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CHAPTER 1
VARIATIONAL SOLUTION FOR PARABOLIC EQUATION

We present the theory of variational solutions for abstract evolution equations as-
sociated to a coercive operator and we apply the theory to the case of uniformly
elliptic parabolic equations.
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1. INTRODUCTION

In this chapter we will focus on the question of existence (and uniqueness) of a
solution f = f(t,z) to the (linear) evolution PDE of “parabolic type”

(1.1) ohf=Af on (0,00) xRY,

where A is the following integro-differential operator

(1.2) (Af)(z) = Af(z)+alz) - Vf(z) + c(z) f(z) + /Rd b(y,z) f(y) dy,

that we complement with an initial condition

(1.3) f(0,2) = fo(x) in R

Here t > 0 stands for the “time” variable, z € R? stands for the “position” variable,
d € N*,

In order to develop the variational approach for the equation (1.1)-(1.2), we make
the strong assumption that

fo € L*(RY) =: H, which is an Hilbert space,
and that the coefficients satisfy

ac WHe(RY), ce L®RY), be L2(R?x RY).
1
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The main result we will present in this chapter is the existence of a weak (varia-
tional) solution (which sense will be specified below)
feXr:=C(0,17);LAHNL*0,T; HHY N H'(0,T; H™Y),

to the evolution equation (1.1), (1.3). We mean variational solution because the
space of “test functions” is the same as the space in which the solution lives. It
also refers to the associated stationary problem which is of “variational type” (see
[1, chapter VIII & IX]).

The existence of solutions issue is tackled by following a scheme of proof that we
will repeat for all the other evolution equations that we will consider in the next
chapters.

(1) We look for a priori estimates by performing (formal) differential and integral
calculus.

(2) We deduce a possible natural functional space in which lives a solution and
we propose a definition of a solution, that is a (weak) sense in which we may
understand the evolution equation.

(3) We state and prove the associated existence theorem. For the existence proof
we typically argue as follows: we introduce a “regularized problem” for which we are
able to construct a solution and we are allowed to rigorously perform the calculus
leading to the “a priori estimates”, and then we pass to the limit in the sequence
of regularized solutions.

2. A PRIORI ESTIMATES

Define V = H'(R?). We first observe that for any f € D(R?)

e [ B fer s [ [ s sy

1.
A+ (14 e g divay e+ ) 1715
We also observe that for any f,g € D(R?)

(Aol < VA2 IVdllez + llallze IV Fllze lgllze + (lelloe + [10l22) (1122 19l 22
< (14 llalle + llellze + 11l 22) £l llgllv-

(Af )

IN

We easily deduce from the two preceding estimates that our parabolic operator falls
into the following abstract variational framework.

Abstract variational framework. We consider a Hilbert space H endowed with
the scalar product (-,-) = (+,-)y and the norm |-| = |- |g. We identify H with
its dual H' = H. We consider another Banach space V endowed with a norm
-1l =1"1v. We assume V C H with dense and bounded embedding. Observing
that for any v € H, the mapping

v eV (u,v)

defines a linear and continuous form on V', we may identify u as an element of V.
In other words, we have

VcHcCV' and (u,v)=(u,v)Vue H vel,

where we denote (.,.) = (.,.)y v the duality product on V.
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We consider a linear operator A : V' — V' which is bounded (or continuous), which
means

(i) 3M > 0 such that
[{(Ag, )| < M lg[l IRl Vg,h e V;

and such that A is “coercive+ dissipative”™ in the sense
(if) 3 > 0, b € R such that

(Ag,g) < —allgl®*+blgl> VgeV;

and we consider the abstract evolution equation

d
(2.1) d;Z =Ag on (0,7),
for a solution ¢ : [0,7) — H, with prescribed initial value
(2‘2) Q(O) =go € H.

A priori bound in the abstract variational framework. With the above as-
sumptions and notation, any solution g to the abstract evolution equation (2.1)
(formally) satisfies the following estimate

T
(2:3) l9(T) 7 + 2@/ lg(s)I¥ ds < e* golfy VT
0

We (formally) prove (2.3). Using just the coercivity+ dissipativity assumption (ii),
we have

d |g(t)|2
£% = (Ag.g) < —allg®)|I} +blg(t)]%,

and we conclude thanks to the Gronwall lemma, that we recall now.

