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Chapter 6 - Elliptic-parabolic Keller-Segel equation

(for chemotaxis and astrophysics)

1 A compactness argument

We consider a sequence of functions (fn) such that

0 ≤ fn ∈ C([0,∞);D′(R2))

and fn is a solution to the KS equation

∂tfn = ∆fn −∇(fn K̄n) in (0,∞)× R2,(1.1)

where

K̄n := K ∗ fn, K :=
1

2π

z

|z|2
.

We also assume that (fn) satisfies (uniformly in n) the natural bounds

sup
[0,T ]

∫
R2

fn (1 + |x|2 + (log fn)+) dx+

∫ T

0

∫
R2

|∇fn|2

fn
dxdt ≤ CT .

We recall that we have (up to the extraction of a subsequence)

fn ⇀ f weakly in L1((0, T )× R2)

as a consequence of the Dunford-Pettis lemma, and better

fn ⇀ f weakly in L2((0, T )× R2)

because thanks to the bound on the Fisher information, the Cauchy-Schwarz inequality and the
Sobolev inequality there holds∫

R2

f2
ndx ≤ C

(∫
R2

|∇fn|dx
)2

≤ C
∫
R2

fndx×
∫
R2

|∇fn|2

fn
dx,

so that (fn) is bounded in L2((0, T )× R2).

We aim to explain now why the following strong convergence result holds true, this one allows
then to pass to the limit in the weak formulation of (1.1).

Lemma 1.1 Under the above assumptions, there holds

(1.2) K̄n → K̄ := K ∗ f strongly in L2((0, T )×BR) ∀R > 0.
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Proof of the Lemma. Step 1. We recall that we also have proved that

(fn) is bounded in Lp′
(0, T ;Lp(R2)) ∀ p ∈ [1,∞),

and in particular
(fn) is bounded in L3(0, T ;L3/2(R2)).

Introducing the splitting

K = K0 +K∞, K0 := K 1B1
∈ L3/2, K∞ := K 1Bc

1
∈ L5/2,

and using the Young inequality

‖u ∗ v‖Lr ≤ ‖u‖Lp ‖v‖Lq ,
1

r
=

1

p
+

1

q
− 1

we obtain
K̄ ∈ L3

t (L3
x + L15

x ) ⊂ L3
t (L3

loc,x).

Step 2. We observe that for any ϕ ∈ D(R2) we have

d

dt

∫
R2

fn(t, x)ϕ(x) dx =

∫
R2

fn (∆ϕ− K̄n · ∇ϕ) dx

where the RHS term is bounded in L6/5(0, T ) (by Holder inequality and the two bounds fn ∈ L2,
K̄n ∈ L3

loc). We deduce that 〈fnϕ〉 is bounded in W 1,6/5(0, T ) ⊂ C0,1/6([0, T ]) and

〈fnϕ〉 → 〈fϕ〉 strongly in L∞(0, T ).

We immediately deduce that for any ϕ ∈ D(R2) ⊗ D(R2), the space of linear combination of
functions of separable variables φ(x, y) = φ1(x)φ2(y), we also have

(1.3)

∫
R2

fn(t, y)ϕ(x, y) dx→
∫
R2

f(t, y)ϕ(x, y) dx in L2((0, T )×BR), ∀R > 0.

Step 3. We fix now ϕ ∈ L2(BR×R2) and we recall the density result : there exists a sequence (ϕk)
of functions of D(R2)⊗D(R2) such that

ϕk → ϕ in L2(BR × R2).

We write ∫
fnϕ−

∫
fϕ =

∫
fn(ϕ− ϕk) +

∫
fnϕk −

∫
fϕk +

∫
f(ϕk − ϕ).

We observe that by the Cauchy-Schwarz inequality∥∥∥∫ f(ϕk − ϕ)
∥∥∥2

L2((0,T )×BR

≤
∫ T

0

∫
BR

(∫
R2

f(t, y)(ϕk(x, y)− ϕ(x, y)) dy
)2

dxdt

≤
∫ T

0

∫
BR

∫
R2

f2(t, y) dydxdt×
∫ T

0

∫
BR

∫
R2

(ϕk(x, y)− ϕ(x, y))2 dydxdt

≤ T |BR| ‖f‖2L2 ‖ϕk − ϕ‖2L2 → 0,

and that we have a similar result (uniformly in n) for the first term. We then classically deduce
that (1.3) also holds for such a function ϕ.

Step 4. We define
ϕε(x, y) := K(x− y) 1ε<|x−y|<1/ε

so that ϕε ∈ L2(BR × R2) for any ε ∈ (0, 1).
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We write

K̄n − K̄ =

∫
fn(k(x− y)− ϕε(x, y)) +

∫
fnϕε −

∫
fϕε +

∫
f(ϕε(x, y)− k(x− y)).

We note Ω := (0, T ) × BR and we define K0,ε := K 1Bε
, K∞,ε := K 1Bc

1/ε
. For the last term we

have ∥∥∥∫ f(ϕε(x, y)− k(x− y))
∥∥∥
L2(Ω)

≤ ‖k0,ε ∗ f‖L2(Ω) + ‖k∞,ε ∗ f‖L2(Ω)

≤ C (‖k0,ε‖3/2 + ‖k∞,ε‖5/2) ‖f‖
L3

t (L
3/2
x )
→ 0,

and we conclude to (1.2) in the same way as in the preceding step. ut

3


	A compactness argument

