Examen de simulation moléculaire

M2 ANEDP

16 mai 2008

La partie I est indépendante des parties II et III.

Rappel. On dit qu'une fonction mesurable $\psi: \mathbb{R}^3 \to \mathbb{R}$ est radiale s'il existe une fonction mesurable $f: \mathbb{R}_+ \to \mathbb{R}$ telle que

$$u(x) = f(|x|)$$
 pour presque tout $x \in \mathbb{R}^3$.

On rappelle également que

$$\left(\rho \star \frac{1}{|x|}\right)(x) = \int_{\mathbf{R}^3} \frac{\rho(x')}{|x - x'|} \, dx'.$$

Partie I.

Soit

$$\mathcal{W}_N = \left\{ \Phi = (\phi_1, \cdots, \phi_N) \mid \phi_i \in H^1(\mathbb{R}^3), \ \int_{\mathbb{R}^3} \phi_i \phi_j = \delta_{ij} \right\}$$

où δ_{ij} désigne le symbole de Kronecker ($\delta_{ij}=1$ si i=j et 0 sinon). A $\Phi=(\phi_1,\cdots,\phi_N)\in \mathcal{W}_N$, on associe la matrice densité

$$\gamma_{\Phi}(x, x') = \sum_{i=1}^{N} \phi_i(x)\phi_i(x') \tag{1}$$

et la densité

$$\rho_{\Phi}(x) = \sum_{i=1}^{N} |\phi_i(x)|^2.$$
 (2)

On introduit les potentiels de Coulomb et de Slater associés à Φ , définis respectivement par

$$v_{\rm C}^{\Phi} = \rho_{\Phi} \star \frac{1}{|x|}$$
 et $v_{\rm S}^{\Phi}(x) = -\frac{1}{\rho_{\Phi}(x)} \int_{\mathbb{R}^3} \frac{|\gamma_{\Phi}(x, x')|^2}{|x - x'|} dx'.$ (3)

On pose enfin pour tout $1 \le i, j \le N$

$$V_{ij}^{\Phi}(x) = \int_{\mathbf{R}^3} \frac{\phi_i(x')\phi_j(x')}{|x - x'|} dx'.$$

Question 1. Vérifier que pour tout $\Phi \in \mathcal{W}_N$ les fonctions $v_{\mathcal{C}}^{\Phi}$ et $v_{\mathcal{S}}^{\Phi}$ sont dans $L^{\infty}(\mathbb{R}^3)$ et qu'on a

$$-v_{\mathrm{C}}^{\Phi} \le v_{\mathrm{S}}^{\Phi} \le 0$$
 presque partout.

Question 2. On suppose dans cette question (et seulement dans cette question) que toutes les ϕ_i sont des fonctions radiales. En utilisant le théorème de Gauss, montrer que

$$\left| V_{ij}^{\Phi}(x) - \frac{\delta_{ij}}{|x|} \right| \le \frac{2}{|x|} \int_{|x'| \ge r} |\phi_i(x')\phi_j(x')| \, dx'.$$

En déduire que

$$V_{ij}^{\Phi}(x) = \frac{\delta_{ij}}{|x|} + o\left(\frac{1}{|x|}\right).$$

Question 3.

- 1. Soit ψ une fonction dans $L^p(\mathbb{R}^3) \cap L^q(\mathbb{R}^3)$ avec $1 \leq p < 3/2 < q \leq 2$. Montrer que $\psi \star \frac{1}{|x|}$ est une fonction continue et bornée sur tout \mathbb{R}^3 , qui tend vers 0 à l'infini.
- 2. On suppose dans cette question (et seulement dans cette question) qu'il existe $1 \le p < 3/2 < q \le 2$ tels que pour tout $1 \le i \le i \le N$, $|x| |\phi_i(x)\phi_j(x)| \in L^p(\mathbb{R}^3) \cap L^q(\mathbb{R}^3)$. Montrer que pour tout $x \in \mathbb{R}^3$,

$$||x|V_{ij}^{\Phi}(x) - \delta_{ij}| \le \int_{\mathbb{R}^3} \frac{|x'| |\phi_i(x')\phi_j(x')|}{|x - x'|} dx',$$

