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An introduction to evolution PDEs

Problem I

Question 1 - the linear problem

(1) Under which assumption on E = E(x)(6= 0!) the problem

∂

∂t
f = ∆f +∇ · (E f) in (0,∞)× Rd (0.1)

f(0, x) = ϕ(x) in Rd (0.2)

admits a variational solution for any ϕ ∈ L2(Rd). What does that mean?
(2) Explain why for E = E(x) ∈ W 1,∞(Rd) and ϕ ∈ L2(Rd) ∩ L1

2(Rd) there exists a unique
function

f ∈ XT := C([0, T );L2) ∩ L∞(0, T ;L1
2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1), ∀T,

which is variational and renormalized solution to the problem (0.1)-(0.2).
(3) Explain (briefly) why the same result holds for a vector field which is time constant by
steps and then for any E = E(t, x) ∈ L∞(0, T ;W 1,∞(Rd)).

Question 2 - a smooth nonlinear problem

We denote by S∆ the semigroup associated to the heat equation.
(1) Give a integral representation of S∆ and prove that

‖∇S∆(t)ψ‖L2 ≤ C

t1/2
‖ψ‖L2 ∀ψ ∈ L2(Rd).

We fixe a ∈ W 1,∞(Rd) a vector field. For g ∈ XT we denote Eg := g ∗x a. For any
ϕ ∈ L2(Rd) ∩ L1

2(Rd), we define the operator Q : YT → YT , YT := C([0, T ];L2), by Qg := f
for any g ∈ XT where f satisfies

f(t) := S∆(t)ϕ+

∫ t

0

S∆(t− s)
(

divx(Eg(s)f(s))
)
ds. (0.3)

(2) What is the PDE associated to the functional equation (0.3)? Why does such function
f ∈ XT exist?
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We define
C = CA := {f ≥ 0, ‖f‖L1 = M, sup

[0,T ]

‖f‖L2∩L1
2
≤ A}.

(3) Prove that for A := A(T, ϕ) large enough Q : C → C.
For g1, g2 ∈ C we denote f1 := Qg1, f2 := Qg2, as well as f := f2 − f1, g := g2 − g1.
(4) Prove that

f(t) =

∫ t

0

divx

(
S∆(t− s)(Eg(s)f1(s) + Eg2(s)f(s))

)
ds

and then

‖f(t)‖L2 ≤
∫ t

0

C

(t− s)1/2
(‖g(s)‖L2 + ‖f(s)‖L2) ds.

(5) Deduce that for T small enough (which only depends on ϕ and a) there exists α ∈ (0, 1/2)
such that

(1− α) sup
[0,T ]

‖f‖L2 ≤ α sup
[0,T ]

‖g‖L2 .

(6) Conclude that for any ϕ ∈ L2(Rd) ∩ L1
2(Rd) and a ∈ W 1,∞(Rd) there exists a unique

(global) variational solution f ∈ XT , ∀T > 0, to the nonlinear PDE

∂

∂t
f = ∆f +∇ · ((a ∗ f) f) in (0,∞)× Rd (0.4)

f(0, x) = ϕ(x) in Rd. (0.5)

Question 3 - Existence of solution for the Keller-Segel equation

We assume from now on that d = 2. We accept that there exists a sequence (κε) of potentials
on R2 such that (abusing notations) κε(z) = κε(|z|), κε is a smooth (say W 2,∞(R+)) non-
increasing function such that

κε(r) = − 1

2π
log r ∀r ∈ [ε, 1/ε]

and

|κε(r)| ≤
1

2π
| log r|, |∇κε(z)| ≤ 1

2π|z|
, ρε := −∆κε(z) ≥ 0,

with ‖ρε‖L1(R2) ≤ 1. We define aε := ∇κε.
(1) Prove that for any 0 ≤ ϕ ∈ L2(Rd) ∩ L1

2(Rd) and ε > 0, there exists a renormalized
solution 0 ≤ fε ∈ L∞(0, T ;L1

2) ∩XT to the nonlinear PDE

∂

∂t
fε = ∆fε +∇ · ((aε ∗ fε) fε) in (0,∞)× R2 (0.6)

fε(0, x) = ϕ(x) in R2. (0.7)

(2) We assume that ∫
R2

ϕ(x) dx = M ∈ (0, 8π).
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Prove that (fε) satisfies

sup
[0,T ]

