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CHAPTER 1

VARIATIONAL SOLUTION FOR PARABOLIC EQUATION

1. Introduction

In this chapter we will focus on the question of existence (and uniqueness) of a
solution f = f(t, x) to the (linear) evolution PDE of “parabolic type”

(1.1) ∂tf = Λ f on (0,∞)× Rd,

where Λ is the following integro-differential operator

(1.2) (Λf)(x) = ∆f(x) + a(x) · ∇f(x) + c(x) f(x) +

∫
Rd

b(y, x) f(y) dy,

that we complement with an initial condition

(1.3) f(0, x) = f0(x) in Rd.

Here t ≥ 0 stands for the “time” variable, x ∈ Rd stands for the “position” variable,
d ∈ N∗.
In order to develop the variational approach for the equation (1.1)-(1.2), we make
the strong assumption that

f0 ∈ L2(Rd) =: H, which is an Hilbert space,

and that the coefficients satisfy

a ∈W 1,∞(Rd), c ∈ L∞(Rd), b ∈ L2(Rd × Rd).

The main result we will present in this chapter is the existence of a weak (varia-
tional) solution (which sense will be specified below)

f ∈ XT := C([0, T );L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1),

to the evolution equation (1.1), (1.3). We mean variational solution because the
space of “test functions” is the same as the space in which the solution lives. It
also refers to the associated stationary problem which is of “variational type” (see
[1, chapter VIII & IX]).

The existence of solutions issue is tackled by following a scheme of proof that we
will repeat for all the other evolution equations that we will consider in the next
chapters.

(1) We look for a priori estimates by performing (formal) differential and integral
calculus.

(2) We deduce a possible natural functional space in which lives a solution and
we propose a definition of a solution, that is a (weak) sense in which we may
understand the evolution equation.

1



2 CHAPTER 1 - VARIATIONAL SOLUTION FOR PARABOLIC EQUATION

(3) We state and prove the associated existence theorem. For the existence proof
we typically argue as follows: we introduce a “regularized problem” for which we are
able to construct a solution and we are allowed to rigorously perform the calculus
leading to the “a priori estimates”, and then we pass to the limit in the sequence
of regularized solutions.

2. A priori estimates

Define V = H1(Rd). We first observe that for any f ∈ D(Rd)

〈Λf, f〉 = −
∫
|∇f |2 +

∫
a · ∇x

f2

2
+

∫
c f2 +

∫ ∫
b(y, x) f(x)f(y) dxdy.

≤ −‖f‖2V +
(

1 + ‖(c− 1

2
div a)+‖L∞ + ‖b+‖L2

)
‖f‖2H .

We also observe that for any f, g ∈ D(Rd)

|〈Λf, g〉| ≤ ‖∇f‖L2 ‖∇g‖L2 + ‖a‖L∞ ‖∇f‖L2 ‖g‖L2 + (‖c‖∞ + ‖b‖L2) ‖f‖L2 ‖g‖L2

≤ (1 + ‖a‖∞ + ‖c‖L∞ + ‖b‖L2

)
‖f‖V ‖g‖V .

We easily deduce from the two preceding estimates that our parabolic operator falls
into the following abstract variational framework.
Abstract variational framework. We consider a Hilbert space H endowed with the
scalar product (·, ·) and the norm | · |. We identify H with its dual H ′ = H. We
consider another Hilbert space V endowed with a norm ‖ · ‖V and we denote 〈., .〉
the duality product on V . We assume V ⊂ H with dense and bounded embedding
so that V ⊂ H ⊂ V ′.
We consider a linear operator Λ : V → V ′ which is bounded (or continuous), which
means

(i) ∃M > 0 such that

|〈Λg, h〉| ≤M ‖g‖ ‖h‖ ∀ g, h ∈ V ;

and such that Λ is “coercive+dissipative”1 in the sense

(ii) ∃α > 0, b ∈ R such that

〈Λg, g〉 ≤ −α ‖g‖2 + b |g|2 ∀ g ∈ V ;

and we consider the abstract evolution equation

(2.1)
dg

dt
= Λg in (0, T ),

for a solution g : [0, T )→ H, with prescribed initial value

(2.2) g(0) = g0 ∈ H.

1We commonly say that (the bilinear form associated to) −Λ is coercive if (ii) holds with α > 0

and b = 0, and that Λ − b is dissipative if (ii) holds with α = 0 and b ∈ R. Our assumption (ii)
is then more general than a coercivity condition (on −Λ) but less general than a dissipativity

condition (on Λ).
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A priori bound in the abstract variational framework. With the above assumptions
and notations, any solution g to the abstract evolution equation (2.1) (formally)
satisfies the following estimate

(2.3) |g(T )|2H + 2α

∫ T

0

‖g(s)‖2V ds ≤ e2bT |g0|2H ∀T.

