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1 Problem I

We consider the evolution PDE
o f = div(AVf), (1.1)

on the unknown f = f(t,x), t > 0, x € R¢ with A = A(z) a symmetric, uniformly bounded
and coercive matrix, in the sense that

v[EP <& A@)E < ClEP, Vo, eRY

It is worth emphasizing that we do not make any regularity assumption on A. We comple-
ment the equation with an initial condition

f(0,z) = fo().

1) Existence. What strategy can be used in order to exhibit a semigroup S(¢) in LP(R?),
p = 2, p = 1, which provides solutions to (1.1) for initial date in LP(R%)? Is the semigroup
positive? mass conservative?

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C or C; some constants which may differ from line to line.

2) Uniform estimate. a) Prove that any solution f to (1.1) satisfies
IfE)re < CEY | follpr, VE> 0.
b) We define the dual semigroup S*(t) by
(S*(t)g0. fo) = (90, S(t) fo), Vt>0, fo€LP, gy L.
Identify S*(¢) and deduce that any solution f to (1.1) satisfies
1f ()= < CY*| follz2, Vit >0.

c¢) Conclude that any solution f to (1.1) satisfies
IfF Ol < [C2292 79 | folla, VT >0.



3) Entropy and first moment. For a given and (nice) probability measure f, we define the
(mathematical) entropy and the first moment functional by

H := flog fde, M ::/ f x| dx.
Rd Rd

a) Prove that for any A € R, there holds

m>igl{3 logs +As} = —e 1

Deduce that there exists a constant D = D(d) such that for any (nice) probability measure
f and any a € Ry, b € R, there holds
H+aM+b>—e1aD.
b) Making the choice a := d/M and e~ := (e/D) a?, deduce that
M > ke H/d, (1.2)

for some k = k(d) > 0.

From now on, we restrict ourself to consider an initial datum which is a (nice) probability
measure:

f0207 del’:l,

R4
and we denote by f(t) the nonnegative and normalized solution to the evolution PDE (1.1)
corresponding to fo. We also denote by H = H(t), M = M(t) the associated entropy and
first moment.

3) Dynamic estimate on the entropy. Deduce from 2) that f satisfies
d
H(t)gK—§logt, Vit >0, (1.3)

for some constant K € R (independent of fy).

4) Dynamic estimate on the entropy and the first moment. a) Prove that

2| <c 1950

for some positive constant C' = C'(A).
b) Deduce that there exists a constant § = 6(C,v) > 0 such that

)%M t)‘ ge(-%H(t)>1/2, Vi > 0. (1.4)

c¢) Prove that for the heat equation (when A = I), we have

/f|x|2 iz =2,
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and next
M(t) <C Y2 t>0. (1.5)

From now on, we will always restrict ourself to consider the Dirac mass initial datum

Jo= 50(65%),

and our goal is to establish a similar estimate as (1.5) (and in fact, a bit sharper estimate
than (1.5)) for the corresponding solution.

5) Dynamic estimate on the first moment. a) Deduce from 1) that there exists (at least) one
function f € C((0,00); L) N L{2((0,00); L) which is a solution to the evolution PDE (1.1)
associated to the initial datum &y. Why does that solution satisfy the same above estimates

for positive times?

b) We define
1
R=R(t) := K/d— H(t)/d — ;logt > 0,

where K is defined in (1.3). Observing that M (0) = 0, deduce from the previous estimates

that

t,q1 1/2
C’ltl/2eR§M§C'2/<—+d—R> ds, Yt>0.
o \2s  ds

c¢) Observe that for a > 0 and a + b > 0, we have (a + b)"/? < a'/? 4 b/(2a'/?), and deduce
that
Cref < Mt™'? < Cy(14+ R), Vt>O0.

d) Deduce from the above estimate that R must be bounded above, and then

Cit' 2 < M < Cyot'?, Vi>0.

You have recovered one of the most crucial step of Nash’s article “Continuity of solutions of
parabolic and elliptic equations”, Amer. J. Math. (1958).



2 Problem II -

We consider the fractional Fokker-Planck equation
Of =Lf:=1[f]+div,(Ef) in (0,00) xR, (2.1)

where
1

111 = [ Ko=) (16) = F@)dy K) = e o (0.1),
and where F is a smooth vectors field such that
Viz| > 1, |E(x)| <C{(x), divE(z)<C, z-E> |z
We complement the equation with an initial condition

f(0,z) =p(x) in R. (2.2)

We denote by F the Fourier transform operator, and next f = F [ for a given function f on
the real line.

Question 1. Preliminary issues (if not proved, theses identities can be accepted). Here all
the functions (f, ¢, ) are assumed to be suitably nice so that all the calculations are licit.

a) - Establish the formula

Jaime@eds = [ s 1de - [ [ k=)0 elo) dudo

J(x,y) .= B(f(y) = B(f(x) = (f(y) = f(2))B'(f(2))-

b) - Prove that there exists a positive constant C such that

i cos(z§) — 1 B L
/f E /R BEE dz}dx_cl\g‘] f(€), VEeR.

