quadratic form defined on Hs2(X) satisfies condition (CHs2 ), namely

(CHs2 ) there exists 0 ≤ s1 < s2 and c1 > 0 such that ` = `m + `r with{
`m is lower semi-continuous in Hs2(X) and `m(ϕ,ϕ) ≥ c1|ϕ|2Hs2 , ∀ϕ ∈ C∞(X),

`r continuous in Hs1(X).
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then the following propositions are equivalent:

(i) `(ϕ,ϕ) > 0 for any ϕ ∈ V \ {0}.

(ii) ∃λ > 0, `(ϕ,ϕ) ≥ λ‖ϕ‖2Hs1 for any ϕ ∈ V .

(iii) ∃λ > 0, `(ϕ,ϕ) ≥ λ‖ϕ‖2Hs2 for any ϕ ∈ V .

Remark 3.4 In practice, we apply this lemma to the spaces Hs(∂Ω) where ∂Ω is smooth enough, and V is

either Hs2(∂Ω) or T (∂Ω) defined in (3.3).

Proof. Since the implications (iii) =⇒ (ii) and (ii) =⇒ (ii) are trivial, it suffices to prove (i) =⇒ (iii).

To that end, let (ϕk)k a minimizing sequence for the problem

inf {`(ϕ,ϕ), ϕ ∈ V, ‖ϕ‖Hs2 = 1} .

Up to a subsequence, ϕk weakly converges in Hs2(X) to some ϕ∞ ∈ V . By the compactness of the embedding

of Hs2(X) into Hs1(X), ϕk → ϕ∞ in Hs1(X) so that `r(ϕk, ϕk) → `r(ϕ∞, ϕ∞). We distinguish two cases: if

ϕ∞ 6= 0, lim infk `m(ϕk, ϕk) ≥ `m(ϕ∞, ϕ∞) by the lower semi continuity of `m, so that lim infk `(ϕk, ϕk) ≥
`(ϕ∞, ϕ∞) > 0 by assumption (i). If ϕ∞ = 0, then as the norm ‖·‖Hs2 is equivalent to the norm ‖·‖Hs1 +|·|Hs2 ,

we know that |ϕk|Hs2 is bounded from below by a positive constant, and using (CHs2 ), lim infk `(ϕk, ϕk) =

lim infk `m(ϕk, ϕk) ≥ c1 lim infk |ϕk|2Hs2 > 0. �

Remark 3.5 The equivalence between coercivity in L2 and H1 was already known in the context of stable

minimal surface it appears in the work [25] of Grosse-Brauckmann. Also in [2], the previous lemma is proven

in the particular case of the functional they study.

Remark 3.6 When, one applies this lemma to a shape hessian, assumption (i) is not natural. Indeed, shape

derivatives are defined for regular perturbations that are dense subsets of Hs(∂Ω) and one could expect:

`(ϕ,ϕ) > 0 for ϕ ∈ V \ {0} smooth enough. But, in that case, our proof is not valid since ϕ∞ may not be

smooth and therefore not admissible to test the positivity property. Therefore, the bilinear form ` has to be

extended by continuity to the whole Hs(∂Ω) (see assumption (1.11) in Theorem 1.1 and (3.2) for Theorem

3.2). Notice that this extension is for free once the expression of the shape derivative has been computed as

illustrated by Lemma 2.7.

We conclude this section noticing that the shape hessians of the model functionals from Section 2 satisfies

(CHs2 ):

• The perimeter satisfies (CH1) with

`m[P ](ϕ,ϕ) =

∫
∂Ω
|∇τϕ|2 and `r[P ](ϕ,ϕ) =

∫
∂Ω

[
H2 − ‖B‖2

]
ϕ2 (here we can choose s1 = 0).

• The Dirichlet energy and λ1 satisfy (CH1/2) (again s1 = 0):

`m[E](ϕ,ϕ) = 〈∂nuϕ,Λ(∂nuϕ)〉H1/2×H−1/2 and `r[E](ϕ,ϕ) =

∫
∂Ω

[
∂nu+

1

2
H(∂nu)2

]
ϕ2,

`m[λ1](Ω).(ϕ,ϕ) =

∫
∂Ω

2w(ϕ) ∂nw(ϕ) and `r[λ1](ϕ,ϕ) =

∫
∂Ω
H(∂nv)2ϕ2.

See Section 5.2 for an example where (CHs) is not satisfied.
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3.2 About Condition (ECHs,Θ)

In this section, we show that our main examples satisfy condition (ECHs,Θ) where s is given in Section 3.1,

and Θ is hoped to be as small as possible.

Given Θ a Banach space of vector fields, we fix Ω∗ a C2 open set (the regularity insures the uniqueness of

the projection on ∂Ω∗ in its neighborhood). We recall that for Ω = (Id+ θ)(Ω∗) with ‖θ‖Θ small enough, we

can write

∂Ω = {x+ h(x)n(x), x ∈ ∂Ω∗}

for some function h : ∂Ω∗ → R, and we then focus on (Ωt)t∈[0,1] the path of open sets so that

∂Ωt = {x+ th(x)n(x), x ∈ ∂Ω∗}.

It can be useful to find a path of vector field that can describe this path of shapes. One convenient way to

do this is to extend h and n in a neighborhood of ∂Ω∗ so that it is constant in the direction given by n (then

we should be careful not to mix n with nt which will denote the normal vector to ∂Ωt):

h(x) = h(π∂Ω∗(x)) and n(x) = n(π∂Ω∗(x)),

where π∂Ω∗ is the projection on ∂Ω∗, well-defined in a neighborhood of ∂Ω∗. Then we define ξh = h(x)n(x) in

this neighborhood, and extend it smoothly to Rd, so that ξh ∈ Θ (assuming Ω∗ smooth enough). Therefore,

denoting Th = Id + ξh, we have Ω = Th(Ω∗), and j(t) = JΩ∗(tξh) = J(Ωt) for any t ∈ [0, 1] (where J is the

shape functional under study). Therefore j′′(t) = J ′′Ω∗(tξh) · (ξh, ξh) = J ′′(Ωt) · (ξh, ξh).