Lemma 2.1 (Gronwall). Consider 0 < u € C*([0,T]), 0 < v € C([0,T]) and
a,b > 0 such that

(2.4) uw 4+ 2av < 2bu in a pointwise sense on (0,T),

or more generally 0 < u € C([0,T)) and 0 < v € L(0,T) which satisfies (2.4) in
the distributional sense, namely

t t
(2.5) u(t) + 2a/ v(s)ds < Qb/ u(s)ds+u(0) Vte (0,7T).
0 0
Then, the following estimate holds true
t
(2.6) u(t) + 2a/ v(s)ds < e®'u(0) Vte (0,T).
0

Proof of Lemma 2.1. Since (2.4) clearly implies (2.5), we just have to prove that
(2.5) implies (2.6). We introduce the C! function

w(t) := 2b/0 u(s) ds + u(0).

1We commonly say that (the bilinear form associated to) —A is coercive if (ii) holds with o > 0
and b = 0, and that A — b is dissipative if (ii) holds with & = 0 and b € R. Our assumption (ii)
is then more general than a coercivity condition (on —A) but less general than a dissipativity
condition (on A).
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Differentiate w, we get thanks to (2.5)
w'(t) = 2bu(t) < 2bw(t)
so that
w(t) < et w(0) = 2 u(0).
We conclude by coming back to (2.5). (]

From the formal/natural/physical estimate (2.3) together with equation (2.1) and
the continuity estimate (i) on A, we deduce

dg
Il =|Ag|lv <M e L%(0,7),
|2l = 1glv < M llglv € 2(0,7)
and we conclude with
(2.7) g€ L=(0,T; H)NL*0,T;V)n H (0,T; V).
Definition 2.2. For a Banach space X and an exponent 1 < p < oo, we say that

g € WHP(0,T; X) if g € LP(0,T; X) and there exists w € LP(0,T; X) such that

T T
—/ g(p'dt:/ wedt in X, Yo eD0,T).
0 0

We note w = g’ or w= 3 g.

3. VARIATIONAL SOLUTIONS
Definition 3.1. For any given go € H, T > 0, we say that
g=g(t) € Xp:=C([0,T); H)NL*(0,T; V)N H(0,T; V")

is a variational solution to the Cauchy problem (2.1), (2.2) on the time interval
[0,T] if it is a solution in the following weak sense

(3.1) (g(t), () = (90, (0)) 1 +/O {{Ag(s), 0(s)vr v + (' (s),9(s))vrv } ds

for any ¢ € X and any 0 <t < T. We say that g is a global solution if it is a
solution on [0,T] for any T > 0.

Theorem 3.2 (J.-L. Lions). With the above notations and assumptions for any
go € H, there exists a unique global variational solution to the Cauchy problem
(2.1), (2.2). As a consequence, any solution satisfies (2.3).

We start with some remarks and we postpone the proof of the existence part of
Theorem 3.2 to the next section.

3.1. Parabolic equation. As a consequence of Theorem 3.2, for any f, € L?(R%)
there exists a unique function

f=f@t) ecC(o,T;L*) NL*0,T;H )N H'(0,T;H™"), VT >0,

which is a solution to the parabolic equation (1.1)-(1.2) in the variational sense.
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3.2. About the functional space. The space obtained thanks to the a priori
estimates established on ¢ is nothing but X7 as consequence of the following result.

Lemma 3.3. The following inclusion
L*0,T;V)n HY(0,T; V') c C([0,T]; H)
holds true. Moreover, for any g € L*(0,T;V) N H(0,T;V") there holds
t lg(t)[F € WHH(0,T)
and
Lo =209 (0,9 vw e on (0.7).

Proof of Lemma 3.3. Step 1.  We define g = g on [0,7], § = 0 on R\[0,T7,
and for a mollifier p with compact support included in (—1,—1/2), we define the
approximation to the identity sequence (p.) by setting p(t) := e !p(e~'t) and
then the sequence g.(t) := g*; p. where * stands for the usual convolution operator
on R. We observe that g. € C*(R; H), g- — g a.e. on [0,7] and in L?(0,T;V).
For a fixed 7 € (0,T) and for any ¢t € (0,7) and any 0 < ¢ < T — 7, we have
s pe(t—s) € D(0,T), since supp pe(t — ) C [t +¢/2,t+¢] C [¢/2,7 +¢], and we
compute

g = /R@tpa(t—S)Q(S)ds
T
- / (Bupe(t — 5)) g(s) ds
= / pe(t — 5)g/(s) ds = pe * ().

As a consequence g. — ¢’ a.e. and in L'(0,7;V").
Step 2. We fix 7 € (0,T) and ¢,¢’ € (0,T — 7), and we compute

C10(6) — g (O =20, — o9 — g}
so that for any t1,t2 € [0, 7]
t
32 laelta) g ()l = lon() = 9ol +2 | lol = gloog =g
Since g. — g a.e. on [0,7] in H, we may fix t; € [0, 7] ;uch that
(3.3) ge(t1) = g(t1) in H.

