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CHAPTER 5 - ENTROPY AND APPLICATIONS

This chapter is an introduction to entropy (or Lyapunov) methods for general (possibly nonlin-
ear) dynamical system and some applications to some evolution PDEs (mostly linear, positivity
preserving and mass preserving) including a general Fokker-Planck model, a scattering (or linear
Boltzmann) equation and a growth-fragmentation equation.

Contents

1. Dynamic system, equilibrium and entropy methods 1
1.1. Existence of steady states 1
1.2. ω-limit set of trajectories compact dynamical system 2
1.3. Dissipation of entropy method 3
1.4. Lyapunov functional and La Salle invariance principle 4
1.5. Discussions on the entropy methods 4
2. Elements of spectral analysis in an Hilbert space 5
2.1. Generator with compact resolvent 5
2.2. Self-adjoint operator 9
2.3. Krein-Rutman theorem for dissipative generator with compact resolvent 10
3. Relative entropy for linear and positive PDE 15
4. First example: a general Fokker-Planck equation 18
4.1. Conservation, explicit steady states and self-adjointness property. 18
4.2. General a priori estimates and well-posedness issue. 19
4.3. Long-time behaviour. 21
5. Second example: the scattering equation 25
6. Third example: the growth fragmentation equation 27
7. Appendix 31
8. Bibliographic discussion 32
References 32

1. Dynamic system, equilibrium and entropy methods

1.1. Existence of steady states.

Definition 1.1. We say that (St)t≥0 is a dynamical system (or a continuous (possibly nonlinear)
semigroup) on a metric space (Z, d) if

(S1) ∀t ≥ 0, St ∈ C(Z,Z) (continuously defined on Z);

(S2) ∀x ∈ Z, t 7→ St x ∈ C([0,∞),Z) (trajectories are continuous);

(S3) S0 = I; ∀ s, t ≥ 0, St+s = St Ss (semigroup property).

We say that z̄ ∈ Z is invariant (or is a steady state, a stationary point) if Stz̄ = z̄ for any t ≥ 0.
We denote by E the set of all steady states,

E := {y ∈ Z; Sty = y ∀ t ≥ 0}.

We remark that E is closed by definition (E = ∩t≥0(St − I)−1({0})).
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Theorem 1.2. (Dynamic system and steady state). Consider a bounded and convex subset Z
of a Banach space X which is sequentially compact when it is endowed with the metric associated to
the norm ‖ · ‖X (strong topology), to the weak topology σ(X,X ′) or to the weak-? topology σ(X,Y ),
Y ′ = X (see Section 7.1 for the precise requirement we need on X and Z). Then any dynamical
system (St)t≥0 on Z admits at least one steady state, that is E 6= ∅.

Proof of Theorem 1.2. For any t > 0, there exists zt ∈ Z such that Stzt = zt thanks to the
Schauder or the Tychonoff point fixed Theorem (see Section 7.1). On the one hand, from the
semigroup property (S3)

(1.1) Si 2−mz2−n = z2−n for any i, n,m ∈ N, m ≤ n.
On the other hand, by compactness of Z, we may extract a subsequence (z2−nk )k which converges
weakly to a limit z̄ ∈ Z. By the continuity assumption (S1) on St, we may pass to the limit
nk → ∞ in (1.1) and we obtain St z̄ = z̄ for any dyadic time t ≥ 0. We conclude that z̄ is a
stationary point by the trajectorial continuity assumption (S2) on St and the density of the dyadic
real numbers in the real line. �

1.2. ω-limit set of trajectories compact dynamical system. Consider a dynamical system
(St)t≥0 on a metric space (Z, d). For any given z ∈ Z, we define the associated omega-limit set as

ω(z) = {y ∈ Z; ∃tn ↗∞ et Stn z → y},
or equivalently

(1.2) ω(z) :=
⋂
T>0

ωT (z), ωT (z) := {Stz; t ≥ T}.

We obviously have
Ez := {y ∈ ω0(z); Sty = y ∀ t ≥ 0} ⊂ ω(z)

and Ez = {z̄} if Stz → z̄ when t→∞.

Theorem 1.3. (Dynamic system and ω-limit set). Consider a dynamical system (St)t≥0 on
a metric space (Z, d) which trajectories are relatively compact. More precisely, we assume

(S4) ω0(z) is compact for some fixed z ∈ Z.

Then there hold

(i) St(ω(z)) = ω(z) ∀t ≥ 0;

(ii) ω(z) is a nonempty connected and compact subset of Z. More precisely, any y ∈ ω(z)
belongs to an eternal trajectory in the sense that there exists (yt)t∈R ⊂ ω(z) such that y0 = y and
ys+t = S(s)yt for any t ∈ R and any s ≥ 0;

(iii) d(St z, ω(z))→ 0 as t→∞;

(iv) If furthermore ω(z) is a discrete set, then ω(z) is a singleton and ω(z) ⊂ Ez. More explicitly,
there exists z̄ ∈ Z such that ω(z) = {z̄} ⊂ Ez or equivalently such that Stz → z̄ as t→∞.

Proof of Theorem 1.3. (i) On the one hand, for any y ∈ ω(z), there exists (tn) such that Stnz → y,
so that Stn+tz → Sty and Sty ∈ ω(z). That proves St(ω(z)) ⊂ ω(z). On the other hand, given
y ∈ ω(z) and tn → ∞ such that Stnz → y, there exists w ∈ Z and a subsequence (tn′) such that
Stn′−tz → w because of assumption (S4), and then w ∈ ω(z). We deduce

Stw = St(limStn′−tz) = limStn′ z = y.

That proves the reverse inclusion ω(z) ⊂ St(ω(z)).

(ii) For any n ≥ 0, the set ωn(z) is a nonempty connected and compact subset of Z by assumption
(S4). The sequence (ωn(z)) being decreasing, we have ω(z) = limωn(z) which is nothing but
(1.2) and thus (ii). More precisely, consider y ∈ ω(z) and (tn) such that S(tn)z → y. For any
t ∈ R−, we may extract a subsequence of S(tn + t)z which converges to a limit yt. Better, thanks
to Cantor’s diagonal process, there exists one subsequence (tnk) such that for any t ∈ Z− there
holds S(tnk + t)z → yt and next, for any t ∈ R−,

S(tnk + t)z = S(−[t] + 1 + t)S(tnk + [t]− 1)z → S(−[t] + 1− t)y[t]−1 =: yt.

As a consequence, yt ∈ ω(z), y0 = y and yt+s = limS(tnk + s+ t)z = limS(s)S(tnk + t)z = S(s)yt
for any t ∈ R and s ∈ R−.
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(iii) We argue by contradiction. Assume that there exist a sequence tn → ∞ and a real number
ε > 0 such that d(Stnz, ω(z)) ≥ ε. From assumption (S4), there exists a subsequence (tn′) such
that Stn′ z → w ∈ ω(z) and then d(Stn′ z, ω(z))→ 0, which is absurd.

(iv) First, ω(z) is a singleton as a discrete and connected nonempty set, we then have ω = {z̄}.
Next, by uniqueness of the possible limits, we deduce Stz → z̄ as t→∞. �

1.3. Dissipation of entropy method. Consider a dynamical system (St)t≥0 on a metric space
(Z, d). We say that a functional H : Z → R is an entropy if there exists a dissipation of entropy
functional D : Z → R+ such that for any z ∈ Z there holds

d

dt
H(Stz) = −D(Stz) ≤ 0 ∀ t > 0,

or equivalently

(1.3) H(Stz) +

∫ t

0

D(Ssz) ds = H(z).

As a consequence t 7→ H(Stz) is a decreasing function, and more importantly here, under the
additional lower bound assumption

(1.4) Hz > −∞, Hz := inf
y∈ω0(z)

H(y),

there holds

(1.5)

∫ ∞
0

D(Ssz) ds ≤ H(z)−Hz <∞.

We define
ωD(z) := {y ∈ ω0(z); D(Sty) = 0 ∀ t ≥ 0},

and we observe that Ez ⊂ ωD(z) at least when (1.3) holds.

Theorem 1.4. (Dissipation of entropy method - weak version). Consider a dynamical
system (St)t≥0 on a metric space (Z, d) and z ∈ Z. We assume

(S4′) (Stz)t≥0 is “locally uniformly compact” in the sense that (Sz,Tt )t≥0 is relatively compact in

C([0, T ];Z) for any fixed time T ∈ R+, where we have defined s 7→ Sz,Tt (s) := St+sz;

(H1) there exists a lsc dissipation of entropy functional D on Z such that t 7→ D(Stz) ∈ L1.

Then, we have ω(z) ⊂ ωD(z), and therefore d(Stz, ωD(z))→ 0 as t→∞.

Proof of Theorem 1.4. We define zt := Sz,Tt ∈ C([0, T ];Z), T > 0, and we observe that∫ T

0

D(zt(s)) ds =

∫ t+T

t

D(Ssz) ds ≤
∫ ∞
t

D(Ssz) ds.

Consider y ∈ ω(z) and a sequence tn →∞ such that Stnz → y as n→∞. From the compactness
assumption (S4′) and a diagonal Cantor procedure, there exist a subsequence (tn′) and a function
z∗ ∈ C([0,∞);Z) such that ztn′ → z∗ in C([0, T ];Z) for any T > 0 and obviously z∗(s) = Ssy
for any s ≥ 0. From the assumptions (H1) made on the dissipation of entropy and the above
inequality, we then deduce∫ T

0

D(z∗(s)) ds ≤ lim inf
n′→∞

∫ ∞
tn′

D(Ssz) ds = 0.

As a consequence D(z∗(s)) = 0 for any s ≥ 0 and then y ∈ ωD(z). We conclude thanks to (iii) in
Theorem 1.3. �

Exercise 1.5. Assume furthermore that ωD(z) = {z̄}. Taking up again the proof of Theorem 1.4,
prove directly (without using Theorem 1.3 nor Theorem 1.6) that ω(z) = {z̄} ⊂ E.

Theorem 1.6. (Dissipation of entropy method - strong version). We assume furthermore
that

(1.6) ωD(z) is discrete.

Then, ω(z) is a singleton and ω(z) ⊂ Ez. More explicitly, we have ω(z) = {z∗} ⊂ Ez ∩ ωD(z) for
some z∗ ∈ Z or equivalently Stz → z∗ as t→∞.
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Proof of Theorem 1.6. From Theorem 1.4 we have ω(z) ⊂ ωD(z) which is assumed to be discrete.
We conclude thanks to (iv) in Theorem 1.3. �

1.4. Lyapunov functional and La Salle invariance principle.

Definition 1.7. Consider a dynamical system (St)t≥0 on a metric space (Z, d).

- We say that H is a Lyapunov functional if H ∈ C(Z,R) and t 7→ H(Stz) is decreasing.

- For a given z ∈ Z we recall that Hz is defined in (1.4) and we define

ωH(z) := {y ∈ ω0(z); H(Sty) = Hz ∀ t ≥ 0}.

Theorem 1.8. (La Salle invariance principle). Consider a dynamical system (St)t≥0 on a
metric space (Z, d) and z ∈ Z. Assuming that

(S4) (Stz)t≥0 is relatively compact;

(H2) H is a Lyapunov functional;

there holds ω(z) ⊂ ωH(z), and more precisely

Hz ∈ R, H(Stz)↘ Hz as t→∞ and d(Stz, ωH(z))→ 0 as t→∞.

Proof of Theorem 1.8. On the one hand, H(Stz) is decreasing so that limH(Stz) = Hz and
bounded (because the trajectories are relatively compact) so that Hz ∈ R. On the other hand, for
any y ∈ ω(z) there exists tn →∞ such that Stnz → y which in turns impliesHz = limH(Stn+sz) =
H(limStn+sz) = H(Ssy) for any s ≥ 0. In other words, we have ω(z) ⊂ ωH(z) and the second
convergence result is a consequence of (iii) in Theorem 1.3. �

We immediately deduce

Theorem 1.9. (Lyapunov method). Assuming furthermore that

ωH(z) is discrete,

there holds ω(z) = {z∗} for some z∗ ∈ Ez, or equivalently St z → z∗ as t→∞.

Proof of Theorem 1.9. Since then ω(z) ⊂ ωH(z) is discrete, we may use (iv) in Theorem 1.3 and
conclude. �

1.5. Discussions on the entropy methods. For the sake of simplicity, consider here the situa-
tion when the semigroup (St) is (formally) associated to an (abstract) evolution equation

(1.7)
d

dt
zt = Q(zt) on (0,∞), z0 ∈ Z.

More precisely, we assume that for any z0 ∈ Z there exists a unique solution zt ∈ C([0,∞);Z) to
the equation (1.7), and for any z ∈ Z we set Stz = zt where zt is the solution to (1.7) associated
to the initial datum z0 = z. We may observe that

Ez = {y ∈ ω(z); Q(y) = 0}.
For any function H : Z → R, we have (formally)

d

dt
H(Stz) = H′(zt) ·

d

dt
zt = H′(zt) · Q(zt).

The condition
∀ z ∈ Z D(z) := −H′(z) · Q(z) ≥ 0

then (formally) guaranties that the functional H is an entropy (decreases along trajectories) and
D is a dissipation of entropy functional.

In the two entropy methods and for a given metric space (Z, d), the compactness condition (S4′)
is clearly stronger than the condition (S4). It is however not difficult to deduce (S4′) from (S4)
for an evolution equation in the applications we have in mind.

The first main difference between the two entropy methods lies on the fact that we assume that
• D is lower semicontinuous in the first method;
• H is continuous in the second method.

In many applications, the lower semicontinuity condition on D is easier to prove than the continuity
condition on H.
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More importantly, the decreasing condition on H is obtained by writing the identity (1.3) while
the integrability condition (1.5) is a consequence of the mere inequality

(1.8) H(Stz) +

∫ t

0

D(Ssz) ds ≤ H(z) ∀ t ≥ 0.