3.2.1 Geometric quantities

• The volume:

Proposition 3.7 If Ω is C2, then Vol satisfies (ECL2,W1,∞) condition.

Before proving this result, we give a geometric Lemma, inspired by the results in [11] in the context where

Θ = C2,α. We recall that J(h) := detDTh‖(tDT−1
h )n‖ is the surface jacobian, appearing when changing

variables between ∂Ωh and ∂Ω∗. In this section, the notation ŵh stands for wh ◦ Th where wh is defined on

Ωh or ∂Ωh.

Lemma 3.8 We have the following Taylor expensions, where O(‖h‖W1,∞) is a domination uniform in x,

• J(h) = 1 + `J1 (h) + 1
2`
J
2 (h, h) +O(‖h‖W1,∞)(|h|2 + |∇h|2),

• ñh = n + `n1 (h) + 1
2`

n
2 (h, h) +O(‖h‖W1,∞)(|h|2 + |∇h|2).

where (`J1 , `
n
1 ), (`J2 , `

n
2 ) are respectively linear and quadratic form, acting on (h,∇h).

Proof of Lemma 3.8: The first part follows simply from the fact that A ∈ Md(R) 7→ det(A)
∥∥(tA−1)n

∥∥ is

smooth in a neighborhood of Id, and the fact that Dξh = h(Dn) +∇h⊗ n.

For the second part, we use a level-set parametrization: there exists φ of class C2 such that Ω∗ = {φ < 0}
and ∇φ do not vanishes, and then Ω = {φ ◦ T−1

h < 0}. Therefore

ñh − n =
∇(φ ◦ T−1

h )

|∇(φ ◦ T−1
h )|

◦ Th −
∇φ
|∇φ|

=
tDT−1

h .∇φ
|tDT−1

h .∇φ|
− ∇φ
|∇φ|

,

and we conclude using the smoothness of A 7→ tA−1 and w ∈ Rd 7→ w
|w| in the neighborhood of Id and ∇φ

respectively. �
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Proof of Proposition 3.7: We denote H = div(n) the mean curvature of ∂Ω∗ (extended to Rd and constant

in the normal direction of ∂Ω∗). We use (2.2), and the fact that div(ξ) = ∇h ·n + hdiv(n) = hdiv(n) as h is

constant in the direction of n. Therefore if v(t) = Vol(Ωt), we have

v′′(t) =

∫
∂Ωt

ξ · ntdiv(ξ) =

∫
∂Ωt

div(n)(n · nt)h2 =

∫
∂Ω∗

H(n · n̂t)h2J(t).

With Lemma ??, we easily obtain

|v′′(t)− v′′(0)| ≤ C‖Tt − I‖W1,∞‖h‖2L2 = Ct‖ξ‖W1,∞‖h‖2L2 .

�

Remark 3.9 In the spirit of [34, Lemma 4.1], we could try a direct proof using the divergence formula: we

indeed obtain

|Ω| = 1

d

∫
∂Ω
x·nh =

1

d

∫
∂Ω∗

(x+ξh(x))·n̂hJ(h) =

∫
∂Ω∗

(x+hn(x)).(n+`1(h)+
1

2
`2(h, h)+O(‖h‖W1,∞)(|h|2+|∇h|2))

but this only leads to the fact that the volume satisfy (ECH1,W1,∞).

• The perimeter:

Proposition 3.10 If Ω is C2, then P satisfies (ECH1,W1,∞) condition.

Proof. We follow exactly the proof suggested in Remark 3.9:

P (Ωh) =

∫
∂Ωh

1 =

∫
∂Ω
J(h) = P (Ω) + `1[P ](Ω)(h) +

1

2
`2[P ](Ω)(h, h) +O(‖h‖W1,∞)‖h‖2H1(Sd−1),

where we used Lemma 3.8. This result is actually a strong version of (ECHs,Θ) condition: indeed, denoting

p(t) = P (Ωt), we apply the previous formula to th, and differentiate in t to get:

p′′(t) = p′′(0) + tO(‖h‖W1,∞)‖h‖2H1(Sd−1)

and the property follows. �

Remark 3.11 It is interesting to compare the two strategies used for the volume and for the perimeter:

indeed, for the volume we prefered to use the structure theorem, which lead to the best estimate (see Remark

3.9), while a similar strategy for the perimeter, as it is done in [11] or in [2, Proof of Theorem 3.9] (but for

a different path of shapes) lead to weaker results (in the sense that the space Θ is smaller, namely C2,α and

W2,p respectively). Therefore, we prefered here to directly prove a Taylor expension in h for the functional

P , with a refined control of the remainder term, that is an expansion of the form

J(Ωh) = J(Ω∗) + `1[J ](Ω∗)(h) +
1

2
`2[J ](Ω∗)(h, h) + ω(‖h‖Θ)‖h‖2Hs(∂Ω∗). (3.4)

This condition could be considered as another version of condition (ECHs,Θ). As we will see in the proof of

Theorem 1.1, our initial condition indeed implies (3.4), while it is easy to see, as it is done in the previous

proof when ω(x) = x, that under very weak assumption on ω (including for example ω(x) = xα, α > 0), (3.4)

implies (ECHs,Θ).
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3.2.2 PDE energy

For PDE energies, a condition of the type (ECHs,Θ) was studied first in [12] where it is proven that in

dimension two the Dirichlet energy satisfy (ECH1/2,C2,α) (for a volume preserving path instead of a normal

path), then a similar result is proven for general PDE functionals in any dimension in [11], either for the path

(1.10) or a volume preserving path. More recently in [2], it was proven that the functional described in (4.1)

involving the sum of the perimeter and a PDE functional (of a different kind than in [11]) satisfy (ECH1,W2,p)

for p large enough, also for a volume preserving path. Thanks to our method to handle the volume constraint

(see Section 3.3), we only need to deal with the path (1.10), which is easier than considering volume preserving

pathes.

