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CHAPTER 4 - MORE ABOUT THE HEAT EQUATION

In this chapter we present some qualitative properties of the heat equation and more particularly
we present several results on the self-similar behavior of the solutions in large time. These results
are deduced from several functional inequalities, among them the Nash inequality, the Poincaré

inequality and the Log-Sobolev inequality.

Let us emphasize that the used methods lie on an interplay between evolution PDEs and functional
inequalities and, although we only deal with (simple) linear situations, these methods are robust

enough to be generalized to (some) nonlinear situations.
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1. THE HEAT EQUATION

1.1. Nash inequality and heat equation. We consider the heat equation

(1.1) %{ = %Af in (0,00) x R4, f(0,-)=fo inR%

One can classically prove thanks to the representation formula

2
f(t) =wxfo, m(x):= W EXP(_%)

B JEN RS S GG U
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and the Holder inequality that f(¢,.) — 0 as t — oo, and more precisely, that for any p € (1, o]

and a constant C}, 4 the following rate of decay holds:

C
(1.2) 1t e < 2555 Wfollue - vE>o0.
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We aim to give a second proof of (1.2) in the case p = 2 which is not based on the above repre-
sentation formula, which is clearly longer and more complicated, but which is also more robust in
the sense that it applies to more general equations, even sometimes nonlinear.

Nash inequality. There exists a constant Cy such that for any f € L'(RY) N H'(R), there
holds

(1.3) A < Call FIPAH IV £ o

Proof of Nash inequality. We write for any R > 0

2 12 _ £12 £12
1712 = If2s = /|g|< n /|§|>R|f|

cde||fHLoc+R2/ €17 |17

IN

IN

ca R ||fII2: + ﬁ IV£IZ2,
and we take the optimal choice for R by setting R := (||V f||2. /cd||f||%1)%+2 so that the two terms
at the RHS pf the last line are equal. O

We assume for the sake of simplicity that fy > 0, and then f(¢,.) > 0, thanks to the maximum
principle. We then compute

Gl =5 [ reade =3 [ v (Vaseo) do =0,

so that the mass is conserved (by the flow of the heat equation)

1 )l = [l follr VE=0.
On the other hand, there holds

d
7 f(t;v dx—/ fAfd;v——/Rd|Vf|2dx.

Putting together that last equatlon, the Nash inequality and the mass conservation, we obtain the
following ordinary differential inequality
d d+2

g L feardrs K ([ featde) T K =Calfoll
We last observe that for any solution u of the ordinary differential inequality
u < —Ku't a=2/d>0,
some elementary computations lead to the inequality
u ) > aKt+us > aKt,

from which we conclude that

a/a\?
. R4 ’ - $d/2 /2

That is nothing but the announced estimate (1.2) for p = 2.

In order to prove the estimate for the full range of exponent p € (1,00] we use a duality and an
interpolation arguments as follow. We introduce the heat semigroup S(f)fo = f(t) associated to the
heat equation as well as the dual semigroup S*(t). We clearly have S* = S because the Laplacian
opeartor is symetric in L?(R%). As a consequence, thanks to (1.4) and for any fo € L?(R?), there
holds

1S(t) follL= = sup (S(t)fo,¢) = supges, . (fo, (1))

¢EB 1

C
2w ol 1Sl < ol 75

€B1

IN
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which exacly means that S(t) : L> — L™ for positive times with norm bounded by C't~%/4. We
deduce

C
ISO L2z < SE/2)l 2o pe |1SE/2) 22522 < 75,
which establishes (1.2) for p = co. Finally, for any p € (1, 00) and using the interpolation inequality

-6 —6
1) follze < 1S follza 15O foll 7= < ISWNE, poe lfollzs V>0,
with 6 = 1/p, and that is nothing but (1.2) in the general case.
It is worth emphasasing that by differentiating the heat equation, we can easily establish some

estimates on its smoothing effect. For example, for fo € H'(R?), the associated solution to the
heat equation satisfies

1 1
8tf = §Af and 8,5Vf = iAVf

from what we deduce

d d

Il = —IVIlE: and 2 V£l =~ D,
and then p

g LAz + IV FIZ2 ) = —tID* 7= <0, ¥i>0.

Integrating in time this differential inequality, we readilly obtain that the solution to heat equation
satifies

1
IVF@Oliee < 5175 follze,  VE>0.

1.2. Self-similar solutions and the Fokker-Planck equation. It is in fact possible to describe
in a more accurate way that the mere estimate (1.2) how the heat equation solution f(¢,.) converges
to 0 as time goes on. In order to do so, the first step consists in looking for particular solutions to
the heat equation that we will discover by identifying some good change of scaling. We thus look
for a self-similar solution to (1.2), namely we look for a solution F with particular form

F(t,z) = t* G(t°x),
for some «, 8 € R and a “self-similar profile” G. As F must be mass conserving, we have
/Rd F(t,z)dex = /Rd F(0,z)dx =t » G(t? x) dx,
and we get from that the first equation « = fd. On the other hand, we easily compute
OF =at* 'GP x) + Bt (P 2) - (VG)(tP ), AF =t*t* (AG)(t" z).
In order that (1.1) is satisfied, we have to take 2 8+ 1 = 0. We conclude with

(1.5) F(t,x) =t~ 2 Gt~ %), %AG + %div(m G) =0.

