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1 Problem I

We consider the evolution PDE
∂tf = div(A∇f), (1.1)

on the unknown f = f(t, x), t ≥ 0, x ∈ Rd, with A = A(x) a symmetric, uniformly bounded
and coercive matrix, in the sense that

ν |ξ|2 ≤ ξ · A(x)ξ ≤ C |ξ|2, ∀x, ξ ∈ Rd.

It is worth emphasizing that we do not make any regularity assumption on A. We comple-
ment the equation with an initial condition

f(0, x) = f0(x).

1) Existence. What strategy can be used in order to exhibit a semigroup S(t) in Lp(Rd),
p = 2, p = 1, which provides solutions to (1.1) for initial date in Lp(Rd)? Is the semigroup
positive? mass conservative?

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C or Ci some constants which may differ from line to line.

2) Uniform estimate. a) Prove that any solution f to (1.1) satisfies

‖f(t)‖L2 ≤ C t−d/4 ‖f0‖L1 , ∀ t > 0.

b) We define the dual semigroup S∗(t) by

〈S∗(t)g0, f0〉 = 〈g0, S(t)f0〉, ∀ t ≥ 0, f0 ∈ Lp, g0 ∈ Lp
′
.

Identify S∗(t) and deduce that any solution f to (1.1) satisfies

‖f(t)‖L∞ ≤ C t−d/4 ‖f0‖L2 , ∀ t > 0.

c) Conclude that any solution f to (1.1) satisfies

‖f(t)‖L∞ ≤ [C22d/2] t−d/2 ‖f0‖L1 , ∀ t > 0.
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3) Entropy and first moment. For a given and (nice) probability measure f , we define the
(mathematical) entropy and the first moment functional by

H :=

∫
Rd
f log f dx, M :=

∫
Rd
f |x| dx.

a) Prove that for any λ ∈ R, there holds

min
s≥0
{s log s+ λ s} = −e−λ−1.

Deduce that there exists a constant D = D(d) such that for any (nice) probability measure
f and any a ∈ R+, b ∈ R, there holds

H + aM + b ≥ −e−b−1 a−dD.

b) Making the choice a := d/M and e−b := (e/D) ad, deduce that

M ≥ κ e−H/d, (1.2)

for some κ = κ(d) > 0.

From now on, we restrict ourself to consider an initial datum which is a (nice) probability
measure:

f0 ≥ 0,

∫
Rd
f0 dx = 1,

and we denote by f(t) the nonnegative and normalized solution to the evolution PDE (1.1)
corresponding to f0. We also denote by H = H(t), M = M(t) the associated entropy and
first moment.

3) Dynamic estimate on the entropy. Deduce from 2) that f satisfies

H(t) ≤ K − d

2
log t, ∀ t > 0, (1.3)

for some constant K ∈ R (independent of f0).

4) Dynamic estimate on the entropy and the first moment. a) Prove that∣∣∣ d
dt
M(t)

∣∣∣ ≤ C

∫
|∇f(t)|,

for some positive constant C = C(A).

b) Deduce that there exists a constant θ = θ(C, ν) > 0 such that∣∣∣ d
dt
M(t)

∣∣∣ ≤ θ
(
− d

dt
H(t)

)1/2
, ∀ t > 0. (1.4)

c) Prove that for the heat equation (when A = I), we have

d

dt

∫
f |x|2 dx = 2,
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and next
M(t) ≤ C 〈t〉1/2, t ≥ 0. (1.5)

From now on, we will always restrict ourself to consider the Dirac mass initial datum

f0 = δ0(dx),

and our goal is to establish a similar estimate as (1.5) (and in fact, a bit sharper estimate
than (1.5)) for the corresponding solution.

5) Dynamic estimate on the first moment. a) Deduce from 1) that there exists (at least) one
function f ∈ C((0,∞);L1)∩L∞loc((0,∞);L∞) which is a solution to the evolution PDE (1.1)
associated to the initial datum δ0. Why does that solution satisfy the same above estimates
for positive times?

b) We define

R = R(t) := K/d−H(t)/d− 1

2
log t ≥ 0,

where K is defined in (1.3). Observing that M(0) = 0, deduce from the previous estimates
that

C1 t
1/2 eR ≤M ≤ C2

∫ t

0

( 1

2s
+
dR

ds

)1/2
ds, ∀ t > 0.

c) Observe that for a > 0 and a + b > 0, we have (a + b)1/2 ≤ a1/2 + b/(2a1/2), and deduce
that

C1 e
R ≤Mt−1/2 ≤ C2(1 +R), ∀ t > 0.

d) Deduce from the above estimate that R must be bounded above, and then

C1 t
1/2 ≤M ≤ C2 t

1/2, ∀ t > 0.