In this section, we chose to focus on E and λ1 (the former is yet not handled in the literature), and we will

improve the space Θ compare to [11] (the smaller the space Θ is, the better the result is). For the functional

in [2] we refer to Section 4.1. Note that condition (ECH1/2,C2,α) is also established for the drag in a Stokes

flow in [8].

In other words, the aim of this section is to prove:

Proposition 3.12 Let Ω∗ be a bounded domain. If Ω∗ is C?, then E and λ1 satisfies (ECH1/2,W2,p) for

p > d+ 2.

We treat the case of E (see [11] and also [7, Appendix]) where it is proven that E satisfy (ECH1/2,C2,α) with

an emphasis on how to treat W2,p deformations. We sketch the proof except when the treatment differs from

the known case. We recall the expression of the second derivative along the path that we split for convienience

into : E′′(t) = T1(t) + T2(t) with

T1(t) =

∫
∂Ωt

∂n(t)u
′(t)∂n(t)u(t)ξ · n(t),

T2(t) =

∫
∂Ωt

∇|∇u|2 · ξ(ξ · n(t)) +H(t)(ξ · n(t))2(∂n(t)u(t))2

The idea is to estimate separately the variations of each terms. In order to replace C2,α with W2,p, two steps

have to be adapted. First, one needs to estimate ‖ût − u‖W2,p using the Sobolev theory of elliptic PDE. We

provide here a new proof based on the method used to prove existence of shape derivation. Second, one then

takes advantage of the fact that we seek for an estimate in H1/2 of the normal component of the deformation,

so any term naturally leading to the L2-norm can be improved.

Estimate of T1(t)− T1(0). This part is unaffected by the passage to the W2,p. Only first order derivatives

are involved and the L∞ bounds on the first order derivatives are deduced by the Sobolev injections as soon

as p > d.

• First modified step: Estimate of ‖ût − u‖W2,q by the W2,p norm of the deformations. Such an

estimate is a direct consequence of the regularity of the map θ 7→ ûθ from X to Y in well chosen spaces X and

Y . The analyticity of the map from X = W1,∞(Rd,Rd) into Y = H1
0(Ω) is proved in [26, Proof of Theorem

5.3.2]. The same conclusion is reached for the map from X = C2,α(Rd,Rd) into Y = C2,α(Ω) in [27, Example

3.1, p. 28]. As a clear consequence of the C1 regularity, there exist two constants η > 0 and C such that

‖v̂θ − v0‖Y ≤ C‖θ‖X , (3.5)

when ‖θ − Id‖Y ≤ η. Both proofs apply the Implicit Function Theorem to F : X × Y → Z defined by

F(θ, v) = −divA(θ)∇v − J(θ), (3.6)

where Z = H−1(Ω) for Y = H1
0(Ω) and J(θ) = det(Id + Dθ) and A(θ) = J(θ)(Id + Dθ)−1(Id + tDθ)−1. We

extend the previous results to the case X = W2,p(Rd,Rd) for p large.

Lemma 3.13 Let Ω be a bounded C2 domain in Rd. For q > d and p > max(q, d+ 2), the map θ 7→ (vθ, λθ)

from W2,p(Rd,Rd) with values in W2,q(Ω)× R is analytic around 0.
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Proof. By Neumann series expansion and Hölder inequality, the map J is analytic around 0 from W2,p(Rd,Rd)
into W1,p/d(Rd,Rd). In a similar manner, the map A is analytic from W2,p(Rd,Rd) into W1,p/(d+2)(Rd,Rd×d).
As a consequence, by Sobolev’s injection, the map F is analytic around (Id, v0) from W2,p(Rd,Rd)×W2,q(Ω)

into Lq(Ω). Ones checks that F(0, v0) = (0, 0) and that the differential

∂vF(0, v0).[u] = −∆u

is an isomorphism from W2,q(Ω) into Lq(Ω)×R and the conclusion follows from the Implicit Function Theorem.

�

• Second modified step: Estimate of T2(t) − T2(0). We first transport the integral T2(t) on the fixed

boundary and rewrite it as

T2(t) =

∫
∂Ω∗

σ(t)ϕ2,

where we have set

σ(t) =
[
M(t)∇|M(t)∇ũ(t)|2 · n + H̃(t) (n ·M(t)ñ(t))) (M(t)∇ũ(t) ·M(t)ñ(t))2

]
(n ·M(t)ñ(t)) Jτ (t)

From the previous geometric estimates and the estimates on the states, there is a constant C such that

‖σ(t)− σ(0)‖Lp ≤ C‖Tt − I‖W2,p .