We observe (and that is not a surprise!) that a solution G € L*(R%) N P(R?) to (1.5) will satisfy
VG + 2 G =0, it is thus unique and given by

G(z) = ¢ e*|x|2/2, o' = (27m)¥? (normalized Gaussian function).

To sum up, we have proved that F is our favorite solution to the heat equation: that is the
fundamental solution to the heat equation.

Changing of point view, we may now consider G as a stationary solution to the harmonic Fokker-
Planck equation (sometimes also called the Ornstein-Uhlenbeck equation)

0 1 1
(1.6) ag:§Lg:§V-(Vg+gx) in (0,00) x R%.
The link between the heat equation (1.1) and the Fokker-Planck equation (1.6) is as follows. If f
is a solution to the Fokker-Planck equation (1.6), some elementary computations permit to show
that

flt,z) = (1+ t)_d/Qg(log(l +1),(1+ t)_1/2 z)



4 CHAPTER 4 - MORE ABOUT THE HEAT EQUATION

is a solution to the heat equation (1.1), with f(0,2) = ¢g(0,). Reciprocally, if f is a solution to
the heat equation (1.1) then

g(t,x) == e fet —1,e"/% )
solves the Fokker-Planck equation (1.6). The last expression also gives the existence of a solution in
the sense of distributions to the Fokker-Planck equation (1.6) for any initial datum fy = ¢ € L'(R?)
as soon as we know the existence of a solution to the heat equation for the same initial datum
(what we get thanks to the usual representation formula for instance).

2. FOKKER-PLANCK EQUATION AND POINCARE INEQUALITY

2.1. Long time asymptotic behaviour of the solutions to the Fokker-Planck equation.
We consider the Fokker-Planck equation

0
(2.1) 5l =Lf=Af+V-(fVV) in (0,00) x R?
(22) f(0,2) = fo(z) = ¢(),
and we assume that the “confinement potential” V' is the harmonic potential
2 d
V(z) = % +Vo, Vo:= 3 log 27.

We start observing that

d

dt Rd Rd
so that the mass (of the solution) is conserved. Moreover, the function G = e~ € L(RY) NP (R?)
is nothing but the normalized Gaussian function, and since VG = —G VYV, it is a stationary

solution to the Fokker-Planck equation (2.1).

Theorem 2.1. Let us fir ¢ € LP(R?), 1 < p < .

(1) There exists a unique global solution f € C([0,00); LP(R?)) to the Fokker-Planck equation (2.1).
This solution is mass conservative

(23) U= [ Jeoyde= [ foe)de = (o) i foe LR,
Rd Rd
and the following mazximum principle holds

fo=0 = f(t,)>0 Vt>0.

(2) Asymptotically in large time the solution converges to the unique stationary solution with same
mass, namely

(2.4) 1£(t,) = (fo) Gl < e (| fo = (fo) Gllz as & — oo,
where || - ||z stands for the norm of the Hilbert space E := L*(G~/?) defined by

1712 :=/ 6V de
]Rd

and Ap is the best (larger) constant in the Poincaré inequality.

More generally, for any weight function m : R? — R, , we denote by LP(m) the Lebesgue space
associated to the norm || f||re(m) := || f m||r» and we will just write LY := LP({z)").

For the proof of point (1) we refer to Chapter 1 as well as the final remark of Section 1. We are
going to give the main lines of the proof of point 2. Because the equation is linear, we may assume
in the sequel that (fy) = 0.

Using that GG~! = 1, we deduce that VV = —G~!VG = G - V(G~1). We can then write the
Fokker-Planck equation in the equivalent form
0
5/ = dive (Vaof +G fV.GT)

div, (G V. (fGY).
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We then compute

_ 1 . / f
2dt/f2 — /Rd(atf)fG 1d$7/RddWI <G’Vm (G>) adx

_ fI?
- _‘/RdG‘sz dl’

Using the Poincaré inequality established in the next Theorem 2.2 with the choice of function
g := f(t,.)/G and observing that (g)¢ = 0, we obtain

2
2 < f _ 2 ~—1
2dt/fG —Ap RdG(G> do==Ap | f2G7Vd,

and we conclude using the Gronwall lemma.