As a consequence of (3.2), (3.3) as well as g. — ¢ in L?(0,7;V) and ¢g. — ¢ in
L2(0,7; V"), we have
lim sup sup [g. () — g (#)|3 < lim / gz = gt v llge — gerllv ds = 0,
g,e’—0 [0,7] €,e’=0 Jo
so that (g.) is a Cauchy sequence in C([0, 7]; H), and then g. converges in C ([0, 7]; H)
to a limit g € C([0,7]; H). That proves g = g a.e. and g € C([0,7]; H). We prove
similarly that g € C([7,T); H) for any 7 € (0,T") and thus g € C([0,T]; H).

Step 3. Similarly as for (3.2), we have

ta
e (t2)[3 = lgo ()% +2 / (gL g2)ds,
ty
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and passing to the limit € — 0 we get

9(t) 2 = lg(t) 2 +2 / (' g)ds.

t1

Using again that (¢',g) € L'(0,T), we easily deduce from the above identity the
two remaining claims of the Lemma. (I

3.3. A posteriori estimate and uniqueness. Taking ¢ = g € X as a test
function in (3.1), we deduce from Lemma 3.3,

19O — gl = Lo ~ ol — [ (6/(9).000)) ds

-/ '(Ag.g) ds

IN

¢
| (=alalfy + bl as
and we then obtain (2.3) as an a posteriori estimate thanks to the Gronwall

lemma 2.1.

Let us prove now the uniqueness of the variational solution g associated to a
given initial datum gg € H. In order to do so, we consider two variational solutions
g and f associated to the same initial datum. Since the equation (2.1), (2.2) is
linear, or more precisely, the variational formulation (3.1) is linear in the solution,
the function g — f satisfies the same variational formulation (3.1) but associated to
the initial datum go — fo = 0. The a posteriori estimate (2.3) then holds for g — f
and implies that g — f = 0.

4. PROOF OF THE EXISTENCE PART OF THEOREM 3.2.

We first prove thanks to a compactness argument in step 1 to step 3 that there
exists a function g € L?(0,T;V) such that

t
(4.1) (90,(0)) +/O {{(Ag(s), e())vry + (¢ (s),9(s))vr v } ds =0
for any ¢ € CL([0,T); V). We then deduce by some “regularization tricks” in step
4 and step 5 that the above weak solution is a variational solution.
Step 1. For a given gg € H and € > 0, we seek g1 € V such that
(4.2) 91 —eAg1 = go.
We introduce the bilinear form a : V' x V' — R defined by
a(u,v) := (u,v) — & (Au, v).

Thanks to the assumptions made on A, we have

|a(u, v)| < ful o] + & M |Jul| [[o]],

and
a(u,u) > |ul* +eallul® —eblul* > e |lul?,



CHAPTER 1 - VARIATIONAL SOLUTION FOR PARABOLIC EQUATION 7

whenever eb < 1, what we assume from now. On the other hand, the mapping
v € V = (go,v) is a linear and continuous form. We may thus apply the Lax-
Milgram theorem, and we get

g eV (g1,v) — e(Ag1,v) = (g0,v) Vv eV.

Step 2. Fix € > 0 as in the preceding step and build by induction the sequence (gx)
in V C H defined by the family of equations

(4.3) Yk gk“gi’gk = Agest.
Observe that from the identity

(grt1, Grv1) — € (Agry1, grr1) = (k> Grr1),
we deduce

k1 +eallgrpill® = eblgrial® < gkl lgral-
On the one hand, it implies that

cb

with A := e’ (where we have used that In(1 + eb) < eb in the last inequality).
On the other hand, using Young inequality and the last two inequalities, we obtain
for any n > 1

1 1
lgk| < 1-2 lgr—1] < m lgo| < Ake lgo] VE >0,

NE

n
aY ellgl® <
k=1

1 n
5 gkl = 1gr*) +0 Y _elgnl”
k=1

k=1
1 n
2 2
< SloolP b e gl
k=1
1
< S lgol? +bne A* |go|?.

2
We fix T > 0, n € N* and we define
€= T/”v k= k€7 ga(t) ‘= gk on [tkvtk?Jrl)'

The two precedent estimates write then

T
3
(14) sup oy +a [ NI de < (5 40T 4T gl
[0,T] 0 2

Step 3. Consider a test function ¢ € CL([0,T); V) and define ¢y := ¢(tx), so that
©n = @(T) = 0. Multiplying the equation (4.3) by ¢ and summing up from k& = 0
to k =n, we get
_(@0790) - Z“Ok - gok—17gk7> = Za <Agk+17 ‘Pk>7
k=1 k=0

where in the LHS we use the duality production {,) in V’ x V instead of the scalar
product (,) in H thanks to the inclusions V . C H = H' C V'. Introducing the two
functions %, . : [0,T) — V defined by

tha1 — T t— 1t
O (t) == pr—1 and @ (t) := +1€ YK + . k41 for t € [tg,tkr1),
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in such a way that

_ Pr+1 — Pk

- for te (tk,thrl),

p(t)

the above equation also writes

T T
(4.5) (0, g0) / (ol g7 dt = / (AgF, o) dt.