Notice that the control holds only in Lp and not in L∞ as in [11] and also [7, Appendix]. Hence, we do not

obtain a control with the L2 norm of ϕ. By Hölder inequality, it comes |T2(t)−T2(0)| ≤ ‖σ(t)−σ(0)‖Lp‖ϕ‖2Lp̃
for any p̃ ≥ 2p/(p− 1). Since ‖ϕ‖Lp̃ ≥ C‖ϕ‖H1/2 when p̃ < 2d/(d− 1) by Sobolev’s injection, such a p̃ can be

chosen provided that for p > d. Then, it holds

|T2(t)− T2(0)| ≤ ‖σ(t)− σ(0)‖Lp‖ϕ‖2H1/2 ≤ C‖Tt − Id‖2W2,p‖ϕ‖2H1/2 .

3.3 Proof of Theorem 1.1

We are now in position to prove Theorem 1.1 corresponding to the unconstrained case. Let Ω∗ be a domain

satisfying the assumption of Theorem 1.1. Let η > 0 and let Ω be such that dΘ(Ω,Ω∗) < η. Then, there exists

h such that the boundary of Ω is the set {x + h(x)n(x), x ∈ ∂Ω∗}. Consider the path (Ωt)t∈[0,1] defined in

(1.10), j the restriction of J to the path Ωt. We write Taylor formula along this path:

J(Ω)− J(Ω∗) =

∫ 1

0
j′′(t)(1− t)dt =

1

2
j′′(0) +

∫ 1

0
[j′′(t)− j′′(0)](1− t)dt ≥ 1

2
j′′(0)−

∫ 1

0
|j′′(t)− j′′(0)|dt.

From (CHs2 ), we can apply Lemma 3.3 and there is a constant λ > 0 such that

`2[J ](Ω∗).(h, h) ≥ λ‖h‖2Hs2 .

Applying the (ECHs2 ,Θ) assumption, we obtain that for η small enough,

∣∣j′′(t)− j′′(0)
∣∣ ≤ λ

4
‖h‖2Hs2 , ∀t ∈ [0, 1], and therefore J(Ω)− J(Ω∗) ≥

λ

4
‖h‖2Hs2 .

�
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3.4 Proof of Theorem 3.2

We denote µ the Lagrange multiplier associated to J . Therefore we consider Jµ = J − µVol and Ω∗ satisfies

J ′µ(Ω∗) = 0.

Step 1: Stability under volume and barycenter constraint: The bilinear form `2 associated to the

second order derivative of the Lagragian Jµ is `2[J ]−µ`2[Vol]. Under the structural hypotheses on `2[J ](Ω∗) =

`m + `r and the fact that `2[Vol](Ω∗) is continuous in the L2-norm, we can applied Lemma 3.3 to `2[Jµ](Ω∗),

so there are constants c1, c2, c3 and c4 > 0 such that

∀ϕ ∈ Hs2(∂Ω∗), |`m(ϕ,ϕ)| ≥ c1|ϕ|2Hs1 |`r(ϕ,ϕ)| ≤ c2‖ϕ‖2Hs1 , |`2[Vol](Ω∗).(ϕ,ϕ)| ≤ c3‖ϕ‖2L2 , (3.7)

∀ϕ ∈ T (∂Ω∗), `2[J − µVol](Ω∗).(ϕ,ϕ) ≥ c4‖ϕ‖2Hs2 . (3.8)

Step 2: Stability without constraint: In order to deal with the volume constraint and the invariance

with respect to translations, we use an idea of [40, 25] by considering

Jµ,C = J − µVol + C (Vol− V0)2 + C ‖Bar− Bar(Ω∗)‖2 ,

where Bar(Ω) :=
∫

Ω x and ‖ · ‖ is the euclidean norm in Rd. The shape Ω∗ still satisfies J ′µ,C(Ω∗) = 0. We

claim that Ω∗ is astable shape for Jµ,C on the entire space Hs2(∂Ω∗) when C is big enough, that is to say for

all ϕ in Hs2 \ {0},
`2[Jµ,C ](Ω∗).(ϕ,ϕ)> 0. (3.9)

Indeed, if it was not the case, we would have the existence of ϕn ∈ Hs2(∂Ω∗) \ {0} such that

`2[Jµ,n](Ω∗).(ϕn, ϕn) ≤ 0. (3.10)

Using (3.7), this leads to

c1|ϕn|2Hs2 − c2‖ϕn‖2Hs1 − |µ|c3‖ϕn‖2L2 + 2n

(∫
∂Ω∗

ϕn

)2

+ 2n

∥∥∥∥∫
∂Ω∗

ϕnx

∥∥∥∥2

≤ 0. (3.11)

Assuming by homogeneity that ‖ϕn‖H s1 = 1 for every n, (3.11) implies that (ϕn)n is bounded in Hs2 and

using the compactness of Hs2(∂Ω∗) in Hs1(∂Ω∗), we have, up to a subsequence, that ϕn converges to ϕ, weakly

in Hs2 and strongly in Hs1 and L2. Therefore, (3.11) implies first that 2n[Vol′(ϕn)2 + Bar′(ϕn)2] is bounded,

then that ϕ ∈ T (∂Ω∗), that is to say ∫
∂Ω∗

ϕ = 0 and

∫
∂Ω∗

ϕx = 0,

and then the semi-lower continuity assumption in (CHs2 ) implies

`2[Jµ](Ω∗).(ϕ,ϕ) ≤ 0, with ‖ϕ‖Hs1 = 1

which contradicts (3.8), since ϕ 6= 0.

Step 3: Stability: It is now easy to see that Jµ,C satisfies both (CHs2 ) and (ECHs2 ,Θ) at Ω∗, and for C

large enough, we have (3.9), so applying Theorem 1.1, there exists λ > 0 and η > 0 such that for every Ω

with dΘ(Ω,Ω∗) < η,

Jµ,C(Ω)− Jµ,C(Ω∗) ≥ λ‖h‖2Hs2 ,

Writing this inequality in particular for shapes Ω of volume V0 and having the same barycenter as Ω∗,

J(Ω)− J(Ω∗) ≥ λ

4
‖h‖2Hs2 .

