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Abstract - The aim of the course is to present some recent progresses in the theory of semigroups
which have been motivated by the application to several classes of PDE coming from the kinetic
theory of gases and the biological modeling.
We present efficient versions of classical results such as the spectral mapping theorem, Weyls
theorems, Krein-Rutman theorem, stability under perturbation theorem. The proofs are based
on a factorization approach both for the spectral analysis of semigroup generators and semigroup
growth estimates. More precisely, we systematically use iterated Duhamel formula and its resolvent
counterpart in the spirit of Dyson series approach.
The abstract theory is motivated and illustrated by the applications to several PDEs. We will
present an uniform treatment of the convergence to the equilibrium for the discrete and classical
Fokker-Planck equation. We will also investigate the long-time asymptotic of solutions to the Keller-
Segel equation for chemotaxis as well as of solutions to a time elapsed neuron network model.
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Program

Lecture 1 - Introduction
I - Introduction

II - Basic tools & classical caracterization of growth estimates

Lecture 2 - Growth estimates
III - Factorization & growth estimates

IV - Examples of evolution PDEs

Lecture 3 - Spectral Analysis
V - Basic facts about spectral anlysis of opeartors and semigroups

VI - Factorization & spectral analysis

Lecture 4 - Application to nonlinear PDEs
VII - The Keller-Segel equation

VIII - A neural network model
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Excercices

Excercice 1. Consider the rescaled Keller-Segel equation on the plane

∂tg = ∆g +∇(xg + (K ∗ g)g),

g = g(t, x), t ≥ 0, x ∈ R2 and K(z) := ∇κ(z) = (2π)−1z/|z|2, κ(z) := (2π)−1 log |z|.
(1) We admit that

E(g) :=

∫
g log g +

∫
g〈x〉2 +

1

2

∫ ∫
g(x)g(y)κ(x− y) ≥ 0.

Prove that
d

dt
E(g) = −D(g)

with

D(g) :=

∫
g
∣∣∣∇(log g +

|x|2

2
+ κ ∗ g

)∣∣∣2.
(2) Admit the log-Sobolev inequality

λH(f |γ) ≤ 1

2
I(f |γ) ∀ f ∈ D,

with E(f |γ) = E(f)− E(γ),

H(f) =

∫
f log f, I(f) =

∫
|∇f |2

f
, γ(x) = (2π)−d/2 exp(−|x|2/2),

D :=

{
f ∈ L1(Rd); f ≥ 0,

∫
f = 1,

∫
f x = 0,

∫
f |x|2 = d

}
and deduce the Poincaré inequality

(λ+ d) ‖h‖2L2(γ−1/2) ≤
∫
|∇h|2 γ−1 ∀h ∈ D(Rd), 〈h[1, x, |x|2] 〉 = 0,

(Hint : choose f = γ + εh and make ε→ 0)

(3) Admit that there exists a unique minimizer G to E on the class of functions with mass M ∈
(0, 8π). Mimicking the argument of question (2), prove that

Q1[f ] :=

∫
f2G−1 +

∫ ∫
f(x)f(y)κ(x− y) dxdy

is a Lyapunov functional for the linearized equation

∂tf = ∆f +∇(xf + (K ∗ f)G+ (K ∗G)f).
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Excercice 2. For a familly (St)t≥0 of operators acting on a Banach space X, we introduce the
following properties :

(i) ∀t ≥ 0, f 7→ Stf is linear and continuous on X ;

(ii) ∀f ∈ X, t 7→ St f ∈ C([0,∞), X) ;

(ii′) S(t)f → f when t↘ 0, for any f ∈ X.

(iii) S0 = I ; ∀ s, t ≥ 0, St+s = St Ss ;

(iv) ∃ b ∈ R, ∃M ≥ 1,
‖St‖B(X) ≤M ebt ∀ t ≥ 0.

We define a new familly (Tt)t≥0 and the new norm ||| · ||| on X by

(0.1) T (t) := e−ω t S(t) and |||f ||| := sup
t≥0
‖T (t) f‖,

where

ω := lim sup
t→∞

1

t
log ‖S(t)‖ = inf{b ∈ R; (iv) holds}.

Here are questions :

(1) Prove that (i), (ii′) and (iii) imply (iv). (Hint. Use a contradiction argument and the Banach-
Steinhaus Theorem).

(2) Prove that (i)-(ii′)-(iii) implies (i)-(ii)-(iii). (Hint. Use (1)).

(3) Prove the two norms ‖ · ‖ and ||| · ||| are equivalent and that T (t) is a semigroup of contractions
for the new norm.

(4) Prove that if St satisfies (iii) as well as the continuity properties (i) & (ii) in the sense of the
weak topology σ(X,X ′), then St is a strongly continuous semigroup.

Excercice 3. Consider two Banach spaces X, Y and a function u : R+ → B(X) + B(Y ). For
Θ ≥ 0, a∗, b ∈ R, a∗ < b, we assume

(a) ue−at ∈ L∞(0,∞; B(X) ∩B(Y )) for any a > a∗ ;
(b) ue−btt−Θ ∈ L∞(0,∞; B(X,Y )).

Prove that
(c) for any a > a∗, there exists n such that u(∗n)e−at ∈ L∞(0,∞; B(X,Y )).(

Hint. Consider as a first step the case n = 2, and split

(u ∗ u)(t) =

∫ t/2

0

u(t− s)u(s) ds+

∫ t

t/2

u(t− s)u(s) ds
)
.
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Excercice 4. We consider two Banach spaces E and E such that E ⊂ E with dense and continuous
embedding, and we consider L the generator of a semigroup SL(t) := etL on E, L the generator of
a semigroup SL(t) := etL on E with L|E = L.

We assume that there exist some operators A,B ∈ C (E), A � B, A,B ∈ C (E), A � B, such that

(0.2) L = A+ B, L = A+B, A|E = A, B|E = B.

We also assume that following properties hold for some real number a ∈ R :

∀ ` ∈ N, ‖SB ∗ (ASB)(∗`)(t)‖E→E ≤ C` eat,
∀ ` ∈ N, ‖SB ∗ (ASB)(∗`)(t)‖E→E ≤ C` eat,

∃n ≥ 1,

∫ ∞
0

‖(ASB)(∗n)(t)‖E→E e−at dt ≤ Cn,

∃n ≥ 1,

∫ ∞
0

‖(SBA)(∗n)(t)‖E→E e−at dt ≤ Cn,

and there exists an operator Π such that

Π ∈ B(E , E) is a projector which commutes with L.

Prove that the following equivalence holds :
(1) The semigroup SL satisfies the splitting structure and the growth estimate

SL = SLΠ|E + SL(I −Π|E) and
∥∥∥SL(t)(I −Π|E)

∥∥∥
B(E)

≤ CL,a ea t,

for any t ≥ 0 and some constant CL,a > 0 ;
(2) The semigroup SL satisfies the splitting structure and the growth estimate

SL = SLΠ + SL(I −Π) and
∥∥∥SL(t)(I −Π)

∥∥∥
B(E)

≤ CL,a ea t,

for any t ≥ 0 and some constant CL,a > 0.(
Hint. For (1) ⇒ (2), use the iterated Duhamel formula

(I −Π)SL = (I −Π)

n−1∑
`=0

SB ∗ (ASB)(∗`) + [(I −Π|E)SL] ∗ (ASB)(∗n)
)
.
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