Theorem 2.2 (Poincaré inequality). There exists a constant Ap > 0 (which only depends on the
dimension) such that for any g € L>(G/?), there holds

(25) [ vaP Gz = an [ o= (el G
Rd Rd
where we have defined
W= [ oo uldo)
Rd
for any given (probability) measure p € P(R?) and any function g € L'(u).
2.2. Proof of the Poincaré inequality. We split the proof into three steps.
2.2.1. Poincaré-Wirtinger inequality (in an open and bounded set ().

Lemma 2.3. Let us denote Q = Bpg the ball of R with center 0 and radius R > 0, and let us
consider v € P(Q) a probabz'lity measure such that (abusing notations) v,1/v € L*(Q). There
exists a constant k € (0,00), such that for any (smooth) function f, there holds

(2.6) / = tlrs [1ViFv (= [ e

and therefore

Pr<ie [ v
K Ja

Q
Proof of Lemma 2.3. We start with

1
f(x)—f<y>:/0 Vi) (@—y)dt, m=(1-t)z+ty.

Multiplying that identity by v(y) and integrating in the variable y € Q the resulting equation, we
get

@) = (f)y = /Q / Vi) - (x — ) diw(y) dy.

Using the Cauchy-Schwarz inequality, the fact that z; € [x,y] C Q and the changes of variables
(z,y) = (2,y) and (z,y) — (z, 2z), we deduce

[ @ -nrvwas [ [ / VH)P ¢~y dt v(y) v(e)dyda
<Cl///1/2Vf (2¢)|? dtdz v(y dy+Cl////2|Vf 2)|? dtdy v(z)dx
_Cl//l/z/Vf ) dtv(y dy+Cl///2/|Vf |2%dty()

<20, / V()2 dz,
Q

with C} := ||v||p~ diam(Q)2. We immediately deduce the Poincaré-Wirtinger inequality with the
constant k=1 :=2C ||1/v]| e O
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2.2.2. A Liapunov function. There exists a function W such that W > 1 and there exist some
constants 8 > 0, b, R > 0 such that

(2.7) (L*W)(x) := AW (2) — VV - VW (2) < -0 W (2) + b1p,(x), Yz e RY

where Br = B(0, R) denotes the centered ball of radius R. The proof is elementary. We look for
W as W(x) := e?{®). We then compute

-1
VW:’Y%G'Y(L) and AW: (*7 +Pyd< > ) e"/(“:')’

and then
_ 2
(z) (x)
< —O0W+blp,
with the choice § =y =1 and then R and b large enough. O

2.2.3. End of the proof of the Poincaré inequality. We write (2.7) as

L*W (x) b
1< — oW () +0W(x) 1p,(z)  VzecR<

For any f € C2(R?), we deduce

RdeG S ]Rdf2 G+ / fsz = Tl —|—T2

(

On the one hand, we have

0T, = /vw ( >G+IJ;VG +/I];VV~VWG
= /vwv(ié)c
= /vaw VG- /WZVWQG

< [wsee

On the other hand, using the Poincaré-Wirtinger inequality in Br and the notation

I
—
4
=
Q
|
B

Kﬁ
4
=
4
S~

G(BR) = Gdr, vg:= G(BR)71 G\Bgv <f>R: fvg,
Br Br

we have

QTz = / fziGSG(BR) v
Br

b W Br
< G(B) ((Dh+Cr [ (V4P v).
Br
Gathering the two above estimates, we have shown
28) razo(is [ PG
Rd Rd

Consider now g € Cl?. We know that for any ¢ € R, there holds

(29) | a=tere < o= [ @-o?c.



CHAPTER 4 - MORE ABOUT THE HEAT EQUATION 7

with (g)¢ defined in (2.6), because ¢ is a polynomial function of second degree which reaches is
minimum value in ¢, := (g)g. We last define f := g — (g) g, so that (f)r = 0, Vf = Vg. Using
first (2.9) and next (2.8), we obtain

/ (9—{9c) G < rra
R4 R4
< o+ [ Ivire)
Rd
= C / IVg|? G.
Rd
That ends the proof of the Poincaré inequality (2.5). O

2.3. A strong version of the Poincaré inequality.

Proposition 2.4. For any \ < Ap, there exists € > 0 so that the following stronger version
L. (&)
Rd G

holds for any f € D(R?) with (f) = 0.

2
Gdzx

Vv

X[ fPaldx
Rd

ve [ (IR 4 I97P) Gl
Rd

Proof of Proposition 2.4. We define ® := —log G = |z|?/2 + log(27)%2. On the one hand, by
developing the LHS term, we find

L

On the other hand, a similar computation leads to the following identity

J.
J.

The two above identities together with (2.5) imply that for any 6 € (0,1)

2

dez/ \4ik G‘ldx—/ f2(A®) G dx.
Rd R4

T

2
V(fGY2) G2 1 (FGV?) VGl/Q‘ Gdz

2
V(fG‘l/z)‘ d:v+/ f? <le|v<1>|2 - ;m) G~ tdx.
]Rd

T > (1f9)Ap/ fQGfldHo/ f? i|V¢>|2—§A<P G ldx
R Ra 16 4
6 0
+7/ f2|V<I>|2G*1dx+f/ VP G
16 Rd 2 Rd