We conclude using the invariance of J with translations. �
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4 Applications

4.1 Retrieving some examples from the literature

Isoperimetric inequalities

According to the previous sections, the perimeter satisfy conditions (CH1) and (ECH1,W1,∞) at any smooth

enough set, and in particular for the ball. Moreover, as shows Section 2.3, we have

`1[P ](B1) = (d− 1)`1[Vol](B1), and `2[P − (d− 1)Vol](B1)(ϕ,ϕ) =
∞∑
k=0

dk∑
l=1

(k − 1)(k + d− 1) αk,l(ϕ)2.

Moreover, ϕ ∈ T (∂B1) if and only if α0,1(ϕ) = α1,i(ϕ) = 0 for i ∈ {1, . . . , d}. Therefore B1 is a critical and

stable shape for P under volume constraint, and up to translations: Theorem 3.2 applies, and we retrieve

Fuglede’s result from [19].

Recently in [34], different improved versions (with a better distance than the Fraenkel asymmetry for d1 in

(1.2)) of the quantitative isoperimetric inequality has been achieved for the anisotropic perimeter

Pf (Ω) =

∫
∂Ω
f(n∂Ω)

where f : Rd → R+ is a convex positively 1-homogeneous function, whose minimizer under volume constraint

is an homothetic version of the Wulff shape K = {f∗ < 1} where f∗ is the gauge function of f . In particular

in [34, Theorem 1.3 and Section 4] focused on the case where K is assumed to be C2 and uniformly convex, a

strategy based on the second variation is used: in particular a Fuglede type result is obtained in [34, Proposi-

tion 1.9], and this requires [34, Lemma 4.1], which in our framework asserts that Pf satisfies conditions (CH1)

and (ECH1,W1,∞). It is interesting to notice though that in order to show that K is strictly stable in the

sense that `2[Pf −µVol](K) > 0 on T (∂K) \ {0}, the author needs to use the quantitative Wulff isoperimetric

inequality from [17] (and obtained with optimal transport method); they deduce then, in the spirit of Lemma

3.3 that `2[Pf − µVol](K) is coercive for the H1-norm to complete the proof of the Fuglede-type result. They

apply then the regularization procedure mentioned in the introduction. Therefore, up to our knowledge, there

is no proof “from scratch” of the quantitative anisotropic isoperimetric inequality using a result similar to

Theorem 3.2.

The Ohta-Kawasaki model

In the paper [2], both steps of the strategy described in the introduction are achieved in order to deal with

the following functional, formulated in the periodic sense, and which includes a non-local term:

J(Ω) = PTN (Ω)+γG(Ω) where G(Ω) =

∫
TN
|∇wΩ|2dx and wΩ solves


−∆wΩ = 1Ω − 1Ωc −m in TN∫
TN

wdx = 0

(4.1)

where TN is the N -dimensional flat torus of unit volume, and m = |Ω| − |Ωc| ∈ (−1, 1) is fixed. Again, there

is an invariance with translation and a volume constraint.

In order to handle the first step of the strategy, the authors in [2] prove a stability result for the W2,p-

topology, for p large enough. Namely, if Ω∗ is a critical domain for J that is stable under volume constraint

and up to translations, (see (3.1)) then there exists η > 0, c > 0 such that

∀Ω such that dW 2,p(Ω∗,Ω) < η, J(Ω) ≥ J(Ω∗) + cd̄Hs2 (Ω∗,Ω). (4.2)

The strategy is very similar to [11], but in the framework of W2,p-spaces rather than C2,α spaces. Note

that the difference in the choice of spaces (W2,p instead of C2,α) is not just a detail as it is relevant for the

second step of the strategy when proving stability in an L1-neighborhood as it is done in [2, Section 4]: their

regularization procedure needs to allow discontinuity of the mean curvature, see equation (4.9) in the proof

of [2, Theorem 4.3]. This difficulty is handled in another way for the Faber-Krahn inequality, see below.
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From the computations of [9], we obtain

`1[G](Ω)(ϕ) = 4

∫
∂Ω
wϕ,

`2[G](Ω)(ϕ,ϕ) = 8

∫
TN
|∇zϕ|2dx+ 4

∫
∂Ω

(∂nw +H)ϕ2, where −∆zϕ = ϕHN−1b∂Ω

therefore G satisfies (CH1/2) and J satisfies (CH1), the dominant term being contained in the perimeter term.

As we have seen that the perimeter satisfies (ECH1,W1,∞) condition, it just remains to handle functional G,

which is proven to satisfy (ECH1,W2,p) for p > d. Therefore Theorem 3.2 applies, and we retrieve [2, Theorem

3.9], as d̄H1(Ω∗,Ω) easily dominates the Fraenkel asymmetry.

The Faber-Krahn inequality

In [7] (see also [21]) a quantitative version of the Faber-Krahn inequality is achieved, using again the two

steps mentioned in the introduction: in order to achieve the first step, they use the Kohler-Jobin inequality

([28]), which implies that the Faber-Krahn deficit is controlled by the deficit of the Dirichlet energy E.