∫
R2

fε {1 + |x|2 + | log fε|} dx+

∫ T

0

∫
R2

|fε∇(log fε + κε ∗ fε)|2 dxdt ≤ CT

for some constant CT independent of ε ∈ (0, 1). Deduce that I(fε) is uniformly bounded in
L1(0, T ).
(3) Prove that there exist f ∈ C([0, T ];L1(R2)) and a sequence εk → 0 such that

fk := fεk ⇀ f weakly in L1((0, T )× R2),

and that f satisfies

sup
[0,T ]

∫
R2

f {1 + |x|2 + | log f |} dx+

∫ T

0

I(f)dt <∞

as well as the Keller-Segel equation.
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Problem II

In all the problem, we consider the Fokker-Planck equation

∂tf = Λf := ∆xf + divx(f ∇a(x)) in (0,∞)× Rd (0.8)

for the confinement potential

a(x) =
〈x〉γ

γ
, γ ∈ (0, 1), 〈x〉2 := 1 + |x|2,

that we complement with an initial condition

f(0, x) = ϕ(x) in Rd. (0.9)

Question 1

Exhibit a stationary solution G ∈ P(Rd). Formally prove that this equation is mass conser-
vative and satisfies the (weak) maximum principle. Explain (quickly) why for ϕ ∈ Lpk(Rd),
p ∈ [1,∞], k ≥ 0, the equation (0.8)-(0.9) has a (unique) solution f(t) in some functional
space that must be specified. Establish that if Lpk(Rd) ⊂ L1(Rd) then the solution satisfies

sup
t≥0
‖f(t)‖L1 ≤ ‖ϕ‖L1 .

Can we affirm that f(t)→ G as t→∞? and that convergence is exponentially fast?

Question 2

We define
Bf := Λf −MχRf

with χR(x) := χ(x/R), χ ∈ D(Rd), 0 ≤ χ ≤ 1, χ(x) = 1 for any |x| ≤ 1, and with M,R > 0
to be fixed.
We denote by fB(t) = SB(t)ϕ the solution associated to the evolution PDE corresponding
to the operator B and the initial condition (0.9).
(1) Why such a solution is well defined (no more than one sentence of explanation)?
(2) Prove that there exists M,R > 0 such that for any k ≥ 0 there holds

d

dt

∫
Rd

fB(t)〈x〉k dx ≤ −ck
∫
Rd

fB(t)〈x〉k+γ−2 ≤ 0,

for some constant ck ≥ 0, ck > 0 if k > 0, and

‖SB(t)‖L1
k→L

1
k
≤ 1.

(3) Establish that if u ∈ C1(R+) satisfies

u′ ≤ −c u1+1/α, c, α > 0,
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there exists C = C(c, α, u(0)) such that

u(t) ≤ C/tα ∀ t > 0.

(4) Prove that for any k1 < k < k2 there exists θ ∈ (0, 1) such that

∀ f ≥ 0 Mk ≤M θ
k1
M1−θ

k2
, M` :=

∫
Rd

f(x) 〈x〉` dx

and write how θ as a function of k1, k and k2.
(5) Prove that if ` > k > 0 there exists α > 0 such that

‖SB(t)‖L1
`→L1 ≤ ‖SB(t)‖L1

`→L
1
k
≤ C/〈t〉α,

and that α > 1 if ` is large enough (to be specified).
(6) Prove that

SL = SB + SB ∗ (ASL),

and deduce that for k large enough (to be specified)

‖SL‖L1
k→L

1
k
≤ C.

Remark. You have recovered (with a simpler proof) a result established by Toscani and
Villani in 2001.

Question 3 (difficult)

Establish that there exists κ > 0 such that for any h ∈ D(Rd) satisfying

〈h〉µ :=

∫
Rd

h dµ = 0, µ(dx) := G(x) dx,

there holds ∫
Rd

|∇h|2 dµ ≥ κ

∫
Rd

h2 〈x〉2(γ−1) dµ.

Question 4

Establish that for any ϕ ∈ D(Rd) and any convex function j ∈ C2(R) the associated solution
f(t) = SΛ(t)ϕ satisfies

d

dt

∫
Rd

j(f(t)/G)Gdx = −Dj ≤ 0

and give the expression of the functional Dj. Deduce thgat

‖f(t)/G‖|L∞ ≤ ‖f0/G‖|L∞ ∀ t ≥ 0.

Question 5 (difficult)

Prove that for any ϕ ∈ D(Rd) and for any α > 0 there exists C such that

‖f(t)− 〈ϕ〉G‖L2 ≤ C/tα.
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