Observe that |[V®|? — 12A® > 0 for x large enough, and we can choose § > 0 small enough to
conclude the proof. O

3. FOKKER-PLANCK EQUATION AND LOG SOBOLEV INEQUALITY.

The estimate (2.4) gives a satisfactory (optimal) answer to the convergence to the equilibrium
issue for the Fokker-Planck equation (2.1). However, we may formulate two criticisms. The proof
is “completely linear” (in the sense that it can not be generalized to a nonlinear equation) and
the considered initial data are very confined/localized (in the sense that they belong to the strong
weighted space E, and again that it is not always compatible with the well posedness theory for
nonlinear equations).

We present now a series of results which apply to more general initial data but, above all, which
can be adapted to nonlinear equations. On the way, we will establish several functional inequalities
of their own interest, among them the famous Log-Sobolev (or logarithmic Sobolev) inequality.
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3.1. Fisher information. We are still interested in the harmonic Fokker-Planck equation (2.1)-
(2.2). We define

D:={feL1<Rd>; fzo. [r=1 [re=0 /f|w2=d}
D<::{feL1(Rd); f=0, /le, /f:czo, /fx|2<d}~

We observe that D (and D<) are invariant set for the flow of Fokker-Planck equation (2.1). We
also observe that G is the unique stationary solution which belongs to D. Indeed, the equations
for the first moments are

0(f) =0, O(fx)=—(fx), 8(flal®)=2d(f) - 2(fl|z]*).

It is therefore quite natural to think that any solution to the Fokker-Planck equation (2.1)-(2.2)
with initial datum ¢ € D converges to G. It is what we will establish in the next paragraphs.

and

We define the Fisher information (or Linnik functional) I(f) and the relative Fisher information
by

2
= [ 'Vf' ~4 [IVVIP. 1016) = 1) - 16) = 1)~ .

Lemma 3.1. For any f € D<, there holds
3.1) I(f|G) = 0,
with equality if, and only if, f = G.

Proof of Lemma 3.1. We define V := {f € D< and V/f € L?}. We start with the proof of (3.1).
For any f € V| we have

0<J(f) = /‘QV\/quw\/ﬂde

[ (@I9VFR 2091+ [oP £) do = 1(7) + (laf?) - 24

< I(f)—d=1I(f) - I(G) = I(fIG).

We consider now the case of equality. If I(f|G) = 0 then J(f) = 0 and 2V/f +x/f =0 a.e.. By
a bootstrap argument, using Sobolev inequality, we deduce that /f € C°. Consider zy € R? such
that f(xo) > 0 (which exists because f € V) and then O the open and connected to xy component
of the set {f > 0}. We deduce from the preceding identity that V(log/f + |z|?/4) = 0 in O and
then f(z) = eC=121°/2 o0 O for some constant C € R. By continuity of f, we deduce that © = R%,
and then C' = —log(27)%? (because of the normalized condition imposed by the fact that f € V).

Lemma 3.2. For any (smooth) function f, we have

1, 1 1 2
(32) $0) A ==Y [ (o0, - 50u8) .
(33) ST (V- (Fa) = I(5),
1, 1 1 2
(3.49) HURIERDY [(Fosos-our—35) 1 - (10~ 1),

As a consequence, there holds
1
ST L(f) < ~I(1G) <.

Proof of Lemma 3.2. Proof of (3.2). First, we have

i ones [ Yoo [V
I'(f)-h=2 [ ==Vh I

h.
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Integrating by part with respect to the x; variable, we get

1, 1 1

51 (f)-Af /fajf 8iijf_/ﬁaiif (ajf)2

0; 0;
/ ( W os0,5 - faijfaijf) + [ (Pa roi5 050 - %401 @,1) )
1 1 2
- - EJj/ 00, = 70,1) 1.

Proof of (3.3). We write

ST (V- () =

(9, f)?
2 f2

0if

7 9ij (f i) —

0i(f x3).
We observe that

0ij(f wi) —

9;f) _ d
9 8l(f$z) = (8ZJf)xz+daf+5z]af afanf B

9 f
— @l it (10 - 0O 5

Gathering the two preceding equalities, we obtain

1, _d 0;f o
L) (V- (f2) = (5 + 1) I(f) + 7 0ij f i

Last, we remark that

d 1 (9, f)? _ [ 9%f0yf | CL(9;1)?
zf(f>z/ai( 7 >x/f 2 g2 O

9;f Ti
ool g

and we then conclude .
L) - (V- (fa) = I(f)-

Proof of (3.4). Developing the expression below and using (3.2), we have

0 < Z/ 05 = 1048 - 51])2f

_71' Af+22/ uf — af +d/f

From [ f=1, [9;f =0 and (3.3), we then deduce

0 < —gI(f)AF=2A(f) +d=—3I(f) Lf +d - I(f)
which ends the proof of (3.4). O

Theorem 3.3. The Fisher information I is decreasing along the flow of the Fokker-Planck equa-
tion, i.e. I is a Liapunov functional, and more precisely

(3.5) I(f(t,.)|G) < e I(4|G).