We (formally) prove (2.3). Using just the coercivity+dissipativity assumption (ii),
we have

d

dt

|g(t)|2H
2

= 〈Λg, g〉 ≤ −α‖g(t)‖2V + b |g(t)|2H ,

and we conclude thanks to the Gronwall lemma, that we recall now.

Lemma 2.1 (Gronwall). Consider 0 ≤ u ∈ C1([0, T ]), 0 ≤ v ∈ C([0, T ]) and
α, b ≥ 0 such that

(2.4) u′ + 2αv ≤ 2bu in a pointwise sense on (0, T ),

or more generally 0 ≤ u ∈ C([0, T ]) and 0 ≤ v ∈ L1(0, T ) which satisfies (2.4) in
the distributional sense, namely

(2.5) u(t) + 2α

∫ t

0

v(s) ds ≤ 2b

∫ t

0

u(s) ds+ u(0) ∀ t ∈ (0, T ).

Then, the following estimate holds true

(2.6) u(t) + 2α

∫ t

0

v(s) ds ≤ e2bt u(0) ∀ t ∈ (0, T ).

Proof of Lemma 2.1. Since (2.4) clearly implies (2.5), we just have to prove that
(2.5) implies (2.6). We introduce the C1 function

w(t) := 2b

∫ t

0

u(s) ds+ u(0).

Differentiate w, we get thanks to (2.5)

w′(t) = 2bu(t) ≤ 2bw(t)

so that

w(t) ≤ e2bt w(0) = e2bt u(0).

We conclude by coming back to (2.5). �

From the formal/natural/physics estimate (2.3) together with equation (2.1) and
the continuity estimate (i) on Λ, we deduce∥∥∥dg

dt

∥∥∥
V ′

= ‖Λg‖V ′ ≤M ‖g‖V ∈ L2(0, T ),

and we conclude with

(2.7) g ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′).
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3. Variational solutions

Definition 3.1. For any given g0 ∈ H, T > 0, we say that

g = g(t) ∈ XT := C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′)

is a variational solution to the Cauchy problem (2.1), (2.2) on the time interval
[0, T ] if it is a solution in the following weak sense

(3.1) (g(t), ϕ(t))H = (g0, ϕ(0))H +

∫ t

0

{
〈Λg(s), ϕ(s)〉V ′,V + 〈ϕ′(s), g(s)〉V ′,V

}
ds

for any ϕ ∈ XT and any 0 ≤ t ≤ T .
We say that g is a global solution if it is a solution on [0, T ] for any T > 0.

Theorem 3.2 (J.L. Lions). With the above notations and assumptions for any
g0 ∈ H, there exists a unique global variational solution to the Cauchy problem
(2.1), (2.2). As a consequence, any solution satisfies (2.3) and the application
g0 7→ g(t) defines a C0-semigroup on H.

We start with some remarks and we postpone the proof of the existence part of
Theorem 3.2 to the next section.

3.1. Parabolic equation. As a consequence of Theorem 3.2, for any f0 ∈ L2(Rd)
there exists a unique function

f = f(t) ∈ C([0, T ];L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1), ∀T > 0,

which is a solution to the parabolic equation (1.1)-(1.2) in the variational sense.

3.2. About the functional space. The space obtained thanks to the a priori
estimates established on g is nothing but XT as consequence of the following result.

Lemma 3.3. The following inclusion

L2(0, T ;V ) ∩H1(0, T ;V ′) ⊂ C([0, T ];H)

holds true. Moreover, for any g ∈ L2(0, T ;V ) ∩H1(0, T ;V ′) there holds

t 7→ |g(t)|2H ∈W 1,1(0, T )

and
d

dt
|g(t)|2H = 2 〈g′(t), g(t)〉V ′,V a.e. on (0, T ).

Proof of Lemma 3.3. Step 1. We define ḡ = g on [0, T ], ḡ = 0 on R\[0, T ],
and for a mollifier ρ with compact support included in (−1,−1/2), we define the
approximation to the identity sequence (ρε) by setting ρε(t) := ε−1ρ(ε−1t) and
then the sequence gε(t) := ḡ ∗t ρε where ∗ stands for the usual convolution operator
on R. We observe that gε ∈ C1(R;H), gε → g a.e. on [0, T ] and in L2(0, T ;V ).
For a fixed τ ∈ (0, T ) and for any t ∈ (0, τ) and any 0 < ε < T − τ , we have
s 7→ ρε(t− s) ∈ D(0, T ), since supp ρε(t− ·) ⊂ [t+ ε/2, t+ ε] ⊂ [ε/2, τ + ε], and we
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compute

g′ε =

∫
R
∂tρε(t− s) ḡ(s) ds

= −
∫ T

0

(∂sρε(t− s)) g(s) ds

=

∫ T

0

ρε(t− s) g′(s) ds = ρε ∗ (g′).

As a consequence g′ε → g′ a.e. and in L1(0, τ ;V ′).