However, as we show here, it is possible to achieve this step without this “trick”. Indeed, we have seen that

λ1 satisfies (ECH1/2) and (ECH1/2,W2,p) for p > d, and for any ϕ ∈ C∞(∂B1) such that
∫
∂B1

ϕ = 0, we have

`1[λ1](B1) = −γ2
d`1[Vol](B1), and `2[λ1 + γ2

dVol](B1)(ϕ,ϕ) = 2γ2
d

∞∑
k=0

dk∑
l=1

Qk αk,l(ϕ)2.

where (using [1, 9.1.27, p 361])

Qk = jd/2−1

J ′k+d/2−1(jd/2−1)

Jk+d/2−1(jd/2−1)
+
d

2
= k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk+d/2−1(jd/2−1)
= jd/2−1

Jk+d/2−2(jd/2−1)

Jk+d/2−1(jd/2−1)
− k + 1.

With the last formula, we easily notice that Q1 = 0. The sign of Qk can be obtained using the argument of

[33, 6.5 page 133] (done when d = 2, but as noticed in [27], valid for any d): indeed, their computations imply

jd/2−1

J ′k+d/2−1(jd/2−1)

Jk+d/2−1(jd/2−1)
≥ k − d/2− 1,∀n ∈ N∗,

which leads to

∀k ≥ 2, Qk ≥ k − 1.

Therefore Theorem 3.2 applies, and we retrieve a Faber-Krahn quantitative inequality for the d̄H1/2 distance

in a W2,p neighborhood of the ball.

4.2 Examples with competition

Combining the general Theorem 3.2 to the computations of shape derivatives from Section 2.1, we easily

obtain the following:

Proposition 4.1 Let V0 ∈ (0,∞), and B a ball of volume V0, and Θ = W2,p for p large enough. Then there

exists γ0 ∈ (0,∞) such that for every γ ∈ [−γ0,∞), there exists η = η(γ) > 0 and c = c(γ) > 0 such that for

every Ω ∈ Vη := {Ω, dΘ(Ω, B) < η,Vol(Ω) = Vol(B) and Bar(Ω) = Bar(B)},

(P + γE)(Ω) ≥ (P + γE)(B) + c‖h‖2H1 , (P + γλ1)(Ω) ≥ (P + γλ1)(B) + c‖h‖2H1

(E + γλ1)(Ω) ≥ (E + γλ1)(B) + c‖h‖2
H1/2 , (λ1 + γE)(Ω) ≥ (λ1 + γE)(B) + c‖h‖2

H1/2 ,

where h = hB,Ω is such that ∂Ω = {x+ h(x)n(x), x ∈ ∂B}.
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Proof of Proposition 4.1: It suffices to prove that Theorem 3.2 can be applied to Ω∗ = B and

J ∈ {P + γE, P + γλ1, E + γλ1, λ1 + γE)}.

It is explained in Sections 3.1 and 3.2 that (P,E, λ1) satisfies (CHs2 ) and (ECHs2 ,Θ) for suitable values of s2,

and with Lemmata 2.9 and 2.8 we easily check that the ball is a critical stable domain for J under volume

constraint and up to translations, either if γ ≥ 0 or if γ < 0 is small enough. �

Corollary 4.2 With the same notations as in Proposition 4.1, we have, with η0 = η(γ0):

∀Ω ∈ Vη0 ,
P (Ω)− P (B)

E(Ω)− E(B)
≥ γ0,

P (Ω)− P (B)

λ1(Ω)− λ1(B)
≥ γ0

γ0 ≤
λ1(Ω)− λ1(B)

E(Ω)− E(B)
≤ γ−1

0 .

Remark 4.3 In [31], the second inequality in Corollary 4.2 is also investigated, and the author computes the

optimal value γ0 when the size of the neighborhood Vη0 goes to 0, which we use in the proof of Proposition

4.4. We also refer to [33] for some result of this kind.

To the contrary to the last two-sided inequality, it is not possible to bound the first two ratio from above.

Indeed, for every γ ∈ (0,∞), there exists Ωγ = (Id+ θγ)(B) of class C∞ such that

|Ωγ | = |B|, ‖θγ‖Θ ≤ γ−1 and
P (Ω)− P (B)

E(Ω)− E(B)
> γ.

This is due to the fact that the functionals P and (E, λ1) satisfy conditions (CHs2 ) for different values of s2.

Explicit constants

We want to go further and compute explicit numbers γ such that the inequalities of Proposition 4.1 holds.

To simplify the expressions, we restrict ourselves to the case of the unit ball. In the first two cases, we

explicit the optimal constant, see Remark 4.5.

Proposition 4.4 Using notations of Proposition 4.1 and γd defined in (2.5),

(i) if γ > −(d+ 1)d2, then B1 is a local strict minimizer of P + γE: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (P + γE)(Ω) ≥ (P + γE)(B).

Moreover, when γ = −(d+ 1)d2, the second derivative of the Lagrangian cancels in some directions and

when γ < −(d+ 1)d2, the ball is a saddle shape for P + γE.

(ii) if γ > −
d(d+ 1)

γ2
d(d+ j2

d/2−1)
, then B1 is a local strict minimizer of P + γλ1: there exists η = η(γ) > 0 such

that

∀Ω ∈ Vη, (P + γλ1)(Ω) ≥ (P + γλ1)(B);

Moreover, when γ = −
d(d+ 1)

γ2
d(d+ j2

d/2−1)
, the second derivative of the Lagrangian cancels in some directions

and when γ < −
d(d+ 1)

γ2
d(d+ j2

d/2−1)
, the ball is a saddle shape for P + γλ1.

(iii) if γ > −
1

d2(d+ 1)γ2
d

, then B1 is a local strict minimizer of E + γλ1: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (E + γλ1)(Ω) ≥ (E + γλ1)(B);
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(iv) if γ > −γ2
dd

2, then B1 is a local strict minimizer of λ1 + γE: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (λ1 + γE)(Ω) ≥ (λ1 + γE)(B).