That implies the convergence in large time to G of any solution to the Fokker-Planck equation
associated to any initial condition p € DNV. More precisely,

(3.6) YoeDNV  f(t,.) =G in LINLY as t— oo,
for any q € [1,2*/2) where 2* = 2d/(d — 2).

Proof of Theorem 3.3. On the one hand, thanks to (3.4), we have
d
(37) d1r1e) < —21(716).

and we conclude to (3.5) thanks to the Gronwall lemma. On the other hand, thanks to the Sobolev
inequality, we have

=2 = V72 < CIVVFIZ2 = CI(f) < CL(p).
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Consider now an increasing sequence (t,) which converges to +0o0. Thanks to estimate (3.5) and
the Rellich Theorem, we may extract a subsequence \/ f(t,, ) which converges a.e. and strongly in
L2% and weakly in H' to a limit denoted by v/9- That implies that f(t,,) converges to g strongly
in LN L}, for any g € [1,2%/2), k € [0,2), and that I(g) < limsup I(f(tn,)) < 0o, so that g € V.
Finally, since 2V/f(tn,) — 2/ f(tn,) = 2V/g — x\/g weakly in L? . (for instance) we have

0 < J(g) < liminf J(f(tn,,.) = liminf I(f(t,,,.)|G) = 0.
k—o0 k—o0

From J(g) =0 and g € VN D< we get g = G as a consequence of Lemma 3.1, and it is then the
all family (f(t));>0 which converges to G as t — co. The L} convergence is a consequence of the
fact that the sequence (f(t,) [v|?), is tight because (f(¢) [v]?) = (G |v|?) for any time ¢t >0 . O

Exercise 3.4. Prove that 0 < f,, — f in LN L}, ¢ > 1, k > 0, implies that H(f,) — H(f).
(Hint. Use the splitting

s|logs| < Vsly_ o jur +5 |2 |* 1, pokcyey t8(logs)1 11 Vs >0
and the dominated convergence theorem).

Exercise 3.5. Prove the convergence (3.5) for any ¢ € P(RY) N L3(R?) such that I(p) < oco.
(Hint. Compute the equations for the moments of order 1 and 2).

3.2. Entropy and Log-Sobolev inequality. For a function f € D, we define the entropy H(f) €
R U {400} and the relative entropy H(f|G) € RU {400} by

H(f) = [ flogfds, H(fIG) = H(P) - HG) = [ i(7/6)Gx,
R R
where j(s) = s logs — s+ 1.
We start observing that for f € P(R?) N S(RY), there holds

H(- L) = [ G+loef)Ar+V-(af)

= 7/ Vf-Vlogff/ zf-Viegf
R R
= —I(f) +d(f) = -I(f|G).
As a consequence, the entropy is a Liapunov functional for the Fokker-Planck equation and more
precisely
d

(3.8) =

H(f) =-I(f|G) <0.

Theorem 3.6. (Logarithmic Sobolev inequality). For any p € D, \/p € H*, the following
Log-Sobolev inequality holds

(3.9) H(p|G) < =1(¢|G).

N | =

That one also writes equivalently as

/Rdf/Gln(f/G)Gda::/Rdflnf_ RdGIHGS %( i vffvf _d)

or also as
/ u? log(u?) G(dx) < 2/ |Vul|? G(dx).
R4 R4

For some applications, it is worth noticing that the constant in the Log-Sobolev inequality does not
depend on the dimension, what it is not true for the Poincaré inequality.
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Proof of Theorem 3.6. On the one hand, from (3.6) (and more precisely the result of Exercise 3.4)
and (3.8), we get

1 d
H(p) - H(G) = Jim [f1(o) ~ H(g)] = [ [~ G(n)] at
= i [ ion

From that identity and (3.7), we deduce

T
H(g)-H(G) < Jim | [—;ZI(fIG)] dt
= Jim LU(G) - I(10)] = 21(61C).
thanks to (3.5). -

Lemma 3.7. (Csiszdar-Kullback inequality). Consider p and v two probability measures such
that v = g p for a given nonnegative measurable function g. Then

(3.10) o= w2 = llg — 121 gy < 2 / glog g dy.

Proof of Lemma 3.7. First proof. One easily checks (by differentiating three times both functions)
that

Yu >0 3(u—1)2< (2u+4)(ulogu —u+1).
Thanks to the Cauchy-Schwarz inequality one deduces

/|g1|dﬂ§\/;/(2g+4)du\//(gloggg+1)d,u\/2/gloggdp.