¢) - Denote s := «/2. Prove that

y [ U@ TP (:
A1ty = [Ty = [ LIS

and then that there exists a positive constant C such that

with

2

)

L2(R)

I, = Cs / €2 | ()] de =: CallfI7,..

d) - Prove that

Hs-

IR
R
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From questions 2 to 4, we consider f (and g) a solution to the fractional Fokker-Planck
equation (2.1) and we establish formal a priori estimates.

Question 2. Moment estimates. For any k > 0, we define
My, = My (t) = Mi(f(t)), with My = My(f) := /Rf(x) (z)F d.
Prove that the solution f satisfies
My(t) = Mo(p), Vt>0.
Prove that for any k € (0, ), there exists C' > 0 such that
CH()* — ()] < |lyf2 = |22 < C (Jy — 2" 2] + |y — al*) ,

and deduce that there exist C7, Cy > 0 such that the solution f satisfies

d
EM]C < Cy Myyy — Cy M.

Conclude that there exists Ay = Ar(My(yp)) such that the solution f satisfies

sup My (t) < max(M(0), Ax). (2.3)

t>0

Question 3. Fractional Nash inequality and L? estimate. Prove that there exists a constant
C > 0 such that .

Tra

Hs °

VheDR), |hllzz < C Nl A
Deduce that the square of the L?-norm u := || f(¢)||3, of the solution f satisfies

d
EU S _Clu1+a + 027

for some constants C; = C;(My(¢)) > 0. Conclude that there exists Ay = As(My(y)) such
that

stligu(t) < max(u(0), Ag). (2.4)

Question 4. Around generalized entropies and the L'-norm. Consider a convex function j3
and define the entropy H and the associated dissipation of entropy D by

H(flg) = / B(X)gdz,

D(flg) = / / kg {B(X.) — B(X) — B(X)(X. — X)} dude..



where k£ = k(z — z,), g« = g(z.), X = f(x)/g(x) and X, = f(x.)/g(xs). Why do two
solutions f and g satisfy

d
5 U @lg(®) < =D(f(1)lg(t))? (2.5)
Deduce that for f(s) = s, and B(s) = |s|, any solution f satisfies

/,B(f(t,-))dxg/ﬁ(go)dx, Vit >0. (2.6)

Question 5. Well-posedness. Explain briefly how one can establish the existence of a weakly
continuous semigroup S; defined in the space X = L! N L? such that it is a contraction for
the L' norm and such that for any ¢ € X the function f(¢) := S;(t)p is a (weak) solution
to the fractional Fokker-Planck equation (2.1). Why is S, mass and positivity preserving
and why does any associated trajectory satisfy (2.3), (2.4) and (2.6)7

(Ind. One may consider the sequence of kernels k,(2) := k(2) n-1<|2<n)-

Question 6. Prove that there exists a constant C' such that the set

Z:={feLl'R); f20, [[fle=1 [fllx <C}

is invariant under the action of S,. Deduce that there exists at least one function G € X
such that
IG+div,(FG) =0, G>0, MyG)=1. (2.7)

Question 7. We accept that for any convex function [, any nonnegative solution f(t) and
any nonnegative stationary solution GG the following inequality holds

H(F(1)]G) + / D(f(5)|G) ds < H(¢|G). (2.8)

Deduce that D(g|G) = 0 for any (other) stationary solution g. (Ind. First consider the case
when 3 € WH*(R) and next use an approximation argument). Deduce that

G(y) (% — gf(z)))z =0 fora.e. x,y€R,

and then that the solution to (2.7) is unique. Prove that for any ¢ € X, there holds
Se(t)p = My(p) G weakly in X, as t — oo.

Question 8. (a) Introducing the splitting
A=), NeR, B:=L-A,

explain why

Sr =S+ SgA xS,



and next for any n > 1
Se =S+ ... + (SpA) "V xS+ (SpA)™ xS,

where the convolution on R, is defined by

(ux*v)(t) := /0 u(t — s)v(s)ds,

and the itareted convolution by u*! = u, u** = w**=1 sy if k > 2.
(b) Prove that for A > 0, large enough, there holds

1Ssllyoy <€, Y =1L, ke (0,a), Y =L

as well as

C o0
IS5()l2s2 < g e Vi 20 /0 1S5(8)|2a. . ds < C.

and deduce that for n large enough

/0 H(ASB)(*H)<3)’|L1—>HS ds < C.

(c) Establish that for any ¢ € L!, k > 0, the associated solution f(t) = S, (t)p splits as
f&)=gt) +ht), lNg@®le <e™, N pinm: < C(Mo(0)).
(d) Conclude that
Voe L'(R), |[|Sc(t)p — Mo(p)Gllr =0 as ¢ — oo.

Question 9. Justification of (2.8). We define the regularized operator
»Ce,nf = gAxf + In[f] + dlvx(Ef)

with € > 0, n € N* and [, associated to the kernel k, (introduced in question 5). Why is
there a (unique) solution G, to the stationary problem

Gs,n € X; ‘Cs,nGe,n = 07 Gs,n > 07 MO(GE,n) = 17

and why does a similar inequality as (2.8) hold? Prove that there exist G, G € X, ¢ > 0,
such that (up to the extraction of a subsequence) G, . — G. and G. — G strongly in
L'. Prove that a similar strong convergence result holds for the familly S;_ (t)p, ¢ € X.
Conclude that (2.8) holds.