Step 2. We fix τ ∈ (0, T ) and ε, ε′ ∈ (0, T − τ), and we compute

d

dt
|gε(t)− gε′(t)|2H = 2 〈g′ε − g′ε′ , gε − gε′〉V ′,V ,

so that for any t1, t2 ∈ [0, τ ]

(3.2) |gε(t2)− gε′(t2)|2H = |gε(t1)− gε′(t1)|2H + 2

∫ t2

t1

〈g′ε − g′ε′ , gε − gε′〉ds.

Since gε → g a.e. on [0, τ ] in H, we may fix t1 ∈ [0, τ ] such that

(3.3) gε(t1)→ g(t1) in H.

As a consequence of (3.2), (3.3) as well as gε → g in L2(0, τ ;V ) and g′ε → g′ in
L2(0, τ ;V ′), we have

lim sup
ε,ε′→0

sup
[0,τ ]

|gε(t)− gε′(t)|2H ≤ lim
ε,ε′→0

∫ τ

0

‖g′ε − g′ε′‖V ′ ‖gε − gε′‖V ds = 0,

so that (gε) is a Cauchy sequence in C([0, τ ];H), and then gε converges in C([0, τ ];H)
to a limit g̃ ∈ C([0, τ ];H). That proves g = g̃ a.e. and g ∈ C([0, τ ];H). We prove
similarly that g ∈ C([τ, T ];H) for any τ ∈ (0, T ) and thus g ∈ C([0, T ];H).

Step 3. Similarly as for (3.2), we have

|gε(t2)|2H = |gε(t1)|2H + 2

∫ t2

t1

〈g′ε, gε〉ds,

and passing to the limit ε→ 0 we get

|g(t2)|2H = |g(t1)|2H + 2

∫ t2

t1

〈g′, g〉ds.

Using again that 〈g′, g〉 ∈ L1(0, T ), we easily deduce from the above identity the
two remaining claims of the Lemma. �

3.3. A posteriori estimate, uniqueness and C0-semigroup. Taking ϕ = g ∈
XT as a test function in (3.1), we deduce from Lemma 3.3,

1

2
|g(t)|2H −

1

2
|g0|2H = |g(t)|2H − |g0|2H −

∫ t

0

〈g′(s), g(s)〉 ds

=

∫ t

0

〈Λg, g〉 ds

≤
∫ t

0

(−α ‖g‖2V + b |g|2H) ds,
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and we then obtain (2.3) as an a posteriori estimate thanks to the Gronwall
lemma 2.1.

Let us prove now the uniqueness of the variational solution g associated to a
given initial datum g0 ∈ H. In order to do so, we consider two variational solutions
g and f associated to the same initial datum. Since the equation (2.1), (2.2) is
linear, or more precisely, the variational formulation (3.1) is linear in the solution,
the function g− f satisfies the same variational formulation (3.1) but associated to
the initial datum g0 − f0 = 0. The a posteriori estimate (2.3) then holds for g − f
and implies that g − f = 0.

We explain how we may associate a C0-semigroup to the evolution equation (2.1),
(2.2) as a mere consequence of the linearity of the equation and of the existence
and uniqueness result.

Definition 3.4. Consider X a Banach space, and denote by B(X) the set of linear
and bounded operators on X. We say that S = (St)t≥0 is a strongly continuous
semigroup of linear operators on X, or just a C0-semigroup on X, we also write
S(t) = St, if

(i) ∀t ≥ 0, St ∈ B(X) (one parameter family of operators);

(ii) ∀f ∈ X, t 7→ St f ∈ C([0,∞), X) (continuous trajectories);

(iii) S0 = I; ∀ s, t ≥ 0 St+s = St Ss (semigroup property).

Proposition 3.5. The operator Λ generates a semigroup on H defined in the
following way. For any g0 ∈ H, we set Stg := g(t) where g(t) is the unique
variational solution associated to g0 and given by Theorem 3.2. We also denote
SΛ(t) = eΛt = St for any t ≥ 0.

• S satisfies (i). By linearity of the equation and uniqueness of the solution, we
clearly have

St(g0 + λf0) = g(t) + λf(t) = Stg0 + λStf0

for any g0, f0 ∈ H, λ ∈ R and t ≥ 0. Thanks to estimate (2.3) we also have
|Stg0| ≤ ebt |g0| for any g0 ∈ H and t ≥ 0. As a consequence, St ∈ B(H) for any
t ≥ 0.

• S satisfies (ii). Thanks to lemma 3.3 we have t 7→ Stg0 ∈ C(R+;H) for any
g0 ∈ H.