Second proof. Thanks to the Taylor-Laplace formula, there holds

1
ilg) = 910g9*9+1:j(1)+(9*1)j'(1)+(9*1)2/0 J"A+s(g—=1) 1~ s)ds

1
1—s5
= (g1 / s

(9=1) o L+s(g—1)
Using Fubini theorem, we get

H(g) /( logg—g+1)d /1(1 )/ 01" .4

= — = -s) [ ——————— s.
g glogg —g H ) 1+S(g_1)ﬂ

For any s € [0,1], we use the Cauchy-Schwarz inequality and the fact that both u and gp are
probability measures in order to deduce

(/'9—”6@23 (f ) (foso-vian) = [ A an

As a conclusion, we obtain

o0 (fu-s) 6 (f-sa)

which ends the proof of the Csiszar-Kullback inequality. O

Putting together (3.8), (3.9) and (3.10), we immediately obtain the following convergence result.

Theorem 3.8. For any ¢ € D such that H(p) < oo the associated solution f to the Fokker-Planck
equation (2.1)-(2.2) satisfies
H(f|G) < e H(g|G),
and then
If =Gl < V2e " H(p|G)"/>.
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3.3. From log-Sobolev to Poincaré.

Lemma 3.9. If the log-Sobolev inequality

NH(fIG) < ZI(f|G) VfeD

N |

holds for some constant X\ > 0, then the Poincaré inequality
(At ) oomy < [ IVHEGT Wi e DR, (bl1,a,[of]) =0,

also holds (for the same constant X > 0).

That lemma gives an alternative proof of the Poincaré inequality. Of course that proof is not very
“cheap” in the sense that one needs to prove first the log-Sobolev inequality which is somewhat more
difficult to prove than the Poincaré inequality. Moreover, the log-Sobolev inequality is known to be
true under more restrictive assumption on the confinement potential than the Poincaré inequality.
However, that allows to compare the constants involved in the two inequalities and the proof is

robust enough so that it can be adapted to nonlinear situations.

Proof of Lemma 3.9. Consider h € D(R?) such that [ h(z) (1,2, |z|?]dv = [0,0,0]. Applying the
Log-Sobolev inequality to the function f = G +eh € D for € > 0 small enough, we have

A

H(G+eh)— H(G) X 1 I(G+eh)—I(Q)

= - H(fIG) < —I(f|G) =
= 5 HUIG) < 5 51U16) =
Expending up to order 2 the two functionals, we have

2 1,2
Flogf=GlogG+eh(l+1logG) + % S +OE),

IVf2 VG2 VG VG2 2 (|Vh|? VG VGPE
= te hy+—
G G2 2 1 G G2 G3

e 2—— - Vh— —2h—-Vh+

2} + 0,

Passing now to the limit € — 0 in the first inequality and using that the zero and first order terms

vanish because (performing one integration by parts)

H’(G)~h:/ (log G+ 1) h = 0,
Rd

/ _ VG]? AGY
I h_/Rd{ . G} =0,

NH"(G) - (h,h) < I"(G) - (h, ).

we get

More explicitly, we have

B2 VR2 VG VeGP
Do« il
)\/G_/{ ¢ (@) h}
2 2 2 2
)\+d/h /h { B +|VGG| } /thl

which is nothing but the Poincaré inequality.

and then
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4. WEIGHTED L' SEMIGROUP SPECTRAL GAP

In that last section, we establish that as a consequence of the Poincaré inequality, the following
weighted L' semigroup spectral gap estimate holds.

Theorem 4.1. For any a € (—Ap,0) and for any k > k* := Ap + d/2 there exists Cy o such that
for any ¢ € L}, the associated solution f to the Fokker-Planck equation (2.1)-(2.2) satisfies

If = (@) Gl < Crae [lp = (p) Gl L1
A refined version of the proof below shows that the same estimate holds with a := —A\p and for any
k> k™ = Ap.
Proof of Theorem 4.1. We introduce the splitting L = A + B with
Bf =Af+V-(fz)-Mfxr, Af:=Mfxr,

where xr(z) = x(z/R), x € D(R?), 0 < x <1, x =1 on By, and where R, M > 0 are two real
constants to be chosen later. We splits the proof into several steps.

Step 1. The operator A is clearly bounded in any Lebesgue space and more precisely
Viel? Aflrcrry < Cprllfllze

Step 2. For any k,e > 0 and for any M, R > 0 large enough (which may depend on k and ¢) the
operator B is dissipative in L} in the sense that

(4.1) vrep® [ (B ) (@) < - 0l

We set 5(s) = |s| (and more rigorously we must take a smooth version of that function) and
m = (x)* and we compute

/(Lf)/s'(f)m - /(Af+df+x'Vf)B’(f)m
/ (=VFV(E (f)m) +d|flm+mz-V|f]}
= [ 1wt s pymes [ 171 {8m+d-Viwm)

[151(8m =z Vm,
where we have used that § is a convex function. Defining
Y = Am—z-Vm—Mxrm

(K [al* (@) =" = k|af* (@) 7% = M xp) m
we easily see that we can choose M, R > 0 large enough such that ¢ < (¢ — k) m and then (4.1)
follows.