et en déduire que dans ce cas également

$$V_{ij}^{\Phi}(x) = \frac{\delta_{ij}}{|x|} + o\left(\frac{1}{|x|}\right).$$

Question 4. Déduire des deux questions 2 et 3 que si toutes les fonctions ϕ_i sont radiales, ou s'il existe $1 \leq p < 3/2 < q \leq 2$ tels que pour tout $1 \leq i \leq N$, $|x| |\phi_i(x)\phi_j(x)| \in L^p(\mathbb{R}^3) \cap L^q(\mathbb{R}^3)$, alors

$$v_{\rm S}^{\Phi}(x) = -\frac{1}{|x|} + o\left(\frac{1}{|x|}\right).$$

Question 5. Soit $\Phi \in \mathcal{W}_N$. Montrer que pour tout $v \in L^3(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$, la fonction $(x, x') \mapsto v(x)\gamma_{\Phi}(x, x')$ est dans $L^2(\mathbb{R}^3 \times \mathbb{R}^3)$ (on rappelle qu'une fonction v est dans $L^3(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ si et seulement si v peut s'écrire comme la somme d'une fonction de $L^3(\mathbb{R}^3)$ et d'une fonction de $L^\infty(\mathbb{R}^3)$).

Question 6. Soit $\Phi \in \mathcal{W}_N$. Pour $v \in L^3(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$, on pose

$$J^{\Phi}(v) = \int_{\mathbf{R}^3} \int_{\mathbf{R}^3} \left| v(x) \gamma_{\Phi}(x, x') + \frac{\gamma_{\Phi}(x, x')}{|x - x'|} \right|^2 dx dx'.$$

Ecrire la condition d'optimalité du premier ordre (équation d'Euler) associée au problème d'optimisation sans contrainte

$$\inf \left\{ J^{\Phi}(v), \ v \in L^3(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3) \right\}. \tag{4}$$

En déduire que si $\rho_{\Phi} > 0$ presque partout, alors $v_{\rm S}^{\Phi}$ est l'unique solution du problème (4).

Question 7. Quelle est interprétation du potentiel de Slater v_{S}^{Φ} ?

Partie II.

On considère les espaces

$$L_r^p(\mathbb{R}^3) = \left\{ \phi \in L^p(\mathbb{R}^3) \mid \phi \text{ radiale} \right\}, \qquad 1 \le p \le \infty$$

$$H_r^1(\mathbb{R}^3) = L_r^2(\mathbb{R}^3) \cap H^1(\mathbb{R}^3)$$

$$H_r^2(\mathbb{R}^3) = L_r^2(\mathbb{R}^3) \cap H^2(\mathbb{R}^3).$$

On admettra que muni des produit scalaires L^2 , H^1 et H^2 respectivement, $L_r^2(\mathbb{R}^3)$, $H_r^1(\mathbb{R}^3)$ et $H_r^2(\mathbb{R}^3)$ sont des espaces de Hilbert, et que $H_r^2(\mathbb{R}^3)$ est dense dans $L_r^2(\mathbb{R}^3)$. On rappelle que si $u \in L_r^2(\mathbb{R}^3)$, et si u(x) = f(|x|), alors

$$\int_{\mathbf{R}^3} |u|^2 = 4\pi \int_0^{+\infty} r^2 f(r)^2 dr.$$

Si de plus $u \in H_r^2(\mathbb{R}^3)$, alors $\Delta u \in L_r^2(\mathbb{R}^3)$ et

$$\Delta u(x) = \frac{1}{|x|} \frac{d^2}{dr^2} (rf(r)) \Big|_{r=|x|}.$$

Question 8. Soit H_0 l'opérateur sur $L^2_r(\mathbb{R}^3)$ de domaine $H^2_r(\mathbb{R}^3)$ défini par

$$\forall \phi \in H_r^2(\mathbb{R}^3), \quad H_0 \phi = -\frac{1}{2} \Delta \phi.$$

Montrer que H_0 est auto-adjoint.

Question 9. Montrer que $H_0 \geq 0$.