• S satisfies (iii). For g0 ∈ H and t1, t2 ≥ 0 denote g(t) = Stg0 and g̃(t) := g(t+t1).
Making the difference of the two equations (3.1) written for t = t1 and t = t1 + t2,
we see that g̃ satisfies

(g̃(t2), ϕ̃(t2)) = (g(t1 + t2), ϕ(t1 + t2))

= (g(t1), ϕ(t1)) +

∫ t1+t2

t1

{
〈Λg(s), ϕ(s)〉+ 〈ϕ′(s), g(s)〉

}
ds

= (g̃(0), ϕ̃(0)) +

∫ t2

0

{
〈Λg̃(s), ϕ̃(s)〉+ 〈ϕ̃′(s), g̃(s)〉

}
ds,

for any ϕ ∈ Xt1+t2 with the notation ϕ̃(t) := ϕ(t + t1) ∈ Xt2 . Since the equation
on the functions g̃ and ϕ̃ is nothing but the variational formulation associated to
the equation (2.1), (2.2) with initial datum g̃(0), we obtain

St1+t2g0 = g(t1 + t2) = g̃(t2) = St2 g̃(0) = St2g(t1) = St2St1g0.
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4. Proof of the existence part of Theorem 3.2.

We first prove thanks to a compactness argument in step 1 to step 3 that there
exists a function g ∈ L2(0, T ;V ) such that

(4.1) 〈g0, ϕ(0)〉+

∫ t

0

{
〈Λg(s), ϕ(s)〉V ′,V + 〈ϕ′(s), g(s)〉V ′,V

}
ds = 0

for any ϕ ∈ C1
c ([0, T );V ). We then deduce by some “regularization tricks” in step

4 and step 5 that the above weak solution is a variational solution.

Step 1. For a given g0 ∈ H and ε > 0, we seek g1 ∈ V such that

(4.2) g1 − εΛg1 = g0.

We introduce the bilinear form a : V × V → R defined by

a(u, v) := (u, v)− ε 〈Λu, v〉.
Thanks to the assumptions made on Λ, we have

|a(u, v)| ≤ |u| |v|+ εM ‖u‖ ‖v‖,
and

a(u, u) ≥ |u|2 + ε α ‖u‖2 − ε b |u|2 ≥ ε α ‖u‖2,
whenever ε b < 1, what we assume from now. On the other hand, the mapping
v ∈ V 7→ (g0, v) is a linear and continuous form. We may thus apply the Lax-
Milgram theorem, and we get

∃! g1 ∈ V (g1, v)− ε〈Λg1, v〉 = (g0, v) ∀ v ∈ V.

Step 2. Fix ε > 0 as in the preceding step and build by induction the sequence (gk)
in V ⊂ H defined by the family of equations

(4.3) ∀ k gk+1 − gk
ε

= Λ gk+1.

Observe that from the identity

(gk+1, gk+1)− ε 〈Λgk+1, gk+1〉 = (gk, gk+1),

we deduce

|gk+1|2 + ε α ‖gk+1‖2 − ε b |gk+1|2 ≤ |gk| |gk+1|.
On the one hand, it implies that

|gk| ≤
1

1− εb
|gk−1| ≤

1

(1− εb)k
|g0| ≤ Ak ε |g0| ∀ k ≥ 0,

with A := eb (where we have used that ln(1 + εb) ≤ εb in the last inequality).
On the other hand, using Young inequality and the last two inequalities, we obtain
for any n ≥ 1

α

n∑
k=1

ε ‖gk‖2 ≤
n∑
k=1

1

2
(|gk−1|2 − |gk|2) + b

n∑
k=1

ε |gk|2

≤ 1

2
|g0|2 + b

n∑
k=1

ε |gk|2

≤ 1

2
|g0|2 + b nεA2nε |g0|2.
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We fix T > 0, n ∈ N∗ and we define

ε := T/n, tk = k ε, gε(t) := gk on [tk, tk+1).

The two precedent estimates write then

(4.4) sup
[0,T ]

|gε|2H + α

∫ T

0

‖gε‖2V dt ≤
(3

2
+ b T A2T

)
|g0|2.

Step 3. Consider a test function ϕ ∈ C1
c ([0, T );V ) and define ϕk := ϕ(tk), so that

ϕn = ϕ(T ) = 0. Multiplying the equation (4.3) by ϕk and summing up from k = 0
to k = n, we get

−(ϕ0, g0)−
n∑
k=1

〈ϕk − ϕk−1, gk〉 =

n∑
k=0

ε 〈Λgk+1, ϕk〉,

where in the LHS we use the duality production 〈, 〉 in V ′× V instead of the scalar
product (, ) in H thanks to the inclusions V ⊂ H = H ′ ⊂ V ′. Introducing the two
functions ϕε, ϕε : [0, T )→ V defined by

ϕε(t) := ϕk−1 and ϕε(t) :=
tk+1 − t

ε
ϕk +

t− tk
ε

ϕk+1 for t ∈ [tk, tk+1),

in such a way that

ϕ′ε(t) =
ϕk+1 − ϕk

ε
for t ∈ (tk, tk+1),

the above equation also writes

(4.5) − 〈ϕ(0), g0〉 −
∫ T

ε

〈ϕ′ε, gε〉 dt =

∫ T

0

〈Λgε, ϕε〉 dt.