Again, that last inequality is easier to obtain than the identity (1.3): in many cases it can be proved
by an approximation procedure and using the fact that both H and D are lower semicontinuous.

Let us then discuss the accuracy of the two methods. For that purpose we introduce the subsets

EH(z) := {y ∈ ω0(z); H(y) = Hz}, ED(z) := {y ∈ ω0(z); D(y) = 0}
which are defined through “a stationary formulation” (they are not related to the semigroup or
the evolutionary problem). We easily check the following inclusions

Ez ⊂ ω(z) ⊂ ωH(z) = EH(z) ⊂ ωD(z) ⊂ ED(z)

from the convergence theorems proved before and thanks to the inequality (1.8). We deduce that
the conclusion in Theorem 1.8 is a bit stronger than in Theorem 1.4 because the target set is in
general smaller and because of the additional convergence of the entropy functional. However, in
the case the identity (1.3) holds, we have ωH(z) = ωD(z) and the target sets are the same in both
theorems. In practice, in order to identify the possible limit set, we try to characterize the set
ωD(z) or the set

{y ∈ ω0(z); H′(y) ⊥ ω0(z)}
which clearly contains the set EH(z).

The above entropy methods are quite general and efficient. The shortcoming of the method is that
it does not give any rate of convergence to the stationary state. In order to overcome that lack of
convergence, the usual strategy is to try to prove some functional inequality of the kind

D(y) ≥ Θ(H(y|z̄)), H(y|z̄) := H(y)−H(z̄), H(z̄) = Hz,
for some function Θ ∈ C1(R;R), Θ(s) > 0 for s 6= 0, Θ(0) = 0. But that is another story ... .

2. Elements of spectral analysis in an Hilbert space

For linear (or linearized) equation (and its associated continuous semigroup of linear operators)
there exists an efficient way to understand the long time asymptotic behaviour of the solutions.
That consists in making the spectral analysis of the corresponding operator and then deduce the
spectral analysis of the associated semigroup (when the spectral mapping theorem applies). We
present now two situations where an accurate spectral analysis of unbounded operators can be
done without too much difficulty (but we will not present full detail for the sake of conciseness).
Because we deal with spectrum which is a complex plane subset, we assume that X is a complex
Banach space. Otherwise, starting from a real Banach XR, we may associate in a natural way the
complex Banach space XC defined by

XC = XR + iXR = {f = g + ih; g, h ∈ XR}.
Both (real and complex) Banach spaces are just denoted by X.

2.1. Generator with compact resolvent. We denote by B(X) the space of linear and bounded
operators. For T ∈ B(X), we denote ImT = R(T ) = T (X) the range of T and kerT = N(T ) =
T−1(0) the null space of T . For Y ⊂ X we denote

Y ⊥ := {y ∈ X ′; 〈y, x〉 = 0 ∀x ∈ X} ⊂ X ′.
For T ∈ B(X), we denote T ∗ ∈ B(X ′) the adjoint operator defined through the relation

〈T ∗y, x〉 = 〈y, Tx〉 ∀x ∈ X, y ∈ X ′.

Definition 2.1. We say that a bounded operator T ∈ B(X) is compact, we note T ∈ K (X), if
T (BX) is relatively compact in X, or equivalently, if for any bounded sequence (un) of X we may
extract a subsequence of (Tun) such that this one converges.

Exercise 2.2. Show that for an operator T ∈ B(H) in an Hilbert space H, so that we make the
identification H ′ = H, we have T ∈ K (H) iff T ∗ ∈ K (H).
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Theorem 2.3. (Fredholm alternative [1, Théorème VI.6]). Consider T ∈ K(X) in a Banach
space X. Then

(a) ker(I − T ) is finite dimensional;

(b) Im(I − T ) is closed and Im(I − T ) = (ker(I − T ∗))⊥;

(c) ker(I − T ) = {0} if, and only if, Im(I − T ) = X;

(d) dim ker(I − T ) = dim ker(I − T ∗).

The Fredholm alternative is essentially a consequence of the Riesz Theorem about the not com-
pactness of the unit ball in an infinite dimension normed space.

For T ∈ B(X), we define the resolvent set

ρ(T ) := {λ ∈ C; T − λ is a bijection on X} ⊂ C.

It is worth emphasising that because the good framework to look for eigenvalues and spectrum is
the complex numbers framework (as in the finite dimensional case with matrix) we will consider
X as a Banach space on the scalar field of complex numbers. When we start with a Banach space
X = X(R) on the scalar field of real numbers, we define the new vectors space X(C) := X(R) +iX(R)

and for any real operator L ∈ B(X(R)) we immediately extend it (by linearity) to B(X(C)). We
will note specify the scalar field on which the vectors filed is based in general.
As a direct consequence of the fact that I−U is invertible if U ∈ B(X) and ‖U‖ < 1, just because
then the inverse is given by the Neumann series

(I − U)−1 =

∞∑
k=0

Uk,

we get that the resolvent set is open. We define the spectrum Σ(T ) as the complementary set

Σ(T ) := C\ρ(T ).

It is a closed, nonempty and bounded set, more precisely Σ(T ) ⊂ B(0, ‖T‖). We say that ξ is
an eigenvalue (or a punctual spectral value) and we note ξ ∈ ΣP (T ) if N(T − ξ) 6= 0 (so that in
particular ξ /∈ ρ(T ), or in other words ΣP (T ) ⊂ Σ(T )). For ξ ∈ ΣP (T ), we say that N(T − ξ)
is the associated eigenspace. The dimension of N(T − ξ) is called the geometric multiplicity of
ξ. If it is equal to one, we say that ξ is geometrically simple. For ξ ∈ ΣP (T ), consider Mξ the
larger subspace of X such that Mξ is invariant under the action of T and Σ(T|Mξ

) = {ξ}. We call
algebraic multiplicity of ξ the dimension of Mξ. The algebraic multiplicity is then larger than the
geometric multiplicity. We say that ξ ∈ ΣP (T ) is semisimple if the algebraic multiplicity and the
geometric multiplicity are the same, and it is simple if they are both equal to 1.

Theorem 2.4. (Spectrum of a compact operator [1, Théorème VI.8]). Consider T ∈ K(X)
and assume dimX = +∞. Then there hold

(a) 0 ∈ Σ(T );

(b) Σ(T )\{0} is empty, finite or is a sequence which tends to 0;

(c) Σ(T )\{0} = ΣP (T )\{0} and the algebraic multiplicity of any eigenvalue is finite.

The proof of this theorem uses the Riesz Theorem (points (a) and (b)) and the Fredholm alternative
(point (c)).

We consider now the generator L of a semigroup of linear and continuous operators St = SL(t) on
a Banach space X. Similarly as for bounded operators, we define the resolvent set ρ(L) and the
resolvent operators RL(z), z ∈ ρ(L), by

ρ(L) := {z ∈ C; (L − z) invertible and RL(z) := (L − z)−1 ∈ B(X)}.

We then define again the spectrum Σ(L) as the complementary of the resolvent set.

The next “particular case of spectral mapping theorem” makes possible to reduce the spectral
analysis of a generator L to the spectral analysis of one of its revolvent RL(z0), z0 ∈ ρ(L).
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Exercise 2.5. (a) Prove the resolvent identity

(2.1) RL(z)−RL(z0) = (z − z0)RL(z)RL(z0) ∀ z, z0 ∈ ρ(L).

(Hint. Use the definition and nothing else).
(b) Prove that RL∗(z) = RL(z)∗ for any z ∈ ρ(L∗) = ρ(L).

Proposition 2.6. For any (unbounded) operator L, the following identity holds

∀ z ∈ ρ(L) Σ(L) = {z + ξ−1; ξ ∈ Σ(RL(z))\{0}}.

Proof of Proposition 2.6. Consider an (unbounded) operator T such that 0 ∈ ρ(T ), and then
T−1 ∈ B(X). For any ξ ∈ ρ(T ), we have

TRT (ξ) = I + ξRT (ξ) ∈ B(X).

As a consequence, if furthermore ξ 6= 0, using the above identity and the fact that T and RT (ξ)
commute, we get

(T−1 − ξ−1) (−ξTRT (ξ)) = (−ξTRT (ξ)) (T−1 − ξ−1) = I.

That means that (T−1 − ξ−1) is invertible and then ξ−1 ∈ ρ(T−1). On the other way round, if
ξ 6= 0, ξ−1 ∈ ρ(T−1), we may write

T − ξ = (ξ−1 − T−1)ξT

where the right hand side term is invertible, so that ξ ∈ ρ(T ). As a conclusion, we have shown
that for an invertible (unbounded) operator T , we have

Σ(T−1)\{0} = {1/ξ; ξ ∈ Σ(T )},
and then

Σ(T ) = {1/ξ; ξ ∈ Σ(T−1)\{0}}.
Observing that for any z ∈ ρ(L), we have Σ(L) = Σ(L − z) + z, we immediately conclude by
applying the previous identity with T := L − z. �

In order to simplify the discussion we will restrict the analysis to the generator L of a semigroup
SL. We may then assume that the semigroup satisfies the growth bound

(2.2) ‖SL(t)‖B(X) ≤M ebt

for some M ≥ 1 and b ∈ R. For any a ∈ R, we define the half complex plane

∆a := {z ∈ C; <e z > a}.

Lemma 2.7. Consider a semigroup S = SΛ on a Banach space X which satisfies the growth bound
(2.2). Then for any z ∈ ∆b, the operator

RΛ(z) := −
∫ ∞

0

SΛ(t) ezt dt

is well defined in B(X), R(RΛ(z)) = D(Λ) and it is the resolvent operator of Λ, namely

RΛ(z) (Λ− z) = ID(Λ), (Λ− z)RΛ(z) = IX .

In other words, Λ− z is invertible, with inverse (Λ− z)−1 = RΛ(z). In particular, ρ(L) ⊃ ∆b 6= ∅.

Proof of Lemma 2.7. Thanks to the growth estimate, we can define

∆b → B(X), z 7→ Uz :=

∫ ∞
0

e−z tS(t) dt.

From the semigroup property of S, for any h > 0 and f ∈ X, we have

S(h)Uzf − Uzf
h

= −e
zh

h

∫ h

0

e−zt S(t) f dt+

(
ezh − 1

h

)∫ ∞
0

e−zt S(t)f dt.

Passing to the limit h→ 0+, we get

lim
h→0+

S(h)Uzf − Uzf
h

= −f + z Uz f,

which in turn implies Uzf ∈ D(Λ) and Λ(Uzf) = −f + z Uz f . In other words,

(2.3) ∀ f ∈ X, (Λ− z) (−Uzf) = f.
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On the other hand, if f ∈ D(Λ), we have

ΛUzf = Λ

∫ ∞
0

e−z t S(t)f dt =

∫ ∞
0

e−z t ΛS(t)f dt

=

∫ ∞
0

e−z t S(t)Λf dt = Uz(Λf).

Using that commutative relation in (2.3), we find

∀ f ∈ D(Λ), (−Uz)(Λ− z)f = f.

Together, these identities imply that Λ− z is invertible, with inverse −Uz ∈ B(X). �

Lemma 2.8. (Generator with compact resolvent). Consider a generator L such that RL(z0)
is compact for some z0 ∈ ρ(L). Then RL(z) is a compact operator for any z ∈ ρ(L). We say that
L is a generator with compact resolvent.

Proof of Lemma 2.8. Use the resolvent identity (2.1). �

Theorem 2.9. (Spectrum for generator with compact resolvent). Consider a Banach
space X and a generator L with compact resolvent. Then

Σ(L) = ΣP (L) = {λn; n ∈ I},

where I is empty, finite or equals to N, and in that last case (λn) is a sequence of decreasing (in the
sense that (<eλn) is decreasing) eigenvalues such that λn → −∞ (in the sense that <eλn → −∞).

Proof of Theorem 2.9. Take x0 > b given by (2.2) so that x0 ∈ ρ(L) thanks to lemma 2.7 and
RL(x0) is compact thanks to Lemma 2.8. Theorem 2.4-(c) implies

Σ(RL(x0))\{0} = ΣP (RL(x0))\{0},

there exists I empty, finite or I = N such that (µn)n∈I is the set of eigenvalues of Σ(RL(x0)) and
any eigenvalue has finite algebraic multiplicity. More precisely,

Σ(RL(x0))\{0} = ΣP (RL(x0))\{0} = {µn; n ∈ I} ⊂ C,

with µn → 0 as n→∞ if I = N. We only consider this case now. Denoting Σ(L) = {λn; n ∈ J},
we have

(2.4) λn = x0 + µ−1
n , ∀n,

thanks to Proposition 2.6. We deduce that J = N. Thanks to Lemma 2.7, we also deduce

<eµ−1
n = <eλ− x0 ≤ b− x0 < 0, ∀n ∈ N.

We can then choose (relabeled) (µn) such that (<eµn) is an increasing and convergent to 0 sequence.
We conclude using again (2.4). �

Example 2.10. The case I is an empty set (or is finite set) cannot be excluded in the previous
result. Here is an example. Take H = L2(0, 1), Lf := −f ′ with domain

D(L) := {f ∈ H1(0, 1), f(0) = 0}.

It is clear that L is dissipatif, since

(Lf, f) = −
∫ 1

0

f ′ f dx =
1

2
[f(0)2 − f(1)2] ≤ 0.