Note that the additional term ‖h‖2Hs2 can be added in the former inequalities with s2 = 1 for the cases (i)-(ii)

and with s2 = 1/2 for the cases (iii)-(iv).

Remark 4.5 In the cases (iii) and (iv), the constants we compute are not optimal, in particular we do not

claim the ball is a saddle point once we go beyond the computed value. Though it is possible to compute the

optimal value, one just need to compute explicitly the value of supk≥2 τ
′
k and supk≥2 τ

′′
k (see the notations in

the proof below) as it is done in the cases (i) and (ii). As it is seen in the second case handled by Nitsch in

[31], this computation can be rather technical.

Proof of Proposition 4.4:

Proof of (i): We first compute the Lagrange multiplier µ(t) associated to the volume constraint at B1: it is

defined as `1[P + tE) + µ(t)Vol] = 0 that is from the expression of the shape gradients of Vol, P and E:

µ(t) =
1

2d2
t − (d− 1).

Let us now turn our attention to hessian of the function P + tE + µVol on the balls B1. As a consequence of

Lemma 2.9, the shape hessian of the lagrangian P + tE + λ(t)Vol at balls is

`2[P + tE + µ(t)Vol](B1).(ϕ,ϕ) =
∞∑
k=0

ck

dk∑
l=1

αk,l(ϕ)2

where we have set

ck(t) = k2 +

[
(d− 2) +

1

d2
t

]
k −

[
(d− 1) +

1

d2
t

]
= (k − 1)

[
k + (d− 1) +

1

d2
t

]
.

Therefore, the hessian of the Lagrangian `2[P + tE + µ(t)Vol](B1) is coercive in H1(∂B1) when t solves the

inequalities

k + (d− 1) +
1

d2
t > 0

for all k ≥ 2. Of course, it suffices to solves that inequality in the special case k = 2 that provides t > −(d+1)d2.

Proof of (ii): Notice that the case t ≥ 0 is well known so we consider the case where t < 0. We compute the

Lagrange multiplier µ(t) associated to the volume at B1 defined by `1[P + tλ1) + µ(t)Vol] = 0 that is from

the expression of the shape gradient of the volume, the perimeter and λ1:

µ(t) = γ2
d t − (d− 1).

Let us now turn our attention to the hessian of the Lagragian P + tE + µ(t)Vol on the balls B1:

`2[P + tλ1 + µ(t)Vol](B1).(ϕ,ϕ) =

∞∑
k=0

ck(t)

dk∑
l=1

αk,l(ϕ)2

where we have set

ck(t) = k2 + (d− 2 + tγ2
d)k − (d− 1) + tγ2

d

[
d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
.
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We introduce the sequences ak = Jk−1+d/2(jd/2−1) and bk = ak+1/ak so that:

ck(t) = k2 + (d− 2)k − (d− 1) + tγ2
d

[
k + d− 1− jd/2−1bk

]
.

One should have c1(t) = 0 for any t, as known for the invariance by translations of all the involved functions,

we can attest this once we describe how one can compute the numbers bk, see below. For a given integer

k ≥ 2, ck(t) > 0 holds when t > τk defined as

τk = −
(k − 1)(k + d− 1)

γ2
d(k + d− 1− jd/2−1bk)

.

In order to obtain to find the optimal value of t so that these inequalities are satisfied for every k ≥ 2, we

need to compute the supremum of {τk, k ≥ 2}. It is proven by Nitsch in [31, p. 332, proof of Lemma 2.3] that

for all k ≥ 2, τk ≤ τ2. We describe here how one can obtain a more explicit version of τ2: from the recurrence

formula for Bessel function ([1, 9.1.27, p 361])

(2ν/z)Jν(z) = Jν−1(z) + Jν+1(z)

applied to ν = k − 1 + d/2 and z = jd/2−1, the sequences ak and bk satisfy the recurrence property

ak+1 =
2(k − 1) + d

jd/2−1
ak − ak−1 and bk+1 =

2(k − 1) + d

jd/2−1
−

1

bk

with the initial terms a0 = 0 and a1 = Jd/2(jd/2−1) so that b1 = a2/a1 = d/jd/2−1. Therefore, we have:

b2 =
d

jd/2−1
−
jd/2−1

d
=
d2 − j2

d/2−1

djd/2−1

and as a consequence, we obtain that

τ2 = −
d(d+ 1)

γ2
d(d+ j2

d/2−1)
.

Proof of (iii): The Lagrange multiplier is µ(t) = (1/d2) + tγ2
d . The Hessian of the Lagrangian is

`2[E + tλ1 + µ(t)Vol](B1).(ϕ,ϕ) =

∞∑
k=0

ck(t)

dk∑
l=1

αk,l(ϕ)2

where we have set

ck(t) =

(
1

d2
+ tγ2

d

)
k −

1

d2
+ tγ2

d

[
d− 1− jd/2−1bk

]
.

Again c1(t) = 0 and ck(t) > 0 if and only if

t > τ ′k = −
k − 1

d2γ2
d(k + d− 1− jd/2−1bk)

.

Using that b1 ≥ bk > 0, we obtain

τ ′k < −
1

d2γ2
d

k − 1

k + d− 1
= −

1

d2γ2
d

(
1−

d

k + d− 1

)
≤ −

1

d2(d+ 1)γ2
d

.

Therefore, if t > −
1

d2(d+ 1)γ2
d

then for any k ≥ 2, t > τ ′k, which leads to the result.
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Proof of (iv): The Lagrange multiplier is µ(t) = (t/d2) + γ2
d . The Hessian of the Lagrangian is

`2[λ1 + tE + µ(t)Vol](B1).(ϕ,ϕ) =
∞∑
k=0

ck(t)

dk∑
l=1

αk,l(ϕ)2

where we have set

ck(t) =

(
t

d2
+ γ2

d

)
k −

t

d2
+ γ2

d

[
d− 1− jd/2−1bk

]
.