On the one hand, from (4.4) we know that up to the extraction of a subsequence,
there exists g € X7 such that g5 — g weakly in L?(0,7;V). On the other hand,
from the above construction, we have ¢. — ¢’ and ¢. — ¢ both strongly in
L?(0,T;V). We may then pass to the limit as ¢ — 0 in (4.5) and we get (4.1).

Step 4. We prove that g € Xp. Taking ¢ := x(t) % with x € C}((0,T)) and ) € V
in equation (4.1), we get

</0T9X’dt,w> = /OT<971/)>X’dt = —/:(Ag,w)xdt = <—/OTAgxdt,¢>-

This equation holding true for any ¢ € V, it is equivalent to

T T
/ gx'dt = —/ Agxdt in V' forany x e D(0,T),
0 0
or in other words

¢’ = Ag in the sense of distributions in V',

Since g € L2(0,T;V), we get that Ag € L?(0,T; V') and the above relation precisely
means that g € H(0,7;V’). We conclude thanks to Lemma 3.3 that g € Xr.

Step 5. Assume first ¢ € C.([0,T7); H) N L2(0,T;V) N HY(0,T;V"). We define
e (t) := @ pe for a mollifier (p.) with compact support included in (0, 00) so that
¢ € CH([0,T); V) for any € > 0 small enough and

0. = in C([0,T); H)n L*0,T; V)N H'(0,T; V).

Writing the equation (4.1) for . and passing to the limit € — 0 we get that (4.1)
also holds true for ¢.

Assume next that ¢ € X7. We fix x € C*(R) such that supp x C (—00,0), X’ <0,
X' € C.(] —1,0]) and fi)l X' = —1, and we define x.(t) := x((t — T)/e) so that
@e :=@xe € C([0,T); H) and x. — 10,77, X- — —07 as € — 0. Equation (4.1) for
the test function ¢, writes

T

—<90790(0)>—/O xé<w79>d8=/0 x{ (Mg, 0) + (¢, 9)} ds,

and we obtain the variational formulation (3.1) for t; = 0 and to = T by passing
to the limit € — 0 in the above equation. ([l
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APPENDIX A. THE BOCHNER INTEGRAL

In this section we present several definitions and results (without proof) on the Bochner integral
which generalize the Lebegue integral for functions taking values in a general Banach space. We
refer to [3] for details.

We consider X a Banach space endowed with the strong topology (associated to its norm) and
(92, 7, 1) a measured space.

We say that f: Q — X is a simple function if

F=Y aila,

iel

for some finite set I, some measurable sets A; and some a; € X. For a simple function, we define
the integral by
/ fdu:= Z a; W(A;) € X.
Q

We say that a function f : Q — X is measurable if there exists a sequence (fy,) of simple functions
such that
fn—f ae. on Q.

Observe that if f is measurable then || f|| is measurable. We say that a measurable function f is
integrable (in the sense of Bochner) if there exists a sequence (fn) of simple functions such that

fn— f ae.on Q and / | fn— flldp — 0.
Q

Equivalently, a measurable function f : Q — X is integrable iff || f|| is integrable. For a integrable
function, we define the (Bochner) integral by

/fd,u:: lim /fnd,u.
Q n—oo Q

| [oraw] < [0 s1du.
Q Q
We define the Lebesgue spaces

LP(Q;X) :={ f: Q — X measurable; || fllrr < oo}

We have then

with
1/p .
IfllLe = (/Q I £IPd) 7, pe00), IIflee s=int{ A>0; || f| < Nae}.

The Lebesgue spaces LP(2; X) are Banach spaces for any 1 < p < oo, and C.(€2; X) is dense in
LP(Q; X) when 1 < p < oo and (Q,7T) is the borelian o-algebra associated to a locally compact
topologic space €.

o If O = (0,7) and T is the Lebesgue o-algebra, any weakly continuous function f : Q — X is
measurable.

e If (fn) is a sequence of measurable functions such that f, — f a.e. in o(X,X’), then f is
measurable.

e (Lebesgue dominated convergence Theorem) If (fy) is a sequence of integrable functions and
g : 2 — Ry an integrable function such that

fn— fae and | fnll <gae.,
then f is integrable and fn, — f in L1(Q, X).
e Consider X,Y two Banach spaces, 1 < p < oo and A € Z(X,Y). If f € LP(Q;X) then
Af € LP(Q;Y). If furthermore p = 1 then

A/fdu
</fdlh%0>:/(f,so)du, Yee X'

If furthermore, X C Y, then f € L1(Q; X) implies f € L'(Q;Y) and the two integrals coincide.