Moreover, if λ ∈ C and g ∈ L2(0, 1), the unique solution to

−f ′ − λf = Lf − λf = g,

with f ∈ D(L), is given by

f(x) = (RL(λ)g)(x) = −
∫ x

0

exp(λ(y − x))g(y) dy,

so that λ ∈ ρ(L) for any λ ∈ C. Therefore Σ(L) = ∅ and RL(λ) is a compact operator.
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2.2. Self-adjoint operator. Consider an Hilbert space H and make the identification H ′ = H.
In such a way, T ∗ ∈ B(H) for any T ∈ B(H). We say that T is self-adjoint if T ∗ = T .

Theorem 2.11. (Spectrum of a bounded self-adjoint operator). Consider an Hilbert space
H and a self-adjoint operator T ∈ B(H). We define

m := inf
u∈H, |u|=1

(Tu, u), M := sup
u∈H, |u|=1

(Tu, u).

Then Σ(T ) ⊂ [m,M ], m,M ∈ Σ(T ). In particular, T = 0 if furthermore Σ(T ) = {0}. Moreover,
any eigenvalue λ ∈ ΣP (T ) is semisimple.

Elements of the proof of Theorem 2.11. We only deal with the supremum value M . In order to
prove the same result for the infimum value m we just have to change T in −T . We split the proof
into four steps.

Step 1. Consider λ ∈ R, λ > M , and observe that the bilinear form on H defined by aλ(u, v) =
(λu− T u, v) satisfies

∀u ∈ H aλ(u, u) = λ |u|2 −M |u|2 ≥ α |u|2, α := λ−M > 0.

Thanks to the Lax-Milgram theorem we deduce that for any f ∈ H the equation λu − T u = f
has an unique solution. In other words, λ ∈ ρ(T ), and then ]M,∞[ ⊂ ρ(T ).

Step 2. In the case ξ ∈ C\R, we use a complex version of the Lax-Milgram theorem together with
the identity

‖(T − ξ)u‖2 = ‖(T −<eξ)u‖2 + (=mξ)2‖u‖2,
in order to deduce that ξ ∈ ρ(T ).

Step 3. Let us show that M ∈ Σ(T ). The bilinear form aM being symmetric and linear, the
Cauchy-Schwarz inequality writes

|(M u− T u, v)| ≤ (M u− T u, u)1/2 (M v − T v, v)1/2 ≤ C (M u− T u, u)1/2 |v| ∀u, v ∈ H,

and then

(2.5) |M u− T u| ≤ C (M u− T u, u)1/2 ∀u ∈ H.

Consider a sequence (un) such that |un| = 1 and (T un, un) → M . From (2.5), we deduce that
|M un − T un| → 0. Assuming by contradiction that M ∈ ρ(T ), we would get un = (M −
T )−1 (M un − T un)→ 0 which is absurd.

Step 4. In the case Σ(T ) = {0}, the already proved properties imply that (Tu, u) = 0 for any
u ∈ H. We deduce

(Tu, v) =
1

2

(
(T (u+ v), u+ v)− (Tu, u)− (Tv, v)

)
= 0 ∀u, v ∈ H,

and then T = 0.

Step 5. Consider λ ∈ ΣP (T ) and prove that N((T − λ)k) = N(T − λ) for any k ≥ 1. We may

assume λ = 0 and we just have to prove that N(T 2) = N(T ) since then N(T 2k) = N(T ) for any
` ≥ 1 and N(T k) ⊂ N(T `) if ` ≥ k. Now, if u ∈ N(T 2), we have |Tu|2 = (T 2u, u) = 0, so that
u ∈ N(T ). In other words, N(T 2) ⊂ N(T ). �

Theorem 2.12. (Spectral decomposition of a compact self-adjoint operator). Consider
a separable Hilbert space H and a self-adjoint compact operator T ∈ L(H). Then there exists an
Hilbert basis made up of a sequence of eigenvectors of T .

Elements of the proof of Theorem 2.12. We introduce En, n ∈ N, the family of eigenspaces (the
eigenvalues are semisimple) associated to the family of eigenvalues (λn), λ0 = 0 and λn → 0 if that
family is not finite. We observe that Ei ⊥ Ej for any i 6= j. We define F the space generated by
the (En) and we show that T0 := T|F⊥ is self-adjoint compact and that Σ(T0) = {0}. That implies

that T0 = 0 and then F̄ = H. �

Exercise 2.13. (a) Prove in all details Theorem 2.12.
(b) Prove that RL is self-adjoint if L is self-adjoint. (Hint. Use the resolvent identity (2.1)).
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Theorem 2.14. (Spectrum and semigroup spectral gap for self-adjoint generator). Con-
sider an infinite dimensional and separable Hilbert space H and a self-adjoint generator L with
compact resolvent. Then

Σ(L) = ΣP (L) = {λn; n ≥ 1},
where (λn) is a sequence of real, strictly decreasing and semisimple eigenvalues such that λn → −∞.
Furthermore, the functional H(f) := ‖(I − Π1)f‖2 is a Lyapunov function, where Π1 stands for
the orthogonal projection on the eigenspace associated to the eigenvalue λ1, and

‖etL(I −Π1)‖B(H) ≤ etλ2 ‖I −Π1‖B(H) ∀ t ≥ 0.

Proof of Theorem 2.14. We split the proof into two parts.

Step 1. Take x0 > b := ω(L). Using that RL(x0) is self-adjoint (see exercise 2.13) and The-
orem 2.12, we deduce that the family (µn)n∈I built in Theorem 2.9 is made of real numbers.
Moreover, I = N because each eigenvalue µn has finite multiplicity (Theorem 2.9), the family of
associated eigenspace (En) generates a dense space in H (Theorem 2.12) and the space is infinite
dimensional. As a consequence

Σ(L) = {λn; n ≥ 1}, λn = x0 + µ−1
n ∈ R,

with λn ↘ −∞ because µn ↗ 0.

Step 2. As in Theorem 2.12, we introduce En, n ∈ N∗, the sequence of (finite dimensional)
eigenspaces associated to the sequence of eigenvalues (λn). We define Πn as the orthogonal pro-
jection on En and the Bessel-Parseval equality writes

∀ f ∈ D(L) ‖f‖2 =
∑
n≥1

‖Πnf‖2.

From the fact that Σ(LEn) = {λn} and λn is semisimple, we deduce for any f ∈ D(L) and with
the notation ft := SL(t)f that

d

dt
‖(I −Π1)ft‖2 =

∑
n≥2

d

dt
‖Πnft‖2 = 2

∑
n≥2

(ΠnLft,Πnft)

= 2
∑
n≥2

λn‖Πnft‖2 ≤ 2
∑
n≥2

λ2‖Πnft‖2

≤ 2λ2‖(I −Π1)ft‖2.
We conclude thanks to the Gronwall lemma. �

2.3. Krein-Rutman theorem for dissipative generator with compact resolvent. In this
section we present a version of the Krein-Rutman theorem for positive operator. We split the section
into three parts. In a first part, we introduce the notion of Banach lattice, positive operator, Kato’s
inequality, weak and strong maximum and we state the Krein-Rutman theorem. In a second part,
we prove the existence part of the theorem by exhibiting a positive eigenvector. In a third part, we
establish the qualitative properties, and provide then a characterization, of the positive eigenvector.

2.3.1. Statement of the Krein-Rutman theorem. The Hilbert space H = L2(U , dµ) is endowed
with a (partial) order, denoted by ≥ (or ≤), defined by

for f, g ∈ H (f ≥ g) iff (f(x) ≥ g(x) for µ-a.e. x ∈ U).

That order structure is compatible with the norm on H and for any f ∈ H, we may write f =
f+ − f− with f±(x) := max(±f(x), 0), so that H is a Banach lattice.

We recall that a Banach lattice X is a Banach space endowed with an order such that:
- (i) The set X+ := {f ∈ X; f ≥ 0} is a nonempty convex closed cone.
- (ii) For any f ∈ X, there exist some unique minimal f± ∈ X+ such that f = f+ − f−, we then
denote |f | := f+ + f− ∈ X+.
- (iii) For any f, g ∈ X, 0 ≤ f ≤ g implies ‖f‖ ≤ ‖g‖.
- (iv) X contains at least one strictly positive element (definite below) and X has a sign operator.
More precisely, for any f ∈ XR there exists (sign f) ∈ B(X) which fulfils

|(sign f) g| ≤ |g|, ∀ g ∈ X, (sign f) f = |f |.
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We may define a dual order ≥ (or ≤) on X ′ by writing for ψ ∈ X ′

ψ ≥ 0 (or ψ ∈ X ′+) iff ∀ f ∈ X+ 〈ψ, f〉 ≥ 0.

One may show that X ′ is also a Banach lattice for that definition of order.

Exercise 2.15. (a) In the Hilbert space H = L2 show that the duality definition of order in H ′ is
nothing but the pointwise definition of order in L2

(b) For ψ ∈ X ′, we define ψ± by

ψ+(f) := sup{ψ(g); 0 ≤ g ≤ f} for f ≥ 0,

ψ+(f) = ψ+(f+)− ψ+(f−) for f ∈ X and ψ− = (−ψ)+. Show that ψ = ψ+ − ψ− and that ψ± are
minimal elements in X ′+ which fulfills such a splitting.

In the space of functions H = L2(U , dµ), we may define without difficulty the composition func-
tions θ(f) and then the sign function as

(signf)h := θ′(s) · h =
1

2|f |
(fh̄+ f̄h).

Also observe that in any Hilbert space

f ≥ 0 implies f∗ = f ≥ 0.

Definition 2.16. Let us consider a Banach lattice X and an bounded operator T ∈ B(X). We
say that T is positive, we note T ≥ 0, if Tf ∈ X+ for any f ∈ X+.

Exercise 2.17. 1. Show that for a bounded operator T ∈ B(H) in a Hilbert space H, there holds
T ≥ 0 implies T ∗ ≥ 0.
2. Show that for an operator T ∈ B(X), X = L2, such that Tg > 0 a.e. if g ∈ X+\{0}, then if f
is an eigenfunction associated to the eigenvalue λ := ‖T‖, we also have T |f | = λ|f |. (Hint. Use
that (Tf, f) = λ‖f‖2 and that (Tg, g) ≤ λ‖g‖2 for g = f± in order to prove f+ = 0 or f− = 0).

Definition 2.18. On a Hilbert space H we say that L is a dissipative generator if it generates a
semigroup SL and satisfies one of the two equivalent additional property
(i) <e〈f,Lf〉 ≤ γ‖f‖2 for any γ > b;
(ii) ‖SL(t)‖B(H) ≤ eγ t for any γ > b.
We denote

(2.6) ωd(L) := inf{b ∈ R; (ii) holds} = inf{b ∈ R; (i) holds}.

Definition 2.19. Let us consider a Banach lattice X and a generator L of a semigroup SL on X.
(a) - We say that the semigroup SL is positive if SL(t) is positive for any t ≥ 0.
(b) - We say that a generator L on X satisfies Kato’s inequality if

(2.7) ∀ f ∈ D(L) L|f | ≥ (signf) · (Lf).

(c) - We say that a generator L satisfies a “weak maximum principle” if for any a > ω(L) and
g ∈ X− there holds

(2.8) f ∈ D(L) and (L − a)f = g imply f ≥ 0.

(d) - For a generator L, we say that the opposite of the resolvent is a positive operator if for any
a > ω(L) and g ∈ X+ there holds −RL(a)g ∈ X+.

Here the correct way to understand Kato’s inequality (2.9) is

∀ f ∈ D(L), ∀ψ ∈ D(L∗) ∩X ′+ 〈|f |,L∗ψ〉 ≥ 〈(signf) · (Lf), ψ〉.
The definitions of dissipative operator L and “dissipative growth rate” ωd(L) are presented in
Section III.5.3. It is worth emphasize that in the case X = L2, we clear have that Kato’s inequality
also implies

(2.9) ∀ f ∈ D(L) ∩XR Lf+ ≥ θ′(f)(Lf),

with θ(s) := s+ and θ′(s) = 1s>0. Indeed, we just have to remark that s+ = (|s|+ s)/2.

In that simple framework of dissipative generators in the Hilbert space L2 one can show that all
the preceding properties are equivalent when we replace the growth bound ω(L) by the dissipative
growth bound ωd(L). We only show the following.
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Lemma 2.20. In the Hilbert space H = L2 and for a dissipative generator L, Kato’s inequality
(b) implies the positivity properties (a), (c) and (d).

Proof. Step 1. (b) implies (a). Consider f0 ≤ 0 and denotes f := SL(t)f0 e
−at. We compute

successively

∂tf = (L − a)f,

next with θ(s) := s+ and thanks to Kato’s inequality

∂tf+ = θ′(f) (L − a)f ≤ (L − a)f+,

and finally with f∗+ ∈ X+ such that 〈f+, f
∗
+〉 = ‖f+‖2,

1

2

d

dt
‖f+‖2 = 〈∂tf+, f

∗
+〉 ≤ 〈(L − a)f+, f

∗
+〉 ≤ 0.

Since f0 ≤ 0 we have ‖(f0)+‖ = 0, next ‖(ft)+‖ = 0 and finally SL(t)f0 = eatft ≤ 0 for any t ≥ 0.

Step 2. (b) implies (c). Consider a ∈ R, f, g ∈ X as required in (2.8). From Kato’s inequality, we
have with θ(s) = s+

(L − a)f+ ≥ (Lf) θ′(f)− af+ = (af − g) θ′(f)− af+ = (−g) θ′(f) ≥ 0.

By definition of ωd(L) and because f∗+ = f+ ≥ 0, we deduce that for any b ∈ (ω(L), a)

0 ≤ 〈(L − a)f+, f
∗
+〉 ≤ (b− a) ‖f+‖2,

so that f+ = 0 and then f ≤ 0.