We check c1(t) = 0 and ck(t) > 0 if and only if

t > τ ′′k = −γ2
dd

2

(
1 +

d− jd/2−1bk

k − 1

)
.

Using that b1 ≥ bk > 0, we obtain

τk ≤ −γ2
dd

2,

and therefore, if t > −γ2
dd

2 then for any k ≥ 2, t > τ ′′k , which leads to the result. �

5 Remarks on non-stability results

5.1 Counterexample for non smooth perturbations

Let us consider P the perimeter and E the Dirichlet energy with second right hand side 1 (defined in (1.15)),

and Ω∗ = B a ball of volume V0. We have seen in Proposition 4.1 that there is a real number γ0 ∈ (0,∞)

such that for every γ ∈ (−γ0,∞), B is a stable local minimum for P + γE.

For γ ≥ 0 this is not very surprising: since the ball minimizes E among sets of given volume, it is enough

to prove that the ball is a stable minimizer for the perimeter, which goes back to Fuglede [19]. Moreover, it

has been proven that B is an L1-stable minimizer of the perimeter in a L1-neighborhood of the ball, that is

to say there exists η > 0 such that

∀ Ω such that |Ω∆B| ≤ η, |Ω| = |B|, P (Ω)− P (B) ≥ c|Ω∆B|2 (5.1)

where we assume the barycenter of Ω to be the same as the one of B (actually this is no longer local, this

inequality can be stated for every set Ω of finite perimeter, see [20]). Therefore a similar inequality is valid

for P + γE if γ ≥ 0.

However, for γ < 0, the fact that the ball is a local minimizer is no longer trivial, there is a competition

between the minimization of the perimeter and maximization the Dirichlet energy. Though if the coefficient

in E is small enough, our result state that B is still a local minimizer in a Θ-neighborhood. Nevertheless, in

that case B is no longer a local minimizer in a L1-neighborhood. In other words, for every γ < 0 and any

ε > 0 one can find Ωε such that

dL1(Ωε, B) < ε, |Ωε| = |B|, and (P + γE)(Ωε) < (P + γE)(B).

To prove this, we use the idea of topological derivative, it is well known that if one consider a small hole of

size ε in the interior of a fixed shape. The energy will change at order εd−2 if d ≥ 3 and 1/log(ε) if d = 2,

which is strictly bigger than the change of perimeter which is of order εd−1, and therefore will strictly decrease

the energy P + γE when γ < 0.

We compute here explicitly these estimates when the hole is at the center of the ball: let us consider a fixed

ball B1 = B(0, 1) of radius 1 (to simplify the computations) and define Ωε = B1 \ B(0, ε) an annulus. Using

that ∆u = ∂rru+ d−1
r ∂ru when u is radial, the state function is:

uΩε(r) =
(εd−2 − εd)r2−d + εd − 1

2d(εd−2 − 1)
− r2

2d
, if d ≥ 3
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uΩε(r) =
1− ε2

−4 log(ε)
log(r) +

1− r2

4
, if d = 2

and therefore

if d ≥ 3, E(Ωε) = −1

2

∫
Ωε

uΩε =

[
d(1− ε2)2εd−2 − 2(1− εd)2

8d2(1− εd−2)
+

1− εd+2

4d(d+ 2)

]
P (B1)

=

[
− 1

2d2(d+ 2)
+
d− 2

8d2
εd−2 + o(εd−2)

]
P (B1),

if d = 2, E(Ωε) = −1

2

∫
Ωε

uΩε =

[
(1− ε2)

−8 log(ε)
(1− ε2(1− 2 log(ε)))− 1

16
(1− ε2 +

ε4

2
)

]
P (B1B1)

=

[
− 1

16
− 1

8 log(ε)
+ o

(
1

log(ε)

)]
P (B1).

We now define Ω̃ε = µεΩε where µε = (1− εd)−1/d so that

|Ω̃ε| = |B1|, P (Ω̃ε)− P (B1) =
[
µd−1
ε (1 + εd−1)− 1

]
P (B1) ∼ε→0 ε

d−1P (B1)

E(Ω̃ε)− E(B1) ∼ε→0
(d− 2)P (B1)

8d2
εd−2 > 0, if d ≥ 3, E(Ω̃ε)− E(B1) ∼ε→0

P (B1)

−8 log(ε)
> 0, if d = 2

so that in both cases, for any nonpositive γ, (P + γE)(Ωε)− (P + γE)(B1) < 0 for small ε.

5.2 Instability when no coercivity

The geometric inverse problems of shape reconstruction from boundary measurements leading to a overdeter-

mination in the boundary conditions are well known to be unstable. Hence, the theory presented in this work

should not apply. Indeed, shape functionals used for domain reconstruction from boundary measurements are

such that (i) holds while (ii) and (iii) are false (see [3], [4]). The general situation in the general class of such

inverse problems is then: for a reconstruction function J (for example the least square fitting to data), the

Riesz operator corresponding to the shape Hessian `2[J ] at a critical domain is compact. This means, roughly

speaking, that, in a neighborhood of the critical domain (i.e. for t small), J behaves as its second order

approximation and one cannot expect an estimate of the kind J(Ωt)− J(Ω0) ≥ ct2 with a constant c uniform

in the deformation direction. This explains also why regularization is required in the numerical treatment of

this type of problem.
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Université Paris-Dauphine

E-mail: lamboley@math.cnrs.fr

https://www.ceremade.dauphine.fr/~lamboley/

33