[ an.

In particular, we have
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e For 1 < p < oo, if (fy) is a sequence of LP(Q; X), f: Q — X is a function such that
I fallLexy S C,  fo— f ae.
then f € LP(Q; X) and || f|lze < lminf ||fr]Le-
Assume that Q is an open set of R4, A distribution is a linear and continuous mapping T :

D(Q) — X, we note T € D'(Q; X). For example, if f € L (Q; X), we define

loc

(Ty.0) = [ f@)e(@)ds

and we observe that Ty € D'(€; X). We have Ty = 0 implies f = 0 a.e. For T' € D'(; X), we
define 0T € D' (Q; X) by
(0T, @) := —(T,0p), V¢ € D(Q).
For T € (0, 00), we define
WEP((0,T); X) = { f € LP(0,T; X), f' € LP(0,T; X)}.
We have WP ((0,T); X) C C([0, T]; X).

APPENDIX B. EXERCISES

Exercise B.1. Following Definition 2.2, we say that g € L2(0,T;V) is a solution to the abstract
evolution equation (2.1)-(2.2) if

T T
(B.1) — 90 #(0) 7/ gy’ dt = / Agedt in V', Ve CL(0,T)).
0 0

Prove that under the hypothesis of Theorem 8.2, a function g € L?(0,T;V) is a solution to
the abstract evolution equation (2.1)-(2.2) in the above sense if, and only if, it is a variational
solution (so that in particular g € X1 ). (Hint. Use some arguments presented in Lemma 3.3 and
in steps 3, 4 and 5 of the proof of Theorem 3.2).

Exercise B.2. Prove that f > 0 if fo > 0 for the solution of the parabolic equation (1.1). (Hint.
Show that the sequence (gr,) defined in step 2 of the proof of the existence part is such that gi > 0
for any k € N).

Exercise B.3. Prove the existence of a solution g € X1 to the equation
d .
(B.2) £ =Ag+G n (0,7), g(0)=go,

for any wnitial datum go € H and any source term G € L2(0,T; V).
(Ind. Repeat the same proof as for the Theorem 3.2 where for the a priori bound one can use

T a [T ) 1 /T )
[aea<s [ sl a5 [ IGO1@
0 2 Jo 2a Jo
and for the approximation scheme one can define
1 tht1
e (g1~ 9) = Mgk + G Grim [ Gl)ds)
tk
Exercise B.4. Generalize the existence and uniqueness result to the PDE equation
(B.3) 0uf = 04lasy 0,0) + b:0if +of + [ K(t..w) f(t.y)dy + G
where a;;, b;, ¢ and k are times dependent coefficients and where a;; is uniformly elliptic in the
sense that
(B.4) vt e (0,T), Ve € RY, VE € R ay(t,2) €6 > al€)?, a>0.

More precisely, establish the following result:
Theorem B.5 (J.-L. Lions - the time dependent case). Assume that
be L®(0,T;WH([RY), a, ce L®((0,T) xRY), ke L®(0,T; L2(R? x RY)),

and that a satisfies the uniformly elliptic condition (B.4). For any go € L?(R?) and G € L(0, T}
H~Y(R%)), there exists a unique variational solution to the Cauchy problem associated to (B.3)
in the sense that

f€Xr:=c(0,T); L) N L20,T; H) n H(0,T; H™ 1),
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such that for any ¢ € X1 and any t € (0,T) there holds
t
®5) [ oetde= [ ap©dot [ [ (Go+ gore) dads
R Rd 0 JRrRd

+/Ot/Rd{ (bi Oif +cf) p — aij 0;fOip} dxds + /Ot/RdeRd k(t, z,y) f(t,y) o(s, z) dedyds

Exercise B.6. Generalize the ezxistence and uniqueness result to the PDE equation (B.3) set in
an open set Q C R% with Dirichlet, Neuman or Robin boundary condition.
Exercise B.7. Let Q C R? an open connected set or the torus. We define

H:={ue L?(RY?; divu =0}, V:={ue H'RHY divu=0}.

1) - Prove that for any ug € H there exists a unique function u € X solution of the variational
equation

(B.6) /Qu(T)-ap(T)f/Quo-go(O)=/0T/QDU:D<,0d:L" Ve Xp.