Step 3. The implication (c) ⇒ (d) is just straightforward. �

Last, we need some strict positivity notion on X and some strict positivity (or irreducibility)
assumption on L that we will formulate in term of “strong maximum principle”. For that purpose,
we define the strict order > (or <) on X by writing for f ∈ X

f > 0 iff ∀ψ ∈ X+\{0} 〈ψ, f〉 > 0,

and similarly a strict order > (or <) on X ′ by writing for ψ ∈ X ′

ψ > 0 iff ∀ g ∈ X ′+\{0} 〈ψ, g〉 > 0.

It is worth emphasizing that from the Hahn-Banach Theorem, for any f ∈ X+ there exists ψ ∈ X ′+
such that ‖ψ‖X′ = 1 and 〈ψ, f〉 = ‖f‖X from which we easily deduce that

(2.10) ∀ f, g ∈ X, 0 ≤ f < g implies ‖f‖X < ‖g‖X .

Also notice that in the case of the Hilbert space H := L2 that notion corresponds to the usual
pointwise definition

for f, g ∈ H (f > g) iff (f(x) > g(x) for µ-a.e. x ∈ U).

Definition 2.21. We say that L satisfies a “strong maximum principle” if for any given eigenvalue
µ ∈ R and any associated eigenvector f ∈ D(L) the case of equality in Kato’s inequality

(L − µ)θ(f) = (Lf − µf) · θ′(f) = 0

for θ(s) = |s|, s ∈ C, implies

f = 0 or |f | > 0 and ∃u ∈ C, f = u|f |.

It is worth emphasizing that we can see the strong maximum principle as a consequence of the weak
maximum principle together with the existence of a family of strictly positive barrier functions.
We give a typical result which can be applied (or modified in order to be apply) in many situations.

Lemma 2.22. We assume that
(i) (L − a) satisfies the weak maximum principle;
(ii) for any f ≥ 0, f 6= 0, there exists g > 0 such that (g − f)+ ∈ X and (L − a)g ≥ 0.

Then L−a satisfies the following strong maximum principle (in its usual form): for any f ∈ X+\{0}
such that (L − a)f ≤ 0 there holds f > 0.
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Proof. We define h := (g − f)+ ∈ X and we remark that from Kato’s inequality

(L − a)h ≥ 1h>0(L − a)(g − f) ≥ 0.

As a consequence of the weak maximum principle, we have h ≤ 0. That implies h = 0, and then
g − f ≤ 0. �

Also observe the following: that last strong maximum principle together with the (quite natural)
assumption D(Ln) ⊂ C(U) for n large enough in the Hilbert case H = L2(U) implies the following
other version of “strong maximum principle”: for any given f ∈ X and µ ∈ R, there holds

|f | ∈ D(L)\{0} and (L − µ)|f | ≤ 0 imply f > 0 or f < 0

We can now state the following version of the Krein-Rutman Theorem in a general and abstract
setting.

Theorem 2.23. We consider an opeartor L on the Hilbert space H = L2 and we assume that
(1) L is dissipative with compact resolvent and generates a semigroup;
(2) for some a∗ ∈ R, there exists ψ ∈ D(L∗), ψ > 0, such that L∗ψ ≥ a∗ψ or there exists g ∈ D(L),
g > 0, such that Lg ≥ a∗g;
(3) L satisfies Kato’s inequality;
(4) L satisfies a strong maximum principle.

Defining λ1 = s(L) := sup{<eξ, ξ ∈ Σ(L)} and ∆a := {ξ ∈ C, <eξ > a}, there holds

∃ a ∈ [a∗, λ1), Σ(L) ∩∆a = {λ1} and λ1 is simple,

and there exists 0 < f1 ∈ D(L) and 0 < φ ∈ D(L∗) such that

Lf1 = λ1 f1, L∗φ = λ1 φ, RΠL,λ = Vect(f1),

and then

ΠL,λf = 〈f, φ〉 f1 ∀ f ∈ X.

2.3.2. Proof of the Krein-Rutman theorem - existence part.

Proposition 2.24. Consider a Banach lattice X and an operator T ∈ B(X). We assume

(1) T ≥ 0 and T is compact.
(2) ∃ψ ∈ X ′, ψ > 0, ∃α > 0 such that T ∗ψ ≥ αψ.

Then, there exists µ1 ≥ α, u1 ∈ X+\{0} such that Tu1 = µ1u1.

Proof of Proposition 2.24. Step 1. A modified problem. We define B+ := {f ∈ X; f ≥ 0, ‖f‖X ≤
1} and we fix g ∈ B+ such that Tg 6= 0 (that is possible since T ∗ 6= 0 and then T 6= 0) and
ε ∈ (0, 1). We observe that thanks to the positivity property of T , for f ∈ B+, there holds

+∞ > (1 + ε) ‖T‖B(X) ≥ ‖T (f + εg)‖X ≥ ‖T (εg)‖X > 0.

Thanks to that lower bound we may define for any ε > 0 the continuous mapping

Φε : B+ → B+, Φε(f) := T (f + ε g)/‖T (f + ε g)‖X .

The Schauder’s fixed point Theorem 7.1 implies that the function Φε has at least one fixed point
Gε which then satisfies

(2.11) Gε ∈ B+, T (Gε + εg) = µεGε, µε := ‖T (Gε + εg)‖X ,

and in particular ‖Gε‖X = 1.

Step 2. A stability argument. On the one hand, by definition, µε ≤ (1+ε)‖T‖B(X). On the other
hand, by hypothesis (2) and because g ≥ 0, we have

α 〈Gε, ψ〉 ≤ 〈Gε, T ∗ψ〉 ≤ 〈T (Gε + εg), ψ〉 = µε〈Gε, ψ〉,

and then µε ≥ α. Up to the extraction of a subsequence, we get µε → µ ∈ [α, ‖T‖B(X)], and
therefore µ 6= 0. By compactness of T and up to the extraction of a subsequence, we also get
µεGε → h in X, and therefore Gε → f := h/µ in X. We conclude by passing to the limit in
(2.11). �
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Proposition 2.25. Consider a Banach lattice X and an (possibly unbounded) operator L ∈ G (X).
We assume that for a, b ∈ R, a ≤ b,
(1) −RL(b) ≥ 0 (resp. −RL∗(b) ≥ 0);
(2) RL(b) is compact (resp. RL∗(b) is compact);
(3) ∃ψ ∈ X ′, ψ > 0, such that L∗ψ ≥ aψ (resp. ∃ g ∈ X, g > 0, such that Lg ≥ a g).

Then there exist λ1 ∈ [a, b], f1 ∈ X+\{0} such that Lf1 = λ1f1 (resp. there exist λ∗1 ∈ [a, b],
φ ∈ X ′+\{0} such that L∗φ = λ∗1φ).

Proof of Proposition 2.25. We only prove the result concerning L because the proof for the dual
problem is similar. We may assume b > a. We define T = −RL(b) which obviously satisfies (1) in
Proposition 2.24. We define α := (b− a)−1 > 0 and we observe that

α(b− L∗)ψ ≤ ψ
or equivalently T satisfies (2) in Proposition 2.24. Thanks to proposition 2.24, there exist µ1 ≥ α
and u1 ∈ X+\{0} such that Tu1 = µ1u1. Defining f1 = Tu1 ∈ X+\{0}, we get µ−1

1 f1 = (b−L)f1,
and the result holds with λ1 := b− µ−1 ∈ [a, b). �

Exercise 2.26. Consider a Banach space X such that X = Y ′ for a separable Banach Y and
consider a generator L ∈ G (X). Assume that (1) SL ≥ 0;
(2) ∃φ ∈ Y ⊂ X ′, φ > 0, such that L∗φ = λφ;
(3) there exists δ > 0 such that

∀ f ≥ 0 〈(L − λ)f, f∗〉 ≤ −δ ‖f‖2X + δ−1 〈f, φ〉2

Prove that there exists G ∈ X+\{0} such that LG = λG. (Hint. Use Theorem 1.2).

2.3.3. Qualitative properties.

Proposition 2.27. We assume that
(2) there exist λ, λ∗ ∈ R, G ∈ X+\{0}, φ ∈ X ′+\{0}, such that LG = λG, L∗φ = λ∗φ;
(1) L satisfies Kato’s inequality and the strong maximum principle.
Then
(3) φ > 0, G > 0, λ = λ∗,
(4) λ1 is simple,
(5) ΣP (L) ∩ ∆̄λ1

= {λ1} and λ1 is the only eigenvalue associated to a positive eigenvector, and
more precisely

λ = sup{r ∈ R; ∃f ∈ D(L) ∩X+, f 6= 0, Lf ≥ rf}.

Remark 2.28. Observe that λ1 is the only eigenvalue associated to a positive eigenvector for the
dual problem.

Proof of Proposition 2.27. Step 1. From the strong maximum principle we obviously have G > 0.
As a consequence,

λ∗〈φ,G〉 = 〈L∗φ,G〉 = 〈φ,LG〉 = λ〈φ,G〉
and λ∗ = λ. Let us prove that φ > 0. For a > s(L) and g ∈ X+\{0}, thanks to the weak and
strong maximum principles, there exists 0 < f ∈ X such that

(−L+ a)f = g.

As a consequence, we have

〈φ, g〉 = 〈φ, (−L+ a)f〉
= 〈(a− L∗)φ, f〉 = (a− λ) 〈φ, f〉 > 0.

Since g ∈ X+ is arbitrary, we deduce that φ > 0.

Step 2. We prove that N(L − λ) = vect(f1). Consider a normalized eigenfunction f ∈ XR\{0}
associated to the eigenvalue λ. First we observe that from Kato’s inequality

λ|f | = λf sign(f) = Lf sign(f) ≤ L|f |.
That inequality is in fact an equality, otherwise we should have

λ〈|f |, φ〉 6= 〈L|f |, φ〉 = 〈|f |,L∗φ〉 = λ〈|f |, φ〉,
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and a contradiction. As a consequence, |f | is a solution to the eigenvalue problem λ|f | = L|f |
so that the strong maximum principle assumption implies f > 0 or f < 0, and without lost of
generality we may assume f > 0. Now, we write thanks to Kato’s inequality again

λ(f − f1)+ = L(f − f1) sign+(f − f1) ≤ L(f − f1)+,

and for the same reason as above that last inequality is in fact an equality. Since (f − f1)+ =
|(f − f1)+|, the strong maximum principle implies that either (f − f1)+ = 0, or in other words
f ≤ f1, either (f − f1)+ > 0 or in other words f > f1. Thanks to (2.10) and to the normalization
hypothesis ‖f‖ = ‖f1‖ = 1 the second case in the above alternative is not possible. Repeating
the same argument with (f1 − f)+ we get that f1 ≤ f and we conclude with f = f1. For a
general eigenfunction f ∈ XC associated to the eigenvalue λ we may introduce the decomposition
f = fr + ifi and we immediately get that fα ∈ XR is an eigenfunction associated to λ for α = r, i.
As a consequence of what we have just established, we have fα = θαf1 for some θα ∈ R and we
conclude that f = (θr + iθi) f1 ∈ vect(f1) again.
We finally claim that λ is algebraically simple. Indeed, if it is not the case, there would exist
f ∈ XR such that Lf = λf + f1 and then

λ〈f, φ〉 = 〈f,L∗φ〉 = 〈Lf, φ〉 = 〈λf + f1, φ〉,
which in turns implies 〈f1, φ〉 = 0 and a contradiction.

Step 3. Clearly if Lg ≥ rg, with g ∈ X+\{0}, we have

r〈g, φ〉 ≤ 〈Lg, φ〉 = 〈g,L∗φ〉 = λ〈g, φ〉
and therefore r ≤ λ.
We finally prove that there is no other eigenvalue but λ with real part equal and larger than λ.
We consider a couple (f, µ) of eigenfunction and eigenvalue with <eµ ≥ λ. By Kato’s inequality
for the modulus function θ, we have

(<e µ)|f | = (µf) · θ′(f)

= (Lf) · θ′(f) ≤ L|f |.
By the preceding characterization of the first eigenvalue λ, there holds <eµ ≤ λ. As a consequence,
<eµ = λ and then

λ|f | = (Lf) · θ′(f) = L|f |.
On the contrary, we multiply the equation by φ and we get a contradiction. The strong maximum
principle says that f = u |f |, u ∈ S1, |f | > 0, so that f is an eigenfunction associated to λ, or in
other words, µ = λ. �

We come to the proof of the Krein-Rutman theorem.

Proof of Theorem 2.23. Step 1. First from Proposition 2.25 applied to L we have the existence of
a positive eigenfunction, namely there exist λ1 ≥ a, f1 ∈ X+\{0} such that Lf1 = λ1f1. Thanks
to the strong maximum we have f1 > 0 and Proposition 2.25 applied to L∗ gives the existence
of a positive dual eigenfunction, namely there exist λ∗1 ≥ λ1, φ ∈ X ′+\{0} such that L∗φ = λ∗1φ.
As a consequence, we may apply Proposition 2.27. Next, thanks to Theorem 2.14, we know that
Σ(L) = ΣP (L) is at most a countable set {λn, n ∈ I} and <eλn → −∞ if I = N. We then deduce
<eλn ≤ <eλ2 < λ1 for any n ≥ 2. �

3. Relative entropy for linear and positive PDE

We consider the general evolution PDE

(3.1) ∂tf = ∆f − a · ∇f + cf +

∫
b f∗,

∫
b f∗ :=

∫
b(x, x∗)f(x∗) dx∗, b ≥ 0.

If g > 0 is a solution

∂tg = ∆g − a · ∇g + cg +

∫
b g∗

and if φ ≥ 0 is a solution to the dual evolution problem

−∂tφ = ∆φ+ div(aφ) + c φ+

∫
b∗ φ∗,

∫
b∗ φ∗ :=

∫
b(x∗, x)φ(x∗) dx∗,
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we can exhibit a family of entropies associated to the evolution PDE (3.1). More precisely, we
establish the following result (and in fact a bit more accurate formulation of it).