You have recovered one of the most crucial step of Nash’s article “Continuity of solutions of
parabolic and elliptic equations”, Amer. J. Math. (1958).

3



2 Problem II -

We consider the fractional Fokker-Planck equation

∂tf = Lf := I[f ] + divx(Ef) in (0,∞)× R, (2.1)

where

I[f ](x) =

∫
R
k(y − x) (f(y)− f(x)) dy, k(z) =

1

|z|1+α
, α ∈ (0, 1),

and where E is a smooth vectors field such that

∀ |x| ≥ 1, |E(x)| ≤ C 〈x〉, divE(x) ≤ C, x · E ≥ |x|2.

We complement the equation with an initial condition

f(0, x) = ϕ(x) in R. (2.2)

We denote by F the Fourier transform operator, and next f̂ = Ff for a given function f on
the real line.

Question 1. Preliminary issues (if not proved, theses identities can be accepted). Here all
the functions (f , ϕ, β) are assumed to be suitably nice so that all the calculations are licit.

a) - Establish the formula∫
(I[f ]) β′(f)ϕdx =

∫
β(f) I[ϕ] dx−

∫ ∫
k(y − x)J(x, y)ϕ(x) dydx

with
J(x, y) := β(f(y))− β(f(x))− (f(y)− f(x))β′(f(x)).

b) - Prove that there exists a positive constant C1 such that

F(I[f ])(ξ) =

∫
R
f(x) e−ixξ

{∫
R

cos(zξ)− 1

|z|1+α
dz
}
dx = C1 |ξ|αf̂(ξ), ∀ ξ ∈ R.

c) - Denote s := α/2. Prove that

|||f |||2
Ḣs :=

∫
R2

|f(x)− f(y)|2

|x− y|1+2s
dxdy =

∫
R

∥∥∥f(z + ·)− f(·)
|z|s+1/2

∥∥∥2
L2(R)

dz,

and then that there exists a positive constant C2 such that

|||f |||2
Ḣs = C2

∫
R
|ξ|2s |f̂(ξ)|2 dξ =: C2‖f‖2Ḣs .

d) - Prove that ∫
R
I[f ] f dx = −1

2
|||f |||2

Ḣs .
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From questions 2 to 4, we consider f (and g) a solution to the fractional Fokker-Planck
equation (2.1) and we establish formal a priori estimates.

Question 2. Moment estimates. For any k ≥ 0, we define

Mk = Mk(t) = Mk(f(t)), with Mk = Mk(f) :=

∫
R
f(x) 〈x〉k dx.

Prove that the solution f satisfies

M0(t) ≡M0(ϕ), ∀ t ≥ 0.

Prove that for any k ∈ (0, α), there exists C > 0 such that

C−1 |〈y〉k − 〈x〉k| ≤
∣∣|y|2 − |x|2∣∣k/2 ≤ C

(
|y − x|k/2 |x|k/2 + |y − x|k

)
,

and deduce that there exist C1, C2 > 0 such that the solution f satisfies

d

dt
Mk ≤ C1Mk/2 − C2Mk.

Conclude that there exists Ak = Ak(M0(ϕ)) such that the solution f satisfies

sup
t≥0

Mk(t) ≤ max(Mk(0), Ak). (2.3)

Question 3. Fractional Nash inequality and L2 estimate. Prove that there exists a constant
C > 0 such that

∀h ∈ D(R), ‖h‖L2 ≤ C ‖h‖
α

1+α

L1 ‖h‖
1

1+α

Ḣs .