2) (a) - Prove that T € D'(Q), VT =0 implies T = C.
(b) - Prove the Poincaré-Wirtinger inequality

Voe HYQ) fu—ilye < C|[Vulle, @ ;:/ wdz.
Q
(c) - Assume Q bounded and deduce the following inequality
VT €H™'(Q), TLH, 3pel*Q), T=Vp, [plrz <CIT|z-1.

3) (a) - Assume that Q) is the torus and prove that the solution u of (B.6) satisfies

T
_ . 2 Lyl 72
/Qu(T)-cp(T)—/Quowp(O)f/o /nDu.Dcpda: Ve e L?(0,T; H )N C([0,T]; L*).

(Ind. Define T := I +V (—A) ™! div the projector on divergence-free vectors and observe that for
any ¢ € HY(Q) and any u € H there holds (u,¢) = (u, [1p)).
(b) Deduce that there exists a function p € L%((0,T) x Q) such that u satisfies

Oiu=Au+Vp in (0,T) x Q.
Exercise B.8. (1) Prove the existence of a (weak in the sense of distributions) solution f €
L%(0,T; L2(R%)) to the first order equation
0uf = a(e) - V(@) + @) f(a) + [ blu2) F0)

with the usual assumptions on a, ¢, b by the vanishing viscosity method: that is by passing to the
limit in the familly of equation

Oufe = eAfeta-Viteft [ s folu)dy

as e — 0.
(2) Using a similar vanishing viscosity method, prove the existence of a weak solution for positive
time to the wave equation

0 f=0%.f, £(0,.)=fo, B:f(0,.) = go,
for any fo,go € L2(R), and to the Schrédinger equation
0 f+Azf =0, f(0,.)= fo,

for any fo € L2(R%).
(Hint. For the wave equation prove the existence of a solution (fe, ge) to the system of equations

0f =g+edl.f, Oug=02.f +<07.0,
associated to an initial datum (fo,go) € H'(R) x L?(R) and pass to the limit € — 0).
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Exercise B.9. We consider the nonlinear McKean-Vlasov equation

(B.7) af =Alf] = AF+ di(F[f]f), F(0)= fo,
with
Flfl:=axf, acWbhHoRY%

1) Prove the a priori estimates
| F @l =1l follsr ¥E=0, [l FOllgz < el follz V>0,

for any k > 0 and a constant C := C(k, ||a||yy1,00, || foll 1), where we define the weighted Lebesgue

space L? by its norm || fHLi = f@)F| L2, (=) = (14 |x]2)1/2.

2) We set H := Li, k>d/2, and V := Hé, where we define the weighted Sobolev space Hé by

its norm || in(1 = f||2L2 -+l Vf||ig. Observe that for any f € V the distribution A[f] is well
k k k

defined in V' thanks to the identity
Alfhg)i= = [ (VF+ (@ D) Vi@ da Vg e V.

(Hint. Prove that Li C L'). Write the variational formulation associated to the monlinear
McKean-Viasov equation. Establish that if moreover the variational solution to the nonlinear
McKean-Vlasov equation is nonnegative then it is mass preserving, that is || f(t)||p1 = || follp1
for any t > 0. (Hint. Take xar (x)~2F as a test function in the variational formulation, with
xum (%) := x(x/M), x € DR?), 15(0,1) < X < 1p(0,2))-

3) Prove that for any 0 < fo € H and g € C([0,T]; H) there ezists a unique mass preserving
variational solution 0 < f € Xp to the linear McKean-Viasov equation

Ohf =Af+di(Flglf), f(0)= fo

Prove that the mapping g — [ is a contraction in C([0,T|; H) for T > 0 small enough. Conclude
to the ezistence and uniqueness of a global (in time) variational solution to the nonlinear McKean-
Vlasov equation.

Exercise B.10. For a € WL °(R9), ¢ € L®(R%), fo € LP(R?), 1 < p < oo, we consider the
linear parabolic equation

(B.5) Ouf =Af=Af+a-Vi+cf, f0)=fo.

We introduce the usual notations H := L%, V := H' and X the associated space for some given
T>0.

1) Prove that for v € CY(R), v(0) = 0, v/ € L, there holds v(f) € H for any f € H and
Y(f) €V forany f € V.

2) Prove that f € X1 is a variational solution to (B.8) if and only if

% f=Afin V' ae. on (0,T).

3) On the other hand, prove that for any f € X1 and any function B € C2(R), 8(0) = 8'(0) = 0,
B" € L, there holds

d d ,
dt /]Rd B(f) = <£ 18 (v v ae on (0,T).

(Hint. Consider f- = f %t pe € C1([0,T]; H') and pass to the limit € — 0).