Theorem 3.1. For any real values convex function H, the functional

f 7→ H(f) :=

∫
Rd
H(f/g) g φ,

is an entropy for the evolution PDE (3.1).

Step 1. First order PDE. We assume that

∂tf = −a · ∇f + cf

∂tg = −a · ∇g + cg

−∂tφ = div(aφ) + c φ,

and we show that

∂t(H(X)gφ) + div(aH(X)gφ) = 0, X = f/g.

We compute

∂t(H(X)gφ) + div(aH(X)gφ)

= H ′(X)gφ [∂tX + a∇X] +H(x) [∂t(gφ) + div(agφ)]

The first term vanishes because

∂tX + a∇X =
1

g
(∂tf + a∇f)− f

g2
(∂tg + a∇g) =

1

g
(cf)− f

g2
(cg) = 0.

The second term also vanishes because

∂t(gφ) + div(agφ) = φ [∂tg + a∇g] + g [∂tφ+ div(aφ)] = φ [− cg] + g [ + cφ] = 0.

Step 2. Second order PDE. We assume that

∂tf = ∆f + cf

∂tg = ∆g + cg

−∂tφ = ∆φ+ c φ,

and we show

∂t(H(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) = −H ′′(X)gφ|∇X|2.

We first observe that

∆X = div
(∇f
g
− f 1

g2
∇g
)

=
∆f

g
− 2∇f ∇g

g2
+ 2 f

|∇g|2

g3
− f

g2
∆g

=
∆f

g
− f ∆g

g2
− 2
∇g
g
· ∇X,

which in turn implies

∂tX −∆X = 2
∇g
g
· ∇X.

We then compute

∂t(H(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) =

= (∂tH(X)) gφ+H(X) ∂t(gφ)− φdiv[gH ′(X)∇X +H(X)∇g] + gH(X)∆φ

= H ′(X)gφ
{
∂tX −∆X − 2

∇g
g
· ∇X

}
− gφH ′′(X) |∇X|2 +H(X) [∂t(gφ)− φ∆g + g∆φ]

= −gφH ′′(X) |∇X|2,

since the first term and the last term independently vanish.
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Step 3. Integral equation. We assume that

∂tf = cf +

∫
bf∗

∂tg = cg +

∫
bg∗

−∂tφ = c φ+

∫
b∗φ∗,

with the notations∫
bψ∗ :=

∫
b(x, x∗)ψ(x∗) dx∗,

∫
b∗ψ∗ :=

∫
b(x∗, x)ψ(x∗) dx∗,

and we show

∂t(H(X)gφ) +

∫
H(X)gb∗φ∗ −

∫
bH(X∗)g∗φ = −

∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X∗ −X)

}
We compute indeed

∂t(gφH(X)) = H(X)g∂tφ+H(X)φ∂tg +H ′(X)φ(∂tf −X∂tg)

= −
∫
H(X)gb∗φ∗ +

∫
bH(X∗)g∗φ

+

∫
bg∗φ

{
−H(X∗) +H(X) +H ′(X)X∗ −H ′(X)X

}
Step 4. Conclusion. For any solutions (f, g, φ) to the system of (full) equations, we have summing
up the three computations

∂t(gφH(X)) +

+div(aH(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) +

∫
bH(X∗)g∗φ−

∫
H(X)gb∗φ∗

= −gφH ′′(X) |∇X|2 −
∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X∗ −X)

}
.

Since when we integrate in the x variable the term on the second line vanishes, we find out

d

dt
H(f) = −DH(f),

with

DH(f) :=

∫
gφH ′′(X) |∇X|2 +

∫ ∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X∗ −X)

}
≥ 0.

Exercise 3.2. We consider a semigroup St = etL of linear and bounded operators on L1 and we
assume that
(i) St ≥ 0;
(ii) ∃ g > 0 such that Lg = 0, or equivalently Stg = g for any t ≥ 0;
(iii) ∃φ such that L∗φ = 0, or equivalently 〈Sth, φ〉 = 〈h, φ〉 for any h ∈ L1 and t ≥ 0.

Our aim is to generalize to that a bit more general (and abstract) framework the general relative
entropy principle we have presented for the evolution PDE (3.1).

(a) Prove that for any real affine function `, there holds `[(Stf)/g]g = St[`(f/g)g].

(b) Prove that for any convex function H and any f ≥ 0, there holds H[(Stf)/g]g ≤ St[H(f/g)g].
(Hint. Use the fact that H = sup`≤H `).

(c) Deduce that ∫
H[(Stf)/g]gφ ≤

∫
H[f/g]gφ, ∀ t ≥ 0.
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4. First example: a general Fokker-Planck equation

In this section we consider the Fokker-Planck equation

(4.2) ∂tf = Lf = ∆f + div(Ef),

on the density f = f(t, x), t ≥ 0, x ∈ Rd, where the force field E ∈ Rd is a given fixed (exterior)
vectors field or is a function of the density.

4.1. Conservation, explicit steady states and self-adjointness property.

Any solution f to the Fokker-Planck equation (4.2) is mass conservative in the sense that

d

dt

∫
f dx =

∫
div(∇f + Ef) dx = 0,

because of the divergence structure of the Fokker-Planck operator L and the Stokes formula.

In the case when

(4.3) E = ∇U + E0, div(E0 e
−U ) = 0,

for a confinement potential U : Rd → R and a non gradient force field perturbation E0 : Rd → Rd,
we may observe that the positive function e−U(x)+U0 is a stationary state for any U0 ∈ R. When
furthermore e−U(x) ∈ L1(Rd), we may fix U0 ∈ R such that

G(x) := e−U(x)+U0 is a stationary state and a probability.

On the other way round, in the most general case we just assume there exists a steady state

G ∈ L1(Rd) ∩ P(Rd), div(∇G+ EG) = 0,

where P(Rd) stands for the set of probability measures, we may observe that G ∈ C1(Rd) thanks
to a bootstrap regularization argument and G > 0 thanks to the strong maximum principle. Then
we define U := − logG and E0 := E −∇U , so that (4.3) holds again.

Consider a weight functionm : Rd → R+ and the associated Lebesgue space L2(m) with ‖f‖L2(m) :=

‖fm‖L2 . For f, g ∈ D(Rd), we compute

I := (Lf, g)L2(m) − (f,Lg)L2(m)

=

∫
(∆f + div(E f)) gm2 −

∫
(∆g + div(E g)) f m2

=

∫
gm2E · ∇f − g∇f · ∇m2 +

∫
f ∇g · ∇m2 − f m2E · ∇g

= 2

∫
g (m2E −∇m2) · ∇f +

∫
gf(div(m2E)−∆m2).(4.4)

In the one hand, if I(f, g) = 0 for any f, g, by choosing f as a constant function, we get

0 =

∫
g(∆m2 − div(m2E))

for any g, and then
∆m2 − div(m2E) = 0.

Plugging that information into (4.4), we get

I = 2

∫
g (m2E −∇m2) · ∇f,

and the equation I(f, g) = 0 for any f, g, by choosing f = xi, implies∫
g(∂im

2 −m2Ei) = 0,

for any g. We deduce
∂im

2 −m2Ei = 0

and then E = ∇U with U := log(m2) or equivalently m = eU/2. In other words, we just have
proved that L is a self-adjoint operator in the Hilbert space L2(m) if and only if E = ∇U and
m = eU/2 for some confinement potential U : Rd → R. In that case, G = exp(−U − U0), U0 ∈ R,
is the family of steady states.



CHAPTER 5 - ENTROPY AND APPLICATIONS 19

4.2. General a priori estimates and well-posedness issue.

Lemma 4.3. For any f ∈ D(Rd) and any weight function m : Rd → R+, we have∫
(Lf)fp−1mp = −(p− 1)

∫
|∇f |2fp−2mp +

∫
fpmpψ1

with

ψ1 := (p− 1)
|∇m|2

m2
+

∆m

m
+

(
1− 1

p

)
divE − E · ∇m

m
.

Proof of Lemma 4.3. It is a good exercise! Just perform two integrations by part: one on the term
which involves the Laplacien, another on the term which involves the E · ∇f function. �

Observe that (at least formally):

d

dt

∫
Rd
|f |pmp =

p

2

∫
Rd

(|f |2)p/2−1∂t(f f̄)mp

=
p

2

∫
Rd
|f |p−2(Lf f̄ + f L̄f)mp,

so that defining f∗ := ‖f‖2−pLp(m) f̄ |f |
p−2, we get

d

dt
‖f‖2Lp(m) =

2

p
(‖f‖pLp(m))

2/p−1 d

dt
‖f‖pLp(m) =

∫
Rd

(Lf f∗ + f̄∗ Lf)mp

= 2<e〈Lf, f∗〉.(4.5)

As a consequence, (4.5) together with Lemma 4.3 lead to some differential inequality on the Lp-
norm which provides an a priori estimate on a solution of (4.2) when the function ψ1 in Lemma 4.3
is uniformly bounded above.

Exercise 4.4. (a) Generalize Lemma 4.3 to the case of a complex valued function f ∈ D(Rd;C).
(b) For any f > 0, prove that (at least formally)∫

(Lf) log f = −4

∫
|∇
√
f |2 +

∫
(divE) f.

As a consequence of the previous identity we obtain several existence results. In the sequel we
assume either

(4.6) E = E(t, x) ∈ L∞(0, T ;W 1,∞(Rd)),

or that E = E(x) ∈W 1,∞
loc and, for some γ ≥ 2,

(4.7) |E(x)| ≤ K1 〈x〉γ−1, |divE(x)| ≤ K2 〈x〉γ−2, E(x) · x ≥ |x|γ ∀x ∈ Rd.
We define

(4.8) H := L2(m), V := H1(m) ∩ L2(m1)

with m = m1 = 〈x〉k, k ≥ 0, in the first case, and with m := eκ〈x〉
γ

, m1 := 〈x〉γ−1eκ〈x〉
γ

, κ := γ/4,
in the second case. We next define

XT := C([0, T ];H) ∩ L2(0, T ;V ).

Proposition 4.5. For any f0 ∈ H, there exists a unique variational solution f ∈ XT to the
Fokker-Planck equation (4.2). Moreover, if f0 ≥ 0 then f(t) ≥ 0 for any t ≥ 0; if f0 ∈ L1 then
f(t) ∈ L1 and 〈f(t)〉 = 〈f0〉 for any t ≥ 0.

Proof of Proposition 4.5. We observe that the (possibly time dependent) bilinear form

a(t, f, g) := −
∫
L(t)f gm2

=

∫
{∇f · ∇gm2 −∇f · (∇m2 + Em2) g − divE f gm2} dx

is continuous in V . Moreover, thanks to Lemma 4.3, it satisfies the following coercivity lower
bound

a(t, f, f) =

∫
|∇f |2m2 +

∫
|f |2 m2 ψ1
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with

ψ1 = − k2

〈x〉2
− k(k − 1)

〈x〉2
− 1

2
divE + k E · x

〈x〉2
≥ C,

C ∈ R, in the first case, and

ψ1 = − 1

16
|x|2〈x〉2γ−4 − d

4
〈x〉γ−2 − γ − 2

4
|x|2〈x〉γ−4 − 1

16
|x|2〈x〉2γ−4

−1

2
divE +

1

4
E · x 〈x〉γ−2 ≥ 1

8
〈x〉2γ−2 + C,

C ∈ R, in the second case. We conclude to the existence and the uniqueness of a variational
solution f ∈ XT by applying Lions’ Theorem 3.2 in Chapter 1. �

Proposition 4.6. Assume a ∈ W 1,∞ ∩ L2. For any f0 ∈ L2
k, k > d/2, there exists a unique

solution
f ∈ C([0, T );L2

k) ∩ L2(0, T ;H1
k), ∀T > 0,

to the nonlinear Fokker-Planck equation

(4.9) ∂tf = ∆f + div((a ∗ f)f).

Proof of Proposition 4.6. Step 1. A priori bounds. On the one hand, we clearly have∫
Rd
|f | dx ≤

∫
Rd
|f0| dx,

and then

d

dt

∫
f2 〈x〉2k

2
= −

∫
|∇f |2〈x〉2k

+

∫
f2〈x〉2k{ k

2

〈x〉2
+
k(k − 1)

〈x〉2
+

1

2
(diva) ∗ f + k (a ∗ f) · x

〈x〉2
}

≤ −
∫
|∇f |2〈x〉2k

+{2k2 +
1

2
‖∇a‖L∞‖f0‖L1 + k ‖a‖L∞‖f0‖L1}

∫
f2〈x〉2k.

Step 2. Existence. To prove the existence we consider the mapping g 7→ f defined for g ∈
C([0, T ];L2

k), k > d/2, so that L2
k ⊂ L1, by solving the linear evolution PDE

∂tf = ∆f + div((a ∗ g)f).

For the linear (and g dependent) problem, by repeating the same computations as in step 1, we
also have

sup
[0,T ]

‖f‖L1 ≤ ‖f0‖L1 , sup
[0,T ]

‖f‖L2
k
≤ AT ,

where AT only depends on ‖f0‖L2
k
, k, a and T . We then define

CT := {f ∈ C([0, T ];L2
k), ‖f(t)‖L1 ≤ ‖f0‖L1 , ‖f(t)‖L2

k
≤ AT }

and we have Φ : CT → CT . We consider two solutions

∂tfi = ∆fi + div((a ∗ gi)fi)
so that the differences f = f2 − f1 and g := g2 − g1 satisfy

∂tf = ∆f + div((a ∗ g1)f) + div((a ∗ g)f2).