On the one hand, from (4.4) we know that up to the extraction of a subsequence,
there exists g ∈ XT such that gε ⇀ g weakly in L2(0, T ;V ). On the other hand,
from the above construction, we have ϕ′ε → ϕ′ and ϕε → ϕ both strongly in
L2(0, T ;V ). We may then pass to the limit as ε→ 0 in (4.5) and we get (4.1).

Step 4. We prove that g ∈ XT . Taking ϕ := χ(t)ψ with χ ∈ C1
c ((0, T )) and ψ ∈ V

in equation (4.1), we get〈∫ T

0

gχ′dt, ψ
〉

=

∫ T

0

〈g, ψ〉χ′ dt = −
∫ T

0

〈Λg, ψ〉χdt =
〈
−
∫ T

0

Λgχ dt, ψ
〉
.

This equation holding true for any ψ ∈ V , it is equivalent to∫ T

0

gχ′dt = −
∫ T

0

Λgχ dt in V ′ for any χ ∈ D(0, T ),

or in other words

g′ = Λg in the sense of distributions in V ′.

Since g ∈ L2(0, T ;V ), we get that Λg ∈ L2(0, T ;V ′) and the above relation precisely
means that g ∈ H1(0, T ;V ′). We conclude thanks to Lemma 3.3 that g ∈ XT .

Step 5. Assume first ϕ ∈ Cc([0, T );H) ∩ L2(0, T ;V ) ∩ H1(0, T ;V ′). We define
ϕε(t) := ϕ∗t ρε for a mollifier (ρε) with compact support included in (0,∞) so that
ϕε ∈ C1

c ([0, T );V ) for any ε > 0 small enough and

ϕε → ϕ in C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′).
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Writing the equation (4.1) for ϕε and passing to the limit ε→ 0 we get that (4.1)
also holds true for ϕ.

Assume next that ϕ ∈ XT . We fix χ ∈ C1(R) such that suppχ ⊂ (−∞, 0), χ′ ≤ 0,

χ′ ∈ Cc(] − 1, 0[) and
∫ 0

−1
χ′ = −1, and we define χε(t) := χ((t − T )/ε) so that

ϕε := ϕχε ∈ Cc([0, T );H) and χε → 1[0,T ], χ
′
ε → −δT as ε→ 0. Equation (4.1) for

the test function ϕε writes

−〈g0, ϕ(0)〉 −
∫ t

0

χ′ε〈ϕ, g〉 ds =

∫ T

0

χε
{
〈Λg, ϕ〉+ 〈ϕ′, g〉

}
ds,

and we obtain the variational formulation (3.1) for t1 = 0 and t2 = T by passing
to the limit ε→ 0 in the above equation. �

5. Exercises

Exercice 5.1. Prove that f ≥ 0 if f0 ≥ 0 for the solution of the parabolic equation (1.1).
(Hint. Show that the sequence (gk) defined in step 2 of the proof of the existence part is
such that gk ≥ 0 for any k ∈ N).

Exercice 5.2. Prove the existence of a solution g ∈ XT to the equation

(5.1)
dg

dt
= Λg +G in (0, T ), g(0) = g0,

for any initial datum g0 ∈ H and any source term G ∈ L2(0, T ;V ′).
(Ind. Repeat the same proof as for the Theorem 3.2 where for the a priori bound one can
use ∫ T

0

〈g,G〉 dt ≤ α

2

∫ T

0

‖g(t)‖2V dt+
1

2α

∫ T

0

‖G(t)‖2V ′ dt,

and for the approximation scheme one can define

ε−1 (gk+1 − gk) = Λgk+1 +Gk, Gk :=

∫ tk+1

tk

G(s) ds).

Exercice 5.3. Generalize the existence and uniqueness result to the PDE equation

(5.2) ∂tf = ∂i(aij ∂jf) + bi ∂if + cf +

∫
k(t, x, y) f(t, y) dy +G

where aij, bi, c and k are times dependent coefficients and where aij is uniformly elliptic
in the sense that

(5.3) ∀ t ∈ (0, T ), ∀x ∈ Rd, ∀ ξ ∈ Rd aij(t, x) ξiξj ≥ α |ξ|2, α > 0.