4) Consider a convex function 8 € C?(R) such that B(0) = £'(0) = 0 and B € L>°. Prove that
any variational solution f € X1 to the above linear parabolic equation satisfies

[ st0des [ stwdes [* [ £ers) - @wa) oo,

for any t > 0.

5) Assuming moreover that there exists a constant K € (0,00) such that 0 < s3'(s) < KB(s) for
any s € R, deduce that for some constant C := C(a,c, K), there holds

[ ptdr<ec [ stoydn, vizo.
R4 R4
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6) Prove that for any p € [1,2], for some constant C := C(a,c) and for any fo € L? N LP, there
holds

If@®)lle < el follLe, ¥t >0.
(Hint. Define 8 on Ry and extend it to R by symmetry. More precisely, define 8(s) = 2015<q+
p(p—1)sP" 2155, with 20 = p(p—1)aP~2 and then the primitives which vanish at the origin and
which are thus defined by B, (s) = 20sls<q + (psP~1 — paP™! +200)1s>0, Bal(s) = 9321533 +
p(p— 2)aP=1s + (p— 1)(1 — p/2)aP)Lome. Observe that sly(s) < 20a(s) and fa(s) < B(s)).
7) Prove that for any p € [2,00] and for some constant C := C(a,c,p) there holds

If@®llLe < el follLr, Vit >0.

(Hint. Define B%(s) = p(p — 1)sP"21,<p + 201,5 g, with 260 = p(p — 1)RP~2, and then the
primitives which vanish in the origin and which are thus defined by Bj(s) = pspfllng +
(PR~ +20(s — R))Los g, fr(s) = sPlazp + (B? + pRP~\(s — R) + (s — R)?)1es . Observe
that sB(s) < pBr(s) and Br(s) < B(s). Pass to the limit p — oo in order to deal with the case
p=o00).

8) Prove that for any fo € LP(R%), 1 < p < oo, there exists at least one weak (in the sense of
distributions) solution to the linear parabolic equation (B.8). (Hint: Consider fo, € L'N L>
such that fo,n — fo in LP, 1 < p < 0o, and prove that the associate variational solution fn € X1
is a Cauchy sequence in C([0,T); LP). Conclude the proof by passing to the limit p — oo).

9) Establsih the LP estimates with “optimal” constant C (that is the one given by the formal
computations).

10) Eztend the above result to an equation with an integral term and/or a source term.

11) Prove the existence of a weak solution to the McKean-Vlasov equation (B.7) for any initial
datum fo € L' (R9).

12) Recover the positivity result of exercice B.2. (Hint. Choose B(s) := s— ).

APPENDIX C. FURTHER RESULTS: Co-SEMIGROUP, EVOLUTION EQUATION WITH SOURCE TERM AND
DUHAMEL FORMULA

C.1. Cp-semigroup. We explain how we may associate a Cp-semigroup to the evolution equa-
tion (2.1), (2.2) as a mere consequence of the linearity of the equation and of the existence and
uniqueness result.

Definition C.1. Consider X a Banach space, and denote by B(X) the set of linear and bounded
operators on X. We say that S = (St)¢>0 is a strongly continuous semigroup of linear operators
on X, or just a Co-semigroup on X, we also write S(t) = Sy, if

(i) Vt >0, S;e€ B(X) (one parameter family of operators);

(i) Vfe X, t— StfeC(0,00),X) (continuous trajectories);

(iit) So =1; Vs, t>0 Siys=5tSs (semigroup property).

Proposition C.2. The operator A generates a semigroup on H defined in the following way.

For any go € H, we set Stg := g(t) where g(t) is the unique variational solution associated to go
and given by Theorem 8.2. We also denote Sy (t) = €A = S; for any t > 0.

e S satisfies (i). By linearity of the equation and uniqueness of the solution, we clearly have
St(go + Afo) = g(t) + Af(t) = Stgo + AStfo

for any go, fo € H, A € R and t > 0. Thanks to estimate (2.3) we also have |Sigo| < e®* |go| for

any go € H and t > 0. As a consequence, Sy € #(H) for any t > 0.

e S satisfies (ii). Thanks to lemma 3.3 we have ¢t — Sigo € C(R4; H) for any go € H.

e S satisfies (iii). For go € H and t1,t2 > 0 denote g(t) = Stgo and g(t) := g(t + t1). Making the

difference of the two equations (3.1) written for t = ¢t; and t = ¢1 + t2, we see that g satisfies

(g(t2), B(t2)) (9(t1 +t2), 0(t1 +t2))
t1+1t2
= (g(t1),(t1)) + {(Ag(s),0(s)) + (&' (), 9(5)) } ds

ty

2]
(9(0),¢(0)) + /0 {(AG(s), 8(s)) + (&' (), 3(5)) } ds,
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for any ¢ € Xy, 4+, with the notation @(t) := @(t+¢1) € X¢,. Since the equation on the functions
g and @ is nothing but the variational formulation associated to the equation (2.1), (2.2) with
initial datum §(0), we obtain

St1+t290 = g(tl + t?) = g(tQ) = St2§(0) = St29(t1) = St2st190-

Exercise C.3. We denote by St the semigroup in H generated by a coercive+dissipative operator
A:VCH—=V.
1) Prove that for any go € H and ¢ € V the function t — (Stgo, ) belongs to H'(0,T) and

d
= (5t90,0) = (AStgo,0) in H™Y0,T).