Step 3. Fix now k > k*. For any a € (—\p,0), there holds

Cak: el
(42) Vo e DR [ePollLz < w2 ' el

A similar computation as in step 2 shows

2
Jenim - —/|V<fm>|2+/|f|2 (Ve g Mxafm?

=~ [FUmP+Gre=n) 1P

for M, R > 0 chosen large enough. Denoting by f (t) = Sp(t) = eBy the solution to the evolution
PDE

atf:Bf7 f(o):(ﬂ,
we (formally) have

2dt/f2 /Bf)fm< /|me\2+a/|f|2



14 CHAPTER 4 - MORE ABOUT THE HEAT EQUATION

from which (4.2) follows by using the Nash inequality similarly as in the proof of estimate (1.2) in
section 1.1.

Step 4. For any k > k* and a € (—Ap,0), there holds
(4.3) 1(AS5) ¢l L2 (-1/2) < Chma e llellry Vi >0,

for n = d+1 for instance. We just establish (4.3) when d = 1. We denote £ := L}, E := L*(G~'/?).
Observing that

C ’ ’
[ASs(O)le < 575 et and  [LAS(t) e < Cac™,

we compute

1(ASB) "D |lesp

IN

t
/ JASE(t — )6 | AS5(8) e re ds
0

t
/ 4
a't
< e /0 7(7575)1/202&9

L du

_ a't 1/2
= € Cl CQt u1/2,

0
from which we immediately conclude by taking a’ € (—Ap,a).
Step 5. We define in both spaces E and £ the projection operator

Inf .= (f)G.
We denote by L the differential Fokker-Planck operator in £ and still by L the same operator in
E. We also denote by S, and Sy, the associated semigroups. Since G € E C £ is a stationary

solution to the Fokker-Planck equation and the mass is preserved by the associated flow, we have
Sp(I—1I) = (I —1II) S, as well as

(4.4) ISL)(I =)llp—p = (I =) Sp(t)|pp < e *7* Vi20,
which is nothing but (2.4). Now, we decompose the semigroup on invariant spaces
SﬁZHSZ-i-(I—H)Sg(I—H)
and by iterating once the Duhamel formula
t
Se(t) = Sg(t) —|—/ Sc(t—s)ASp(s)ds

0

Sp(t) + S * ASp(t),

we have
Sp = Sp+ Si * (ASE) + S+ (ASp)*2.
These two identities together, we have

Sy = TISp+ (I —10){Ss+ Si * (ASg) + S, % (ASp)*?} (I —1I)
or in other words
Sp—MS; = (I—M){Sp+ Sgx* (ASg)}I —I) + {(I —II) S} * (ASg)*? (I —1II).

We conclude by observing that the RHS in the above expression is O(e) thanks to estimate (4.4)
and thanks to steps 2 and 4 above. O
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5. COMING BACK TO LOCAL IN TIME ESTIMATES

We consider a smooth and fast decaying initial datum fj, the solution f to associated heat equation,
and for a given a € R%, we define g := fe¥, 1(z) := a - 2. The equation satisfied by g is
1 1

Qg = §€wA(9€7w)—§

1 1
= §Ag —a-Vg+ §|a|2g

1
Ag—Vy-Vg+ §|V¢|29

For the L' norm, we have
d 1,
21l = 2 gl

and then ||g(t,.)||z: = e’t/2 llgoll: for any ¢t > 0. For the L? norm and thanks to the Nash

inequality (1.3), we have

d
oz = —lVallz: +a* gl
242 d
S A 1]
with Ky := Cy ||goHZf/d. We see that the function u(t) := et lg(t)||2. satisfies the differential
inequality
ul S _KO U1+2/d,

from what, exactly as in the Section 1.1, we deduce

2
Dlzaeott < Mol g
||g( )HL26 = (2/dCNt)d/2’ >

Denoting by T'(t) the semigroup associated to the parabolic equation satisfies by g, the above

estimate writes
eagt/2
IT(t)gollz> < T

Because the equation associated to the dual operator is

llgollzr, Vt>0.

1 1
Oh = 5Ah+ - Vh+ §|a|2h7 h(0) = ho,
the same estimate holds on T™*(t)hg = h(t), and we thus deduce
Cea2t/2
td/4

Using the trick T'(t) = T'(t/2)T(¢t/2), both estimates together give an accurate time depend estimate
on the mapping T'(t) : L' — L* for any t > 0. More precisely and in other words, we have proved
tha the heat semigroup S satisfies

IT(#)gollLe> < lgollzz, Vt>0.