More precisely, establish the following result:

Theorem 5.4 (J.L. Lions - the time dependent case). Assume that

b ∈ L∞(0, T ;W 1,∞(Rd)), a, c ∈ L∞((0, T )× Rd), k ∈ L∞(0, T ;L2(Rd × Rd)),

and that a satisfies the uniformly elliptic condition (5.3). For any g0 ∈ L2(Rd) and
G ∈ L2(0, T ; H−1(Rd)), there exists a unique variational solution to the Cauchy problem
associated to (5.2) in the sense that

f ∈ XT := C([0, T );L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1),

such that for any ϕ ∈ XT and any t ∈ (0, T ) there holds∫
Rd

g(t)ϕ(t) dx =

∫
Rd

g0ϕ(0) dx+

∫ t

0

∫
Rd

(Gϕ+ g∂tϕ) dxds(5.4)

+

∫ t

0

∫
Rd

{(bi ∂if + cf)ϕ− aij ∂jf∂iϕ} dxds+

∫ t

0

∫
Rd×Rd

k(t, x, y) f(t, y)ϕ(s, x) dxdyds
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Exercice 5.5. Generalize the existence and uniqueness result to the PDE equation (5.2)
set in an open set Ω ⊂ Rd with Dirichlet, Neuman or Robin boundary condition.

Exercice 5.6. Let Ω ⊂ Rd an open connected set or the torus. We define

H := {u ∈ L2(Rd)d; divu = 0}, V := {u ∈ H1(Rd)d; divu = 0}.

1) - Prove that for any u0 ∈ H there exists a unique function u ∈ XT solution of the
variational equation

(5.5)

∫
Ω

u(T ) · ϕ(T )−
∫

Ω

u0 · ϕ(0) =

∫ T

0

∫
Ω

Du : Dϕdx ∀ϕ ∈ XT .

2) (a) - Prove that T ∈ D′(Ω), ∇T = 0 implies T = C.
(b) - Prove the Poincaré-Wirtinger inequality

∀ v ∈ H1(Ω) ‖u− ū‖L2 ≤ C ‖∇u‖L2 , ū :=

∫
Ω

u dx.

(c) - Assume Ω bounded and deduce the following inequality

∀T ∈ H−1(Ω), T ⊥ H, ∃p ∈ L2(Ω), T = ∇p, ‖p‖L2 ≤ C ‖T‖H−1 .

3) (a) - Assume that Ω is the torus and prove that the solution u of (5.5) satisfies∫
Ω

u(T ) · ϕ(T )−
∫

Ω

u0 · ϕ(0) =

∫ T

0

∫
Ω

Du : Dϕdx ∀ϕ ∈ L2(0, T ;H1) ∩ C([0, T ];L2).

(Ind. Define Π := I +∇ (−∆)−1 div the projector on divergence-free vectors and observe
that for any ϕ ∈ H1(Ω) and any u ∈ H there holds 〈u, ϕ〉 = 〈u,Πϕ〉).
(b) Deduce that there exists a function p ∈ L2((0, T )× Ω) such that u satisfies

∂tu = ∆u+∇p in (0, T )× Ω.

Exercice 5.7. (1) Prove the existence of a (weak in the sense of distributions) solution
f ∈ L∞(0, T ;L2(Rd)) to the first order equation

∂tf = a(x) · ∇f(x) + c(x) f(x) +

∫
Rd

b(y, x) f(y) dy,

with the usual assumptions on a, c, b by the vanishing viscosity method: that is by passing
to the limit in the familly of equation

∂tfε = ε∆fε + a · ∇fε + c fε +

∫
Rd

b(y, x) fε(y) dy,

as ε→ 0.
(2) Using a similar vanishing viscosity method, prove the existence of a weak solution for
positive time to the wave equation

∂2
ttf = ∂2

xxf, f(0, .) = f0, ∂xf(0, .) = g0,

for any f0, g0 ∈ L2(R), and to the Schrödinger equation

i∂tf + ∆xf = 0, f(0, .) = f0,

for any f0 ∈ L2(Rd).
(Hint. For the wave equation prove the existence of a solution (fε, gε) to the system of
equations

∂tf = g + ε∂2
xxf, ∂tg = ∂2

xxf + ε∂2
xxg,

and pass to the limit ε→ 0).



CHAPTER 1 - VARIATIONAL SOLUTION FOR PARABOLIC EQUATION 11

Exercice 5.8. We consider the nonlinear McKean-Vlasov equation

(5.6) ∂tf = Λ[f ] := ∆f + div(F [f ]f), f(0) = f0,

with

F [f ] := a ∗ f, a ∈W 1,∞(Rd)d.

1) Prove the a priori estimates

‖f(t)‖L1 = ‖f0‖L1 ∀ t ≥ 0, ‖f(t)‖L2
k
≤ eCt ‖f0‖L2

k
∀ t ≥ 0,

for any k > 0 and a constant C := C(k, ‖a‖W1,∞ , ‖f0‖L1), where we define the weighted

Lebesgue space L2
k by its norm ‖f‖L2

k
:= ‖f〈x〉k‖L2 , 〈x〉 := (1 + |x|2)1/2.