As a consequence, using the Young inequality, we have

d

dt
‖f‖2L2 = −2

∫
|∇f |2 +

∫
(∇a ∗ g1) f2 − 2

∫
(a ∗ g)f2∇f

≤ −
∫
|∇f |2 + ‖∇a ∗ g1‖L∞

∫
f2 + ‖a ∗ g‖2L∞

∫
f2

2

≤ ‖∇a‖L∞ ‖f0‖L1‖f‖2L2 + 2 ‖a‖L2 A2
T ‖g‖2L2 ,

from which we deduce
sup
[0,T ]

‖f‖2L2 ≤ εT sup
[0,T ]

‖g‖L2
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with εT → 0 as T → 0. We conclude to the existence by a Banach fixed point theorem. �

Exercise 4.7. Prove that the assumption a ∈ L2 can be removed by making the contraction argu-
ment with the L2

k norm.

4.3. Long-time behaviour.
We briefly discuss the long-time asymptotics for the linear and nonlinear Fokker-Planck equations
(4.2) and (4.9).

• In the case E = ∇U , U = 〈x〉γ/γ, γ ≥ 2, L is self-adjoint and dissipative in L2(G−1/2) and the
resolvent RL(b) is compact, because for b > 0 large enough, the bilinear form a′(f, g) := a(f, g) +
b(f, g), with a defined in the proof of Proposition 4.5, is coercive in the space V := H1(G−1/2) ∩
L2(〈x〉γ−1G−1/2) and V is compactly embedded in L2(G1/2). More precisely, performing just one
integration by part on the first (Laplacian) term, we have

a′(f, f) =

∫
[−(Lf)f + b f2]G−1

=

∫
[−∆f −∆U f −∇U · ∇f + bf) feU

=

∫ {
|∇f |2 + (b−∆U) f2

}
eU .

Introducing the notation g := f G−1/2 and observing that∫
[−∆f ] f eU =

∫
∇(g G1/2) · ∇(g G−1/2)

=

∫
|∇g|2 +

∫
g2∇G1/2 · ∇G−1/2

=

∫
|∇g|2 − 1

4

∫
f2G−1 |∇U |2,

as well as

−
∫

(∇U · ∇f) feU =
1

2

∫
(∆U + |∇U |2) f2G−1,

we also have

a′(f, f) =

∫
|∇g|2 +

∫
f2 [b− 1

2
∆U +

1

4
|∇U |2] eU .

Gathering these two identities, we deduce that for any f ∈ D(Rd)

a′(f, f) ≥ 1

2

∫
|∇f |2 eU +

∫ {
b− 1

2
∆U +

1

8
|∇U |2) f2

}
eU .

Observing now that |∇U |2 ≥ |x|2(γ−1) and |∇U | ≤ (d + γ − 2) 〈x〉γ−2, we obtain by taking b > 0
large enough the following lower (coercivity) bound: for any f ∈ D(Rd)

a′(f, f) ≥ 1

2

∫
|∇f |2 eU +

∫ { b
2

+
1

16
|x|2(γ−1)) f2

}
eU =: ‖f‖2V .

On the other hand, thanks to the first identity in Proposition 4.5, we also have

a′(f, g) =

∫ {
∇f · ∇g − 2∇f · ∇U g + (b−∆Uf g

}
eU dx,

and then |a′(f, g)| ≤ C ‖f‖V ‖g‖V for any f, g ∈ V . Thanks to the Lax-Milgram Theorem, we
deduce that b ∈ ρ(L). Moreover, for any g ∈ H := L2(G−1/2), the (variational) solution f :=
RL(b)f ∈ V to the equation

(L − b)f = g

satisfies
‖f‖2V ≤ ((b− L)f, f)H = (−g, f)H ≤ C ‖g‖H ‖f‖V .

As a consequence, ‖RL(b)g‖V ≤ C ‖g‖H . Because V ⊂ H is compactly embedded, we get that
RL(b) is a compact operator. We may apply Theorem 2.14: the L2(G−1/2)-norm is a Lyapunov
functional and any solution converges with exponential rate to the associated equilibrium (uniquely
defined thanks to the mass conservation).
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• In the case E = a ∗ f + x with a = ∇U , U a convex function, we write

∂tf = Lf = div[f∇(log f + |x|2/2 + U ∗ f)].

We define

H(f) :=

∫
Rd
f{log f +

1

2
|x|2 +

1

2
U ∗ f}, D(f) :=

∫
Rd
f |∇(log f + |x|2/2 + U ∗ f)|2.

We may compute

d

dt
H(f) =

∫
Rd

(∂tf)(1 + log f + |x|2/2 + U ∗ f) = −D(f).

The functional H is then an entropy. It is moreover a Lyapunov functional under some additional
assumption on U . We accept the following result.

Lemma 4.8. If U is a convex function then H is a convex functional and there exists a unique
minimizer f∞ to the minimizing problem

H(f∞) = min
{
H(f); 0 ≤ f ∈ L1(Rd),

∫
Rd
f dx = 1

}
.

Moreover, f∞ is smooth and positive, and we have D(f) = 0 implies f = f∞.

Exercise 4.9. Show the convergence of the solutions to the unique equilibrium f∞ by applying
Theorem 1.6 or Theorem 1.9.

• In the case E = ∇U +E0, U = 〈x〉γ/γ, γ ≥ 2, div(E0 e
−U ) = 0, E0 6= 0, the operator L satisfies

the same properties as the first case (when E0 = 0) except that L is not self-adjoint anymore.
Because LG = 0 and L∗1 = 0, we may apply the GRE method which readily implies

d

dt
H(f) = −D(f),

with

H(f) :=

∫
(f − 〈f0〉G)2G−1 and D(f) =

∫
|∇(f/G)|2G.

The equation D(f) = 0 is equivalent to f = 〈f〉G and by conservation of mass f = 〈f0〉G. As
a consequence, H is a entropy, D is a dissipation of entropy functional (it is lsc for the weak L2

convergence), and then Theorem 1.6 says that f(t) ⇀ 〈f0〉G weakly in L2 as t → ∞ for any
f0 ∈ H := L2(G−1/2) (take Z := {g ∈ H; ‖g‖H ≤ ‖f0‖H , 〈g〉 = 〈f0〉}). In order to enlarge of
the class of initial data and to strengthen the sense of convergence we may argue as follows (we
present the argument in dimension d = 1 for the sake of simplicity of the notation). By developing
the term D(f) or just using Lemma 4.3, we have for any K > 0 and for some K0 = K0(H(f0),K)

d

dt

∫
f2G−1 = −

∫
(∂f)2G−1 +

∫
f2G−1ψ1

≤ −
∫

(∂f)2G−1 −K
(∫

f2G−1
)2

+K0,

because ψ1 ≤ C and H(f) ≤ H(f0).
The equation satisfied by ∂f is

∂t∂f = ∆∂f + ∂(divE)f + (divE)∂f + ∂E · ∇f + E · ∇∂f,

from which we deduce for some θ ∈ (0, 1)

d

dt

∫
(∂f)2 ≤ −

∫
(∂2f)2 +

∫ {
|D2E| |f | |∇f |+ 3

2
|divE| |∇f |2

}
≤ −

(∫
f2
)−1(∫

(∂f)2
)2

+

∫
(C f2 + θ−1(∂f)2)G−1.

We define

u :=

∫
f2G−1 + θ

∫
(∂f)2,
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which satisfies the differential ODE

du

dt
≤ −K

(∫
f2G−1

)2

+K0 − θ‖f0‖−2
H

(∫
(∂f)2

)2

+ θC ‖f0‖2H

≤ −θ′u2 +K ′0,

for some constants θ′,K ′0 > 0, which only depend on ‖f0‖H . Defining K1 = K1(‖f0‖H) := K ′0/(2θ
′)

and the set

Z1 :=
{
g ∈ H; ‖g‖H ≤ ‖f0‖H , u[g] ≤ K1

}
,

we deduce that if f0 ∈ Z1 then f(t) ∈ Z1 for any t ≥ 0, and on the contrary, defining τ := sup{t >
0; u(t′) > K1 ∀ t′ ∈ [0, t)}, we have

du

dt
≤ −θ

′

2
u2 on (0, τ).

As a consequence, we get u(t) ≤ 2/(θ′t) on (0, τ), so that necessarily u(t) ≤ K1 for some t ≤
2/(θ′K) := T . We have then proved that Z1 is invariant and attractive in the sense that f(t) ∈ Z1

for any t ≥ T . Because Z1 ⊂ L1 with compact embedding, we deduce from the previous (weak)
convergence that f(t) → 〈f0〉G strongly in L1. It is worth emphasizing that we get the same
conclusion by using the La Salle invariance principle (Theorem 1.8) by observing that H is a
Lyapunov functional in the set Z1.
For a general initial datum f0 ∈ L1, we use the splitting f0 = f0,n+g0,n with f0,n = 1B(0,n) f0∗ρn ∈
H for a mollifier sequence (ρn). We then have

‖fn(t)− 〈f0,n〉G‖L1 → 0 as t→∞, ∀n ≥ 0,

by the previous analysis, and

sup
t≥0
‖gn(t)‖L1 ≤ ‖g0,n‖ → 0 as n→∞.

Putting together the two above estimates and the fact that 〈f0,n〉 → 〈f0〉 as n→∞, we conclude
to f(t)→ 〈f0〉G in L1 as t→∞.

• In the general case when E satisfies (4.7), we verify that L−b is dissipative in the space H defined
in (4.8) for b > 0 large enough and again that RL(b) is compact. Moreover L satisfies Kato’s
inequality and the strong maximum principle as stated and proved bellow. We may then apply
the existence result Theorem 1.2 (see Exercise 2.26) and we obtain that there exists of nonnegative
and mass normalized steady state f1 ∈ H. Alternatively, we obtain the same existence result by
applying the existence part Proposition 2.25 of the Krein-Rutman Theorem 2.23 and observing that
L∗1 = 0 so that the first eigenvalue is 0 and the first eigenfunction f1 given by the Krein-Rutman
theorem is a steady state. We conclude by applying the GRE method as in the previous case, and
we get again f(t) ⇀ 〈f0〉f1 weakly in L2 as t→∞ for any f0 ∈ H. We can improve (enlarge and
strengthen) the above convergence by following the same argument as in the previous case.

Proposition 4.10. The operator L satisfies “Kato’s inequalities” and the “strong maximum prin-
ciple” in H

Proof of Proposition 4.10. Step 1. Kato’s inequalities. For a convex function β : R→ R such that
β(s) = sβ′(s), we clearly have

Lβ(f) = β′′(f)|∇f |2 + β′(f)Lf ≥ β′(f)Lf.

For the square of the modulus function s ∈ C 7→ θ(s) = |s| =
√
ss̄, we have on the one hand

Lf · θ′(f) := [(Lf) f̄ + (Lf̄) f ]/(2|f |)
= [(∆f) f̄ + (∆f̄) f ]/(2|f |) + div(E|f |).
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On the other hand, introducing the real part R and the imaginary part I in such a way that
f = R+ iI, R, I ∈ R, we easily compute

∆|f | = div
(∇|f |2

2|f |
)

= div
(∇f f̄ +∇f̄ f

2|f |
)

=
∆f f̄ + ∆f̄ f

2|f |
+
|∇f |2

|f |
− 1

4

∣∣∇|f |2∣∣2
|f |3

=
∆f f̄ + ∆f̄ f

2|f |
+

(I∇R−R∇I)2

|f |
.(4.10)

The two identities together imply

L|f | = ∆|f |+ div(E|f |)
≥ [(∆f)f̄ + f (∆f̄)]/(2|f |) + div(E|f |) = Lf · θ′(f).(4.11)

It is worth emphasizing that (4.10) is clearly true for a W 2,d
loc (Rd) and not vanishing function f .

For a function f ∈ W 2,d
loc (Rd) which may vanish, we introduce the quantity |f |ε := (ε2 + |f |2)1/2,

and we similarly have

∆|f |ε =
∆f f̄ + ∆f̄ f

2|f |ε
+
|∇f |2

|f |ε
− 1

4

∣∣∇|f |2∣∣2
|f |3ε

≥ ∆f f̄ + ∆f̄ f

2|f |ε
.

By passing to the limit ε→ 0, we recover (4.11).

Step 2. Strong maximum principle for a real values function. Consider f ∈ H\{0} such that

Lf = 0. By a bootstrap regularization argument, we classically have f ∈ W 2,d
loc (Rd) ⊂ C(Rd). By

assumption there exist then x0 ∈ Rd, c, r > 0, such that |f(x)| ≥ c on B(x0, r). From Lemma 4.3,
we also have that L − a is −1-dissipative for a ≥ 0 large enough, in the sense that

(4.12) ∀h ∈ D(L) ((L − a)h, h)H ≤ −‖h‖2H .
We next observe that for σ > 0 large enough, the function g(x) := c exp(σrγ − σ|x− x0|γ) satisfies
g = c on ∂B(x0, r) and

(−L+ a)g =
[
−σ2γ2|x− x0|2(γ−1) + σγ(d+ γ − 2)|x− x0|γ−2

−divE + E · (x− x0)γσ|x− x0|γ−2 − a
]
g ≤ 0 on B(x0, r)

c.

We define h := (g − |f |)+ and Ω := Rd\B(x0, r). We have h ∈ H1
0 (Ω,mdx) and

(L − a)h ≥ θ′(g − |f |)L(g − |f |)− a h
= θ′(g − |f |) [(L − a)g + a|f |] ≥ 0,

where we have used the notation θ(s) = s+. Thanks to a straightforward generalization of (4.12)
to H1

0 (Ω,m), we deduce

0 ≤ ((L − a)h, h)L2(Ω,m) ≤ −‖h‖2L2(Ω,m),

and then h = 0. That implies |f | ≥ g on Ω, next |f | > 0 on Rd and then f > 0 or f < 0 because
f ∈ C(Rd).
Step 3. Strong maximum principle for a complex values function. Consider a complex values
function f ∈ D(L)\{0} such that

Lθ(f) = Lf · θ′(f) = 0

for θ(s) = |s|. The strong maximum principle for a real values function implies that |f | > 0 and
we may assume that both R and I do not vanish in some open set O. Using the case of equality
in Kato’s inequality, we deduce with the notation of Step 2 that

(I∇R−R∇I)2

|f |
= 0

which in turns implies

|∇ logR−∇ log I|2 = 0.