C
I(S@) fo) e’ e < 75 € P foellp, V>0,

Denoting F(t,z,y) := (S(t)d,)(y) the fundamental solution associated to the heat equation when
starting from the Dirac function in 2 € R%, the above estimate rewrites as

C
F(t,z,y) < a2 e("("”_y)_azt/z7 Vit >0,V y ac R

Choosing « := (z — y)/t, we end with

C z—y|2
Ft,z,y) < —e 2

: d
_We 2 Vi>0,Vzx,y e R



16 CHAPTER 4 - MORE ABOUT THE HEAT EQUATION

6. EXERCISES AND COMPLEMENTS

Exercise 6.1. 1. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d > 3. (Hint. Write the interpolation estimate

1 lze < IAIZ 1127

and then use the Sobolev inequality associated to the Lebesgque exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2.
(Hint. Prove the interpolation estimate

1lle < A 1A
then use the Sobolev inequality associated to the Lebesgue exponent p =1 and p* := 2 and finally
the Cauchy-Schwartz inequality in order to bound the second term).
3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1.
(Hint. Prove the interpolation estimate

1/2 1/3
1711z < FIZ° 07212
then use the Sobolev inequality associated to the Lebesque exponent p =1 and p* := 0o and finally

the Cauchy-Schwartz inequality in order to bound the second term).

We propose now a third proof based on the Poincaré-Wirtinger inequality. We write
1
1172 = (f, f = F) + (f, fr), with fi(2) == s f(y)dy.
o Bz, )| S
We have
1172 < W2 11 = fellz + 0l | frllpee-
On the one hand,
C
rllzs < 17l

On the other hand,

C
If = frll2e l

W sl

J.

s / / Ly—a<r | f(y) — f(2)] dzdy
Rd JRd
1
= TQ/ / / Ly—aj<r V(1 = t)z + ty)|? dadydt
0 Rd JRd
1/2
0 R4 JRA -
1
+T2/ / / Ly—oj<r| V(1 = ) + ty)|* dedydt
1/2 JR4 JRd
1/2
- Tz/ / / Ly <r [V ()] dedydt
0 Rd JRd -
1
+T2/ / / L)y—u|< |V f(2)|? dodzdt
1/2 JR4 JRd =
< TQC/ IV f(2)]? dz.
Rd
All together, we get
I£1Z: < Corllfllz IV fllze + Car™ I f]12s
1 C -
< Sl + 5 IS + Car ™ s

and we obtain the Nash inequality by choosing 7 := (|| f[|2./[|V f||22)"/(@+2).

Exercise 6.2. Establish (2.7) in the following situations:
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(i) V(z) = (x)* with a > 1;
(ii) there exist a > 0 and R > 0 such that

z-VV(z) >« Vx ¢ Bg;
(iii) there exist a € (0,1), ¢ > 0 and R > 0 such that
a|VV(z)]? = AV(z) >¢  Va ¢ Bg;

(iv) V is convex (or it is a compact supported perturbation of a convex function) and satisfies

eV e LY(RY).

Exercise 6.3. Generalize the Poincaré inequality to a general superlinear potential V(z) = (x)*/a+
Vo, @ > 1, in the following strong (weighted) formulation

/ Vgl > & / 90— P L+ |VVP)G  VgeD®RY,

where we have defined G := e~V € P(RY) (for an appropriate choice of Vo € R).

Exercise 6.4. Generalize Theorem 3.6 and Theorem 3.8 to the case of a super-harmonic potential
V(z) = (2)*/a, a > 2, and to an initial datum ¢ € P(R?) N LI(RY) such that H(yp) < oo.

7. BIBLIOGRAPHIC DISCUSSION

The Nash inequality and its application to the heat equation is due to Nash [12]. The Poincaré
inequality for gaussian measure can be proved thanks to the help to Hermit polynomial and it is
quite hold (see again [12] for instance). The proof we present here is based on the use of Lyapunov
fiunction and it is picked up from [2]. The strong version of the Poincaré inequality belongs to
folklore. The logarithmic Sobolev inequality is due to Stam [15], Blachman [4] and rediscoved by
Gross [8]. It is related to the hypercontractivity property of Nelson [13] and the T’y calculus of
Bakry and Emery [3]. We follow here the presentation given by Toscani [16]. The Csiszar-Kullback
inequality is due to Kullback [10], Pinsker [14] and Csiszér [5]. The proofs we present here are
picked up (first proof) from [1] and (second proof) from some notes I read from C. Villani. The
fact that the log-Sobolev implies the Poincaré inequality (as stated in Proposition 2.4) is due to
Gross [8]. The weighted L' convergence presented in Section 4 are taken from recent results due
to Gualdani, Mouhot and myself [9, 11]. See also [7] for related previous results. The third proof
of the Nash inequality presented in Section 6 is due to Diaconis and Saloff-Coste [6].
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