2) We set H := L2
k, k > d/2, and V := H1

k , where we define the weighted Sobolev space
H1

k by its norm ‖f‖2H1
k

:= ‖f‖2L2
k

+ ‖∇f‖2L2
k

. Observe that for any f ∈ V the distribution

Λ[f ] is well defined in V ′ thanks to the identity

〈Λ[f ], g〉 := −
∫
Rd

(∇f + (a ∗ f)f) · ∇(g〈x〉2k) dx ∀ g ∈ V.

(Hint. Prove that L2
k ⊂ L1). Write the variational formulation associated to the non-

linear McKean-Vlasov equation. Establish that if moreover the variational solution to
the nonlinear McKean-Vlasov equation is nonnegative then it is mass preserving, that is
‖f(t)‖L1 = ‖f0‖L1 for any t ≥ 0. (Hint. Take χM 〈x〉−2k as a test function in the
variational formulation, with χM (x) := χ(x/M), χ ∈ D(Rd), 1B(0,1) ≤ χ ≤ 1B(0,2)).
3) Prove that for any 0 ≤ f0 ∈ H and g ∈ C([0, T ];H) there exists a unique mass
preserving variational solution 0 ≤ f ∈ XT to the linear McKean-Vlasov equation

∂tf = ∆f + div(F [g]f), f(0) = f0.

Prove that the mapping g 7→ f is a contraction in C([0, T ];H) for T > 0 small enough.
Conclude to the existence and uniqueness of a global (in time) variational solution to the
nonlinear McKean-Vlasov equation.

Exercice 5.9. Define H := L2, V := H1. For a ∈ W 1,∞, c ∈ L∞, f0 ∈ L2, we consider
a variational solution f ∈ XT to the linear parabolic equation

(5.7) ∂tf = Λf := ∆f + a · ∇f + cf, f(0) = f0.

1) Prove that for γ ∈ C1(R), γ(0) = 0, γ′ ∈ L∞, there holds γ(f) ∈ H for any f ∈ H and
γ(f) ∈ V for any f ∈ V .
2) Consider an increasing function γ ∈ C1(R), γ(0) = 0, γ′ ∈ L∞ and define the functions
β,Γ ∈ C1(R) by

β(s) := s γ(s), Γ(s) :=

∫ s

0

γ(σ) dσ.

Prove that the variational solution f ∈ XT to the above linear parabolic equation satisfies∫
Rd

β(f(t)) dx ≤
∫
Rd

β(f0) dx+

∫ t

0

∫
Rd

{c β(f)− (div a) Γ(f)} dxds ∀ t ≥ 0.

Deduce that for some constant C := C(a, c, γ) there holds∫
Rd

β(f(t)) dx ≤ eCt

∫
Rd

β(f0) dx ∀ t ≥ 0.

(Hint. Observe that Γ′(s) ≤ β′(s) for any s ≥ 0, Γ′(s) ≥ β′(s) for any s ≤ 0 and use the
Gronwall lemma). Deduduce that for any p ∈ [1,∞] and for some constant C := C(a, c, p)
there holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp ∀ t ≥ 0.

(Hint. Take γ as the even function which vanishes in 0 and is the primitve of

γ′(s) := s1s∈(0,ε) + (sp−1 − εp−1 + ε)1s∈(ε,R) + (Rp−1 − εp−1 + ε)1s≥R,
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for some R > ε > 0 and p ∈ (1, 2] in the preceding estimate, and pass to the limit ε→ 0,
R → ∞. Generalize to 2 < p < ∞ by choosing γ adequately. Conclude the proof by
passing to the limit p→ 1, p→∞).
3) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in the
sense of distributions) solution to the linear parabolic equation (5.7). (Hint: Consider
f0,n ∈ L1 ∩ L∞ such that f0,n → f0 in Lp, 1 ≤ p < ∞, and prove that the associate
variational solution fn ∈ XT is a Cauchy sequence in C([0, T ];Lp). Conclude the proof by
passing to the limit p→∞).
4) Extend the above result to an equation with an integral term and/or a source term.
5) Prove the existence of a weak solution to the McKean-Vlasov equation (5.6) for any
initial datum f0 ∈ L1(Rd).
6) Recover the positivity result of exercice 5.1. (Hint. Choose β(s) := s−).

Exercice 5.10. We denote by St the semigroup in H generated by a coercive+dissipative
operator Λ : V ⊂ H → V ′.
1) Prove that for any g0 ∈ H and ϕ ∈ V the function t 7→ (Stg0, ϕ) belongs to H1(0, T )
and

d

dt
(Stg0, ϕ) = (ΛStg0, ϕ) in H−1(0, T ).

2) Prove that for any G ∈ C([0, T ];H) and ϕ ∈ V there holds

d

dt

∫ t

0

(St−sG(s), ϕ) ds = (G(t), ϕ) +

∫ t

0

(ΛSt−sG(s), ϕ) ds in H−1(0, T ).