We have then proved R = CI for some constant C ∈ R in O and then in Rd, which exactly means
f = u |f | for some u ∈ C∗. �
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5. Second example: the scattering equation

The linear Boltzmann (or scattering) equation of the density function f = f(t, v) ≥ 0, t ≥ 0,
v ∈ V ⊂ Rd, writes

(5.1) ∂tf = L f :=

∫
V

(b∗f∗ − b f) dv∗,

where f = f(v), f∗ = f(v∗), b = b(v, v∗) and b∗ = b(v∗, v), b ≥ 0 is a given function (the rate of
collisions), or more generally

(5.2) ∂tf = L f :=

∫
V
b∗f∗ dv∗ −B(v) f,

and we assume that there exists a function φ > 0 such that

L∗φ :=

∫
V
b φ∗ dv∗ −B φ = 0, in other words B(v) :=

∫
V

φ∗
φ
b dv∗,

with again φ = φ(v) and φ∗ = φ(v∗). The first equation (5.1) corresponds to the choice

B(v) =

∫
V
b dv∗, φ ≡ 1,

in the second equation (5.2).

Example 1. We assume V ⊂ Rd, b∗ = k(v, v∗)F (v), for a symmetric function k(v, v∗) =
k(v∗, v) > 0 and a given function 0 < F ∈ L1(V) ∩P(V). The equation (5.1) becomes

(5.3) ∂tf = L f :=

∫
V
k (F f∗ − F∗ f) dv∗.

It is worth noticing that F = F (v) is a stationary solution to the equation (5.5) since

(5.4) ∂tF = 0 = LF.

Example 2. We assume V = (0,∞), b∗ = b∗ 1v∗>v, φ(v) = v, and then the equation (5.2)
becomes the fragmentation equation

(5.5) ∂tf = L f :=

∫ ∞
0

b∗ f∗ dv∗ −B(v) f(v), B(v) :=

∫ v

0

v∗
v
b dv∗.

Conservation law. Without any additional assumption, we immediately deduce that the equation
(5.2) has one law of conservation: any solution satisfies (at least formally)∫

V
f(t, v)φ(v) dv =

∫
V
f(0, v)φ(v) dv,

because
d

dt

∫
V
f φ dv =

∫
V

(Lf)φdv =

∫
V
f (L∗φ) dv = 0.

Lyapunov/entropy functional. We assume that there exists a function 0 < F ∈ L1(V)∩P(V) which
is a stationary solution

LF =

∫
V
b∗F∗ dv∗ −

∫
V

φ∗
φ
b dv∗ F = 0,

what it is the situation in Example 1. Then any solution f to the equation (5.2) satisfies (at least
formally)

(5.6)
d

dt

∫
V
f2 φ

F
dv = 2

∫
V

(L f)
f φ

F
dv = −D2(f)

with

(5.7) D2(f) :=

∫
V

∫
V
b∗ F φ

( f∗
F∗
− f

F

)2

dvdv∗.

We then say that

H2(f) :=

∫
V
f2 φ

F
dv

is a Lyapunov (or generalized relative entropy) for the equation (5.2).
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To prove (5.6) in the case φ = 1, we perform the following computations

(Lf, f/F ) =

∫ ∫
b∗F∗

f∗
F∗

f

F
− 1

2

∫ ∫
b F

f2

F 2
− 1

2

∫ ∫
b F

f2

F 2

=

∫ ∫
b∗F∗

f∗
F∗

f

F
− 1

2

∫ ∫
b∗ F∗

(f∗)
2

(F∗)2
− 1

2

∫ ∫
b∗ F∗

f2

F 2

= −1

2

∫ ∫
b∗F∗

(
f∗
F∗
− f

F

)2

,

where in order to pass from the first to the second line we have just changed the name of the
variables in the second term ∫ ∫

b F
f2

F 2
=

∫ ∫
b∗ F∗

(f∗)
2

(F∗)2

and we have used the fact that F is a stationary solution in the third term∫
b F dv∗ =

∫
b∗ F∗ dv∗.

For a general law of conservation φ, the computation is almost the same

(Lf, φ f/F ) =

∫ ∫
b∗ φF∗

f∗

F∗

f

F
−

1

2

∫ ∫
b φ∗ F

f2

F 2
−

1

2

∫ ∫
b φ∗ F

f2

F 2

=

∫ ∫
b∗ φF∗

f∗

F∗

f

F
−

1

2

∫ ∫
b∗ φF∗

(f∗)2

(F∗)2
−

1

2

∫ ∫
b∗ φF∗

f2

F 2

= −
1

2

∫ ∫
b∗ φF∗

(
f∗

F∗
−
f

F

)2

.

A theorem. We now consider the same situation as in example 1, and we assume furthermore that
there exist some constants 0 < k0 ≤ k1 <∞ such that

∀ v, v∗ ∈ V, k0 ≤ k(v, v∗) ≤ k1.

We consider the scattering equation (5.1) in that case, that we complement with an initial condition

f(0, v) = f0(v) ∀ v ∈ V.

Theorem 5.1. Assume f0 ∈ L1(V), V = Rd.
(1) There exists a unique global solution f ∈ C([0,∞);L1(V)) to the scattering equation (5.1).
That solution is mass conserving∫

V
f(t, v) dv =

∫
V
f0(v) dv =: 〈f0〉

and satisfies the maximum principle

f0 ≥ 0 ⇒ f(t, .) ≥ 0 ∀ t ≥ 0.

(2) In the large time asymptotic, the solution converges to the unique stationary solution with same
mass

‖f(t, .)− 〈f0〉F‖E ≤ e−k0t/2 ‖f0 − 〈f0〉F‖E ,
where ‖ · ‖E is the Hilbert norm defined by

‖f‖2E :=

∫
V
f2 F−1 dv.

For the proof of point (1) we refer to the precedent chapters where the needed arguments have
been introduced. We are going to give now the (formal) proof of point (2).
Functional inequality and long time behaviour. The following functional inequality holds true: for
any function f ∈ E, we have

(5.8) D2(f) ≥ k0‖f − 〈f〉F‖2E .

It is worth observing that the Cauchy-Schwarz inequality implies

|〈f〉| ≤
∫
V

(|f |F−1/2)F 1/2 ≤
(∫
V
f2F−1

)1/2(∫
V
F
)1/2

= ‖f‖E ,
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so that the mass 〈f〉 is well defined if f ∈ E. Let us accept for a while the inequality (5.8) and
let us prove then the convergence result (2) in Theorem 5.1. Thanks to (5.6), the fact that F is a
stationary solution, the fact that f is mass conserving and (5.8), we have

d

dt
‖f − 〈f〉F‖2E = −D2(f) ≤ −k0‖f − 〈f〉F‖2E ,

and we conclude by applying the Gronwall lemma.

Let us prove now the functional inequality (5.8). From the lower bound assumption made on k,
the following first inequality holds

D2(f) :=

∫ ∫
b∗ F∗

(
f∗
F∗
− f

F

)2

≥ k0

∫ ∫
F F∗

(
f∗
F∗
− f

F

)2

.

On the other hand, by integrating (in the v∗ variable) the identity

f F∗ − f∗ F =

(
f

F
− f∗
F∗

)
F F∗,

we get

g = F

∫
V

(
f

F
− f∗
F∗

)
F∗ dv∗

with g = f − 〈f〉F . Thanks to the Cauchy-Schwarz inequality, we deduce

g2 ≤
∫
V

(
f

F
− f∗
F∗

)2

F F∗ dv∗ ×
∫
V
F F∗ dv∗,

so that we get the second inequality∫
V

g2

F
dv ≤

∫
V

∫
V

(
f

F
− f∗
F∗

)2

F F∗ dv∗ dv.

We conclude by gathering these two estimates. �

Exercise 5.2. Consider the mass conservative scattering equation (5.1) and assume that

K1 ≤ B(v) ≤ K2, 0 ≤ b(v, v∗) ≤ K3 ∀ v, v∗ ∈ V := Rd,
as well as ∫

Rd
(|v∗|2 − |v|2) b(v, v∗) ≤ K4 ∀ v ∈ Rd,

for some constants Ki ∈ (0,∞). Show that there exists a positive and unit mass steady state
f1 ∈ L2 ∩ L1

2 (Hint. Use Theorem 1.2) and that any unit mass solution converges to that steady
state (Hint. Use the GRE method).

6. Third example: the growth fragmentation equation

In the two previous sections we have considered some equations which have a clear law of conser-
vation (in most of the cases which are mass conservative). Here we present a situation where the
conservation law exists as a consequence of the Krein-Rutman we have presented in section 2.

We consider the growth-fragmentation equation

∂tf = Lf = −∂xf −K(x)f +

∫ ∞
x

k(y, x)f(y) dy on (0,∞)× (0,∞),

on the density f = f(t, x) of particles (or cells) of size x > 0 and time t ≥ 0, that we complement
with the boundary condition

f(t, 0) = 0 ∀t > 0.

We recognize the fragmentation operator

Ff := −K(x)f + F+f, F+f =

∫ ∞
x

k(y, x)f(y) dy

with

K(x) =

∫ x

0

y

x
k(x, y) dy, k(x, y) = K(x)℘(y/x)/x,

∫ 1

0

z℘(z) dz = 1.
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As a consequence of the identity

(F+∗φ)(x) =

∫ x

0

k(x, y)φ(y) dy, ∀φ ∈ L1
loc(R+),

and the above relation between K and k, we then have

〈Ff, x〉 = 〈f,K(x)x−F+∗x〉 = 0

but ψ(x) := x is not an invariant for the all equation since that for any f ∈ L1
x(R+), f 6≡ 0,

〈Lf, ψ〉 = 〈−∂xf, x〉 = 〈f〉 ≥ 0

We assume that

℘∗ ≤ ℘(z) ≤ ℘∗ ∀ z ∈ (0, 1), K∗〈x〉γ ≤ K(x) ≤ K∗〈x〉γ ∀x ≥ 0

for some real numbers ℘∗, ℘
∗, γ, K∗, K

∗ ∈ (0,∞).

Proposition 6.1. There exist r > 2 and b∗ ∈ R+ such that L − b∗ is dissipative in L2
r/2.

Proof of Proposition 6.1. For ` ∈ R+, we compute

(L g, g)L2(x`/2) = T1 + T2 + T3

with

T1 :=

∫ ∞
0

(−∂xg) g x` =

∫ ∞
0

∂xx
`

2
g2 =

`

2

∫
g2 x`−1 dx,

T2 :=−
∫ ∞

0

K(x) g x` g ≤ −K∗
∫ ∞

0

g2 x`〈x〉γ ,

T3 :=

∫ ∞
0

(F+g)x` g ≤ ℘∗K∗
∫ ∞

0

x`g(x)

(∫ ∞
x

g(y) 〈y〉γ y−1 dy

)
dx.

Introducing the notation G(x) =
∫∞
x
g(y) 〈y〉γ y−1 dy, we have

T3 ≤ −℘
∗K∗

2

∫ ∞
0

2G G′ x`+1〈x〉−γ dx

=
℘∗K∗

2

∫ ∞
0

G2(x) ∂x(x`+1〈x〉−γ) dx.

Thanks to the Cauchy-Schwarz inequality, we get for any a > 1

G2(x) ≤
∫ ∞
x

〈y〉2γya−2 g2(y) dy

∫ ∞
x

y−a dy ≤ x1−a

a− 1

∫ ∞
x

〈y〉2γya−2 g2(y) dy.

All together, we obtain

T3 ≤ ℘∗K∗

2

`+ 1

a− 1

∫ ∞
0

〈y〉2γya−2 g2(y)

∫ y

0

x1−a+` 〈x〉−γ dx dy.

With the choice ` = 0, a ∈ (max(1, 2− γ), 2), we deduce

T3 ≤ C(γ)℘∗K∗
∫ ∞

0

〈y〉2γ g2(y) dy.

With the choice ` > γ, a ∈ (1, 2 + `− γ), we deduce

T3 ≤ ν
∫ ∞

0

〈y〉γ y` g2(y) dy, ν :=
℘∗K∗

2

`+ 1

(`+ 1)− γ − (a− 1)
× 1

a− 1
.

More precisely, choosing ` = r := γ + 2a− 1, we have

ν =
℘∗K∗

2

γ + 2a

a+ 1
× 1

a− 1
≤ 1

2
K∗

for a > 1 large enough, and we fix such a real number a such that furthermore r > 2.
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As a conclusion, we have proved that for the above definition of r, we have

(L g, g)L2((1+xr)1/2) ≤ −K∗
∫ ∞

0

g2 〈x〉γ dx+ C(γ)℘∗K∗
∫ ∞

0

g2 〈x〉2γ dx

+
r

2

∫
g2 xr−1 dx− K∗

2

∫ ∞
0

g2 〈x〉γ xr dx

≤ C

∫ ∞
0

g2 dx− K∗
4

∫ ∞
0

g2 〈x〉γ+r dx,

because the dominant term for large values of x > 0 is the last term. We next fix b∗ > 0 large
enough and we deduce that

((L − b∗) g, g)L2
r/2
≤ −α ‖g‖2L2

(r+γ)/2
.

for some constant α > 0. �

Proposition 6.2. With the notation of teh previous proposition, there exists a constant C such
that for any functions f, g ∈ L2

r/2 satisfying the resolvent equation (L − b∗)f = g, there holds

(6.1) ‖f‖2D(L) := ‖f‖2L2
r/2

+ ‖Lf‖2L2
r/2
≤ C ‖g‖2L2

r/2
.