2) Prove that for any G € C([0,T]; H) and ¢ € V there holds
d t t )
& [ a6 01 ds = (G09) + [ (ASi-.Gls)g)ds i HTOT).
0 0
3) Establish the Duhamel formula, namely that for go € H and G € C([0,T]; H), the function

t
g(t) :== Stgo +/ Si—sG(s)ds
0

is a weak (make precise the sense) solution to the evolution equation with source term

d
S =Ag+G on [0,50), 9(0) = g0.
C.2. Evolution equation with source term and Duhamel formula. In that last section,

we come back on Exercices B.3 and C.3.

e For go € H and G € L%(0,T; V') a function g € X7 is a variational solution to the evolution
equation with source term

d
(C1) S =Ra+ G on 0,71, 9(0) = go.
if that equation holds in V', namely if for any ¢ € V there holds
d
290, 0) = (Ag(t), o) +(G(t), @) in the sense of D'(0, T;R).

That is equivalent to
(29(0),9) = (Ag(0).0) + (GO, @) ace. L€ (0.T),
or more explicitely
T T
/0 (9(t), ) X' dt — (g0, 0) x(0) = /0 {(Ag(), 0) + (G(1), ) Ix(®) dt

for any x € C1([0,T)) and ¢ € V. One can then deduce from the last formulation and by density
of the separate variables functions D(0,7) ® V into Xp, or just by taking the next formulation
as a definition of a variational solution, that for any ¢ € Xr

T T
(©2) - 2lE — [ Geatde= [ g+ G

e When go € H and G € C([0,T); H) one can define thanks to Proposition C.2 the following
function

t
(C.3) g(t) == et gy + / A=) G(s) ds.
0
We see that g € C([0,T]; H), and using the estimate (2.3)
T £2bT
[ e i e < S 111,
0 «
we easily find

T T
| 1801 dt < 011 ool + Ca(1) [ G ds.
(0] [0}

Finaly, since
te et e HY(O, TV, 100 P2y < Cs(T) |f 1,
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we deduce that g € H(0,T; V') with explicit estimates. We may then compute in L2(0,7;V")
t
drg = AeMgo + G(t) + / Aet (=9 G(s) ds = Ag + G(t),
0

(see also Exercice C.3) and we obtain that g(t) is a variational solution to the evolution equation
with source term (C.1).

e When go € H and G € L?([0,T); V') the sense of the Duhamel formula is less clear. One can
however prove the existence of a variational solution by just repeating the proof used to tackle
the sourceless evolution equation (1.1). More precisely, we consider the following discrete scheme:
we build (gg) iteratively by setting

_ trt1
Gotl Z 9% _ Ngrp1+Gr, G i= / G(s) ds.
&g tr
‘We compute

N

lge 11?1 —eb) +eallgesilly < lgkllgrsa| + e llgrsallv 1G]y
1 1 o €
< a4z e v+ — Gkl
< 3 9| 5 |grt1l 5 llgr+1lly 2a Gy
and then
€
lgrr1l?(1 = 2eb) + e allgrgally, < lgul®+ > IGkl3

We get an estimate on |gy1 1|2 which is uniform on k when ke < T, for T > 0 fixed, by using a
discrete version of the Gronwall lemma. We conclude as in the proof of Theorem 3.2.

e We may argue in a different way. When go € H and G € C([0,T]; H) the Duhamel formula
(C.3) gives a variational solution to the evolution equation with source term in the sense (C.2).
Making the choice ¢ = g, we get

1 T
SIoE = [ (o) + (Gaar
T 2 2
< [ talalf +blol® + G gl de
a T b2 T
< —= 2 at —/ G| dt,
< =5 [ i+ [ ek

and thanks to the Gronwall lemma, we obtain

T T
\g(T)IQJra/O IIQ\\%dtSebT\go\%JrCT/O G113 dt.

We conlcude to the existence by smoothing the source term G (what it is always possible in the
explicit examples H = L2, V = H') and by passing to the limit in the variational formulation.
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