3) Establish the Duhamel formula, namely that for g0 ∈ H and G ∈ C([0, T ];H) the
function

g(t) := Stg0 +

∫ t

0

St−sG(s) ds

is a weak (make precise the sense) solution to the evolution equation with source term

dg

dt
= Λg +G on [0,∞), g(0) = g0.

6. Further results: evolution equation with source term and Duhamel
formula

In that last section, we come back on Exercices 5.2 and 5.10.

• For g0 ∈ H and G ∈ L2(0, T ;V ′) a function g ∈ XT is a variational solution to the
evolution equation with source term

(6.8)
dg

dt
= Λg +G on [0, T ], g(0) = g0,

if that equation holds in V ′, namely if for any ϕ ∈ V there holds

d

dt
(g(t), ϕ) = 〈Λg(t), ϕ〉+ 〈G(t), ϕ〉 in the sense of D′(0, T ;R).

That is equivalent to

〈 d
dt
g(t), ϕ〉 = 〈Λg(t), ϕ〉+ 〈G(t), ϕ〉 a.e. t ∈ (0, T ),

or more explicitely∫ T

0

(g(t), ϕ)χ′ dt− (g0, ϕ)χ(0) =

∫ T

0

{〈Λg(t), ϕ〉+ 〈G(t), ϕ〉}χ(t) dt

for any χ ∈ C1
c ([0, T )) and ϕ ∈ V . One can then deduce from the last formulation and

by density of the separate variables functions D(0, T )⊗ V into XT , or just by taking the
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next formulation as a definition of a variational solution, that for any ϕ ∈ XT

(6.9) [〈g, ϕ〉]T0 −
∫ T

0

〈 d
dt
ϕ, g〉dt =

∫ T

0

〈Λg +G,ϕ〉dt.

•When g0 ∈ H and G ∈ C([0, T ];H) one can define thanks to Proposition 3.5 the following
function

(6.10) g(t) := eΛ t g0 +

∫ t

0

eΛ (t−s) G(s) ds.

We see that g ∈ C([0, T ];H), and using the estimate (2.3)∫ T

0

‖eΛ tf‖2V dt ≤
e2bT

2α
|f |2H ,

we easily find ∫ T

0

‖g(t)‖2V dt ≤ C1(T ) |g0|2H + C2(T )

∫ T

0

|G(s)|2H ds.

Finaly, since

t 7→ eΛ tf ∈ H1(0, T ;V ′), ‖∂t(eΛ tf)‖L2(V ′) ≤ C3(T ) |f |2H ,

we deduce that g ∈ H1(0, T ;V ′) with explicit estimates. We may then compute in
L2(0, T ;V ′)

∂tg = ΛeΛtg0 +G(t) +

∫ t

0

ΛeΛ (t−s) G(s) ds = Λg +G(t),

(see also Exercice 5.10) and we obtain that g(t) is a variational solution to the evolution
equation with source term (6.8).

•When g0 ∈ H and G ∈ L2([0, T ];V ′) the sense of the Duhamel formula is less clear. One
can however prove the existence of a variational solution by just repeating the proof used
to tackle the sourceless evolution equation (1.1). More precisely, we consider the following
discrete scheme: we build (gk) iteratively by setting

gk+1 − gk
ε

= Λgk+1 +Gk, Gk :=

∫ tk+1

tk

G(s) ds.

We compute

|gk+1|2(1− εb) + ε α ‖gk+1‖2V ≤ |gk| |gk+1|+ ε ‖gk+1‖V ‖Gk‖V ′

≤ 1

2
|gk|2 +

1

2
|gk+1|2 + ε

α

2
‖gk+1‖2V +

ε

2α
‖Gk‖2V ′ ,

and then

|gk+1|2(1− 2εb) + ε α ‖gk+1‖2V ≤ |gk|2 +
ε

α
‖Gk‖2V ′ .

We get an estimate on |gk+1|2 which is uniform on k when k ε ≤ T , for T > 0 fixed, by using
a discrete version of the Gronwall lemma. We conclude as in the proof of Theorem 3.2.

• We may argue in a different way. When g0 ∈ H and G ∈ C([0, T ];H) the Duhamel
formula (6.10) gives a variational solution to the evolution equation with source term in
the sense (6.9). Making the choice ϕ = g, we get

1

2
[|g|2]T0 =

∫ T

0

(〈Λg, g〉+ 〈G, g〉) dt

≤
∫ T

0

{−α ‖g‖2V + b |g|2 + ‖G‖V ′ ‖g‖V } dt

≤ −α
2

∫ T

0

‖g‖2V dt+
b2

2α

∫ T

0

‖G‖2V ′ dt,
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and thanks to the Gronwall lemma, we obtain

|g(T )|2 + α

∫ T

0

‖g‖2V dt ≤ ebT |g0|2H + CT

∫ T

0

‖G‖2V ′ dt.

We conlcude to the existence by smoothing the source term G (what it is always possible
in the explicit examples H = L2, V = H1) and by passing to the limit in the variational
formulation.
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