Deduce that the square of the L2-norm u := ‖f(t)‖2L2 of the solution f satisfies

d

dt
u ≤ −C1u

1+α + C2,

for some constants Ci = Ci(M0(ϕ)) > 0. Conclude that there exists A2 = A2(M0(ϕ)) such
that

sup
t≥0

u(t) ≤ max(u(0), A2). (2.4)

Question 4. Around generalized entropies and the L1-norm. Consider a convex function β
and define the entropy H and the associated dissipation of entropy D by

H(f |g) :=

∫
R
β(X) g dx,

D(f |g) :=

∫
R

∫
R
k g∗ {β(X∗)− β(X)− β′(X)(X∗ −X)} dxdx∗,
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where k = k(x − x∗), g∗ = g(x∗), X = f(x)/g(x) and X∗ = f(x∗)/g(x∗). Why do two
solutions f and g satisfy

d

dt
H(f(t)|g(t)) ≤ −D(f(t)|g(t))? (2.5)

Deduce that for β(s) = s+ and β(s) = |s|, any solution f satisfies∫
β(f(t, ·)) dx ≤

∫
β(ϕ) dx, ∀ t ≥ 0. (2.6)

Question 5. Well-posedness. Explain briefly how one can establish the existence of a weakly
continuous semigroup SL defined in the space X = L1

s ∩ L2 such that it is a contraction for
the L1 norm and such that for any ϕ ∈ X the function f(t) := SL(t)ϕ is a (weak) solution
to the fractional Fokker-Planck equation (2.1). Why is SL mass and positivity preserving
and why does any associated trajectory satisfy (2.3), (2.4) and (2.6)?

(Ind. One may consider the sequence of kernels kn(z) := k(z) n−1<|z|<n).

Question 6. Prove that there exists a constant C such that the set

Z := {f ∈ L1(R); f ≥ 0, ‖f‖L1 = 1, ‖f‖X ≤ C}

is invariant under the action of SL. Deduce that there exists at least one function G ∈ X
such that

IG+ divx(E G) = 0, G ≥ 0, M0(G) = 1. (2.7)

Question 7. We accept that for any convex function β, any nonnegative solution f(t) and
any nonnegative stationary solution G the following inequality holds

H(f(t)|G) +

∫ t

0

D(f(s)|G) ds ≤ H(ϕ|G). (2.8)

Deduce that D(g|G) = 0 for any (other) stationary solution g. (Ind. First consider the case
when β ∈ W 1,∞(R) and next use an approximation argument). Deduce that

G(y)
( g(y)

G(y)
− g(x)

G(x)

)2
= 0 for a.e. x, y ∈ R,

and then that the solution to (2.7) is unique. Prove that for any ϕ ∈ X, there holds

SL(t)ϕ ⇀ M0(ϕ)G weakly in X, as t→∞.

Question 8. (a) Introducing the splitting

A := λ I, λ ∈ R, B := L −A,

explain why
SL = SB + SBA ∗ SL,
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and next for any n ≥ 1

SL = SB + ...+ (SBA)∗(n−1) ∗ SL + (SBA)∗n ∗ SL,

where the convolution on R+ is defined by

(u ∗ v)(t) :=

∫ t

0

u(t− s) v(s) ds,

and the itareted convolution by u∗1 = u, u∗k = u∗(k−1) ∗ u if k ≥ 2.
(b) Prove that for λ > 0, large enough, there holds

‖SB‖Y→Y ≤ e−t, Y = L1
k, k ∈ (0, α), Y = L2,

as well as

‖SB(t)‖L1→L2 ≤ C

t1/(2α)
e−t, ∀ t ≥ 0,

∫ ∞
0

‖SB(s)‖2
L2→Ḣs ds ≤ C,

and deduce that for n large enough∫ ∞
0

‖(ASB)(∗n)(s)‖L1→Ḣs ds ≤ C.

(c) Establish that for any ϕ ∈ L1
s, k > 0, the associated solution f(t) = SL(t)ϕ splits as

f(t) = g(t) + h(t), ‖g(t)‖L1 ≤ e−t, ‖h(t)‖L1
k∩Ḣs ≤ C(M0(ϕ)).

(d) Conclude that

∀ϕ ∈ L1(R), ‖SL(t)ϕ−M0(ϕ)G‖L1 → 0 as t→∞.

Question 9. Justification of (2.8). We define the regularized operator

Lε,nf := ε∆xf + In[f ] + divx(Ef)

with ε > 0, n ∈ N∗ and In associated to the kernel kn (introduced in question 5). Why is
there a (unique) solution Gε,n to the stationary problem

Gε,n ∈ X, Lε,nGε,n = 0, Gε,n ≥ 0, M0(Gε,n) = 1,

and why does a similar inequality as (2.8) hold? Prove that there exist Gε, G ∈ X, ε > 0,
such that (up to the extraction of a subsequence) Gn,ε → Gε and Gε → G strongly in
L1. Prove that a similar strong convergence result holds for the familly SLε,n(t)ϕ, ϕ ∈ X.
Conclude that (2.8) holds.
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