Moreover, for any f ∈ D(L), there holds

(6.2) ‖f‖2L2
(r+γ)/2

+ ‖∂xf‖2L2 ≤ C ‖f‖2D(L).

Proof of Proposition 6.4. Step 1. Consider f, g ∈ L2
r/2 such that (L − b∗)f = g. From the

dissipativity estimate, we have

α ‖f‖2L2
(r+γ)/2

≤ −((L − b)f, f)L2
r/2

= −(g, f)L2
r/2

≤ α

2
‖f‖2L2

r/2
+

1

2α
‖g‖2L2

r/2
,

from which we deduce

(6.3) ‖f‖L2
(r+γ)/2

≤ α−1‖g‖L2
r/2
.

Moreover, from the resolvent equation again, there holds

‖Lf‖2L2
r/2

= (b∗f + g,Lf)L2
r/2
≤ (b∗ ‖f‖L2

r/2
+ ‖g‖L2

r/2
) ‖Lf‖L2

r/2
,

from which we deduce (6.1) thanks to (6.3).

Step 2. On the one hand, from the dissipativity estimate, we have

α ‖f‖2L2
(r+γ)/2

≤ −((L − b)f, f)L2
r/2
≤ (b‖f‖L2

r/2
+ ‖Lf‖L2

r/2
)‖f‖L2

r/2
,

from which we deduce

(6.4) ‖f‖L2
(r+γ)/2

≤ C‖f‖D(L).

On the other hand, from the very definition of L and the Cauchy-Schwarz inequality, we have∫
(∂xf)2 =

∫
((F+f)−Bf − Lf) ∂xf

≤ (‖F+f‖L2 + C‖f‖L2
γ/2

+ ‖Lf‖L2) ‖∂xf‖L2 ,

or equivalently (using the Young inequality)

‖∂xf‖L2 ≤ C (‖F+f‖L2 + ‖f‖L2
γ/2

+ ‖Lf‖L2).

Using the Cauchy-Schwarz inequality, we have

(F+f)(x)2 ≤ (K∗℘∗)2

∫ ∞
x

f2〈y〉2γya−2 dy
x1−a

a− 1
,
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and with the choice a = 3/2, we deduce

‖F+f‖2L2 ≤ 2(K∗℘∗)2

∫ ∞
0

f2〈y〉2γy−1/2
(∫ y

0

x−1/2 dx
)
dy

≤ (K∗℘∗)2

∫ ∞
0

f2〈y〉2γ dy.

Putting together the two last estimates, we get

‖∂xf‖L2 ≤ C (‖f‖L2
γ

+ ‖Lf‖L2),

and we conclude to (6.2) thanks to (6.4) and recalling that r > γ. �

Corollary 6.3. With the notation of teh previous propositions, for any b ≥ b∗, L− b is dissipative
in H := L2

r/2 and RL(b) is compact.

Proof of Corollary 6.3. The main point is to explain why the resolvent operator RL(b) is well
define for any b ≥ b∗. We do not give all the details of the proof, but just sketch some possible
strategies. Finally, the fact that RL(b) is compact just comes from Proposition 6.4 and the compact
embedding D(L) ⊂ H.

- Strategy 1. We define Bf := −∂xf −K(x)f , and we observe that the semigroup

[SB(t)f0](x) := f0(x− t)eK(x−t)−K(x), K(y) :=

∫ y

0

K(z) dz,

is well defined for f0 ∈ Cc((0,∞)), its generator is B and it extends as a bounded semigroup in H.
More precisely, it is a contraction for an equivalent norm, because if fB(t) = SB(t)f0, we have

d

dt

∫
f2
B(1 + εxr) dx =

∫
[−∂xf2

B − 2K(x)f2
B](1 + εxr) dx

≤
∫
f2
B [εrxr−1 − 2K∗〈x〉γ − 2ε 〈x〉γxr] dx ≤ 0

for ε > 0 small enough. Thanks to the Duhamel formula and the previous estimates on the
operator F+ in H, we can build the semigroup SL on H which satisfies the growth estimate
‖SL(t)‖B(H) ≤ eb

∗t. We conclude thanks to Lemma 2.7.

- Strategy 2. We can use the same characteristics method and fixed point theorem directly at the
level of the resolvent equation (L − b)f = g in order to prove that this one has a unique solution
for any g ∈ H and any b > b∗.

- Strategy 3. We can use a vanishing viscosity method by adding an ε∂2
xx term in the definition

of L and prove the well-posedness of the associated resolvent problem thanks to the Lax-Milgram
Theorem or the existence of a variational solution (and thus a semigroup) thanks to the J.-L. Lions’
Theorem. We then pass the limit ε→ 0. �

Proposition 6.4. The growth-fragmentation operator L satisfies the complex Kato’s inequality in
the sense that for any smooth function f ∈ L2

r/2, there holds

(6.5) L|f | ≥ (signf) · (Lf).

Proof of Proposition 6.4. For any f ∈ L2
(r+γ)/2 ⊂ L

1
γ , there holds

θ′(f) · F+f −F+θ(f) =

∫ ∞
x

k(y, x)[θ′(f(x)) · f(y)− θ(f(y))] dy ≤ 0,

because k ≥ 0 and
θ′(a)b− θ(b) ≤ 0 ∀ a, b ∈ R

when θ(s) = s+, as well as

θ′(a) · b− θ(b) =
āb+ ab̄

2|a|
− |b| ≤ 0 ∀ a, b ∈ C

when θ(s) = |s|. Since we also have

(−∂xf −K(x)f) · θ′(f) = −∂xθ(f)−K(x)θ(f),

we immediately deduce that (6.5) holds. �
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Proposition 6.5. The growth-fragmentation operator L satisfies the strong maximum principle in
the sense that for any smooth function f ∈ L2

r/2, there holds

(6.6) f ≥ 0, Lf ≤ 0 implies f ≡ 0 or f > 0,

and D(L) ⊂ C([0,∞)).

Proof of Proposition 6.5. Since D(L) ⊂ H1(R+) ⊂ C(R+), we have f ∈ C(R+) and we may
assume that there exists x0 ≥ 0 such that f(x0) > 0. From the assumed inequality satisfies by f ,
we have

(6.7) ∂xf +K f ≥ F+f ≥ 0 on (x0,∞),

and then f(x) ≥ f(x0) exp(−
∫ x
x0
K(z) dz)1x≥x0 =: g(x) for any x ≥ x0. Coming back to (6.7), we

have
f(0) ≥ 0, ∂xf +K f ≥ F+g > 0 on (0, x0),

which in turn implies f > 0. �

Exercise 6.6. With the help of that previous propositions, investigate the first eigenvalue problem
(thanks to the Krein-Rutman Theorem in section 2) and the long-time asymptotics of the solutions
(thanks to the GRE principle in section 3).

7. Appendix

Theorem 7.1 (Brouwer-Schauder-Tychonoff). Consider a locally convex topological vector space X and Z ⊂ X a

convex set which is metrizable and compact for the induced topology. Then, any continuous function ϕ : Z → Z
has a least one fixed point.

Remark 7.2. The examples we have in mind are the following:

1. A Banach space X endowed with its norm ‖ · ‖X and a convex and bounded set Z ⊂ X which is furthermore

compact for the strong topology. Typically X = Lp and Z := {f ∈W 1,p ∩ Lp
1; ‖f‖W1,p∩Lp1

≤ 1}.

2. A separable and reflexive Banach space X endowed with the weak topology σ(X,X′) and a bounded, closed and

convex set Z ⊂ X. Because X′ is separable, the topology σ(X,X′) on the bounded set Z is metrizable, and the set
Z is both topologically and sequentially compact.

3. X = L1(Ω), Ω ⊂ Rd open set, endowed with the weak topology σ(L1, L∞) and a bounded, closed and convex

set Z ⊂ X such that Z is uniformly equi-integrable both locally and at the infinity. For instance there exist

ω : Ω→ [1,∞), ω(x)→∞ when |x| → ∞, Φ : R→ R+, Φ(s)/s→∞ when |s| → ∞ and C ∈ R+, such that

Z ⊂
{
f ∈ L1(Ω),

∫
Ω

(Φ(f) + |f |ω) dx ≤ C
}
.

As a consequence, Z is both topologically and sequentially compact for the weak topology σ(L1, L∞).

4. A Banach space X such that X = Y ′ for a separable Banach space Y endowed with the weak ∗ topology σ(X,Y )

and a convex and bounded set Z ⊂ X which is furthermore closed for the weak ∗ topology σ(X,Y ). Because

Z ⊂ {f ∈ X, ‖f‖X ≤ C}, for some C ∈ R+, and that last set is topologically and sequentially compact for the weak
∗ topology σ(X,Y ), the same is true for Z.

Proof of Theorem 7.1. By assumption Z is endowed with a metrizable topology associated to a family of seminorms

(pi)i∈I with I = {0} or I = N. We assume that we are in the second case, the first case being simpler, and we also
assume without restriction that (pi) is increasing. We split the proof into two steps.

Step 1. By compactness of Z, for any ε > 0 and n ∈ I, there exists a finite set J and some vectors ej ∈ Z, j ∈ J ,
such that

(7.1) Z ⊂
⋃
j∈J

{
pn(x− ej) < ε/2

}
.

We then define ϕε by

ϕε(x) :=
∑
i

θi(x) ei, θi(x) =
qi(x)∑

j∈J qj(x)
, qi(x) := max(ε− pn(ϕ(x)− ei), 0).

For any i ∈ J , the mapping x 7→ qi(x) is continuous and moreover, for any x ∈ Z, there exists at least one ix ∈ J
such that qix (x) ≥ ε/2. As a consequence, x 7→

∑
qj(x) is continuous and larger than ε/2, which in turn imply that

ϕε is a continuous mapping. Because

0 ≤ θi(x) and
∑
i∈I

θi(x) = 1,

we get that ϕε : Zε ⊂ Z → Zε, where Zε is the convex hull of the points (ej)j∈J . In particular, Zε is a convex and
compact subset of the finite dimensional space Vect(ej ; j ∈ J) endowed with the topology induced by the family of
seminorms (pi)i∈I , which therefore is a normable topology (it is associated to a seminorm pm, m large, which is a
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norm on that finite dimensional space). We may apply the Brouwer theorem and we get the existence of at least a
fixed point. Namely, there exists xε ∈ Zε such that ϕε(xε) = xε. We next observe that for any x ∈ Z, there holds

pn(ϕ(x)− ϕε(x)) = pn
(∑
j∈I

θj(x)(ϕ(x)− ej)
)

≤
∑
j∈I

θj(x)pn(ϕ(x)− ej) ≤ ε

because pn(ϕ(x)− ej) ≤ ε when θj(x) 6= 0.

Step 2. For any n ∈ N∗, we take εn = 1/n in the previous construction, and we write ϕn instead of ϕεn as well

instead xn instead of xεn . With this notation, we have for any n ≥ m ≥ 1

(7.2) ϕn(xn) = xn and pm(ϕ(x)− ϕn(x)) ≤
1

n
,

because (pn) is an increasing sequence. By compactness of Z there exist a subsequence, still denoted as (xn), and

x̄ ∈ Z such that xn → x̄. By continuity of ϕ and thanks to (7.2), we deduce

pm(ϕ(x̄)− x̄) ≤ pm(ϕ(x̄)− ϕ(xn)) + pm(ϕ(xn)− ϕn(xn)) + pm(ϕn(xn)− xn) + pm(xn − x̄)→ 0

as n→∞, for any m ≥ 1. Because (pn) separates points, we conclude with ϕ(x̄) = x̄. �

8. Bibliographic discussion

Theorem 1.2 in section 1.1 is an abstract version and generalization of a technical lemma classically used in the proof

of the Poincaré-Bendixson Theorem about the qualitative behaviour of solutions to a 2d system of ode. I learned
the material of sections 1.2 and 1.4 in Haraux’s book [5]. The result in section 1.4 belongs to folklore (it has been

used several times in order to prove the convergence of the solution of the Boltzmann equation to the corresponding

Maxwellian equilibrium).

The material of Section 2 (at least of sections 2.1 and 2.2) is very classical and it can be found in many textbooks.

I learn most of the results presented in sections 2.1 and 2.2 in [1]. The proof of Theorem 2.11 is taken from [1,
Proposition VI.9 & Corollaire VI.10], the proof of Theorem 2.12 is taken from [1, Théorème VI.11] to which we

refer for more details. I read the proof of Proposition 2.6 somewhere in Kato’s book [6]. Example 2.10 is classical, I

learned it from O. Kavian. Section 2.3 about the Krein-Rutman theorem is a simplified presentation of some result
obtained recently in [9] but probably can be found elsewhere (for instance in some of the many references quoted in

[9]).

The computations presented in section 3 and leading to the General Relative Entropy are taken from [7]. The

case φ = 1 corresponds to the usual probability framework and then can be found in many earlier papers of the

probability community.

The material of section 4 on the Fokker-Planck equation is a simplified presentation of more or less recent results

on this very active line of research. The dissipativity estimate established in Proposition 4.3 is taken from [4] (see
also [8]). The most general case when no structure assumption is made on E is inspired from a Master degree work

by M. Ndao [10].

The material of section 5 on the scattering belongs to folklore. I learned it from A. Mellet.

The material of section 6 on the growth-fragmentation equation is inspired from recent research papers on the
subject. In particular, the estimate established in Proposition 6.1 is taken from [3, 2].
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