Question 10. Soit $\chi \in C^{\infty}(\mathbb{R})$ à support dans l'intervalle [1,2] et telle que

$$\int_{-\infty}^{+\infty} \chi^2 = \frac{1}{2\pi}.$$

Pour k > 0 et $n \in \mathbb{N}^*$, on pose

$$u_n(x) = \frac{1}{n^{\frac{1}{2}}} \chi\left(\frac{|x|}{n}\right) \frac{\sin(k|x|)}{|x|}$$

Montrer que lorsque n tend vers l'infini, la suite $(\|u_n\|_{L^2})_{n\in\mathbb{N}^*}$ tend vers 1, la suite $(u_n)_{n\in\mathbb{N}^*}$ converge faiblement vers 0 dans $L^2_r(\mathbb{R}^3)$, et la suite $(H_0u_n - k^2u_n)_{n\in\mathbb{N}^*}$ converge fortement vers 0 dans $L^2_r(\mathbb{R}^3)$.

Que peut-on en déduire sur le spectre de H_0 ?

Question 11. Montrer que le spectre ponctuel de H_0 est vide.

Question 12. Soit $\alpha > 0$, $\rho : \mathbb{R}^3 \to \mathbb{R}_+$ une fonction mesurable radiale, telle que $\int_{\mathbb{R}^3} \rho < \alpha$, et $V \in L^2_r(\mathbb{R}^3)$ telle que $V(x) \leq 0$ presque partout. Montrer que l'opérateur

$$H_{\alpha,\rho,V} = -\frac{1}{2}\Delta - \frac{\alpha}{|\cdot|} + \rho \star |\cdot|^{-1} + V$$

définit un opérateur auto-adjoint sur $L_r^2(\mathbb{R}^3)$ de domaine $H_r^2(\mathbb{R}^3)$ borné inférieurement, de spectre essentiel \mathbb{R}_+ et possédant une infinité de valeurs propres strictement négatives.

Question 13. Soit u_1 et u_2 deux vecteurs propres de H associés à la même valeur propre ϵ . Soit f_1 et f_2 les fonctions mesurables de \mathbb{R}_+ dans \mathbb{R} telles que $u_i(x) = f_i(|x|)$. On pose enfin $w_i(r) = rf_i(r)$.

- 1. Montrer que les fonctions w_i sont dans $C^{0,\frac{1}{2}}(\mathbb{R}_+)$, que $w_i(0) = 0$ et que les fonctions w_i sont solutions sur \mathbb{R}_+^* d'une équation différentielle linéaire du second ordre.
- 2. Soit

$$W(r) = w_1(r)\frac{dw_2}{dr}(r) - \frac{dw_1}{dr}(r)w_2(r).$$

Montrer que W est une fonction constante sur \mathbb{R}_+^* , puis que W=0 sur \mathbb{R}_+ .

3. En déduire que toutes les valeurs propres de H sont simples.

Question 14. On peut montrer (ne pas le faire!) que si $\rho = 0$ et V = 0, la k-ième plus petite valeur propre de $H_{\alpha,0,0}$ vaut $-\frac{\alpha^2}{2k^2}$.

Montrer que pour α , ρ et V comme à la question 12, la k-ième plus petite valeur propre $\lambda_k(H_{\alpha,\rho,V})$ de $H_{\alpha,\rho,V}$ est telle que

$$-\frac{\alpha^2}{2k^2} \le \lambda_k(H_{\alpha,\rho,V}) \le -\frac{\left(\alpha - \int_{\mathbf{R}^3} \rho\right)^2}{2k^2}.$$

Partie III.

On reprend les notations de la partie II.

Question 15. Montrer que pour tout $2 , l'injection de <math>H_r^1(\mathbb{R}^3)$ dans $L^p(\mathbb{R}^3)$ est compacte.

Question 16. On note $W_{N,r} := W_N \cap H_r^1(\mathbb{R}^3)^N$ le sous-espace des fonctions radiales dans W_N . Soit $Z \in \mathbb{N}^*$ et $N \in \mathbb{N}^*$ tels que $N \leq Z$. Pour $\Phi = (\phi_1, \dots, \phi_N) \in W_{N,r}$, on pose

$$E(\Phi) = \sum_{i=1}^{N} \frac{1}{2} \int_{\mathbb{R}^{3}} |\nabla \phi_{i}|^{2} - \int_{\mathbb{R}^{3}} \frac{Z \rho_{\Phi}(x)}{|x|} dx + \frac{1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{\Phi}(x) \rho_{\Phi}(x')}{|x - x'|} dx dx' - \int_{\mathbb{R}^{3}} \rho_{\Phi}^{4/3}$$

Montrer que le problème variationnel

$$\inf \{ E(\Phi), \ \Phi \in \mathcal{W}_{N,r} \}$$

admet un minimiseur.